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INTERSECTION BOUNDS FOR NODAL SETS

OF PLANAR NEUMANN EIGENFUNCTIONS

WITH INTERIOR ANALYTIC CURVES

Layan El-Hajj & John A. Toth

Abstract

Let Ω ⊂ R2 be a bounded piecewise smooth domain and ϕλ

be a Neumann (or Dirichlet) eigenfunction with eigenvalue λ2 and
nodal set Nϕλ

= {x ∈ Ω;ϕλ(x) = 0}. Let H ⊂ Ω be an interior
Cω curve. Consider the intersection number

n(λ,H) := #(H ∩ Nϕλ
).

We first prove that for general piecewise-analytic domains, and
under an appropriate “goodness” condition on H (see Theorem
1.1),

(1) n(λ,H) = OH(λ)

as λ → ∞. Then, using Theorem 1.1, we prove in Theorem 1.2
that the bound in (1) is satisfied in the case of quantum ergodic
(QE) sequences of interior eigenfunctions, provided Ω is convex
and H has strictly positive geodesic curvature.

1. Introduction

Let Ω ⊂ R
2 be a real analytic, bounded planar domain with boundary

∂Ω and H ⊂ Ω̊ a real-analytic interior curve. We consider here the Neu-
mann (or Dirichlet) eigenfunctions ϕλ on real analytic plane domains
Ω ⊂ R

2 with{ −Δϕλ = λ2ϕλ in Ω
∂νϕλ = 0 (Neumann), ϕλ = 0 (Dirichlet) on ∂Ω.

The nodal set of ϕλ is by definition

Nϕλ
= {x ∈ Ω : ϕλ(x) = 0}.

Our main interest here involves estimating from above the number of
intersection points of the nodal lines of Neumann eigenfunctions (the
connected components of the nodal set) with a fixed analytic curve H
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contained in the interior of the domain Ω. We define the intersection
number for Dirichlet data along H by

(2) n(λ,H) = #{Nϕλ
∩H}.

We recall from [TZ] that an interior curve H is said to be good provided
for some λ0 > 0 there is a constant C = C(λ0) > 0 such that for all
λ ≥ λ0,

(3)

∫
H
|ϕλ|2dσ ≥ e−Cλ.

Assuming the goodness condition (3), it is proved in [TZ] that

(4) n(λ,H) = OH(λ).

It follows from unique continuation for the interior eigenfunctions and
the potential layer formula ϕλ(x) =

∫
∂ΩN(x, r(s);λ)ϕλ(s)dσ(s); x ∈

int(Ω), that (3) is satisfied in the special case where H = ∂Ω. The
goodness property (3) seems very likely generic (see [BR]). However,
it is difficult to prove in concrete examples that the lower bound is
satisfied for all eigenfunctions with λ ≥ λ0. Indeed, in [TZ], only the
special curve ∂Ω is shown to be good. Recently, Jung [Ju] has shown
that in the boundaryless case, closed horocycles of hyperbolic surfaces
of finite volume are good in the sense of (3) and hence satisfy the O(λ)
upper bounds. In the case of a flat 2-torus, Bourgain and Rudnick [BR]
have recently proved � λ upper bounds when H is real-analytic with
nowhere vanishing curvature (they also prove � λ1−ε lower bounds in
the case where H is real-analytic and non-geodesic).
Despite these results, it is clear that not all curves are good in the

sense of (3). As a counterexample, consider the Neumann problem in
the unit disc. The eigenfunctions in polar variables (r, θ) ∈ (0, 1]×[0, 2π]
are ϕeven

m,n (r, θ) = Cm,n cosmθJm(j
′
m,nr) and ϕodd

m,n(r, θ) = Cm,n sinmθJm
(j′m,nr). Here, Jm is the m-th integral Bessel function and j′m,n is the m-

th critical point of Jm. The eigenvalues are λ
2
m,n = (j′m,n)

2. Fix m ∈ Z
+

and consider

Hm = {(r, θ); θ = 2πk

m
; k = 0, . . . ,m− 1}.

Then, clearly, for any n = 0, 1, 2, . . . , ϕodd
m,n|Hm = 0 and so in particular

Hm is not good in the sense of (3).

The point of this paper is threefold:

(i) To give an alternative proof of the nodal intersection bound of
Toth and Zelditch for interior curves H under a revised goodness
condition on H (see Theorem 1.1).

(ii) To establish exponential lower and upper bounds (see Theorem
1.3) for the Grauert tube maxima of analytic continuations of
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restrictions of quantum ergodic (QE) eigenfunctions to positively
curved H in annular subdomains of the complexification of H.

(iii) To use the lower bounds in (ii) combined with (i) to explicitly
identify a large class of interior analytic curves in planar billiards
that satisfy the n(λ,H) = OH(λ) intersection bounds for interior
QE sequences of eigenfunctions. That is the content of Theorem
1.2.

Moreover, for both Theorems 1.1 and 1.2, the n(λ,H) upper bound is
proved using the frequency function method of F.H. Lin combined with
some semiclassical microlocal analysis, rather than the Jensen argument
in [TZ]. Indeed, the revised goodness condition (see Theorem 1.1) that
is needed for all our results follows here readily from the main frequency
function bound for the number of complex zeros in a complex thickening
of H.
Our first main theorem is:

Theorem 1.1. Let Ω be a bounded, piecewise-analytic domain and
H ⊂ Ω̊ an interior Cω curve with restriction map γH : C0(Ω)→ C0(H).
Let HC

ε◦ denote the complex radius ε◦ > 0 Grauert tube containing H

as its totally real submanifold and let (γHϕλ)
C be the holomorphic con-

tinuation of γHϕλ to HC
ε◦. Suppose the curve H satisfies the revised

goodness condition

(5) sup
z∈HC

ε◦

|(γHϕλ)
C(z)| ≥ e−Cλ

for some C > 0. Then, there is a constant CΩ,H > 0 such that for all
λ ≥ λ0,

n(λ,H) ≤ CΩ,Hλ.

Our results here are inherently semiclassical and so we introduce the
parameter h which takes values in the sequence λ−1j ; j = 1, 2, 3, . . . .

By a slight abuse of notation, we denote the Neumann (or Dirichlet)
eigenfunctions ϕλ by ϕh, and write n(h,H) := n(λ,H). The restrictions
to H are denoted by ϕH

h := γHϕh where γH : C0(Ω) → C0(H) is the
restriction operator γHf = f |H . In the special case where H = ∂Ω we
denote the Neumann (resp. Dirichlet) boundary traces by ϕ∂Ω

h := γ∂Ωϕh

(resp. ϕ∂Ω
h := γ∂Ωh∂νϕh).

Our second result deals with the case of quantum ergodic sequences
of eigenfunctions. We recall that given a piecewise smooth manifold Ω
with boundary, a sequence of L2-normalized eigenfunctions (ϕhjk

)∞k=1 is

quantum ergodic (QE) if for any a ∈ S0cl(T
∗Ω) with π(supp(a)) ⊂ Int(Ω),

〈Ophjk
(a)ϕhjk

, ϕhjk
〉 ∼hjk

→0+

∫
S∗Ω

a(x, ξ)dμ,
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where dμ is Liouville measure. By a theorem of Zelditch and Zworski
[ZZ], for a domain with ergodic billiards, a density-one subset of eigen-
functions are quantum ergodic. The domain Ω is quantum uniquely er-
godic (QUE) if all subsequences are QE. We also recall from [TZ2] the
quantum ergodic restriction (QER) problem, which is to determine con-
ditions on a hypersurface Γ so that the restrictions γΓϕhj

to Γ on a
Riemannian manifold (M,g) with ergodic geodesic flow are quantum
ergodic along Γ.
An important consequence of Theorem 1.1 concerns convex billiards.

Theorem 1.2. Let Ω be a bounded, piecewise-analytic convex domain
and H be a Cω interior curve with strictly positive geodesic curvature.
Let (ϕhjk

)∞k=1 be a QE sequence of Neumann or Dirichlet eigenfunctions

in Ω. Then,

n(hjk ,H) = OH,Ω(h
−1
jk
).

The proof of Theorem 1.2 follows by showing that positively curved
H are good in the sense of (5) and then applying Theorem 1.1.
When Ω is a convex ergodic billiard, it follows from the QE result

of Zelditch and Zworski [ZZ] that Theorem 1.2 applies to at least a
density-one subsequence of eigenfunctions. To our knowledge, it is an
open question as to whether or not there are ergodic billiards that are
QUE.
In the course of proving goodness for curved H, we actually prove a

much stronger result (see Proposition 6.1 and Theorem 1.3 below). We
show that the Grauert tube maximum of complexified eigenfunction
restrictions maxz∈HC

ε◦
|(γHϕC

h (z)| is in fact exponentially increasing in

h provided the Grauert tube radius ε◦ > 0 is sufficiently small. We
summarize this in the following theorem which seems of independent
interest.
To state our next result, we consider weight function

S(t) := max
s∈[−π,π]

Re (iρC(t, s))

where ρC is the complexified distance function between H and ∂Ω (see
(57) and (79)). In Lemma 7.7 we compute the asymptotics of S(t) for
Im t ∈ [ε◦ − δ, ε◦], with ε◦ > 0 small and 0 < δ < ε◦. We show that in
such thin strips in the upper half-plane,

(6) S(t) = Im t+
κ2H(Re t)

6
(Im t)3 +O(|Im t|5).

Theorem 1.3. Let Ω be a convex bounded planar domain, H ⊂ Ω̊
an interior Cω strictly convex closed curve with curvature κH > 0, and
(ϕhjk

)∞k=1 a QE sequence of interior eigenfunctions. Then, for ε◦ >

0 sufficiently small and any 0 < δ < ε◦ there exist constants C1 =
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C1(ε◦, δ) > 0 and C2 = C2(ε◦) > 0, such that for h ∈ (0, h0(ε◦)],
C1e

mH (ε◦−δ)/h ≤ max
z∈HC

ε◦

|(γHϕh)
C(z)| ≤ C2h

− 1
2 eMH(ε◦)/h.

Here, mH(ε◦ − δ) := mint∈[−π,π]×[ε◦−δ,ε◦] S(t) and MH(ε◦) =
maxt∈[−π,π]×[0,ε◦] S(t). Moreover, it follows from (6) that MH(ε◦) =

ε◦ +O(ε3◦) and mH(ε◦ − δ) = ε◦ − δ +O(|ε◦ − δ|3).

The lower bounds in Theorem 1.3 are one of the main results of this
paper and use Proposition 6.1 in a crucial way. To our knowledge, even

the (much simpler) upper bounds for |uH,C
h | are new for domains with

boundary. General results for growth of ϕC
h for Cω manifolds without

boundary are proved in [Z2].
Our nodal intersection bounds are consistent with S.T. Yau’s famous

conjecture on the Hausdorff measure of nodal sets [BG, Do, DF, DF2,
H,HL, HHL, HS, L, Y1, Y2] which asserts that for all smooth (M,g)
there are constants c1, C1 > 0 such that c1λ ≤ |Nϕλ

| ≤ C1λ, where | · |
denotes Hausdorff measure. There has been important recent progress
on polynomial lower bounds in Yau’s conjecture using several methods
(see [CM], [He], [Man], [SZ]). Contrary to the lower bounds on nodal
length, there are no general nontrivial lower bounds for the intersection
count studied here, which is easily seen by considering the disc (see
also [JN, NJT, NS] and related results on sparsity of nodal domains
[Lew]). In analogy with the case of nodal domains, it is of interest to
determine whether non-trivial (i.e. polynomial in λ) lower bounds exist
for nodal intersections under appropriate dynamical assumptions (such
as ergodicity) on the billiard dynamics. Recently, in [GRS], Ghosh,
Reznikov, and Sarnak have established such polynomial lower bounds
in the case of arithmetic surfaces. We hope to return to this question
elsewhere.
Throughout the paper C > 0 will denote a positive constant that can

vary from line to line.

1.1. Outline of the proof of Theorem 1.1. We now describe the
main ideas in the proof of Theorem 1.1 suppressing for the moment
some of the technicalities. Let q : [−π, π]→ H be a Cω-parametrization
of the curve H with |q′(t)| �= 0 for all t ∈ [−π, π] and let r : [−π, π]→ ∂Ω
be the arclength parametrization of the boundary. We denote the respec-
tive eigenfunction restrictions (on the parameter domain) by uHh (t) =

ϕH
h (q(t)) and u∂Ωh (s) = ϕ∂Ω

h (r(s)). As in [TZ], given the eigenfunction

restriction, uHh (t) = ϕH
h (q(t)), t ∈ [−π, π], the first step is to complex-

ify uHh to a holomorphic function uH,C
h (t) with t ∈ Cε◦ where Cε◦ is a

simply connected domain with Cω boundary ∂Cε◦ containing the rec-
tangle Sε◦,π in the parameter space. The image of Sε◦,π under the com-

plexified parametrization of H is the complex Grauert tube HC
ε◦ ; that
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is, HC
ε◦ := qC(Sε◦,π). The reason for introducing the intermediate do-

main of holomorphy Cε◦ is somewhat technical and has to do with the
frequency function approach to nodal estimates, which is adapted to
counting complex zeros in discs (see Lemma 3.3). Let n(h,Cε◦) denote

the number of complex zeros of uH,C
h in the simply connected domain

Cε◦ . The key frequency function estimate (see Proposition 3.4) gives the
upper bound

(7) n(h,H) ≤ n(h,Cε◦) ≤ C1

(‖∂TuH,C
h ‖L2

ε◦

‖uH,C
h ‖L2

ε◦

)
.

Here, we write L2ε◦ for L2(∂Cε◦ , dσ(t)) and ∂T is the unit tangential
derivative along ∂Cε◦ . A key step in the proof of Theorem 1.1 is to h-
microlocally decompose the right hand side in (7). Let χR ∈ C∞0 (T

∗∂Cε◦)
with χR(σ) = 1 for |σ| ≤ R + 1 and χR(σ) = 0 for |σ| ≥ R + 2 with
R > 0 arbitrary. Clearly,

(8) ‖∂TuH,C
h ‖L2

ε◦
≤ ‖∂TOph(χR)u

H,C
h ‖L2

ε◦
+‖∂T (1−Oph(χR))u

H,C
h ‖L2

ε◦
.

For the first term on the right hand side of (8), since h∂TOph(χR) ∈
Oph(S

0,0(T ∗∂Cε◦)), we have by L2-boundedness that

(9)
‖∂TOph(χR)u

H,C
h ‖L2

ε◦

‖uH,C
h ‖L2

ε◦

= h−1
‖h∂TOph(χR)u

H,C
h ‖L2

ε◦

‖uH,C
h ‖L2

ε◦

≤ C2h
−1.

As for the second term on the right hand side of (8), by using poten-
tial layer formulas and the Cauchy-Schwarz inequality combined with a
complex contour deformation argument (see Proposition 4.2), we show
that

(10) ‖h∂T (1−Oph(χR))u
H,C
h ‖L2

ε◦
= O(e−CR/h) · ‖u∂Ωh ‖L2 .

Here, CR � R as R → ∞ and L20 = L2([−π, π], dt), so the term on the
right hand side of (10) involves the L2-integral of the restriction of ϕh

to the domain boundary ∂Ω.
Since ‖u∂Ωh ‖L2 = O(h−α) for some α > 0, it follows that

(11) ‖h∂T (1−Oph(χR))u
H,C
h ‖L2

ε◦
= O(e−CR/h).

From the Cauchy integral formula, Cauchy-Schwarz, and the goodness
condition (5) we get

(12) ‖uH,C
h ‖L2

ε◦
≥ C · sup

t∈Sε◦,π

|uH,C
h (t)| � e−C0/h.

From (12) and (11),

(13)
‖h∂T (1 −Oph(χR)u

H,C
h ‖L2

ε◦

‖uH,C
h ‖L2

ε◦

= O(e(−CR+C0)/h).
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By choosing R sufficiently large in the radial frequency cutoff χR, we
get that CR−C0 � R > 0, and so substitution of the estimates (8), (9),
and (13) in (7) completes the proof of Theorem 1.1. q.e.d.

1.2. Outline of the proof of Theorem 1.3. Let HC
ε◦ be the complex

Grauert tube of radius ε◦ > 0 with totally real part H and let δ > 0
be an arbitrarily small constant. Choose ζε◦ ∈ C∞0 (H

C
ε◦ ; [0, 1]) to be a

cutoff in the Grauert tube equal to 1 on HC

ε◦−2δ
−HC

ε◦−3δ
and vanishing

outside HC

ε◦−δ
−HC

ε◦−4δ
. Let χε◦,δ(t) := ζε◦,δ(q

C(t)) be the corresponding
cutoff in the parameter domain.
Ignoring technicalities arising from corner points on the boundary,

the main technical part of the proof of Theorem 1.3 (see Proposition
6.1 and Corollary 6.2) consists of showing that under the non-vanishing
curvature condition on H and for ε◦ > 0 small, there is an order-zero
semiclassical pseudodifferential operator P (h) ∈ Oph(C

∞
0 (B

∗∂Ω)) such
that
(14)

h−1/2
∫ ∫

C/2πZ
e−2S(t)/h|uH,C

h (t)|2 χε◦,δ(t) dtdt ∼h→0+ 〈P (h)ϕ∂Ω
h , ϕ∂Ω

h 〉.

Moreover, the principal symbol σ(P (h)) satisfies

(15)

∫
B∗∂Ω

σ(P (h))γ−1 dydη ≥ CH,Ω,ε◦,δ > 0

where γ(y, η) =
√
1− |η|2.

Given a quantum ergodic sequence (ϕhjk
)∞k=1, it follows that the

boundary restrictions (ϕ∂Ω
hjk
)∞k=1 are themselves quantum ergodic [Bu,

HZ] in the sense that

(16) 〈P (h)ϕ∂Ω
h , ϕ∂Ω

h 〉 ∼h→0+

∫
B∗∂Ω

σ(P (h))γ−1 dydη.

It then follows from (14), (15), and (16) that

h−1/2
∫ ∫

C/2πZ
e−2S(t)/h|uH,C

h (t)|2 χε◦,δ(t) dtdt ∼h→0+∫
B∗∂Ω

σ(P (h))γ−1 dydη = CΩ,H,ε◦,δ > 0.(17)

To get the lower bounds for the Grauert tube maxima, we use the
elementary inequality

h−1/2 max
t∈Sε◦,π

|uH,C
h (t)|2 ×

∫ ∫
C/2πZ

e−2S(t)/hχε◦,δ(t)dtdt

≥ h−1/2
∫ ∫

C/2πZ
e−2S(t)/h|uH,C

h (t)|2 χε◦,δ(t) dtdt.(18)
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In view of (17) and the formula S(t) = Im t+
κ2
H(Re t)
6 (Im t)3+O(|Im t|5)

in Lemma 7.7, the exponential lower bound for the Grauert tube maxi-

mum of |uH,C
h | follows from (18).

The upper bound follows by using the complexified potential layer
formula

uH,C
h (t) =

∫
∂Ω

NC(qC(t), r(s);h)u∂Ωh (r(s))dr(s)

combined with Cauchy-Schwarz and the a priori bound ‖u∂Ωh ‖L2(∂Ω) =
O(1), which is a direct consequence of the QER property of the eigen-
function boundary traces. Further details are given in section 6. q.e.d.

1.3. Outline of proof of Theorem 1.2. Theorem 1.2 follows from
Theorems 1.3 and 1.1 since the goodness condition (5) for H follows
trivially from the lower bound in Theorem 1.3. q.e.d.

Remark: We note that the lower bound in Theorem 1.3 gives exponential

growth for the Grauert tube maximum maxt∈Sε◦,π
|uH,C

h (t)| consistent
with the upper bound. Therefore, it is much stronger than the goodness
condition (5) which only requires that the Grauert tube maximum not

decay faster than e−C/h for some C > 0.

1.4. h-microlocal characterization of P (h). Although we give a
self-contained proof of Proposition 6.1 in section 8, it is useful to un-
derstand the h-microlocal rationale behind the characterization of P (h)
in the proposition. To simplify the argument somewhat, we continue to
assume here that ∂Ω is smooth.
Let HC

ε◦/2,ε◦
= HC

ε◦ − HC

ε◦/2
be the complex strip corresponding to

ε◦/2 < Im t < ε◦ in the complexification of H and χ ∈ C∞0 (H
C

ε◦/2,ε◦
),

a cutoff to the complex strip HC

ε◦/2,ε◦
. Given the composite operator

Fχ(h) : C
∞(∂Ω)→ C∞0 (H

C
ε◦), with

Fχ(h) := h−1/4e−S/hχγCHNC(h),

the argument in Proposition 6.1 characterizes the operators

(19) P (h) = Fχ(h)
∗Fχ(h) : C

∞(∂Ω)→ C∞(∂Ω)

as h-pseudodifferential of order 0.
The reason for this can be seen as follows. Under the positive cur-

vature assumption on H we show in section 8.3 that for ε◦ > 0 small,

there exists s∗ ∈ Cω(HC

ε◦/2,ε◦
) such that s �→ Re [iρC(t,s)]

Im t has a non-

degenerate maximum at s = s∗(t). Since the subharmonic weight func-
tion S(t) = Re iρC(t, s∗(t)), it follows that the phase of the operator
Fχ(h) is of the form

(20) ϕ(t, s) = Re ρC(t, s) + iβ1(t, s)
(
(s− s∗(t))2 +O(s− s∗(t))3

)
,
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where coefficient β1(t, s) ∼ κH(Y (s))
2Im t. Here, s∗(Re t, 0) = Y −1(Re t)

where Y : ∂Ω → H is the glancing map relative to H (see Definition
7.4). When H is strictly convex, up to choice of orientation, the map Y is
the Cω-diffeomorphism of ∂Ω with H that assigns to each point r ∈ ∂Ω
the corresponding point q ∈ H with the property that the geodesic ray
joining these points is tangent to H at the terminal point, q.
As for the real part of the phase Reϕ(t, s) = Re ρC(t, s), we note that

in view of (20), WF ′h(Fχ(h)) ⊂ Λ with

Λ : = {(s, dsρC(t, s); t,−dtρC(t, s)− idtS(t)), s = s∗(t),
ε◦
2

< Im t < ε◦}

⊂ T ∗∂Ω× T ∗HC
ε◦ .

(21)

One can decompose Λ into real and imaginary parts Λ = ReΛ⊕ iImΛ
with

ReΛ = {(s, dsRe ρC(t, s); Re t,−dRe tRe ρC(t, s)),
s = s∗(t),

ε◦
2

< Im t < ε◦} ⊂ T ∗∂Ω× T ∗H.(22)

Under the positive curvature condition onH, one can show that (s, Im t)
are parametrizing coordinates for ReΛ. For (x, ξ, y, η) ∈ ReΛ, the pro-
jections κ1(x, ξ, y, η) = (x, ξ) and κ2(x, ξ, y, η) = (y, η) are diffeomor-
phisms onto their images and the open real Lagrangian ReΛ is a canon-
ical graph with respect to the symplectic form κ∗1(ds∧dIm t)⊕κ∗2(−ds∧
dIm t) (see section 7.5.3). In particular, dsdIm tRe ρ

C(t, s) �= 0 when
s = s∗(t). As a consequence of this and the analysis of the imaginary
part of the phase in (20), a key step in the proof of Proposition 6.1 is
the operator decomposition (see Lemma 8.2)

Fχ(h)
∗Fχ(h) = UY (h)

∗T (h)∗ χ2 T (h)UY (h).(23)

Here, UY (h) : C∞(∂Ω) → C∞(H) is an h-Fourier integral operator
quantizing the glancing diffeomorphism Y : ∂Ω → H. After an appro-
priate choice of complex variables τ1 + iτ2 ∈ HC

ε◦/2,ε◦
and identifying

HC

ε◦/2,ε◦
with a subset of T ∗H via map τ1+ iτ2 → (τ1, τ2), the operators

T (h) : C∞(H)→ C∞(T ∗H) can be written in the form

T (h)g(τ1, τ2)

(24)

= (2πh)−3/4
∫
H
e[i(τ1−u)τ2−β̃(u,τ1,τ2)|τ1−u|

2]/hc(u, τ1, τ2;h)g(u) dσ(u)

where c ∼ ∑∞
k=0 ckh

k and β̃(u, τ1, τ2) > 0 when (u, τ1, τ2) ∈ supp c.
Here, supp c(u, ·, ·;h) ⊂ {(τ1, τ2); ε◦2 < τ2 < ε◦}. Consequently, T (h) is,
h-microlocally on the image of HC

ε◦/2,ε◦
, an FBI-transform in the sense

of [WZ] of order zero. Indeed, the extra multiplicative factor of h−1/4
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is included in the definition of Fχ(h) to ensure that T (h) is of order
zero. The identity (23) follows from the analysis in section 8 (see, in
particular, Lemma 8.2).
Given (23), it follows by the h-Egorov theorem for FBI-transforms

([Zw] Theorem 13.12) that

T (h)∗χ2T (h) = Q(h)

where Q(h) : C∞(H) → C∞(H) is an h-pseudodifferential operator on
H of order 0. Finally, conjugation with the h-Fourier integral operator
UY (h) quantizing the glancing map and another application of the usual
h-Egorov theorem for h-pseudodifferential operators gives P (h) in (19)
as an h-pseudodifferential operator of order 0 acting on the boundary
∂Ω. This is essentially the content of Proposition 6.1 along with the
explicit computation of the principal symbol of P (h).

1.5. QER for Cauchy data along H and growth of uH,C
h . In (16)

we have used that for Dirichlet, interior QUE for domains implies QE for
the boundary traces ϕ∂Ω

h . This follows from Burq’s proof of boundary
quantum ergodicity [Bu] using the Rellich commutator argument (see
also [HZ] for a different proof). In the Neumann case, the same is true as
long as one uses test operators with symbols supported away from the
tangential set to the boundary; in particular, our test operator P (h)
in (14) has this property. Neither statement is necessarily correct for
the eigenfunction restrictions to a general interior curve H [TZ2]. An
important point in this paper is that the nodal intersection count for an
interior H is linked to QER for the boundary values of eigenfunctions
ϕ∂Ω
h , not the QER problem for H (however, see below). Indeed, the

identity (14) directly links a weighted L2-integral of the holomorphic
eigenfunction continuations over H to boundary QER. That part of the
argument is somewhat technical and uses the curvature assumption on
H (see sections 7 and 8).
Despite the fact that the growth of the holomorphic continuations

uH,C
h and, consequently, the nodal intersection count, need not be di-
rectly linked to the QER problem for Dirichlet data consisting of eigen-
function restrictions to H, it is worthwhile to point out that it is directly
related to the QER problem for Cauchy data along H. Let

CDH(h) := (ϕH
h , ϕH,ν

h )

with ϕH
h = ϕh|H and ϕH,ν

h = h∂νHϕh|H , where we continue to assume
that (ϕh) is QE sequence for the domain Ω. Then, the interior curve H
and ∂Ω bound a subdomain ΩH ⊂ Ω and one can write the boundary
restriction ϕ∂Ω

h directly in terms of the Cauchy data along H. Indeed,
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Green’s formula gives

ϕ∂Ω
h (r(s)) =

∫
H
∂νH (q(t))G0(r(s), q(t), h)ϕ

H
h (q(t))dq(t)

−
∫
H
h−1G0(r(s), q(t), h)ϕ

H,ν
h (q(t))dq(t).(25)

It follows that

〈P (h)ϕ∂Ω
h , ϕ∂Ω

h 〉 = 〈QH(h)CDH (h), CDH(h)〉(26)

where QH(h) is a 2× 2-matrix of h-pseudodifferential operators acting
on H and we write CDH(h) as a column vector. Consider the opera-
tors T (h) : C∞(H) → C∞(∂Ω) and G(h) : C∞(H) → C∞(∂Ω) with
Schwartz kernels T (r(s), q(t);h) = ∂νHG0(r(s), q(t);h) and G(r(s), q(t);
h) = −h−1G0(r(s), q(t);h) respectively. Here G0(x, y, h) is the free
Green’s kernel in (29) and both T (h) and S(h) are h-Fourier integral
operators with standard WKB-expansions. The latter follows from (29)
sinceH is interior to Ω and so dist(H, ∂Ω) > 0. The entries ofQH(h) are
the operators Q11(h) = T (h)∗P (h)T (h), Q22(h) = G(h)∗P (h)G(h), Q12

(h) = T (h)∗P (h)G(h), and Q21(h) = Q12(h)
∗. By the h-Egorov theo-

rem, Qij(h) : C
∞(H)→ C∞(H) are h-pseudodifferential on H of order

0 and the respective symbols can be computed in terms of the symbol
σ(P (h)) in Proposition 6.1 and the transfer map between ∂Ω and H
(see [TZ2] section 3). One can then restate Proposition 6.1 in the form

h−1/2
∫ ∫

C/2πZ
e−2S(t)/h|uH,C

h (t)|2χε◦,δ(t)dtdt(27)

∼h→0+ 〈QH(h)CDH(h), CDH (h)〉.
The formula (27) relates the growth of the holomorphic continuations

uH,C
h to QER for the eigenfunction Cauchy data along H.

Remark: Recently, Zelditch [Z] has obtained detailed results on the as-

ymptotic distribution of complex zeros of ϕH,C
h in the ergodic case when

H is a geodesic. Although we do not pursue this here, the identity in
(17) can be used to derive asymptotic distribution results for complex

zeros of ϕH,C
h in the case where H has strictly positive geodesic curva-

ture, but only in an annular subdomain of HC
ε◦ away from the real curve

H (i.e. on the support of the cutoff χε◦). At the moment, we do not

know what the asymptotic distribution of the zeros of ϕH,C
h looks like

in the entire Grauert tube HC
ε◦ when H is geodesically curved. We hope

to return to this problem elsewhere.

Remark: The convexity assumption on ∂Ω in Theorems 1.2 and 1.3 can
be relaxed somewhat. Although we do not pursue it here, it is not hard
to show using the methods of this paper that our results extend to the
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case where the glancing map Y : ∂Ω→ H is a diffeomorphism, H is Cω

strictly convex, and (ϕh) is a QE sequence.
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garding an earlier version of the manuscript.
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2. Analytic continuation of eigenfunctions and domains

2.1. Complexification of domains Ω and their boundaries ∂Ω.
We adopt notation that is similar to that of Garabedian [G] and Millar
[M1, M2] (see also [TZ]) and denote points in R

2 by (x, y) and com-
plex coordinates in C

2 by (z, w). It is also important to single out the
independent complex coordinates ζ = z+ iw, ζ∗ = z− iw. When H ⊂ Ω
and ∂Ω are real analytic curves, their complexifications are the images
of analytic continuations of real analytic parametrizations. There are
two natural parameter spaces and, as in [TZ], we freely work with both
throughout. We define the parameter strip of width 2ε0 to be

Sε◦ = {t ∈ C : t = Re t+ iIm t,Re t ∈ R, Im t ∈ [−ε◦, ε◦]}.
The corresponding fundamental rectangular domain is

Sε◦,π = {t ∈ C : t = Re t+ iIm t,Re t ∈ [−π, π], Im t ∈ [−ε◦, ε◦]}.
For ε◦ > 0 small, the associated conformal map of Sε◦,π onto HC

ε◦ is

qC : Sε◦,π −→ HC
ε◦

qC(t) = (qC1 (t), q
C
2 (t)).

Without loss of generality, we assume that H is a closed curve with
|q′(t)| �= 0 for all t ∈ [−π, π]. In addition, we assume throughout that
the real-analytic parametrization q : [−π, π]→ H with q(t+ 2π) = q(t)
extends to a conformal map qC : S2ε◦,2π → HC

2ε◦ with qC(t+2π) = qC(t).

One can also naturally parametrize HC
ε◦ using functions on annular do-

mains in C of the form

Aε◦ := {z ∈ C; e−ε◦ ≤ |z| ≤ eε◦}.
In terms of the conformal map

z : Sε◦,π −→ Aε◦ , z(t) = eit,

given any 2π-periodic holomorphic function f ∈ O(Sε◦,π) there is a
unique holomorphic F ∈ O(Aε◦) with

f(t) = F (z(t)) = F (eit).
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The conformal parametrizing map qC : Sε◦,π → HC
ε◦ induces a confor-

mal parametrizing map QC : Aε◦ → HC
ε◦ with qC(t) = QC(eit). We use

the two maps interchangeably throughout. Generally, uppercase letters
denote parametrization maps from the annulus Aε◦ and lowercase ones
denote maps from the rectangle Sε◦,π. In view of the potential layer
formulas and the boundary conditions, the boundary curve ∂Ω has spe-
cial significance. Without loss of generality, we let r : [−π, π] → ∂Ω
be the real analytic arclength parametrization of the boundary with
r(t + 2π) = r(t) and |r′(t)| = 1 for all t ∈ [−π, π]. The corresponding
holomorphic continuation is rC : Sε◦,π −→ ∂ΩC

ε◦ with rC(t) = RC(z(t)).
In addition, we let Cε◦ be a simply connected domain bounded by a

closed real-analytic curve ∂Cε◦ with

(28) [−π, π] � Sε◦,π � Cε◦ � S2ε◦,2π,

and

min
z∈∂Cε◦∩R

|z − [−π, π]| ≥ π

2
and max

z∈∂Cε◦

|Im z| ≤ 7ε◦
4

.

The interval [−π, π] is just the totally real slice of the complex parameter
rectangle Sε◦,π which is contained in Cε◦. By possibly shrinking ε◦ > 0
we assume from now on that the eigenfunction restrictions extend to

2π-real periodic holomorphic functions uH,C
h on the larger rectangles

S2ε◦,2π.

2.1.1. Holomorphic continuation of the restricted eigenfunc-

tions. Let G : H−2(R2) → L2(R2) be the fundamental solution of the
Helmholtz equation in R

2 with Schwartz kernel

G(x, y, x′, y′, h) =
i

4
Ha

(1)
0 (h−1|(x, y) − (x′, y′)|),

where

(29) Ha(1)ν (z) = cν
eiz√
z

∞∫
0

e−s√
s
(1− s

2iz
)ν−

1
2ds, Re z > 0.

An application of Green’s theorem yields the following potential layer
formula for the Neumann eigenfunctions:

(30) ϕh(x, y) =

∫
∂Ω

∂νsG(x, y; r(s), h)ϕh(r(s))dσ(s),

where (x, y) ∈ Ω̊ and νs ∈ S∂Ω(Ω) is the unit external normal to the
boundary at r(s) ∈ ∂Ω. We denote the kernel of the potential layer
operator in (30) by

N(x, y; r(s), h) :=∂νsG(x, y; r(s), h)

=− h−1Ha
(1)
1 (h−1|(x, y)− r(s)|) cos θ((x, y), r(s))(31)
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where

cos θ((x, y), r(s)) =

〈
(x, y)− r(s)

|(x, y) − r(s)| , νs
〉

and the corresponding operator by N(h) : C∞(∂Ω)→ C∞(Ω̊).
To understand holomorphic continuation of eigenfunctions, one starts

with the singularity decomposition of the kernel G(x, y; r(s), h). It is well
known that

G(x, y; r(s), h) = A(h−1|(x, y)− r(s)|) log
(

1

|(x, y) − r(s)|
)

+B(h−1|(x, y) − r(s)|)(32)

where A(z) and B(z) are entire functions of z2 ∈ C and each of them
have elementary expressions in terms of Bessel functions (see [TZ] Ap-
pendix A). A(z) is the Riemann function [G].
We identify (x, y) ∈ R

2 with x+ iy ∈ C, and introduce the notation

ρ(x+ iy, r(t)) =

√
(x+ iy − r(t)) · (x− iy − r(t)) where z �→ √

z is the

positive square-root function with
√
Re z > 0 when Re z > 0. Substitu-

tion of (32) in (30) implies that for (x, y) ∈ Ω̊ and with ∂ν := ∂νs ,

ϕh(x, y) =− 1

2

∫
∂Ω

ϕh(r(s))∂νA(h
−1ρ) log(ρ2) dr(s)

− 1

2

∫
∂Ω

ϕh(r(s))A(h
−1ρ)∂ν log(ρ

2) dr(s)

+

∫
∂Ω

∂νB(h
−1ρ)ϕh(r(s)) dr(s).(33)

The holomorphic continuation of the third integral is the easiest to
describe since there is a real analytic F ∈ Cω(R,R) with entire extension
FC ∈ O(C) satisfying

(34) ∂νB(h
−1ρ) = ∂ν F (h

−2ρ2)

and the same is true for the normal derivative ∂νA(h
−1ρ) of the Riemann

function. In view of (34), the last integral in (33) has a biholomorphic
extension to ΩC := {(z, w) ∈ C

2; Re z + iRew ∈ Ω}.
In contrast, the first two integrals both turn out to have fairly subtle

analytic continuations over Ω in C
2 that rely heavily on analytic continu-

ation of the eigenfunction boundary traces ([TZ] Appendix 9). However,
we need only consider holomorphic continuation over a strictly interior
curve H ⊂ Ω̊ here. Thus, to describe the holomorphic continuation of
the first integral on the right hand side of (33) it suffices to assume that

x+ iy ∈ Ω̊ is far from the boundary with |x+ iy− r|2 > 4ε2◦ > 0, where
ε◦ < dist(H, ∂Ω). When max(|Imw|, |Im z|) < ε◦, it follows by Taylor
expansion that

|ρ2(z+iw, r)−|Re z+iRew−r|2 | ≤ max(|Imw|, |Im z|)||Re z+iRew−r|.
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Thus, Re ρ2(z + iw, r) > ε2◦ and (s,Re z,Rew) �→ log(ρ2(Re z,Rew, s))
has a biholomorphic continuation in the (Re z,Rew) variables to

[Ω− ∂Ω2ε◦ ]
C(ε◦)

(35)

= {(z, w) ∈ ΩC; min
r∈∂Ω

|Re z + iRew − r| ≥ 2ε◦, |Im z| ≤ ε◦, |Imw| ≤ ε◦}.
The same is true for ∂νA(ρ) and consequently for the integral. By
the same argument, the function (s,Re z,Rew) �→ ∂νsρ

2(Re z,Rew, s)
also biholomorphically continues in the (Re z,Rew)-variables to [Ω −
∂Ω2ε◦ ]

C(ε◦). Consequently, so does the second integral on the RHS of
(33).
Restriction of the outgoing variables (x, y) to (q1(s), q2(s)) ∈ H in

(33) yields the integral equation

(36) N(h)ϕ∂Ω
h = ϕH

h .

From now on, we will refer to ε◦ > 0 as the modulus of analyticity. In
light of the potential layer formula (36) for the Neumann eigenfunctions,
it is useful to compare eigenfunction restrictions to ∂Ω with restrictions
to H ⊂ Ω̊, and similarly for the holomorphic continuations. For the
restrictions of the Neumann eigenfunctions pulled-back to the parameter
domain, we continue to write
(37)

u∂Ωh (t) = ϕ∂Ω
h (r1(t), r2(t)), uHh (t) = ϕH

h (q1(t), q2(t)); t ∈ [−π, π]
with r(t) = r1(t) + ir2(t) ∈ ∂Ω and q(t) = q1(t) + iq2(t) ∈ H.

Proposition 2.1. Suppose that H ⊂ Ω is real analytic and let
dist(H, ∂Ω) = min(s,t)∈[−π,π]2 |q(t)− r(s)|. Assume that q(t) has a holo-

morphic continuation to I(δ) = [−π, π]±[−δ, δ]. Then the restriction uHh
of the Neumann eigenfunctions has a holomorphic continuation uH,C

h (t)
to the strip S2ε◦,2π with

2ε◦ <
dist(H, ∂Ω)

supt∈IH (δ) |∂tqC(t)|
.

Moreover, in the strip S2ε◦,2π, the continuation is given by the complex-
ified potential layer equation

(38) NC(h)ϕ∂Ω
h = ϕH,C

h ,

where NC(h) is the operator with Schwartz kernel NC(qC(t), r(s), h)

holomorphically continued in the outgoing t-variables, and ϕH,C
h is the

holomorphic continuation of ϕH
h to HC

ε◦.

Proof. The proposition follows from the above analytic continuation
argument for (33) and (36) since by (35) the uHh holomorphically con-

tinue to the set {t ∈ C;minr∈∂Ω |q(Re t) − r| ≥ 2ε◦, |Im qC(t)| < ε◦}.
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The formula in (38) follows from uniqueness of analytic continuation
and the fact that, by the above analysis of (33), for ζ = qC(t) ∈ H2ε◦,2π,

ϕH,C
h (ζ) = [N(h)ϕ∂Ω

h ]C(ζ) = NC(h)ϕ∂Ω
h (ζ). q.e.d.

3. The frequency function and measure of the nodal set

We first recall the definition of the frequency function with an impor-
tant application due to F.H. Lin [L] for estimating measures of nodal
sets. We are interested here in the planar case of holomorphic functions.
In general, the frequency function for harmonic functions in arbitrary
dimensions is defined as follows.

Definition 3.1. Let Δu = 0 with Δ =
∑n

j=1 ∂
2
xj

the standard Lapla-

cian in R
n. The frequency function of the harmonic function u in the

unit ball B1 ⊂ R
n is defined to be

F (u) =

∫∫
B1
|∇u|2∫

∂B1

|u|2 .

When the context is clear, we suppress the dependence of F on u
and just write F for the frequency function. In the planar case, any
non-zero holomorphic function f(z) in the disc B1 = {z ∈ C; |z| ≤ 1}
has a decomposition of the form f = u + iv where u, v are harmonic
conjugates and so, since ∂zf = ∂xu+i∂xv, in analogy with the harmonic
case in Definition 3.1, one defines the frequency function to be

(39) F =

∫∫
B1
|∂zf(z)|2dzdz̄∫

∂B1

|f(z)|2dσ(z) .

An elementary but useful example to keep in mind is the monomial
f(z) = zk = rkekiθ; k ∈ Z

+. In this case, one easily computes the fre-

quency function to be k2
∫ 1
0 r2k−1dr = k/2, where k is the degree of the

polynomial zk. By Green’s formula, the analogous result is easily veri-
fied for arbitrary homogeneous harmonic polynomials in any dimension.
The following result, proved by Lin [L] using Taylor expansion, and by
Han [H] using Rouche’s theorem, is an important generalization of the
polynomial case to arbitrary non-zero holomorphic functions. We recall
the result here and refer the reader to [H] for a proof (see also [HL],
[NV, Theorem 3.14], and [PST] for additional details). The key result
that estimates the number of complex zeros of f(z) in the disc B1 is
given by

Theorem 3.2. [H, L, NV] Let f(z) be a non-zero analytic function
in B1 = {z ∈ C : |z| ≤ 1}. Then, for any δ ∈ (0, 1) there exists a
constant C(δ) > 0 such that

#{f−1(0) ∩Bδ} ≤ C(δ)F,

where F is defined to be the ratio in (39).
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It is useful here to rewrite the frequency function F in (39) exclusively
in terms of integrals over the circular disc boundary ∂B1.

Lemma 3.3. Let f : B1 → C be non-zero holomorphic. Then,

F ≤ ‖∂θf‖L2(∂B1)

‖f‖L2(∂B1)
,

where ∂θ = x∂y−y∂x is the unit tangential derivative along the circular
boundary ∂B1 of the disc.

Proof. The proof follows from Green’s formula and an application
of Cauchy-Schwarz. For z = x + iy = (x, y) ∈ B1 we write f(z) =
Re f(x, y)+ iIm f(x, y), where Re f(x, y), Im f(x, y) are real-valued har-
monic functions.
Since f is analytic, ∂zf = ∂xRe f − i∂yRe f, and so

|∂zf |2 = (∂xRe f)
2 + (∂yRe f)

2 = |∇(Re f)|2.
An application of Green’s theorem implies that
(40)∫∫

B1

|∂zf(z)|2dzdz =
∫∫
B1

|∇(Re f)|2 dxdy

=
∫

∂B1

Re f · ∂ν(Re f) dθ −
∫∫
B1

Re f ·Δ(Re f)dxdy

=
∫

∂B1

Re f · ∂ν(Re f) dθ,

where ν is the outward pointing unit normal to ∂B1 and the last line
follows since Δ(Re f) = 0 in B1.

Next, we use the Cauchy-Riemann equations written in polar coordi-
nates (r, θ) ∈ R

+ × [0, 2π) to rewrite the normal derivative term on the
right hand side of the last line in (40) in terms of a tangential one.

(41) ∂νRe f |∂B1 = ∂rRe f |r=1 = ∂θIm f |r=1.
Hence, it follows from (41) and (40) that

(42)

∫∫
B1

|∂zf(z)|2dzdz =
∫

∂B1

Re f · ∂θ(Im f) dθ.

Finally, an application of Cauchy-Schwarz in (42) gives

(43)

∫∫
B1

|∂zf(z)|2dzdz ≤ ‖Re f‖L2(∂B1) · ‖∂θ(Im f)‖L2(∂B1)

≤ ‖f‖L2(∂B1) · ‖∂θf‖L2(∂B1). q.e.d.
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3.1. Frequency functions for the holomorphic continuations of

restricted eigenfunctions. We wish to estimate here the intersection
number n(h,H) in terms of Lemma 3.3.

Proposition 3.4. Let H ⊂ Ω̊ be a Cω interior curve and let Cε◦

be a simply connected, bounded domain in C containing the rectangle
Sε◦,π with real-analytic boundary ∂Cε◦ and arclength parametrization
t �→ κ(t) ∈ ∂Cε◦ . Then, for ε◦ > 0 sufficiently small,

n(h,H) ≤ CH,ε◦

‖∂TuH,C
h ‖L2

ε◦

‖uH,C
h ‖L2

ε◦

.

Here, L2ε◦ := L2(∂Cε◦ , |dt|) and ∂T denotes the unit tangential deriv-

ative along ∂Cε◦ with ∂T f(t) :=
d
dtf(κ(t)).

Proof. Since Cε◦ is a simply connected bounded domain, by the Rie-
mann mapping theorem there exists a conformal map

κ : B̊1 → Cε◦ ,

where B̊1 = {z; |z| < 1}. By Caratheodory, there is κ̃ ∈ C0(B1) with
κ̃|B̊1

= κ|B̊1
univalent up to the boundary. Moreover, since ∂Cε◦ is real-

analytic, it follows from the Schwarz reflection principle that

(44) κ̃ ∈ Cω(B1).

Analogous results also hold for the inverse conformal map κ−1 : Cε◦ →
B̊1. Since κ is conformal and satisfies (44), it follows that the boundary
restriction

κ̃|∂B1 : ∂B1 → ∂Cε◦

is a Cω-diffeomorphism. We define the composite function on B1

gH,C
h (z) := uH,C

h (κ̃(z)); z ∈ B1.

We apply Theorem 3.2 to the holomorphic function gH,C
h in B1. We

choose δ ∈ (0, 1) so that Cδ := κ̃(Bδ) ⊃ [−π, π]. We have that
n(h,H) = Nuh

∩ [−π, π] ≤ nC(h,Cδ) = #{t ∈ Cδ;u
H,C
h (t) = 0}

= #{t ∈ Bδ; g
H,C
h (t) = 0}.(45)

It follows by Theorem 3.2, Lemma 3.3, and (45) that

(46) n(h,H) ≤ 2
‖∂θgH,C

h ‖L2(∂B1)

‖gH,C
h ‖L2(∂B1)

.

An application of the change of variables formula in (46) with t = κ̃(z)
for z ∈ ∂B1 proves the proposition. q.e.d.
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4. Estimating the frequency function: h-microlocal

decomposition

In view of Proposition 3.4, we are left with showing that

(47)
‖∂TuH,C

h ‖L2
ε◦

‖uH,C
h ‖L2

ε◦

= OΩ,H(h−1).

To prove (47), we will need to h-microlocally decompose γ∂Cε◦
uH,C
h

where γ∂Cε◦
: C0(S2ε◦,2π)→ C0(∂Cε◦) is the restriction map. We briefly

digress here to introduce the relevant h-pseudodifferential cutoff opera-
tors, noting that ∂Cε◦ is C

ω-diffeomorphic to the unit circle ∂B1.

4.1. Semiclassical pseudodifferential operators on tori. Let Mn

be compact manifold. The following semiclassical symbol spaces are
standard [EZ] and will suffice for our purposes.

Definition 4.1. We say that a ∈ Sk,m
cl (T ∗M × [0, h0)) if

a ∈ C∞(T ∗M ; [0, h0)) has an asymptotic expansion of the form a ∼h→0+

h−k
∑∞

j=0 aj(x, ξ)h
j where

|∂α
x ∂

β
ξ aj(x, ξ)| ≤ Cα,β(1 + |ξ|)m−|β|; (x, ξ) ∈ T ∗M.

The corresponding class of h-pseudodifferential operators Ah : C
∞(M)→

C∞(M) have Schwartz kernels locally of the form

Ah(x, y) = (2πh)−n
∫
Rn

ei〈x−y,ξ〉/ha(x, ξ;h)dξ

with a ∈ Sk,m
cl (T ∗M ; [0, h0)). We write Ah = Oph(a) for the operator

with symbol a(x, ξ;h).

Since ∂Cε◦ is Cω-diffeomorphic to a circle S1 = R/2πZ, it suffices
here to consider h-pseudodifferential operators on tori and the latter
operators can be conveniently described globally in terms of their action
on Fourier coefficients. Given Ah ∈ Oph(S

0,m(T ∗Tn)) one can write the
Schwartz kernel in the form

Ah(x, y) = (2π)−n
∑

ξ∈(hZ)n

ei〈x−y,ξ〉/haTn(x, ξ;h); (x, y) ∈ [−π, π]n × [−π, π]n

where aTn(·, ξ) ∈ C∞(Tn) and

|∂α
xΔ

β
h,ξaTn(x, ξ)| ≤ Cα,β(1 + |ξ|)m−|β|

where Δβ
h,ξaTn(x; ξ1, . . . , ξn) = aTn(x; ξ1+hβ1, . . . , ξn+hβn)−aTn(x; ξ1,

. . . , ξn) is the semiclassical iterated difference operator in the frequency
coordinates. The converse also holds, so that the two realizations of
h-pseudodifferential operators are equivalent. (See [Ag, Mc] for the ho-
mogeneous case where h = 1. The extension to the semiclassical setting
is straightforward.)
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We are interested here specifically in the h-pseudodifferential cutoffs
χh = Oph(χ) ∈ Oph(S

0,−∞(T ∗∂Cε◦)) where χ ∈ C∞0 (T
∗∂Cε◦). We

naturally identify ∂Cε◦ with R/2πZ by using the periodic Cω arclength
parametrization

κ : [−π, π]→ ∂Cε◦ ; t �→ κ(t).

4.2. Semiclassical wavefront sets of eigenfunction restrictions.

Let Hn−1 ⊂ Mn be any interior smooth hypersurface in a compact
manifold with or without boundary. In this subsection, we do not make
any analyticity assumptions on either H or the ambient manifold, M.
Let uHh := γHϕh be the eigenfunction restriction where γH : f �→
f |H , f ∈ C0(H). Then, making a Fermi-coordinate decomposition in
a collar neighbourhood of H, it is not hard to show that

(48) WFh(u
H
h ) ⊂ B∗H = {(s, σ) ∈ T ∗H; |σ|g ≤ 1}.

For Euclidean domains M = Ω, (48) follows directly from potential
layer formulas. For completeness and because of the importance of the
localization of WFh(u

H
h ) in our argument, we sketch the proof of (48)

for planar domains, which is the case we are interested in here. The
proof of (48) uses the potential layer representations of eigenfunctions
discussed in Section 2.1.1 in the planar case n = 2 restricted to the
curve H. It is immediate from (30) that

(49) uHh (t) =

∫ π

−π
N(q(t), r(s);h) u∂Ωh (s)dσ(s).

Since H ⊂ Ω is interior, inf
t,s∈[−π,π]

|q(t) − r(s)| ≥ C > 0, and so from

(29) it follows that

(50) Ñ(t, s;h) := N(q(t), r(s), h) = (2πh)−
1
2 eih

−1|q(t)−r(s)|a(t, s;h)

where

a(t, s;h) =

k∑
j=0

aj(t, s)h
j +O(hk+1)

uniformly for all (q(t), r(s)) ∈ H × ∂Ω with aj ∈ C∞([−π, π]× [−π, π]).
Similar uniform asymptotics hold for derivatives as well.
Let χ(ξ) ∈ C∞0 (R) be a cutoff function equal to zero when |ξ| ≥ 2

and equal to 1 for |ξ| < 3/2 and let Oph(χ) ∈ Oph(S
0,−∞(T ∗H; (0, h0]))

be the microlocal cutoff with kernel

Oph(χ)(t, t
′) = (2π)−2

∑
ξ∈hZ

ei〈t−t
′,ξ〉/h χ(ξ); (t, t′) ∈ [−π, π]× [−π, π].
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Then, from (49) and (50), it follows that

Oph(1− χ)uHh (t)

= Oph(1− χ)Nu∂Ωh (t)

= (2π)−2
∑
ξ∈hZ

∫ π

−π

∫ π

−π
ei[(t−t

′)ξ+|q(t′)−r(s)|]/h (1− χ)(ξ) a(q(t′), r(s);h)

u∂Ωh (s) ds dt.′

Since |dt′q(t′)| = 1, differentiation of the phase

Ψ(t, t′, s; ξ) := (t− t′)ξ + |q(t′)− r(s)|
in t′ gives

|∂t′Ψ(t, t′, s; ξ)| =
∣∣∣− ξ +

〈
dt′q(t

′),
q(t′)− r(s)

|q(t′)− r(s)|
〉 ∣∣∣

≥ |ξ| − 1 ≥ 1

2
; when |ξ| ≥ 3

2
.

Since |ξ| ≥ 3
2 when ξ ∈ suppχ, repeated integration by parts in t′, an

application of Cauchy-Schwarz, and using that ‖u∂Ωh ‖L2 = O(h−1/4)
[BGT] implies that supt∈[0,2π] |Oph(1 − χ(ξ))uHh (t)| = O(h∞〈ξ〉−∞)
where 〈ξ〉 := √1 + |ξ|2. The same argument for t-derivatives combined
with the Sobolev lemma implies that for all k ∈ Z

+,

(51) ‖Oph(1− χ(ξ))uHh ‖Ck([−π,π]) = Ok(h
∞〈ξ〉−∞).

The wavefront bound in (48) is an immediate consequence of (51) since
the cutoff function χ(ξ) can be chosen with support arbitrarily close to
|ξ| = 1 and the same argument gives (51) for any such cutoff.
In the next section we improve the compactness result (48) under the

real-analyticity assumption on (∂Ω,H) to show that in the h-microlocal

decomposition (8) the residual term ‖∂T (1 − Oph(χR))u
H,C
h ‖2ε◦ = O

(e−C0〈R〉/h) with appropriate C0 > 0 and where χR ∈ C∞0 (R) with
supp χR ⊂ {ξ; |ξ| ≤ R}. Hence, to get an asymptotic estimate for the

frequency function of uH,C
h , it suffices to bound ‖∂TOph(χR)u

H,C
h ‖ε◦

and the latter is O(h−1‖uH,C‖ε◦) by standard L2-boundedness of the
h-pseudodifferential operator h∂Tχh ∈ Oph(S

0,−∞(T ∗∂Cε◦)).

4.3. The real analytic case. We now assume that H is real-analytic.
As outlined in the previous section, our goal here is to improve the
O(h∞)-bound in (51) to obtain exponential decay estimates for the

residual mass term of the form ‖Oph(1 − χ)uH,C
h ‖L2

ε◦
= O(e−C0/h). In

the following, using the parametrization [−π, π] � t �→ κ(t), we identify
∂Cε◦ with R/(2πZ), and so Oph(1− χ) : C∞(R/2πZ)→ C∞(R/2πZ).
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4.3.1. Holomorphic continuation of the Ñ(t, s;h)-kernel. Given
(z, w) ∈ C

2, consider the map z + iw �→ (z + iw)∗ = z − iw which is
the holomorphic continuation to C

2 of the usual complex conjugation
x + iy �→ x − iy when (x, y) ∈ R

2. In the following, z �→ z1/2 denotes
the square root with positive real part with −π < arg(z) ≤ π.
In view of Proposition 2.1 it follows that for ε◦ > 0 sufficiently small,

the potential layer equation uHh (t) = Nu∂Ωh (t) analytically continues to
the equation

(52) uH,C
h (ζ) = [Nu∂Ωh ]C(ζ); ζ ∈ S2ε◦,2π.

In particular, we consider here the case where ζ = κ(t) ∈ ∂Cε◦ .
For ζ ∈ Uε◦ , where Uε◦ := {ζ ∈ S2ε◦,2π; max

z∈∂Cε◦

|z − ζ| < ε◦
2 }, equation

(52) remains valid and moreover, since
(53)

Re [qC(ζ)− r(s)][qC(ζ)∗ − r(s)] � ε2◦ > 0 when (ζ, s) ∈ Uε◦ × [−π, π],
the kernel

(54) NC(qC(ζ), r(s), h) = Ha
(1)
1

(
h−1

√
[qC(ζ)− r(s)][qC(ζ)∗ − r(s)]

)

is holomorphic for ζ ∈ Uε◦. By Proposition 2.1, we have

(55) uH,C
h (ζ) =

∫ π

−π
NC(qC(ζ), r(s), h)u∂Ωh (s)dσ(s), ζ ∈ Uε◦ .

It follows from (53), (54), and the integral formula (29) that the real
WKB asymptotics for the N(t, s, h)-kernel [HZ, TZ] holomorphically
continues in t to give the complex asymptotic formula

NC(qC(ζ), r(s), h) = (2πh)−
1
2 eiρ

C(qC(ζ),r(s))/haC(ζ, s;h);

(ζ, s) ∈ Uε◦ × [−π, π],(56)

where aC(ζ, s;h) ∼h→0
∑∞

k=0 a
C

k (ζ, s)h
k with ak(·, s) ∈ O(Uε◦) and

(57)

ρC(qC(ζ), r(s)) =

√
[qC(ζ)− r(s)][qC(ζ)∗ − r(s)]; (ζ, s) ∈ Uε◦ × [−π, π].

In particular, for ζ = κ(t) ∈ ∂Cε◦ , we have

(58) uH,C
h (κ(t)) =

∫ π

−π
NC(qC(κ(t)), r(s), h)u∂Ωh (s)dσ(s), t ∈ [−π, π],

where NC(qC(κ(t)), r(s), h) satisfies the asymptotics in (56). Since we
compute in the parametrization variables (t, s) ∈ [−π, π], to simplify
notation we define

(59) ÑC(t, s, h) := NC(qC(κ(t)), r(s), h); (t, s) ∈ [−π, π]× [−π, π].
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4.3.2. Estimating the residual kernel [Oph(1 − χ)ÑC](t, s;h). Let
χ ∈ C∞0 (R) be a cutoff with χ(ξ) = 0 when

|ξ| ≥ 20ε−1◦ sup
(ζ,s)∈Uε◦×[−π,π]

|ρC(qC(ζ), r(s))|

and χ(ξ) = 1 when

|ξ| ≤ 10ε−1◦ sup
(ζ,s)∈Uε◦×[−π,π]

|ρC(qC(ζ), r(s))|.

In this section we prove

Proposition 4.2. Let H ⊂ Ω be a Cω interior curve with dist
(H, ∂Ω) < δ(ε◦) and let ∂Cε◦ be a curve satisfying (28). Then, as-
suming δ(ε0) > 0 is sufficiently small and k ∈ Z

+, there is a constant
Ck(ε◦) > 0 such that for h ∈ (0, h(ε◦)],

‖ [Oph(1− χ)ÑC](·, ·;h) ‖Ck([−π,π]×[−π,π]) = O(e−Ck(ε◦)/h).

Proof. In light of the complexified potential layer formula in (55), we
substitute the complex WKB asymptotics for NC(qC(ζ), r(s), h) in (56)
and use the Cauchy integral formula to deform contours of integration.
From (55) and (56), one gets that

(60)

[Oph(1− χ)ÑC](t, s, h)

= (2π)−2
∑

ξ∈hZ

∫ π

−π e
i[(t−t′)ξ+ρC(qC(κ(t′)),r(s))]/h (1− χ)(ξ) aC(κ(t′), r(s);h) dt′.

Consider the complex phase

ΨC(t, t′, s) := (t− t′)ξ + ρC(qC(κ(t′)), r(s)).

For simplicity, write ρC(t′, s) for ρC(qC(κ(t′)), r(s)). Consider for ξ ∈
hZ the deformed contour

(61) ωξ(t
′) = t′ − i

ε◦
2
sgn(ξ)

where (t, t′, s) ∈ [−π, π]3. The deformed phase function
(62)

Ψ(t, ωξ(t
′), s) = Ψ

(
t, t′ − i

ε◦
2
sgn(ξ), s

)
= (t−t′)ξ+i

ε◦
2
|ξ|+ρC(ωξ(t

′), s).

Since |ξ| ≥ 10ε−1◦ sup
(ζ,s)∈Uε◦×[−π,π]

|ρC(qC(ζ), r(s))| when ξ ∈ supp(1−χ),

it follows from (62) that

(63) ImΨ(t, ωξ(t
′), s) ≥ 4 sup

(ζ,s)∈Uε◦×[−π,π]
|ρC(qC(ζ), r(s))| � ε◦

uniformly for (t, t′, s) ∈ [−π, π]3. Moreover, for |ξ| � 1 it also follows
from (62) that

(64) ImΨ(t, ωξ(t
′), s) =

ε◦
2
|ξ|+O(1) ≥ ε◦

3
|ξ|.
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Using Cauchy’s theorem, we deform the t′-contour of integration in (60)
to get
(65)

[Oph(1− χ)ÑC](t, s, h)

= (2π)−2
∑

ξ∈hZ

∫ π
−π e

iΨ(t,ωξ(t
′),s;ξ)/h (1− χ)(ξ) aC(κC(ωξ(t

′)), r(s);h) dt′

where the imaginary part of the deformed phase function Ψ(t, ωξ(t
′), s)

satisfies (63). It follows from (63) and (64) that for appropriate C(ε◦) �
ε◦,

(66) |Oph(1−χ)ÑC(t, s, h)| ≤ e−
C(ε◦)

h ×
⎛
⎝∑
|ξ|≥1

e−
ε◦
4h
|ξ|

⎞
⎠ = O(e−C(ε◦)

h ).

The argument for the higher Ck-norms is basically the same since
the complex phase function ΨC(t, t′, s) is unchanged. The derivatives ∂α

s

and ∂β
t just create additional polynomial powers in h−1 in the amplitude

aC(·, ·;h). q.e.d.

Remark: For future reference (see proof of Theorem 1.1 below), we
note that when χR ∈ C∞0 (R) with χR(ξ) = 1 for |ξ| < R and supp
χR ⊂ {ξ; |ξ| < 2R}, it is clear from (64) that

(67) ‖Oph(1− χR)Ñ
C(·, ·, h)‖Ck = Ok(e

−
CR(ε◦)

h ),

where CR(ε◦) � R as R→∞.

5. Proof of Theorem 1.1

Proof. Let χR ∈ C∞0 (R; [0, 1]) be a frequency cutoff as in Proposition
4.2 with χR(ξ) = 1 for |ξ| ≤ R and χR(ξ) = 0 for |ξ| ≥ 2R. To simplify
notation, in the following we continue to write L2ε◦ = L2(∂Cε◦) (resp.

L2 = L2([−π, π])) and the corresponding unit speed parametrizations
are t �→ κ(t) (resp. t �→ q(t)).

We recall that the basic frequency function estimate gives

n(h,H) ≤ h−1
‖h∂TuH,C

h ‖L2
ε◦

‖uH,C
h ‖L2

ε◦

≤ h−1
(‖Oph(χR)(h∂T )u

H,C
h ‖L2

ε◦

‖uH,C
h ‖L2

ε◦

+
‖(1−Oph(χR))(h∂T )u

H,C
h ‖L2

ε◦

‖uCh,H‖L2
ε◦

)
.
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From Proposition 4.2 and Cauchy-Schwarz, it follows that

(68)
‖(1−Oph(χR))h∂T u

H,C
h ‖L2

ε◦

‖uH,C
h ‖L2

ε◦

= O
(

e−
CR(ε◦)

h

‖uH,C
h ‖L2

ε◦

)
.

In the last line of (68) we have used that ‖u∂Ωh ‖L2 = O(h−α) for α > 0

(for example, Tataru’s sharp bound [Ta] gives α = 1/3). Since uH,C
h (t)

is holomorphic for all t ∈ S2ε◦,2π, it follows from the Cauchy integral
formula (see figure 1) and the Cauchy-Schwarz inequality that

sup
t∈Sε◦,π

|uH,C
h (t)| ≤ C2 · 1

4π2

(∫ π

−π

∫ π

−π
|κ(s)− t|−2 dsdt

) 1
2

· ‖uH,C
h ‖L2

ε◦

(69)

= O(1)‖uH,C
h ‖L2

ε◦
.

In (69) we use that ∂Cε◦ and Sε◦,π are disjoint so that f(s, t) = |κ(s)−
t|−1 ∈ L2([−π, π]× [−π, π]). Substitution of (69) into (68) then implies
that

‖(1−Oph(χR))h∂T u
H,C
h ‖L2

ε◦

‖uH,C
h ‖L2

ε◦

= O
(
e
−CR(ε◦)

h ‖uH,C
h ‖−1L∞(Sε◦,π)

)

= O(e−CR(ε◦)+C0
h ),(70)

since by assumption ‖uH,C
h ‖L∞(Sε◦,π)

≥ e−
C0
h for some C0 > 0. Since

Oph(χR) (h∂T ) ∈ Oph(S
0,−∞(T ∗H)), it follows by L2-boundedness that

(71)
‖Oph(χR)h∂Tu

H,C
h ‖L2

ε◦

‖uH,C
h ‖L2

ε◦

= OR,ε◦(1).

The constant CR(ε◦) � R as R → ∞, and so the proof of Theorem
1.1 follows from (70) and (71), by choosing R sufficiently large so that
CR(ε◦)− C0 > 0 in (70). q.e.d.

6. Proofs of Theorems 1.2 and 1.3

Proof. The key ingredient in the proofs of Theorems 1.2 and 1.3 is
the following operator bound: q.e.d.

Proposition 6.1. Let H ⊂ Ω be a closed, strictly convex, interior
real analytic curve. Let NC(qC, r;h) be the holomorphic extension of
N(q, r;h) in the q variables to HC

ε◦ with the corresponding operator

NC(h) : L2(∂Ω; ds)→ L2(HC
ε◦; e

− S(t)
h dtdt),
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Figure 1

where HC
ε◦ = {qC(t); |Im t| ≤ ε◦}. Let a ∈ C∞0 (H

C
ε◦) with

supp a ⊂ {qC(t) ∈ HC
ε◦ ;

ε◦
6
≤ Im t ≤ 5ε◦

6
}.(72)

Then for h ∈ (0, h0(ε◦)], and ε◦ > 0 sufficiently small, there exists an
associated symbol aG ∈ C∞0 (B

∗∂Ω) ⊂ S0,−∞(T ∗∂Ω× (0, h0]) such that

h−1/2NC(h)∗e−2S/haNC(h) = Oph(aG) +R(h).

For (s, σ) ∈ B∗∂Ω, the symbol
(73)

aG(s, σ) =
1√
2
a(Re t(s, σ), Im t(s, σ))κ−2H (Y (s)) |Im t(s, σ)|−1 γ2(s, σ),

where γ(s, σ) =
√
1− |σ|2 and

Y (s) = Re t(s, σ)(1 +O(|Im t(s, σ)|)),
σ = −〈ω(s, Y (s)), T∂Ω(s)〉

+
κ2H(Y (s))

2
dsY (s)|Im t(s, σ)|2(1 +O(|Im t(s, σ)|)).(74)

Moreover, the remainder satisfies

‖R(h)‖L2(∂Ω)→L2(∂Ω) = O(h).

Remark: We note that the support properties of a(t) in Proposition
6.1 are stated for concreteness and can be replaced with any amplitude
supported in a strip not containing a real interval. In particular, for
a(t) = χε◦(Im t) where χε◦ ∈ C∞0 is supported in any strip {ε◦ − δ <
Im t < ε◦} with 0 < δ < ε◦ arbitrarily small, the operator

P (h) = [h−1/4e−S/hχε◦N
C(h)]∗ · [h−1/4e−S/hχε◦N

C(h)]

in (19) satisfies
P (h) = Oph(aG) +R(h),

where aG is as in (73) with a(t) = χε◦(Im t).
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Remark: Since |〈ω(s, Y (s)), T∂Ω(s)〉| < 1, it follows from (74) and the
support assumptions on a(Re t, Im t) in (72) that for ε◦ > 0 small, aG ∈
C∞0 (B

∗∂Ω) (i.e. has support disjoint from the tangential set S∗∂Ω).

The proof of Proposition 6.1 is rather technical and to avoid break-
ing the exposition at this point we defer the proof to section 8. As an
immediate consequence Proposition 6.1 we have the following corollary:

Corollary 6.2. Assume Ω is a smooth convex bounded domain and
the interior curve H is strictly convex. Let χε◦ ∈ C∞0 (Sε◦,π) be supported
in the strip {ε◦ − δ < |Im t| < ε◦} with 0 < δ < ε◦. Then, for ε◦ > 0
sufficiently small, there exists an order zero pseudodifferential operator
P (h) such that

h−1/2
∫ ∫

Sε◦,π

e−2
S(t)
h |uH,C

h (t)|2 χε◦(t) dtdt = 〈P (h)ϕ∂Ω
h , ϕ∂Ω

h 〉L2 ,

such that the principal symbol σ(P (h)) satisfies∫
B∗∂Ω

σ(P (h))γ−1 dydη ≥ C0(Ω,H, ε◦) > 0,

where γ(y, η) =
√
1− |η|2.

Proof. Given P (h) = h−1/2[e−S/hχε◦N
C(h)]∗ · [e−S/hχε◦N

C(h)], the
result follows by an application of the complexified potential layer for-
mula (55) and Proposition 6.1. q.e.d.

Assuming Proposition 6.1 for the moment, as discussed in Section 1.2,
we claim the proofs of Theorems 1.2 and 1.3 follow easily from Theorem
1.1 and Corollary 6.2.

Proof of Theorem 1.3. The lower bound in Theorem 1.3 follows from
Corollary 6.2 by taking supremum inside the integral. First, it is clear
from the proof of Proposition 1.2 that the interval [ε◦/6, 5ε◦/6] can
be replaced by any interval of the form I(ε◦, δ) := [ε◦ − δ, ε◦ − δ/2]
with 0 < δ < ε◦. Without loss of generality, we can further assume that
χε◦ ∈ C∞0 ([ε◦−3δ, ε◦−δ/3]; [0, 1]) with χε◦(Im t) = 1 for Im t ∈ I(ε◦, δ).
Thus,

h−1/2 max
qC(t)∈HC

ε◦

|uH,C
h (t)|2 ×

(∫ π

−π

∫ ε◦−δ/3

ε◦−3δ
e−2S(t)/hdtdt

)

≥ h−1/2
∫
Sε◦,π

e−2S(t)/hχε◦(t)|uH,C
h (t)|2 dtdt

∼h→0+ 〈P (h)u∂Ωh , u∂Ωh 〉L2(∂Ω)

∼h→0+ cH,ε◦ .(75)
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In the last line we have used the QER property of the boundary traces
u∂Ωh of the QE sequence of interior eigenfunctions to obtain

〈P (h)ϕ∂Ω
h , ϕ∂Ω

h 〉 ∼h→0+

∫
B∗∂Ω

σ(P (h))γ−1 dydη ≥ cH,ε◦ > 0.

Since for Im t ∈ I(ε◦, δ), S(t) = Im t + O((Im t)3), dIm tS(t) = 1 +
O(|Im t|2), by making the change of variables (Re t, Im t)→ (Re t, S(t)),
it follows that∫ π

−π

∫ ε◦−δ/3

ε◦−3δ
e−2S(t)/hdtdt ≤ Cε◦,δhe

−2S(ε◦−3δ)/h.

Thus, it follows from (75) that

(76) max
qC(t)∈HC

ε◦

|uH,C
h (t)| ≥ C ′H,ε◦,δh

−1/4e[S(ε◦−3δ)]/h.

Since one can choose δ ∈ (0, ε◦) arbitrarily, the lower bound in Theorem
1.3 follows from (76) and the polynomial factor h−1/4 is irrelevant since
it gets absorbed into the exponential.
As for the upper bound, we simply use the complexified potential

layer formula (55) and apply Cauchy-Schwarz to get

|uH,C
h (t)| ≤ (2πh)−1/2

∣∣∣ ∫
∂Ω

ei/hρ
C(t,s)a(t, s;h)u∂Ωh (s)dσ(s)

∣∣∣
≤ CHh−1/2eS(ε◦)/h‖u∂Ωh ‖L2 ≤ CH,ε◦h

−1/2eS(ε◦)/h.(77)

In the last step, we used the a priori bound ‖u∂Ωh ‖L2 = O(1) combined

with the fact that max(qC,r)∈HC
ε◦×∂Ω

e−Im ρC(qC,r)/h ≤ eS(ε◦)/h. The upper

bound for ‖u∂Ωh ‖L2 follows from the fact that the boundary restrictions

u∂Ωh = ϕh|∂Ω are themselves QE in the sense of (16). In the Dirichlet
case, the Rellich formula gives ‖h∂νϕh‖L2(∂Ω) = O(1), and so the upper

bound in (77) is also O(h−1/2eS(ε◦)/h). q.e.d.

Proof of Theorem 1.2. From the lower bound in Theorem 1.3, for a real-
analytic positively curved H, sufficiently small ε◦ > 0 and any δ > 0, it
follows that

(78) max
qC(t)∈HC

ε◦

|uH,C
h (t)|2 ≥ CH,ε◦,δe

[2S(ε◦−δ)]/h.

It is obvious that any such curve is good in the sense of (5) and conse-
quently, Theorem 1.2 follows from Theorem 1.1. q.e.d.

We note that the lower bound (78) is much stronger than what is
required for Theorem 1.2 since it shows that the tube maxima of holo-
morphic continuations of eigenfunction restrictions actually grow expo-
nentially in the tube radius.
Also, in regard to (75), as we have already indicated in section 1.2,

it follows from the Rellich commutator argument in [Bu] that quantum
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ergodicity of the interior eigenfunctions ϕh implies that the boundary
restrictions ϕ∂Ω

h have the analogous quantum ergodic restriction prop-
erty in (16). We note that the last statement is not necessarily true if
one replaces ∂Ω by an arbitrary interior curve, H.
Before proving Proposition 6.1, we will need some background on

asymptotics of the complexified potential layer operator NC(h), its re-
lation to the glancing map Y : ∂Ω→ H, and complexification.

7. Asymptotics for the complexified potential

layer operator NC(h)

To simplify the writing somewhat, we assume throughout this section
that ∂Ω is smooth. The case of boundaries with corners is discussed in
section 9.
Abusing notation somewhat, we let

(79) ρC(t, s) := ρC(qC(t), r(s))

for (t, s) ∈ S2ε◦,2π × [−π, π] where the RHS in (79) is the complexified
distance function (see (57)). We define the weight function

(80) S(t) := max
s∈[−π,π]

Re [iρC(t, s)],

and one has the following

Lemma 7.1. For qC(t) ∈ HC
ε◦ and with the weight function S(t) in

(80), there exist bCj (·, s) ∈ O(S2ε◦,2π;C
ω(R/2πZ)); j ≥ 0 such that

e−S(t)/h ·NC(qC(t), r(s);h)

(81)

= (2πh)−1/2 exp ([iρC(t, s)− S(t)]/h)

⎛
⎝ N∑

j=0

bCj (t, s)h
j

⎞
⎠+O(hN+1).

Proof. The lemma is an immediate consequence of Proposition 2.1
and (56) since

−S(t) + Re (iρC(t, s)) ≤ 0, (t, s) ∈ S2ε◦,2π × [−π, π].
q.e.d.

The main step in the proof of Proposition 6.1 is an analysis of the
asymptotics of the composite operators P (h) : C∞(∂Ω) → C∞(∂Ω),
where

P (h) = h−1/2[e−S/hχε◦N
C(h)]∗ · [e−S/hχε◦N

C(h)].

For this, one needs a detailed analysis of the complex phase function on
the right hand side of (81). We begin with
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7.1. Asymptotic expansion of ρC(t, s). Let TH(s) = dsq(s) be the
unit tangent toH and νH(s) the unit outward normal toH. Throughout
the paper, κH(s) denotes the scalar curvature of H. In the following, it
will be useful to define the relative displacement vector

ω(s,Re t) :=
q(Re t)− r(s)

|q(Re t)− r(s)| .
From the Frenet-Serret formulas, we get that for ε◦ > 0 small, the
holomorphic continuation qC of the parametrization q of H satisfies, for
|Im t| ≤ ε◦,

qC(Re t+ iIm t)− r(s) = q(Re t)− r(s) + iIm t TH(Re t)

− 1

2
κH(Re t)|Im t|2νH(Re t)

− i

6
(Im t)3[κ′H(Re t)νH(Re t)− κ2H(Re t)TH(Re t)] +O(|Im t|4).(82)

Similarly, when |t− s| ≤ ε◦, one also has the expansion

qC(Re t+ iIm t)− q(s) = (Re t+ iIm t− s)TH(s)

+
1

2
κH(s)(Re t+ iIm t− s)2νH(s) +

1

6
[κ′H(s)νH(s)

− κ2
H(s)TH(s)] (Re t+ iIm t− s)3 +O(|Re t+ iIm t− s|4).(83)

Both (82) and (83) will be useful at different points in our analysis;
the former when determining growth of functions in Im t and the latter
when estimating joint growth in Re t− s and Im t.
Let 〈, 〉 : C × C → C be the standard complex bilinear extension of

the Cartesian inner product on R×R. A direct computation using (82)
gives

Im ρC(t, s) = 〈ω(s,Re t), TH(Re t)〉 (Im t)

(84)

−
(
1

6
〈κ′H(Re t)νH(Re t)− κ2

H(Re t)TH(Re t), ω(s,Re t)〉

− 1

2
κH(Re t)〈νH(Re t), ω(s,Re t)〉

+
1

2
〈ω(s,Re t), TH(Re t)〉|q(Re t)− r(s)|−2

− 1

2
|q(Re t)− r(s)|−2〈ω(s,Re t), TH(Re t)〉3

)
(Im t)3 +O(|Im t|5).

It follows that at a critical point s = s∗(t) of Im ρC(t, s)

(85) ∂sIm ρC(t, s∗(t)) = 0,

and when Im t �= 0, we have

(86) 〈∂sω(s∗(t),Re t), TH(Re t)〉+O(|Im t|2) = 0.
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Moreover, when equation (86) is satisfied, we have

Lemma 7.2. Let t ∈ [−π, π]+i[ ε◦2 , ε◦] solve the critical point equation
in (86). Then, for ε◦ > 0 sufficiently small,

|〈TH(Re t), ω(s
∗(t),Re t)〉| = 1 +O(|Im t|2).

Proof. Carrying out the s-differentiation gives

〈∂sω(s,Re t), TH(Re t)〉

= |q(Re t)− r(s)|−1
(
〈T∂Ω(s), TH(Re t)〉

− 〈T∂Ω(s), ω(s,Re t)〉 · 〈TH(Re t), ω(s,Re t)〉
)
,(87)

where T∂Ω(s) = dsr(s) the unit tangent to ∂Ω.
Since |TH(Re t)| = |T∂Ω(s)| = |ω(s,Re t)| = 1, it follows from (87) and

the cosine law cos(θ1+θ2) = cos θ1 cos θ2−sin θ1 sin θ2 that ∂s〈d, TH〉 = 0
if and only if either

(i) |〈T∂Ω(s), ω(s,Re t)〉| = 1

or

(ii) |〈TH(Re t), ω(s,Re t)〉| = 1.

The identity (i) is never satisfied since H is by assumption an interior
curve and ∂Ω is convex, so it is supported by the tangent line at each
point of the boundary. As a result, (ii) must hold and this finishes the
proof. q.e.d.

Given its geometric significance, in view of Lemma 7.2 it makes sense
to single out the points s = s(Re t) which solve the approximate critical
point equation

(88) 〈TH(Re t), ω(s(Re t),Re t)〉 = −1.
Geometrically, q(s(Re t)) ∈ ∂Ω is the boundary intersection of the bil-
liard trajectory in Ω that tangentially glances H ⊂ Ω at q(Re t). By
convexity there are two such points on the boundary and the condition
〈ω(s,Re t), TH(Re t)〉 = −1 uniquely specifies the point.
Remark: In the next section, we improve the result in Lemma 7.2 and
show that in fact |〈TH(Re t), ω(s(Re t),Re t)〉| = 1 + O(|Im t|4) which
implies that the real analytic extension s(t) of the geometric solution
of (88) agrees to O(|Im t|5)-error with the exact critical point s∗(t) in
(86). We then use this fact to determine the asymptotics of the weight
S(t) to O(|Im t|5)-accuracy.
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7.2. Glancing sets relative to H.We start by defining the glanc-
ing set (and associated glancing map) relative to H. The real part of
the complex phase Re iρC(t, s) attains an approximate maximum at
s = Y −1(t) where Y −1 denotes the inverse glancing map (see (7.4)
below). As we show in (96) below, modulo O(|Im t|5)-error terms, the
weight function S(t) equals Re iρC(t, Y −1(t)). The points Y −1(t) have
a simple geometric characterization in terms of glancing sets relative to
H, which we now describe. Unless specified otherwise, when t is complex
we assume in the following that Im t ≥ 0.

Lemma 7.3. For fixed s ∈ [−π, π] let Y (s) be a solution of TH(·) =
−ω(s, ·). Then, the map Y : [−π, π] → [−π, π] defined by s �→ Y (s)
induces a real-analytic diffeomorphism of H with ∂Ω. By an abuse of
notation, we also denote the latter map by Y.

Proof. The equation |〈TH(Re t), ω(s,Re t)〉| = 1 is equivalent to

(89) 〈νH(Re t), q(Re t)− r(s)〉 = 0.

Unlike the defining equation in (88), (89) has the advantage of being
non-degenerate in Re t. Indeed, differentiating the left hand side of (89)
with respect to Re t yields

κH(Re t)〈TH(Re t), q(Re t)− r(s)〉+ 〈νH(Re t), TH(Re t)〉
= κH(Re t)〈TH(Re t), q(Re t)− r(s)〉

Evaluating the last expression on the right hand side at Re t = Y (s)
implies that
(90)

| ∂Re t〈νH(Re t), q(Re t)− r(s)〉 | |Re t=Y (s)

= κH(Y (s)) |q(Y (s))− r(s)| ≥ minp∈H κH(p) · dist(H, ∂Ω) > 0,

given that κH > 0. Similarly,

(91)
| ∂s〈νH(Re t), q(Re t)− r(s)〉 | |Re t=Y (s)

= |〈νH(Re t), T∂Ω(s)〉| ≥ C(H, ∂Ω) > 0,

since H is interior and Ω is convex. From (90), the implicit function
theorem gives two analytic solution curves Re t �→ s±(Re t) solving
〈TH(Re t), ω(s±(Re t),Re t〉 = ±1. In view of (91), there are two smooth
solution curves s �→ Y±(s) solving 〈TH(Y±(s)), ω(s, Y±(s)〉 = ±1. We
choose here Y (s) = Y−(s). In the case where Im t < 0, one chooses
Y (s) = Y+(s). The mapping Y : R/2πZ → R/2πZ is clearly bijective
due to the positive curvature of H. q.e.d.

Definition 7.4. Let Ω be a smooth, bounded convex planar domain
and H a strictly convex Cω curve with H ∩ ∂Ω = ∅. We define the
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glancing set relative to H for the billiard flow in Ω to be the set

Σ := {(r(s), q(Re t)) ∈ ∂Ω ×H; TH(Re t) = −ω(s,Re t)}.
The associated glancing map Y : ∂Ω → H is defined implicitly as the
unique solution of the equation

〈TH(Y (s)), ω(s, Y (s))〉 = −1.
In view of Lemma 7.3 it is a global Cω diffeomorphism of ∂Ω with H.

There are several elementary facts about Σ that will be needed later
on when estimating the various h-microlocal pieces of theNC(h)-operator
in the course of proving Proposition 6.1. The first observation is that in
view of Lemma 7.3,

(92) Σ = {(r(s), q(Y (s))) ∈ ∂Ω×H}
is a Cω-graph over ∂Ω in the product manifold. Moreover, one also has
the following useful fact:

Lemma 7.5. Assume that H ⊂ Ω is an interior curve and that ∂Ω is
smooth and convex. Then,

Σ ⊂ {(r(s), q(Re t)) ∈ ∂Ω×H; ∂Re t∂sρ(s,Re t) = 0}.
Proof. This follows from the formula

∂s∂Re tρ(s,Re t) = 〈∂sω(s,Re t), TH(Re t)〉.
q.e.d.

We denote the canonical transformation induced by the diffeomor-
phism s �→ Y (s) by

(93)
ζH : T ∗∂Ω→ T ∗H,

ζH(s, σ) = (y, η); y = Y (s), η = dsY (s)
−1σ.

7.3. Taylor expansion of ρC(t, s) around glancing points. Before
analyzing the composite operator NC∗(h)aNC(h), we collect here some
asymptotic formulas for the real and imaginary parts of ρC(t, s) which
are useful when |t− Y (s)| � 1.

Lemma 7.6. Let (t, Y (s)) ∈ ([−π, π] + i[ ε◦2 , ε◦]) × [−π, π] where Y :
[−π, π] → [−π, π] is the diffeomorphism in Lemma 7.3. Then for |t −
Y (s)| ≤ ε◦ and ε◦ > 0 sufficiently small,

Re ρC(t, s) = |q(Y (s))− r(s)| − (Re t− Y (s))

(
1 +

1

2
κ2H(Y (s))|Im t|2

)
+ max

α+β=4
O(|Re t− Y (s)|α|Im t|β),

Im ρC(t, s) = −Im t+
κH(Y (s))

2
(Re t− Y (s))2Im t− 1

6
κ2H(Y (s))(Im t)3

+ max
γ+δ=5

O(|Re t− Y (s)|γ |Im t|δ).
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Proof. The lemma follows from the formula

ρC(t, s) = |q(Y (s))−r(s)|−(t−Y (s))+
1

6
κ2
H(Y (s))(t−Y (s))3+O(|t−Y (s)|4).

This in turn is a consequence of the Taylor expansion for qC(t)−r(s) =
qC(t)−q(Y (s))+q(Y (s))−r(s) around t = Y (s) in (83) using in addition
the identities 〈ω(s, Y (s)), TH (Y (s))〉 = −1 and 〈ω(s, Y (s)), νH (Y (s))〉 =
0. q.e.d.

7.4. Weight function. We compute in this section the asymptotic for-
mula for the weight function, S(t).

Lemma 7.7. Let qC(t) ∈ HC(ε◦)−HC(ε◦/2) with ε◦ > 0 sufficiently
small. Then, the weight function S(t) = maxs∈[−π,π](−Im ρC(t, s)) has
the asymptotic expansion

S(t) = Im t+
1

6
κ2H(Re t)(Im t)3 +O(|Im t|5).

Proof. We first consider the approximate critical point equation

(94) ∂s〈TH(t), ω(s, t)〉 = |Im t|4.
When Im t = 0, (94) has the solution s(Re t) := Y −1(Re t) in the no-
tation of Lemma 7.3. Under the assumption that κH > 0, ∂2s 〈TH(Re t),
ω(s,Re t)〉 |s=Y −1(Re t) ≥ 1

C > 0 and so, by the analytic implicit function

theorem, for ε◦ > 0 small, Y −1(Re t) locally extends to a unique real
analytic function t �→ Y −1(t), t ∈ [−π, π]+ i[ ε◦2 , ε◦] solving (94). Substi-

tute the identity 〈ω(Y −1(Re t),Re t), TH(Re t)〉 = −1 + |Im t|4 into the
formula (84) and also use that 〈νH(Re t), ω(s(Re t), t)〉 = |Im t|2 and
∂s〈d, νH〉 = −〈d, TH〉(1 − 〈TH , d〉2)−1/2 ∂s〈TH , d〉 both of which follow

from the fact that 〈νH , d〉 = √
1− 〈TH , d〉2. Since the last two terms

in the (Im t)3-coefficient on the right hand side of (84) cancel, one gets
that

∂sIm ρC(t, s)|s=Y −1(t)

(95)

= ∂s〈TH(Re t), ω(s, t)〉|s=Y −1(t) (Im t+O(|Im t|3) +O(|Im t|5))
= O(|Im t|5).

Finally, we compare (95) with the exact critical point equation

(96) ∂sIm ρC(t, s) = 0.

Let s = s∗(t) be the locally unique analytic solution to (96) with ε◦/2 <
Im t < ε◦ and ε◦ > 0 small. Then, again by the Taylor expansion in (84)
and the implicit function theorem, it follows that

(97) Y −1(t)− s∗(t) = O(|Im t|4).
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Upon substitution of the bounds (97) back in (84), it follows that
all terms except the one involving 1

6κ
2
H(Re t) are absorbed into the

O(|Im t|5)-error and, in particular,

(98) Im ρC(t, s∗(t)) = −Im t− 1

6
κ2H(Re t)(Im t)3 +O(|Im t|5).

This gives the stated asymptotic formula for S(t) to O(|Im t|5) error.
q.e.d.

Remark: One can repeat the same kind of argument to determine the
expansion of S(t) in Im t to arbitrary accuracy, but the terms rapidly
become more cumbersome to compute.

The value of the weight function (i.e. the maximizer of −Im ρC )
is approximately attained when s = Y −1(Re t) ∈ [−π, π] (see (97)).
This suggests that the dominant part of the NC(h))-operator (resp.
NC∗(h)aNC(h) for any a ∈ C∞0 (S2ε◦,2π) should come from ΣC

ε◦ (resp.

ΣC
ε◦ ×ΣC

ε◦), where

(99) ΣC
ε◦ := {(t, s) ∈ S2ε◦,2π × [−π, π]; |t− Y (s)| < ε◦}.

We will call ΣC
ε◦ the ε◦-complex glancing set relative to H in the param-

eter space {(t, s) ∈ S2ε◦,2π × [−π, π]}.
One of the first steps in the next section will be to show that the con-

tribution to NC∗(h)aNC(h) coming from the complement {t ∈ S2ε◦,2π;
|Y (s)− t| ≥ ε◦} is of lower order in h in L2-norm than the contribution
coming from the complex glancing set ΣC

ε . This fact relies on some es-
timates for Im ρC which we collect here. Assume that |Im t| � ε◦ and
that |Re t− Y (s)| ≥ ε◦. Then from (82), it follows that

〈qC(Re t+ iIm t)− r(s), qC(Re t+ iIm t)− r(s)〉
= |q(Re t)− q(Y (s))|2 + 2iIm t 〈q(Re t)− r(s), TH(Re t)〉+O(|Im t|2)

+ 〈q(Re t)− q(Y (s)), q(Y (s))− r(s)〉+ |q(Y (s))− r(s)|2.
(100)

So, taking square roots in (100) gives

∣∣Im ρC(Re t+ iIm t, Y (s))
∣∣ = |Im t 〈q(Re t)− r(s), TH(Re t)〉+O(|Im t|2)|

|q(Re t)− r(s)|
= |Im t| |〈ω(Y (s),Re t), TH(Re t)〉|+O(Im t2)

≤ 1

C(ε◦)
|Im t|+O(|Im t|2),(101)

with C(ε◦) > 1. The last estimate in (101) follows since |Re t−Y (s)| � ε◦
implies that |〈ω(Y (s),Re t), TH(Re t)〉| ≤ 1

C(ε◦)
with C(ε◦) > 1.
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7.5. Taylor expansions of phase functions. We will need to ana-
lyze the asymptotics of the operator kernel P (h) = h−1/2e−2S/hNC(h)∗

aNC(h)(t, s) in various asymptotic regimes; in particular, regions where
|Y (s) − Re t| � |Im t| and the complement |Y (s) − Re t| � |Im t|. Since
t = Y (s) is an (approximate) critical point for Re iρC(t, s), the first
regions should dominate the asymptotics and the latter should be resid-
ual as h → 0+. We prove this in detail in the next section where the
following Taylor expansions will be used to compute the asymptotics of
the phase function of h−1/2e−2S/hNC(h)∗aNC(h)(t, s) in these regimes.
For the convenience of the reader, we collect here the relevant Taylor
expansions for phase functions derived above that will be needed in the
next section.

7.5.1. Near-diagonal expansions.

qC(Re t+ iIm t)− q(s) = (Re t+ iIm t− s)TH(s)

+
1

2
κH(s)(Re t+ iIm t− s)2νH(s)

+
1

6
[κ′H(s)νH(s)− κ2H(s)TH(s)] (Re t+ iIm t− s)3

+O(|Re t+ iIm t− s|4).(102)

7.5.2. Expansions in the complex tube HC
ε◦.

qC(Re t+ iIm t)− r(s)

(103)

= q(Re t)− r(s) + iIm t TH(Re t)− 1

2
κH(Re t)|Im t|2νH(Re t)

− i

6
(Im t)3[κ′H(Re t)νH(Re t)− κ2H(Re t)TH(Re t)] +O(|Im t|4).

7.5.3. Taylor expansion near complex glancing set. Then for |t−
Y (s)| ≤ ε◦ and ε◦ > 0 sufficiently small,

ReρC(t, s) = |q(Y (s))− r(s)| − (Re t− Y (s))

(
1 +

1

2
κ2H(Y (s))|Im t|2

)
+ max

α+β=4
O(|Re t− Y (s)|α|Im t|β),

Im ρC(t, s) = −Im t+
κH(Y (s))

2
(Re t− Y (s))2Im t− 1

6
κ2H(Y (s))(Im t)3

+ max
γ+δ=5

O(|Re t− Y (s)|γ |Im t|δ).(104)

Remark: It follows from (104) that the real Lagrangian ReΛ ⊂ T ∗∂Ω×
T ∗H in (22) is a canonical graph with respect to the symplectic form
κ∗1(ds ∧ dIm t) ⊕ κ∗2(−ds ∧ dIm t) provided the tube radius ε◦ > 0 is
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chosen sufficiently small. To see this, consider first the approximating
Lagrangian

ReΛapprox :={(s, dsRe ρC(t, s); Re t,−dRe tRe ρC(t, s));
Re t =Y (s), Im t ∈ (ε◦

2
, ε◦)}.

Here, we write t = (Re t, Im t) and identify R
2 with C in the usual way.

Consider the associated parametrizing maps κ1 : (−π, π)× (ε◦2 , ε◦)→
πT ∗∂Ω(ReΛapprox) with

κ1 : (s, Im t) �→ (s, dsRe ρ
C(t, s)|Re t=Y (s))

and κ2 : (−π, π) × (ε◦2 , ε◦)→ πT ∗H(ReΛapprox) with

κ2 : (s, Im t) �→ (Y (s),−dRe tRe ρC(t, s)|Re t=Y (s)).

In view of (104),

κ1(s, Im t) =
(
s, ds|q(Y (s))− r(s)|

+ dsY (s)(1 +
1

2
κ2H(Y (s))|Im t|2) +O(|Im t|3)

)
,

and

κ2(s, Im t) =
(
Y (s), 1 +

1

2
κ2H(Y (s))|Im t|2 +O(|Im t|3)

)
.

For ε◦ > 0 sufficiently small, both maps κj ; j = 1, 2 are diffeomorphisms

onto their images and, consequently, so is κ2 ◦κ−11 . Finally, we note that
from (97), the constraint s = s∗(t) = Y −1(Re t) + O(|Im t|) appearing
in the definition of ReΛ in (22) implies that Y (s) = Re t+O(|Im t|). It
then follows by the above argument combined with the Implicit Function
Theorem that for ε◦ > 0 small, ReΛ is a canonical graph relative to the
symplectic form κ∗1(ds ∧ dIm t)⊕ κ∗2(−ds ∧ dIm t).

8. Analysis of NC(h)∗e−2S/haNC(h): Proof of Proposition 6.1

In this section, we prove Proposition 6.1 by carrying out a careful
analysis of the conjugate operator N∗(h)aN(h) : C∞(∂Ω) → C∞(∂Ω).
This entails several complications, most important of which is that this
operator is only an h-pseudodifferential operator when h-microlocalized
away from the glancing set (in the boundary case these are the tan-
gential directions to the boundary). In quantum ergodicity or quan-
tum ergodic restriction, these sets do not affect the limiting asymp-
totics and are therefore ignored [TZ2]. However, here the situation
is very different. We are actually interested in the complexified oper-
ator h−1/2[e−S/hNC(h)]∗a[e−S/hNC(h)] : C∞(∂Ω) → C∞(∂Ω) where
a ∈ C∞0 (H

C
ε◦) is supported in HC

2ε◦/3
− HC

ε◦/6
(see section 1.2). In this
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case, as we have already pointed out in the introduction, it is pre-
cisely the glancing set Σ and the corresponding glancing map Y :
C∞(∂Ω) → C∞(H) that determine the leading operator asymptotics.
To analyze this operator, we will need to make a further h-microlocal
decomposition by splitting the complex near-glancing directions into
the “near-real” and complementary directions. Fortunately, the fact
that we are dealing with complex near-glancing sets (rather than real
ones) actually simplifies the analysis of the microlocal complex ε◦ near-
glancing piece of the NC∗(h)aNC(h)-operator, as long as the support of
a ∈ C∞0 (H

C
ε◦) lies outside an arbitrarily small neighbourhood of the real

curve, H. The proof essentially consists of carrying out the details of
h-microlocalization indicated above and a key step is to show that one
can make the decomposition (see section 1.4)

h−1/2[e−S/hNC(h)]∗a[e−S/hNC(h)] = UY (h)
∗T (h)∗aT (h)UY (h),

where, h-microlocally on supp a, T (h) is a generalized FBI transform.
This is essentially the content of Lemma 8.2.

Remark: Since |〈ω(s, Y (s)), T∂Ω(s)〉| < 1, it follows from (74) and the
support assumptions on a(Re t, Im t) in (72) that for ε◦ > 0 small, aG ∈
C∞0 (B

∗∂Ω) (i.e. has support disjoint from the tangential set S∗∂Ω).

Proof. We first cutoff near the glancing point t = Y (s) by introducing
a cutoff function χ ∈ C∞0 (C) with χ(z) = 1 when |z| ≤ ε◦

2 and χ(z) = 0
for |z| ≥ ε◦. Here, ε◦ > 0 is fixed but chosen arbitrarily small. We
decompose the operator NC(h) in various stages. First, we write

e−S/hNC(h) = e−S/hNC
1 (h) + e−S/hNC

2 (h) + E(h)

where
(105)

e−S/hNC
1 (t, s;h) = Ch−1ei[ρ

C(t,s)+iS(t)]/h χ(|t− Y (s)|) b(h−1ρC(t, s)),

and
(106)

e−S/hNC
2 (t, s;h) = Ch−1ei[ρ

C(t,s)+iS(t)]/h (1−χ)(|t−Y (s)|) b(h−1ρC(t, s)),

where b(t) has an asymptotic expansion in inverse powers of t as t→∞,

with leading term ∼ t−1/2, and recall the glancing diffeomorphism Y :
[−π, π]→ [−π, π] is characterized by the identity 〈TH(Y (s)), ω(s, Y (s))〉
= −1. The operator E(h) : L2(∂Ω) → L2(∂Ω) satisfies ‖E(h)‖L2→L2 =
O(h∞) in view of the complex WKB expansion in Lemma (7.1) and is
negligible.
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From (105) and (106) we make the decomposition

e−2S/hNC(h)∗aNC(h) = e−2S/hNC
2 (h)

∗aNC
2 (h)

+ e−2S/hNC
1 (h)

∗aNC
1 (h) + e−2S/hNC

2 (h)
∗aNC

1 (h)

+ e−2S/hNC
1 (h)

∗aNC
2 (h).

We first analyze the diagonal terms e−2S/hNC
1 (h)

∗aNC
1 (h) and e−2S/h

NC
2 (h)

∗aNC
2 (h) and use Cauchy-Schwarz to estimate the off-diagonal

term e−2S/hNC
k (h)

∗aNC
l (h) with k �= l at the end.

8.1. Estimate for the NC∗
2 (h)e−2S/haNC

2 (h)-term. This piece of

NC(h)∗e−2S/haNC(h) is easiest to control. Indeed, since a(t) is sup-
ported in an annular subset of HC

ε◦ with supp a ⊂ HC

2ε◦/3
− HC

ε◦/6
, it

follows from the asymptotic formula for the weight function S(t) in
Lemma 7.7 and the Taylor expansion in (100) that in the case where
|Y (s)− t| ≥ ε◦ and |Y (s′)− t| ≥ ε◦, there is a constant C(ε◦) > 1 such
that

Im (2S(t) + ρC(t, s)− ρC(t, s′)) ≥ 2|Im t| − 2|Im t|
C(ε◦)

+O(|Im t|2)

≥ 2(1 − C(ε◦)
−1)|Im t|+O(|Im t|2).

It follows that for ε◦ > 0 small, there is a positive constant C ′(ε◦) > 0
such that

NC
2 (h)

∗e−2S/haNC
2 (h)(s, s

′) = O(e−C(ε◦)/h)(107)

uniformly for (s, s′, t) ∈ ∂Ω × ∂Ω × (HC

2ε◦/3
−HC

ε◦/6
). The same is true

for the partial derivatives ∂α
s ∂

β
s′ [N

C
2 (h)

∗e−2S/haNC
2 (h)](s, s

′).

8.2. Estimate for NC∗
1 (h)e−2S/haNC

1 (h): The dominant term.

h−1/2NC∗
1 e−2S/haNC

1 (s, s
′;h)

= h−1/2
∫ ∫

Sε◦,π

χ(|t− Y (s′)|) χ(|t− Y (s)|)a(qC(t), qC(t))NC(t, s′;h)

NC(t, s;h) e−2S(t)h dtdt.

After decomposing the resulting integral into two further pieces (de-
pending on whether |Re t− Y (s)| or |Im t| dominates when |t−Y (s)| ≤
ε◦) and using the strict convexity of H ⊂ Ω, we apply the method of
steepest descent to expand the Re t-integral. The remaining imaginary
coordinate Im t then behaves roughly like a frequency variable in the
oscillatory integral representation of an h-pseudodifferential operator of
order zero (here, we again use that H is strictly convex).
In this case we carry out the Re t-integration first. We decompose the

h−1/2NC
1 (h)

∗e−2S/haNC
1 (h) operator further as follows: Let χ̃ ∈ C∞0 (C)

be a cutoff equal to 1 on a ball of radius 1/2 and zero outside the ball
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of radius 1. Also, to simplify the writing, we abuse notation and write

a(t) for a(qC(t), qC(t)) where the latter is supported in the strip (72) in
the upper half plane. We define the operators N11

1 (h) and N22
1 (h) with

Schwartz kernels

N11
1 (h)(s, s′; a) = h−1/2

∫ ∫
Sε◦,π

e−2S(t)/hNC
1 (h)

∗(s, t) a(t)

χ̃

( |Re t− Y (s)|
|Im t|

)
χ̃

( |Re t− Y ′(s)|
|Im t|

)
NC
1 (h)(t, s

′) dt dt,

N22
1 (h)(s, s′; a) = h−1/2

∫ ∫
Sε◦,π

e−2S(t)/hNC
1 (h)

∗(s, t) a(t)

(1− χ̃)

( |Re t− Y (s)|
|Im t|

)
(1− χ̃)

( |Re t− Y ′(s)|
|Im t|

)
×NC

1 (h)(t, s
′) dt dt,

and with mixed terms N12
1 (h; a) and N21

1 (h; a) defined in the obvious
way so that

h−1/2NC
1 (h)

∗e−2S/haNC
1 (h) = N11

1 (h; a) +N22
1 (h; a)

+N12
1 (h; a) +N21

1 (h; a).

Just as before, we control the mixed terms N12
1 and N21

1 using Cauchy
Schwarz and the estimates for the diagonal terms, and it will suffice to
analyze the diagonal terms N11

1 and N22
1 .

8.2.1. Analysis of the N11
1 (h)-term: Reduction to normal form.

Our aim here is to reduce the operator N11
1 (h) by suitable change of

variables in (Re t, Im t) to a normal form and then, by an application
of analytic stationary phase ([Ho1] Theorem 7.7.12), we show that the
normal form operator is in Oph(S

0,−∞(T ∗∂Ω)).
First, we recall the asymptotic formulas for Re (iΨ) and Im (iΨ) where

Ψ is the phase function of the Schwartz kernel of h−1/2e−2S/hNC(h)∗

aNC(h) given by

(108) iΨ(s, s′, t) = iρC(t, s)− iρC(t, s)− 2S(t).

From Lemma 7.6,

Re [iΨ(t, s, s′)] = −κ2H(Y (s))

2
(Re t− Y (s))2

Im t+ max
γ+δ=4,δ≥1

O(|Re t− Y (s)|γ |Im t|δ)

− κ2H(Y (s
′))

2
(Re t− Y (s′))2

Im t+ max
γ+δ=4,δ≥1

O(|Re t− Y (s′)|γ |Im t|δ).(109)
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In (109) we note that (see Lemma 7.7) the terms 1
6κ

2
H(Y (s))(Im t)3+

1
6κ

2
H(Y (s

′))(Im t)3 get cancelled by the cubic term in the Im t term ap-
pearing in the expansion of S(t) in Lemma 7.7. Similarly,

Im [iΨ(t, s, s′)]

= |q(Y (s))− r(s)| − (Re t− Y (s))

(
1 +

1

2
κ2H(Y (s))|Im t|2

)

+
κ2H(Y (s))

6
(Re t− Y (s))3

+ max
α+β=4

O(|Re t− Y (s)|α|Im t|β)

− |q(Y (s′))− r(s′)|+ (Re t− Y (s′))

(
1 +

1

2
κ2H(Y (s

′))|Im t|2
)

− κ2H(Y (s
′))

6
(Re t− Y (s′))3 + max

α+β=4
O(|Re t− Y (s′)|α|Im t|β).(110)

Substitution of the identity 〈TH(Y (s)), ω(s, Y (s))〉 = −1 and second-
order Taylor expansion around s = s′ in (110) gives

Im (iΨ(t, s, s′))

(111)

= (Y (s)− Y (s′))
(〈TH(Y (s)), ω(s, Y (s))〉 − (∂sY (s))

−1〈T∂Ω(s), ω(s, Y (s))〉
)

= (Y (s)− Y (s′))
(
− ∂sY (s)

−1〈T∂Ω(s), ω(s, Y (s))〉

+
κ2
H(Y (s))

2
|Im t|2 +O(|Im t|3)

)
+O(|s− s′|2)

= (s− s′)

(
−〈T∂Ω(s), ω(s, Y (s))〉+ dsY (s)

κ2
H(Y (s))

2
|Im t|2 +O(|Im t|3)

)
+O(|s− s′|2).

For the error term in (111), we have used the constraints max(|Re t−
Y (s)|, |Re t − Y (s′)|) = O(|Im t|) and also note that the O(|s − s′|2)-
term appearing on the RHS of (111) is independent of the t-variables
since it comes from the second-order Taylor expansion of the real-valued
function |q(Y (s))− r(s)| around s = s′.

8.3. Normal form for the phase function iΨ(t, s, s′). We now re-
duce the computation of the principal term N11

1 (h) to a specific normal
form by applying a series of changes of variables in the (Re t, Im t)-
coordinates. Given (t, s) ∈ Sε◦,π × [−π, π] we claim that near any point
t0 ∈ Sε◦,π with ε◦ > 0 sufficiently small, one can find a locally real-
valued analytic function f(Re t, Im t) satisfying

(112) S(Re t, Im t) = Re [ iρC(t, Y −1f(Re t, Im t)) ],
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with

(113) f(Re t, 0) = Re t.

To prove (112) and also (113), consider the real analytic function g ∈
Cω(Sε◦,π × [−π, π]) defined by

(114) g(t, s) :=
Re iρC(t, s)

Im t
.

We wish to solve

(115) ∂s g(t, s) = 0,

where from the Taylor expansion in (109), there is the initial condition

∂sg(t, s)|Re t=Y (s),Im t=0 = 0.

Thus, (112) follows from the Implicit Function Theorem applied to
(115), since from (109) and the strict convexity of H (i.e. κH > 0),
we get that for ε◦ > 0 sufficiently small,

∂2sg(t, s) ≤ −κ2H(Y (s))|Y ′(s)|2 +O(ε2◦)
since |Re t − Y (s)| ≤ ε◦ and |Im t| ≤ ε◦. Then, s = Y −1f(t) is a local
maximum for g(t, ·) and by definition of S(t), it is clear that
(116) Re [iΨ](t, s, s′)] ≤ 0.

Given (112), we also have for all t ∈ Sε◦,π,

(117) Re [iΨ(t;Y −1f(t), Y −1f(t))] = 0.

Equations (116) and (117) show that s = Y −1f(t) is, in fact, a global
maximum for g(t, ·). Consequently, we note that

Y −1f(t) = s∗(t)

in the notation of Lemma 7.7. To simplify notation in (117) and the fol-
lowing, we identify the complex variable t with the real 2-tuple (Re t, Im t)
in the argument of iΨ. The pair of coordinates (Y −1f(t), Y −1f(t)) oc-
cupy the (s, s′) coordinate slots. By definition S(t) = maxs∈[0,2π]Re iρ

C

(t, s) so that ∂sRe [iρ
C(t, s)]|s=Y −1f(t) = 0. By differentiating (117) in

Re t, it follows that for any t ∈ Sε◦,π,

(118) ∂Re tRe [iΨ](t, s
∗(t), s∗(t)) = 0.

Since Im iΨ(t, s, s) = 0, the identity ∂Re t [Im iΨ](t, s∗(t), s∗(t)) = 0 is
automatic, and so

(119) ∂Re t [iΨ](t; s
∗(t), s∗(t)) = 0.

Since iΨ(t, s, s′) ∈ Cω(Sε◦,π×R
2/(2πZ)2) and H ⊂ Ω is strictly convex,

from (109),

|∂2Re t(iΨ)| ≥
[
κ2H(Y (s)) + κ2H(Y (s

′))
] |Im t|+O(ε2◦|Im t|) ≥ C(ε◦)|Im t|,
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where C(ε◦) > 0 with ε◦ > 0 sufficiently small. Differentiating (118) yet
again in Re t gives
(120)
∂2Re tRe [iΨ](t, s

∗(t)) + 2 ∂s∂Re tRe [iΨ](t, s
∗(t), s∗(t)) · ∂Re ts∗(t) = 0.

In view of the Taylor expansion (109), this simplifies to

2κH(Re t)
2|Im t|+O(|Re t− f(t)||Im t|) +O(|Im t|2)

− 2κH(Re t)
2|Im t| · ∂Re tf(t) = 0.

By dividing the last equation through by κH(Re t)
2Im t, and solving for

∂Re tf, one gets that f(t) = Re t+O(|Im t|). By the same identity,

(121) ∂Re tf(t) = 1 +O(|Im t|).
Given (121), we make the change of variables (Re t, Im t) �→ (f(t), Im t)

in the tubular parameter domain Sδ(ε◦),2π with δ(ε◦) > 0 sufficiently
small. To reduce to normal form for iΨ, we define the new variable

τ1(Re t, Im t) = f(t) = Re t(1 +O(Im t)),

∂Re tτ1 = 1 +O(Im t).(122)

The complementary variable τ2 is defined by writing

(123) Im [iΨ](t, s, s′) = (Y (s)− Y (s′)) · τ2,
where from (111) we know that

τ2 = −(dsY (s))−1〈T∂Ω(s), ω(s, Y (s))〉

+
κ2H(Y (s))

2
|Im t|2 +O(|Im t|3),

∂Im tτ2 = κ2H(Y (s))Im t+O(|Im t|2),(124)

since the last error term in (111) is independent of the t-variables.
Since a(t) ∈ C∞0 ({t; ε◦6 < |Im t| < 2ε◦

3 }), it follows from (124) and
the derivative computation in (124) that for the change of variables
(Re t, Im t) �→ (τ1, τ2),

J(t; s, s′) :=

∣∣∣∣ ∂(τ1, τ2)

∂(Re t, Im t)

∣∣∣∣ = κ2H(Y (s)) · |Im t|+O(|Im t|2)
≥C(ε◦)|Im t| > 0, t ∈ suppa.(125)

We note that the positive curvature ofH is used at this point in carrying
out the change of variables (Re t, Im t) �→ (τ1, τ2).
From (122) and (123) we derive the following normal form for the

phase function iΨ.
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Lemma 8.1. In terms of the new coordinates (τ1, τ2) in HC
ε◦ defined

in (122) and (123), it follows that the real part

Re [iΨ](t(τ1, τ2); s, s
′) = −α(τ1, τ2)[|Y (s)− τ1|2 + |Y (s′)− τ1|2
+O(|Y (s)− τ1|3) + |Y (s′)− τ1|3)],

where α(τ1, τ2) = [κ2H(t(τ1, τ2)) +O(ε◦) ]Im t.
The imaginary part

Im [iΨ](t(τ1, τ2); s, s
′) = (Y (s)− Y ′(s))τ2,

where

τ2(t(τ1, τ2); s, s
′) = −∂sY (s)−1〈T∂Ω(s), ω(Y (s), s)〉+ κ2(Y (s))

2
|Im t|2

+O(|Im t|3) +O(|s − s′|).
Proof. The formula for Re (iΨ) follows from the Taylor expansion in

(109) plus the formula for the second derivative in (120). The formula
for Im (iΨ) in turn follows from (111). q.e.d.

We summarize our analysis so far in the following

Lemma 8.2. Let a ∈ C∞0 (H
C

2ε◦/3
− HC

ε◦/6
) Then for ε◦ > 0 small

enough and h ∈ (0, h0(ε◦)], the kernel N11
1 (h)(s, s′; a) equals

(2πh)−3/2
∫
R

∫
R

exp [i (Y (s)−Y (s′))τ2−β1(Y (s)−τ1)2−β2(Y (s′)−τ1)2]/h

× a(t(τ1, τ2)) χ̃

( |Re t− Y (s)]|
|Im t|

)
χ̃

( |Re t− Y (s′)]|
|Im t|

)
× ρ(τ1, τ2; s, s

′;h′) dτ1 dτ2.

Here,

ρ(τ1, τ2; s, s
′;h) = J−1(t(τ); s, s′) b(t(τ); s, s′;h)

=
κ−2H (Y (s))√

2
|Im t(τ)|−1 b(t(τ); s, s′;h) (1 +O(|Im t|),

and b ∼∑∞
j=0 bjh

j with

b0(t(τ); s, s
′) = 〈νY (s), ω(Y (s), t(τ))〉 〈νY (s′), ω(Y (s′), t(τ))〉

and J(t; s, s′) is the Jacobian in (125). Here, β1(τ1, τ2, s) = α1(τ1, τ2)+
O(|Y (s)− τ1|) and β2(τ1, τ2, s

′) = α1(τ1, τ2)+O(|Y (s′)− τ1|) with β1 =
β2 +O(|s− s′|).
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Proof. Let Ψ(t(τ1, τ2), s, s
′) be the phase function in (8.1). Then, with

any fixed δ ∈ [0, 1),

N11
1 (h)(s, s′; a) = (2πh)−3/2

∫
R

∫
R

eiΨ(t(τ1,τ2),s,s
′)/h a(t(τ1, τ2))

χ̃

( |Re t− Y (s)]|
|Im t|

)
χ̃

( |Re t− Y (s′)]|
|Im t|

)
× ρ(τ1, τ2; s, s

′;h′) dτ1 dτ2 +O(h∞)(126)

and the remainder in (126) is uniform for (s, s′) ∈ [−π, π]× [−π, π].
Since τ1 = Re t(1 + O(|Im t|)) and supp a ⊂ {t; ε◦6 ≤ |Im t| ≤ 2ε◦

3 },
the amplitude in (126) is supported near the diagonal s = s′ where

max(|Y (s)− τ1|, |Y (s′)− τ1|) � ε◦.

By possibly shrinking ε◦ > 0, Lemma 8.2 follows from Lemma 8.1 after
using the Morse lemma to make another change of variables of the form
τ1 �→ τ1+O(|τ1 − Y (s)|2+ |τ1− Y (s′)|2) in (126). To simplify notation,
we continue to denote the new coordinate by τ1. q.e.d.

To further simplify the kernel in Lemma 8.2, we cutoff to the sets
where |s− s′| ≤ ε◦ and max(|Y (s)− τ1|, |Y (s′)− τ1|) ≤ ε◦.
First, note that since

Im ∂τ2 [i (Y (s)−Y (s′))τ2−β1(Y (s)−τ1)2−β2(Y (s′)−τ1)2] = i(Y (s)−Y (s′))

and |s−s′| � |Y (s)−Y (s′)| � |s−s′|, it follows by repeated integration
by parts in τ2 that

N11
1 (h)(s, s′; a)(127)

= (2πh)−3/2
∫
R

∫
R

exp[i (Y (s)− Y (s′))τ2 − β1(Y (s)− τ1)
2

− β2(Y (s
′)− τ1)

2]/h

× a(t(τ1, τ2)) χ̃

( |τ1 − Y (s)|
|Im t|

)
χ̃

( |τ1 − Y (s′)|
|Im t|

)
ρ(τ1, τ2; s, s

′;h′)χ(ε−1◦ (s − s′))dτ1 dτ2 +O(h∞).

Next, we note that under the curvature assumption κH > 0, the func-
tions βj � Im t � ε◦ for t ∈ suppa. Consequently,

β1(Y (s)− τ1)
2 + β2(Y (s

′)− τ1)
2 � |Y (s)− τ1|2 + |Y (s′)− τ1|2.
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As a result, it follows that for any fixed δ ∈ (1/2, 1),

N11
1 (h)(s, s′; a)

(128)

= (2πh)−3/2
∫
R

∫
R

exp [i (Y (s)− Y (s′))τ2 − β1(Y (s)− τ1)
2

− β2(Y (s
′)− τ1)

2]/h a(t(τ1, τ2))χ(ε
−1
◦ |τ1 − Y (s)|)χ(ε−1◦ |τ1

− Y (s′)|) ρ(τ1, τ2; s, s′;h′)χ(ε−1◦ (s− s′))dτ1 dτ2 +O(h∞).
In (128), the cutoffs χ̃

(
|τ1−Y (s)|
|Im t|

)
χ̃
(
|τ1−Y (s′)|
|Im t|

)
have been removed

since they are now redundant in view of the ε◦-cutoffs.
Using the fact that β1 = β2+O(|s− s′|), and in view of the diagonal

cutoff χ(ε−1◦ (s− s′)), it follows by Taylor expansion around s′ = s that

e−[β1(Y (s)−τ1)2+β2(Y (s′)−τ1)2]/h = e−β1[(Y (s)−τ1)2+(Y (s′)−τ1)2]/h(
1 +O(h−1|Y (s′)− τ1|2(s− s′) )

)
uniformly in (s, s′), and substitute this expansion in (128).
Next, we consider the iterated τ1 Laplace integral

I1(s, s
′, τ2;h) :=∫

R

e−β1[(Y (s)−τ1)2+(Y (s′)−τ1)2]/hρ̃(τ1, τ2; s, s
′, h) a(t(τ1, τ2)) dτ1,(129)

where

ρ̃(τ1, τ2; s, s
′, h) = ρ(τ1, τ2; s, s

′, h)
(
1 +O(h−1|Y (s′)− τ1|2(s− s′) )

)
×χ(ε−1◦ |τ1 − Y (s)|)χ(ε−1◦ |τ1 − Y (s′)|)χ(ε−1◦ (s− s′)).

The critical points of the phase are

τ1,c(s, s
′) =

Y (s) + Y (s′)

2
+O(|s− s′|2).

Consequently, by steepest descent in τ1, it follows that for h suffi-
ciently small,

I1(s, s
′, τ2;h) = (2πh)1/2e−β1 [|Y (s)−Y (s′)|2+O(|s−s′|3) ]/h a(t(τ1,c, τ2))

[ρ̃(τ1,c, τ2, s, s
′, h) +O(h)].(130)

In (130) and below we abuse notation somewhat and simply write τ1,c for
τ1,c|s=s′ . In view of the diagonal cutoff χ(ε−1◦ (s− s′)), Taylor expansion
of the exponential in (130) gives

e− β1[|Y (s)−Y (s′)|2+O(|s−s′|3)]/h = 1 +O(h−1|s− s′|2).
Consequently,

I1(s, s
′

, τ2;h) = (2πh)1/2a(t(τ1,c, τ2)) [ρ̃(τ1,c, τ2; s, s;h) +O(h)] (1 +O(h−1|s− s
′|2)).

(131)
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Since h−1|Y (s′)−τ1,c|2(s−s′) = O(h−1|s−s′|3), substitution of (131)
in (127) gives

N11
1 (h)(s, s′; a) = (2πh)−1

∫
R

ei(Y (s)−Y (s
′))τ2/h a(t(τ1,c, τ2))

(132)

× (ρ(τ1,c, τ2, s, s;h) +O(h)) (1 +O(h−1|s− s′|2))χ(ε−1◦ (s− s′)) dτ2.

Make the change of variables τ2 → Y ′(s)τ2 =: σ in (132). By integrat-
ing by parts in σ and Taylor expansion of the amplitude around s = s′,
one gets the formula

(133) N11
1 (h)(s, s′; a) = (2πh)−1

∫
R

ei(s−s
′)σ/h a(t(Y (s), dsY (s)

−1σ))

×(1 +O(h)) ρ(Y (s), dsY (s)−1σ, s, s;h) |dsY (s)|−1dσ.
8.3.1. Identification of HC

ε◦ with a subdomain of B∗∂Ω.We collect

here the explicit formulas identifying HC
ε◦ = qC(Sε◦,π) with a subset of

B∗∂Ω. Specifically, given (Re t, Im t) ∈ Sε◦,π, it follows from (111) that
for the frequency variable σ ∈ B∗s∂Ω,

σ = ∂s′Im [iΨ](Re t, Im t; s, s′)|s′=s

= −〈T∂Ω(s), ω(s, Y (s))〉+ dsY (s)
κ2H(Y (s))

2
|Im t|2 +O(|Im t|3).(134)

As for the spatial variable s ∈ [−π, π], from (122),

(135) Y (s) = f(Re t, Im t) = Re t(1 +O(|Im t|)).
Again, from (134) it is clear that |σ| < 1 when ε◦ > 0 is sufficiently
small.

Definition 8.3. We define the glancing symbol relative to H asso-
ciated with a(Re t, Im t) ∈ C∞0 (H

C
ε◦) to be aG(s, σ) ∈ C∞0 (∂Ω) with

(136)
aG(s, σ) := a(Re t(Y (s), σ), Im t(Y (s), σ)) × ρ(Y (s), dsY (s)

−1σ, s, s; 0),

where ρ is the function given in Lemma 8.2.

Then, from (133), by L2-boundedness and the fact that |b0(Y (s),
Re t(Y (s), σ))|2 = (1− |σ|2), we have
(137) N11

1 (h; a) = Oph(aG) +O(h)L2→L2 .

Moreover, since 〈νY (s), ω(Y (s),Re t)〉 = γ(Y (s), σ) it follows from
Lemma 8.2 that

aG(s, σ) =
1√
2
a(Re t(Y (s), σ), Im t(Y (s), σ))κ−2H (Y (s))

|Im t(Y (s), σ)|−1 γ2(Y (s), σ).(138)
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Thus, from (134) and (135), it follows that aG ∈ C∞0 (B
∗∂Ω) with

(139) aG(s, σ) ≥ 1

C
> 0

when (Re t(Y (s), σ), Im t(Y (s), σ)) ∈ suppa ⊂ {qC(t) ∈ HC
ε◦;

ε◦
6 <

|Im t| < 2ε◦
3 }.

8.3.2. Analysis of the N22
1 (h; a)-term. We now estimate the contri-

bution to NC
1 (h)

∗e−2S/haNC
1 (h) coming from N22

1 (h; a) where we recall
that

N22
1 (h)(s, s′; a)(140)

= (2πh)−3/2
∫ ∫

Sε◦,π

NC
1 (h)

∗(Y (s), t) a(t)

(1− χ̃)

( |Re t− Y (s)|
|Im t|

)
(1− χ̃)

( |Re t− Y (s′)|
|Im t|

)
×NC(h)(t, Y (s′)) dt dt

= (2πh)−3/2
∫ ∫

Sε◦,π

eiΨ(s,s
′,t)/h a(t)

(1− χ̃)

( |Re t− Y (s)|
|Im t|

)
(1− χ̃)

( |Re t− Y (s′)|
|Im t|

)
dtdt.

So in this case we restrict to the range

(141) |Im t| ≤ min(|Re t− Y (s)|, |Re t− Y (s′)|)

in the Taylor expansions (109) and (110) of the phase function, iΨ(t, s, s′).
In addition, we have the constraint (coming from the definition of NC

1 (h)
in (105)) that

(142) max(|t− Y (s)|, |t− Y (s′)|) � ε◦.

Then, for Im t ≥ 0,

Re iΨ(t, s, s′) = −[κH(Y (s))2(Re t− Y (s))2

+ κH(Y (s
′))2(Re t− Y (s′))2] Im t

+O(|Re t− Y (s)|α|Im t|β) +O(|Re t− Y (s′)|α|Im t|β)(143)

where α + β ≥ 4 and β ≥ 1. Substituting the constraints in (141) and
(142) into (143) implies that

(144) Re [iΨ](t, s, s′) ≤ −2κ2H |Im t|3 +O(ε◦)|Im t|3 ≤ −C(ε◦)|Im t|3,
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with C(ε◦) > 0, provided ε◦ > 0 is sufficiently small. Substitution of the
phase bound in (144) into the Schwartz kernel formula in (140) gives

|N22
1 (h)(y, y′, a)|

≤ (2πh)−3/2
∫ ∫

Sε◦,π

eRe [iΨ](t,s,s
′)/h |a(t)|(1 − χ̃)

( |Re t− Y (s)|
|Im t|

)

× (1− χ̃)

( |Re t− Y (s′)|
|Im t|

)
dtdt

≤ (2πh)−3/2
∫ ∫

Sε◦,π

e−C(ε◦)|Im t|3/h |a(t)| dtdt

= O(h−3/2e−C(ε◦) ε3◦/h),
since by assumption supp a ⊂ HC

ε◦ ∩{t; ε◦6 < Im t < 2ε◦
3 }. Consequently,

the N22
1 (h)-term is exponentially decaying in h and is negligible.

8.4. Mixed terms. In the following, we continue to write L2 := L2(∂Ω).
Then, in view of the analysis in section 8.3, there is the decomposi-
tion h−1/2NC

1 (h)
∗e−2S/haNC

1 (h) = N11
1 (h; a) +N22

1 (h; a) + N21
1 (h; a) +

N12
1 (h; a), where

N11
1 (h; a) = Oph(aG) +O(h)L2→L2 ,

‖N22
1 (h; a)‖L2→L2 = O(h−1e−C(ε◦)/h),

with C(ε◦) > 0 and

‖N12
1 (h; a)∗N12

1 (h; a)‖L2→L2 = ‖N11
1 (h; a)∗N22

1 (h; a)‖L2→L2

= O(h−1/2e−C(ε◦)/h).
The same estimate holds for N21

1 (h; a)∗N21
1 (h; a). As a result,

(145) h−1/2NC
1 (h)

∗e−2S/haNC
1 (h) = Oph(aG) +O(h).

So, in particular,

(146) ‖h−1/4e−S/hNC
1 (h)‖L2(∂Ω)→L2(supp a) = O(1).

From the “far-diagonal” bound in (107),

‖NC
2 (h)

∗e−2S/haNC
2 (h)‖L2→L2 = O(e−C(ε◦)/h).

Thus,

(147) ‖e−S/hNC
2 (h)‖L2(∂Ω)→L2(supp a) = O(e−C(ε◦)/2h).

From (146) and (147) it then follows by Cauchy-Schwarz that the mixed
terms

max(‖NC
2 (h)

∗e−2S/haNC
1 (h)‖L2→L2 ,‖NC

1 (h)
∗e−2S/haNC

2 (h)‖L2→L2)

= O(e−C′(ε◦)/h)(148)
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with C ′(ε◦) > 0. So (145) and (148) imply that for h ∈ (0, h0(ε◦)] with
h0 > 0 sufficiently small,

h−1/2NC(h)∗e−2S/haNC(h) = Oph(aG) +O(h)L2→L2 .

This finishes the proof of Proposition 6.1. q.e.d.

9. Analysis near corner points

We assume now that Ω ⊂ R
2 is a smooth domain with corners.

We define a smooth domain with corners in R
n and with M bound-

ary faces (hypersurfaces) to be a set of the form {x ∈ R
n : ρj(x) ≤

0, j = 1, . . . ,M}, where the defining functions ρj are smooth in a neigh-
borhood of Ω with dρj |ρ−1

j (0) �= 0. A boundary hypersurface Hj is the

intersection of Ω with one of the hypersurfaces {ρj = 0}. The inter-
sections of the boundary faces, Hi ∩Hj, consist of finitely-many corner
points. In addition, we require that ∂Ω is a Lipschitz boundary [ZZ] (i.e.
locally given by a graph of a Lipschitz function). In Theorem 1.2 it is
essential to allow Ω to have corners since domains with ergodic billiard
flow in R

n are non-smooth.
We denote the smooth part of ∂Ω by (∂Ω)o. Here, and throughout

this article, we denote by W o the interior of a set W and, when no
confusion is possible, we also use it to denote the regular set of ∂Ω. Thus,
∂Ω = (∂Ω)o ∪ Σ, where Σ =

⋃
i �=j(Wi ∩Wj) is the singular set. When

dimΩ = 2, the singular set is a finite set of points and theWi are smooth
curves. In higher dimensions, theWi are smooth hypersurfaces;Wi∩Wj

is a stratified smooth space of co-dimension one, and in particular Σ is
of measure zero. We denote by S∗ΣΩ the set of unit vectors to Ω based at
points of Σ. We also define C∞(∂Ω) to be the restriction of C∞(Rn) to
∂Ω. We define the open unit ball bundle B∗(∂Ω)o to be the projection
to T ∗∂Ω of the inward pointing unit vectors to Ω along (∂Ω)o. We leave
it undefined at the singular points.
For concreteness, here we assume n = 2 and write the smooth part

of the boundary as a disjoint union (∂Ω)o =
⋃M

j=1W
o
j , where the W o

j

are open boundary faces diffeomorphic to open intervals of R. We let
rj : (aj , aj + 1) → W o

j , s �→ rj(s) denote unit-speed parametrizations
of the boundary faces with a0 = −π, aM = π and let

y : (aj , aj+1)→ Hj ⊂ H, s �→ Yj(s),

be the parametrization defining the glancing set relative to Hj. Here, the
Hj’s are just open sub-arcs ofH. For fixed small ε◦ > 0, let χε◦

j ∈ C∞0 (R)

be a cutoff equal to 1 on (aj+ε◦, aj+1−ε◦) for a boundary face indexed
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by j ∈ {1, . . . ,M}. It follows that

h
−1/2

∫ ∫
Sε◦,π

e
−2S(t)/h|NC(h)χε◦

j ϕ
∂Ω
h (t)|2 χε◦(t) dtdt

(149)

= (2πh)−3/2

∫ ∫
Sε◦,π

(∫
R

∫
R

e
iΨ(t,s,s′)/h

χ
ε◦
j (s)χε◦

j (s′)ϕ∂Ω
h (s)ϕ∂Ω

h (s′) dsds′
)

dtdt.

The analysis of the last integral on the RHS of (149) follows exactly as
in section 8 and one gets that

h−1/2
∫ ∫

Sε◦,π

e−2S(t)/hNC(h)χε◦
j ϕ∂Ω

h (t) ·NC(h)χε◦
k ϕ∂Ω

h (t)χε◦(t) dtdt

= 〈Oph(a
(j)
G )ϕ∂Ω

h , ϕ∂Ω
h 〉L2 ,

where suppa
(j)
G ∈ C∞0 (B

∗W o
j ) with

∫
B∗W o

j
a
(j)
G (s, σ)γ(s, σ)dsdσ > 0.

Thus, Proposition 6.1 follows also in the case where ∂Ω is only piecewise
smooth. Theorem 1.2 then follows from Theorem 1.1 as outlined in the
introduction. q.e.d.
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[Ho1] L. Hörmander, The Analysis of Linear Partial Differential Operators I: Dis-
tribution Theory and Fourier Analysis, Springer-Verlag Berlin and Heidelberg
GmbH,1990, ISBN: 3540523456, MR 1065993, Zbl 0712.35001.

[HS] R. Hardt & L. Simon, Nodal sets for solutions of elliptic equations, J. Differ-
ential Geom. 30 (1989) 505–522, MR 1010169, Zbl 0692.35005.

[HL] Q. Han & F.H. Lin, Nodal sets of solutions of elliptic differential equations,
book in preparation, 2007.

[HZ] A. Hassell, S. Zelditch, Quantum ergodicity of boundary values of eigen-
functions, Comm. Math. Phys. 248 (2004), 119–168, MR 2005h:35255, Zbl
1054.58022.

[He] H. Hezari & Z. Wang, Lower bounds for volumes of nodal sets: An improve-
ment of a result of Sogge-Zelditch. Spectral geometry, 229–235, Proc. Sympos.
Pure Math., 84, Amer. Math. Soc., Providence, RI, 2012, MR 2985319.

[JN] D. Jakobson & N. Nadirashvili, Eigenfunctions with few critical points, J.
Differential Geom. 53(1) (1999) 177–182, MR 1776094, Zbl 1038.58036.

[Ju] J. Jung, Zeros of eigenfunctions on hyperbolic surfaces lying on a curve,
arXiv:1108.2335v2 (2011).

[L] F.H. Lin, Nodal sets of solutions of elliptic and parabolic equations, Comm.
Pure Appl. Math. 44(3) (1991) 287–308, MR 1090434, Zbl 0734.58045.

[Lew] H. Lewy, On the minimum number of domains in which the nodal lines of
spherical harmonics divide the sphere, Comm. Partial Differential Equations
2(12) (1977) 1233–1244, MR 477199, Zbl 0377.31008.

[Man] D. Mangoubi, A remark on recent lower bounds for nodal sets, Communica-
tions in Partial Differential Equations,Volume 36, Issue 12, 2011, 2208–2212,
MR 2852075, Zbl 1232.58025.

[Mc] W. McLean, Local and global descriptions of periodic pseudodifferential oper-
ators, Math. Nach. 150 (1991) 151–161, MR 1109651, Zbl 0729.35149.

[M1] R.F. Millar, The analytic continuation of solutions to elliptic boundary value
problems in two independent variables, J. Math. Anal. Appl. 76(2) (1980)
498–515, MR 587358, Zbl 0447.35016.

[M2] R.F. Millar, Singularities of solutions to linear, second order analytic elliptic
equations in two independent variables. I. The completely regular boundary,
Applicable Anal. 1(2) (1971) 101–121, MR 287132, Zbl 0225.35039.

[NJT] N. Nadirashvili, D. Jakobson & J.A. Toth, Geometric properties of eigenfunc-
tions (Russian), Uspekhi Mat. Nauk 56 6(342) (2001) 67–88; translation in
Russian Math. Surveys 56(6) (2001) 1085–1105, MR 1886720, Zbl 1060.58019.



NODAL INTERSECTION 53

[NS] F. Nazarov & M. Sodin, On the Number of Nodal Domains of Random Spher-
ical Harmonics, American Journal of Mathematics, Volume 131, Number 5,
October 2009, pp. 1337–1357 (Article), MR 2555843, Zbl 1186.60022.

[NV] A. Naber & D. Valtorta, Volume estimates on the critical sets of solutions to
elliptic PDEs, arXiv:1403.4176v1 (2014).

[PST] I. Polterovich, D. Sher, & J. Toth, Nodal volumes of Steklov eigenfunctions
in real-analytic domains, 2014 (preprint).

[SZ] C.D. Sogge & S. Zelditch, Lower bounds on the Hausdorff measure of nodal
sets, Math. Res. Lett. 18 (2011), no. 01, 25–37, MR 2770580, Zbl 1242.58017.

[Ta] D. Tataru, Carleman estimates and unique continuation for solutions to
boundary value problems, J. Math. Pures Appl. (9) 75(4) (1996) 367–408,
MR 1411157, Zbl 0896.3502.

[TZ] J. Toth & S. Zelditch, Counting nodal lines which touch the boundary of
an analytic domain, J. Diff. Geom. 81 (2009) 649–686, MR 2487604, Zbl
1180.35395.

[TZ2] J. Toth & S. Zelditch, Quantum ergodic restriction theorems, I: interior hy-
persurfaces in domains with ergodic billiards, Ann. Henri Poincaré 13, No. 4,
599–670 (2012), MR 2913617, Zbl 1263.37061.

[WZ] J. Wunsch & M. Zworski, The FBI transform on compact C∞ mani-
folds, Trans. Amer. Math. Soc. 353 (2001), 1151–1167, MR 1804416, Zbl
0974.35005.

[Y1] S.T. Yau, Survey on partial differential equations in differential geometry, in
Seminar on Differential Geometry, 3–71, Ann. of Math. Stud., 102, Princeton
Univ. Press, Princeton, NJ, 1982, MR 645729, Zbl 0478.53001.

[Y2] S.T. Yau, Open problems in geometry, in Differential geometry: Partial dif-
ferential equations on manifolds (Los Angeles, CA, 1990), 1–28, Proc. Sym-
pos. Pure Math., 54, Part 1, Amer. Math. Soc., Providence, RI, 1993, MR
1216573, Zbl 0801.53001.

[Z] S. Zelditch, Ergodicity and intersections of nodal sets and geodesics on real
analytic surfaces, J. Differ. Geom. 96, No. 2, 305–351 (2014), MR 3178442,
Zbl 06287982.

[Z2] S. Zelditch, Pluri-potential theory of Grauert tubes of real analytic manifolds
I, AMS Proc. Symp. Pure Math. Spectral Geometry, (2012) 299–339, MR
2985323.

[ZZ] S. Zelditch & M. Zworski, Ergodicity of eigenfunctions for ergodic billiards,
Comm. Math. Phys. 175 (1996) 673–682, MR 1372814, Zbl 0840.58048.

[Zw] M. Zworski, Semiclassical Analysis, Grad. Studies in Math. Vol. 138, AMS,
2012, MR 2952218, Zbl 1252.58001.

Department of Mathematics and Statistics

McGill University

Montreal, Canada

E-mail address: elhajj@math.mcgill.ca

Department of Mathematics and Statistics

McGill University

Montreal, Canada

E-mail address: jtoth@math.mcgill.ca



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.7
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /CMYK
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType true
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<

    /BGR <>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <>
    /DAN <>
    /DEU <>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
    /FRA <>
    /GRE <>

    /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke.  Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
    /HUN <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <>
    /LVI <>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /POL <>
    /PTB <>
    /RUM <>
    /RUS <>
    /SKY <>
    /SLV <>
    /SUO <>
    /SVE <>
    /TUR <>
    /UKR <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


