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ON THE EVOLUTION OF A HERMITIAN METRIC

BY ITS CHERN-RICCI FORM

Valentino Tosatti & Ben Weinkove

Abstract

We consider the evolution of a Hermitian metric on a compact
complex manifold by its Chern-Ricci form. This is an evolution
equation first studied by M. Gill, and coincides with the Kähler-
Ricci flow if the initial metric is Kähler. We find the maximal
existence time for the flow in terms of the initial data. We in-
vestigate the behavior of the flow on complex surfaces when the
initial metric is Gauduchon, on complex manifolds with negative
first Chern class, and on some Hopf manifolds. Finally, we dis-
cuss a new estimate for the complex Monge-Ampère equation on
Hermitian manifolds.

1. Introduction

Let (M,J) be a compact complex manifold of complex dimension n.
Let g0 be a Hermitian metric on M , that is a Riemannian metric g0
satisfying g0(JX, JY ) = g0(X,Y ) for all vectors X, Y . In local complex
coordinates (z1, . . . , zn), the metric g0 is given by a Hermitian matrix
with components (g0)ij . Associated to g0 is a real (1, 1) form ω0 =√
−1(g0)ijdzi ∧ dzj, which we will also often refer to as a Hermitian

metric.
Given the success of Hamilton’s Ricci flow [22] in establishing deep

results in the setting of topological, smooth, and Riemannian manifolds
(see e.g. [5, 23, 30]), it is natural to ask whether there is a parabolic flow
of metrics on M which starts at g0, preserves the Hermitian condition,
and reveals information about the structure ofM as a complex manifold.
In the case when g0 is Kähler (meaning dω0 = 0), the Ricci flow does
precisely this. It gives a flow of Kähler metrics whose behavior is deeply
intertwined with the complex and algebro-geometric properties of M
(see [8, 9, 15, 31, 32, 34, 35, 36, 37, 38, 40, 41, 45, 50, 51, 52, 56],
for example).

However, if g0 is not Kähler, then in general the Ricci flow does not
preserve the Hermitian condition g(JX, JY ) = g(X,Y ). Alternative
parabolic flows on complex manifolds which do preserve the Hermitian
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property have been proposed by Streets-Tian [42, 43] and also Liu-Yang
[28].

This paper is concerned with another such flow, first investigated by
M. Gill [19], which we will call the Chern-Ricci flow :

(1.1)
∂

∂t
ω = −Ric(ω), ω|t=0 = ω0,

where here Ric(ω) is the Chern-Ricci form (sometimes called the first
Chern form) associated to the Hermitian metric g, which in local coor-
dinates is given by

(1.2) Ric(ω) = −
√
−1∂∂ log det g.

In the case when g is Kähler, Ric(ω) =
√
−1Rijdzi ∧ dzj , where Rij

is the usual Ricci curvature of g. Thus if g0 is Kähler, (1.1) coincides
with the Kähler-Ricci flow. In general, Ric(ω) does not have a simple
relationship with the Ricci curvature of g. The Bott-Chern cohomology
class determined by the closed form Ric(ω) is denoted by cBC

1 (M). We
call this the first Bott-Chern class of M . It is independent of the choice
of Hermitian metric ω (see Section 2 for more details).

The following result for the Chern-Ricci flow was proved by Gill [19]:

Theorem 1.1 (Gill). If cBC
1 (M) = 0 then, for any initial metric ω0,

there exists a solution ω(t) to the Chern-Ricci flow (1.1) for all time and
the metrics ω(t) converge smoothly as t→ ∞ to a Hermitian metric ω∞

satisfying Ric(ω∞) = 0.

Moreover, the Hermitian metric ω∞ is the unique Chern-Ricci flat
metric on M of the form ω∞ = ω0 +

√
−1∂∂ϕ for some function ϕ. The

Chern-Ricci flat metrics were already known to exist [10, 54], and the
estimate of [54] is used in the proof of Theorem 1.1. If ω0 is Kähler then
Theorem 1.1 is due to Cao [8], with ω∞ being the Ricci-flat metric of
Yau [60]. In Section 2 below, we discuss the work of Gill [19] further,
and also explain how the Chern-Ricci flow compares with some other
parabolic flows on complex manifolds studied in the literature.

Our first result characterizes the maximal existence time for a solution
to the Chern-Ricci flow using information from the initial Hermitian
metric ω0. First observe that the flow equation (1.1) may be rewritten
as

∂

∂t
ω = −Ric(ω0) +

√
−1∂∂θ(t), with θ(t) = log

det g(t)

det g0
.

Thus, as long as the flow exists, the solution ω(t) starting at ω0 must
be of the form ω(t) = αt +

√
−1∂∂Θ, for some function Θ = Θ(t), with

(1.3) αt = ω0 − tRic(ω0).

Now define a number T = T (ω0) with 0 < T 6 ∞ by

(1.4) T = sup{t > 0 | ∃ψ ∈ C∞(M) with αt +
√
−1∂∂ψ > 0}.
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By the observation above, a solution to (1.1) cannot exist beyond time
T . We prove:

Theorem 1.2. There exists a unique maximal solution to the Chern-
Ricci flow (1.1) on [0, T ).

In the special case when ω0 is Kähler, this is already known by the
result of Tian-Zhang [51], who extended earlier work of Cao and Tsuji
[8, 56, 57]. In the Kähler case, T depends only on the cohomology class
[ω0] and can be written

T = sup{t > 0 | [ω0]− tc1(M) > 0}.
Furthermore, the Nakai-Moishezon criterion, due to Buchdahl [7] and
Lamari [25] for Kähler surfaces and to Demailly-Păun [11] for general
Kähler manifolds, implies that at time T either the volume of M goes
to zero, or the volume of some proper analytic subvariety of M goes to
zero (cf. the discussion in [15]).

Note that in the general Hermitian case, we can consider the equiva-
lence relation of (1, 1) forms on M :

α ∼ α′ ⇐⇒ α = α′ +
√
−1∂∂ψ for some function ψ ∈ C∞(M).

Then T defined by (1.4) depends only on the equivalence class of ω0.
In the special case when M is a complex surface (n = 2) a result

of Gauduchon [16] is that every Hermitian metric is conformal to a
∂∂-closed metric ω0. If ω0 is ∂∂-closed then so is ω(t) for t ∈ [0, T ).
Moreover, we have a geometric characterization of the maximal existence
time T :

Theorem 1.3. Let M be a compact complex surface, ω0 a ∂∂-closed
Hermitian metric. Then T defined by (1.4) can be written as

T = sup

{

T0 > 0

∣

∣

∣

∣

∀t ∈ [0, T0],

∫

M
α2
t > 0,

∫

D
αt > 0,

for all D irreducible effective divisors with D2 < 0

}

,

for αt given by (1.3).

Note that for t ∈ [0, T ), the quantity
∫

M α2
t =

∫

M ω(t)2 is the volume
of M (with respect to ω(t)) and

∫

D αt =
∫

D ω(t) is the volume of the
curve D. Thus we can restate Theorem 1.3 as:

Corollary 1.4. Let M be a compact complex surface, ω0 a ∂∂-closed
Hermitian metric. Then the Chern-Ricci flow (1.1) starting at ω0 exists
until either the volume of M goes to zero, or the volume of a curve of
negative self-intersection goes to zero.

As we remarked above, the same result was known to hold for the
Kähler-Ricci flow thanks to the Nakai-Moishezon criterion of [7, 25].
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Analogues of Theorems 1.2 and 1.3 and Corollary 1.4 were conjectured
by Streets-Tian [44] for their pluriclosed flow (see Section 2 below).

The Kähler-Ricci flow has a deep connection to the Minimal Model
Program in algebraic geometry, as demonstrated by the work of Song-
Tian and others [14, 26, 34, 35, 36, 37, 38, 39, 40, 41, 50, 51, 56, 63].
In the case of algebraic surfaces, the minimal model program is relatively
simple. Indeed, aminimal surface is defined to be a surface with no (−1)-
curves (smooth rational curves C with C2 = −1). To find the minimal
model, one can just apply a finite number of blow-downs, which are alge-
braic operations contracting the (−1)-curves. It was shown in [38] that
the Kähler-Ricci flow on an algebraic surface carries out these algebraic
operations, contracting (−1)-curves in the sense of Gromov-Hausdorff,
and smoothly outside of the curves. Moreover, the same behavior occurs
on a non-algebraic Kähler surface [40]. In all dimensions, weak solutions
to the Kähler-Ricci flow through singularities were constructed in [36]
and a number of conjectures were made about the metric behavior of
the flow (see also [41]).

We return now to the case of a complex (non-Kähler) surface. In this
case one can also contract the (−1) curves to arrive at a minimal surface.
We conjecture that the Chern-Ricci flow on a complex surface starting
at a ∂∂-closed metric behaves in an analogous way to the Kähler-Ricci
flow on a Kähler surface. We prove the following:

Theorem 1.5. Let M be a compact complex surface with a ∂∂-closed
Hermitian metric ω0, and let [0, T ) be the maximal existence time of the
Chern-Ricci flow starting from ω0. Then

(a) If T = ∞, then M is minimal.
(b) If T < ∞ and Vol(M,ω(t)) → 0 as t → T−, then M is either

birational to a ruled surface or it is a surface of class V II (and
in this case it cannot be an Inoue surface).

(c) If T < ∞ and Vol(M,ω(t)) stays positive as t → T−, then M
contains (−1)-curves.

Furthermore, if M is minimal, then T = ∞ unless M is CP
2, a ruled

surface, a Hopf surface, or a surface of class VII with b2 > 0, in which
cases (b) holds.

In the case that M is not minimal, and (c) occurs, we expect that the
Chern-Ricci flow will contract a finite number of (−1)-curves and can
be uniquely continued on the new manifold. Moreover, we conjecture
that this process can be repeated until one obtains a minimal surface,
or ends up in case (b) above. More details of this conjecture can be
found in Section 6.

To provide some evidence for our conjecture, we prove the following
theorem. It is an analogue of a result for the Kähler-Ricci flow, whose
proof is essentially contained in [51] (for a recent exposition, see Chapter
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7 of [40]), and which was a key starting point for the work [36, 37, 38,
39]. We assume that the maximal existence time T is finite and, roughly
speaking, that the limiting ‘class’ of the flow at time T is given by the
pull-back of a Hermitian metric on a manifold N via π :M → N , where
π is a holomorphic map blowing down an exceptional divisor E to a
point p ∈ N . We show that the solution to the Chern-Ricci flow will
converge smoothly at time T away from E. In this way, one can obtain a
Hermitian metric on the new manifold N , at least away from the point
p. Our result holds in any dimension:

Theorem 1.6. Assume that there exists a holomorphic map between
compact Hermitian manifolds π : (M,ω0) → (N,ωN ) blowing down the
exceptional divisor E on M to a point p ∈ N . In addition, assume that
there exists a smooth function ψ on M with

(1.5) ω0 − TRic (ω0) +
√
−1∂∂ψ = π∗ωN ,

with T <∞ given by (1.4).
Then the solution ω(t) to the Chern-Ricci flow (1.1) starting at ω0

converges in C∞ on compact subsets of M \ E to a smooth Hermitian
metric ωT on M \ E.

There are some new obstacles to proving this in the non-Kähler case
that we overcome using a parabolic Schwarz Lemma for volume forms,
and a second order estimate for the metric which uses a trick of Phong-
Sturm [33].

In the cases when the flow has a long time solution, it is natural to in-
vestigate its behavior at infinity. If the manifold has vanishing first Bott-
Chern class, we have already seen by Gill’s result (Theorem 1.1) that
the flow converges to a Chern-Ricci flat Hermitian metric. We now sup-
pose that the first Chern class c1(M) is negative (note that cBC

1 (M) < 0
implies c1(M) < 0). In this case, the manifold M is Kähler and a fun-
damental result of Aubin [1] and Yau [60] says that M admits a unique
Kähler-Einstein metric ωKE with negative scalar curvature. Cao [8] then
proved that the Kähler-Ricci flow (appropriately normalized) deforms
any Kähler metric in −c1(M) to ωKE. The same is true for the normal-
ized Kähler-Ricci flow starting at any Kähler metric [51, 56]. Our next
result shows that starting at any Hermitian metric on the manifold M ,
the (normalized) Chern-Ricci flow will converge to the Kähler-Einstein
metric ωKE.

Theorem 1.7. LetM be a compact complex manifold with c1(M) < 0
and let ω0 be a Hermitian metric on M . Then the Chern-Ricci flow
(1.1) has a long time solution ω(t), and as t goes to infinity the rescaled
metrics ω(t)/t converge smoothly to the unique Kähler-Einstein metric
ωKE on M .
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In particular we see that the Chern-Ricci flow on these manifolds,
after normalization, deforms any Hermitian metric to a Kähler one.

Next we illustrate the Chern-Ricci flow with an explicit example. For
α = (α1, . . . , αn) ∈ C

n \ {0} with |α1| = · · · = |αn| 6= 1, we consider the
Hopf manifold Mα = (Cn \ {0})/ ∼ where

(z1, . . . , zn) ∼ (α1z1, . . . , αnzn).

This is a non-Kähler complex manifold of complex dimension n. If n = 2,
it is an example of a class VII surface. We can write down an exact
solution to the Chern-Ricci flow on Mα. Consider the metric ωH =
δij
r2

√
−1dzi ∧ dzj . Then we have:

Proposition 1.8. The metrics ω(t) := ωH − tRic (ωH) on Mα give
a solution of the Chern-Ricci flow on the maximal existence interval
[0, 1/n). As t → T = 1/n, the limiting nonnegative (1, 1) form ωT is
given by

ωT =
zizj
r4

√
−1dzi ∧ dzj .

In the case of the original Hopf surface, which has α = (2, 2) and is
an elliptic fiber bundle over P

1 via the map (z1, z2) 7→ [z1, z2], the lim-
iting form ωT is positive definite along the fibers and zero in directions
orthogonal to the fibers.

If we start with any metric ω0 which differs from ωH by
√
−1∂∂ψ

for some function ψ, then we conjecture that the flow also converges as
t → T to a smooth but degenerate (1, 1) form on Mα with properties
similar to ωT . To give evidence for this conjecture, we prove an estimate:

Proposition 1.9. Let ω0 = ωH+
√
−1∂∂ψ be a Hermitian metric on

Mα, and let ω(t) be the solution of the Chern-Ricci flow (1.1) starting
at ω0 on Mα for t ∈ [0, 1/n). Then there exists a uniform constant C
such that

ω(t) 6 CωH , for t ∈ [0, 1/n).

In particular, this result shows that we obtain convergence for the
flow at the level of potential functions in C1+β for any β ∈ (0, 1). For
more details see Section 8.

The final result in this paper concerns not the Chern-Ricci flow, but
an elliptic equation: the complex Monge-Ampère equation

(1.6) (ω +
√
−1∂∂ϕ)n = eFωn, ω′ := ω +

√
−1∂∂ϕ > 0,

on a compact Hermitian manifold (M,ω), where F is a smooth function
on M . We give an alternative proof of a result of [54] that ‖ϕ‖C0 is
uniformly bounded (see also [4, 12]). The result makes use of a new

second order estimate in this context: trωω
′ 6 CeA(ϕ−infM ϕ) which we

conjectured to hold in [53]. For more details see Section 9. We have
included this result here because it follows easily from the argument
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used in Theorem 1.6 together with the method of [53]. The key new
ingredient is the trick of Phong-Sturm [33] applied to this setting.
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2. Preliminaries and comparison with other flows

In this section, we include for the reader’s convenience some back-
ground material on local coordinate computations with Hermitian met-
rics.

Let (M,g) be a compact Hermitian manifold of complex dimension n.
We will often compute in complex coordinates z1, . . . , zn. In this case, g
is determined by the n × n Hermitian matrix gij = g(∂i, ∂j), where we

are writing ∂i, ∂j for ∂
∂zi
, ∂
∂zj

respectively. We denote by gji the entries

of the inverse matrix of (gij).
We define the Chern connection ∇ associated to g as follows. Given

a vector field X = Xi∂i and a (1, 0) form a = aidzi, we define ∇X and
∇a to be the tensors with components:

∇iX
k = ∂iX

k + Γk
ijX

j , ∇iaj = ∂iaj − Γk
ijak,

where the Christoffel symbols Γk
ij are given by

Γk
ij = gqk∂igjq.

The tensors ∇X and ∇a have components ∇iXk = ∂iXk and ∇iaj =
∂iaj . The connection ∇ can be naturally extended to any kind of tensor,
and we have ∇kgij = 0.

We write ∆ for the complex Laplacian of g, which acts on a function
f by

∆f = gji∂i∂jf = gji∇i∇jf.

The torsion of g is the tensor T with components

T k
ij = Γk

ij − Γk
ji.

The torsion tensor vanishes in the special case that g is Kähler.
We define the curvature of g to be the tensor with components

R p

kℓi
= −∂ℓΓ

p
ki.

We will often raise and lower indices using the metric g, writing for ex-
ample Rkℓij = gpjR

p

kℓi
. Note that Rkℓij = Rℓkji. We have the following
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commutation formulae:

[∇k,∇ℓ]X
i = R i

kℓj
Xj , [∇k,∇ℓ]X

i = −R i
kℓ j

Xj ,

[∇k,∇ℓ]aj = −R i
kℓj

ai, [∇k,∇ℓ]aj = R i
kℓ j

ai,

where we are writing [∇k,∇ℓ] for ∇k∇ℓ −∇ℓ∇k. We write the Chern-

Ricci curvature of g as the tensor RC
kℓ

given by

RC
kℓ

= gjiRkℓij = −∂k∂ℓ log det g,
so that the Chern-Ricci form is equal to

Ric(ω) =
√
−1RC

kℓ
dzk ∧ dzℓ.

It is a closed real (1, 1) form and its cohomology class in the Bott-Chern
cohomology group

H1,1
BC(M,R) =

{closed real (1, 1) forms}
{
√
−1∂∂ψ, ψ ∈ C∞(M,R)}

is the first Bott-Chern class of M , and is denoted by cBC
1 (M). It is in-

dependent of the choice of Hermitian metric ω. More generally, if Ω is
a smooth positive volume form on M we can define locally Ric(Ω) =
−
√
−1∂∂ log Ω, which is a global closed real (1, 1) form that represents

cBC
1 (M). For notational convenience, we omit the factor of 2π that usu-
ally appears in the definition of cBC

1 (M). The downside of this conven-
tion is that some factors of 2π will appear later in the cohomological
calculations of Section 6.

We end this section by briefly mentioning some related parabolic
equations on Hermitian manifolds which have previously been studied
in the literature. Streets-Tian [43] introduced the flow

(2.1)
∂

∂t
gij = −Sij +Qij , g|t=0 = g0,

where Sij is given by taking ‘the other trace’ of the curvature of the
Chern connection:

Sij = gℓkRkℓij ,

and Qij is a certain quadratic term in the torsion. If the form ω0 asso-

ciated to g0 satisfies ∂∂ω0 = 0, this equation becomes their pluriclosed
flow

(2.2)
∂

∂t
ω = ∂∂∗ω + ∂ ∂

∗

ω − Ric(ω), ω|t=0 = ω0,

and if g0 is Kähler, it coincides with the Kähler-Ricci flow. They ana-
lyzed (2.2) in detail in [42, 44] and made a number of conjectures about
it, two of which are analogues of our Theorems 1.2 and 1.3. They con-
jecture that their flow can be used to study the topology of class VII+

surfaces. In addition, Streets-Tian considered a family of flows of the
form (2.1) with arbitrary quadratic torsion term Q and proved, among
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other results, a short-time existence theorem [43]. The flow (2.1) was
extended to the almost complex setting by Vezzoni [58]. Liu-Yang [28]
propose studying the flow (2.1) in the case of Q = 0.

In [19], Gill introduced the following parabolic complex Monge-Ampère
equation on a compact Hermitian manifold (M, ĝ):

(2.3)
∂

∂t
ϕ = log

det(ĝij + ∂i∂jϕ)

det(ĝij)
− F, ĝij + ∂i∂jϕ > 0, ϕ|t=0 = 0,

for a fixed smooth function F on M . He showed that the unique solu-
tion to (2.3) exists for all time and, after an appropriate normalization,
converges in C∞ to a smooth function ϕ∞ solving the complex Monge-
Ampère equation

(2.4) log
det(ĝij + ∂i∂jϕ∞)

det(ĝij)
= F + b,

for a constant b which is uniquely determined. The existence of solutions
to the elliptic equation (2.4) on Hermitian manifolds (generalizing Yau’s
Theorem [60]) was already known by the work of Cherrier [10] (if n = 2)
and the authors [54] (n > 2). See also [21, 62]. In the special case where
ĝ is Kähler, the flow (2.3) had been considered earlier by Cao [8], who
proved the analogous results.

In the case when cBC
1 (M) = 0, we can find a function F satisfying

∂∂ log det ĝ = ∂∂F,

and with this choice, ω(t) = ω̂ +
√
−1∂∂ϕ(t) for ϕ(t) solving (2.3) is

exactly the Chern-Ricci flow starting at ω̂. In general, the only difference
between the Chern-Ricci flow and Gill’s flow (2.3) is that for the Chern-
Ricci flow we replace the fixed metric ĝ by a smoothly varying family
of Hermitian metrics ĝt, and replace F by a particular function, which
may also depend on t. Many of Gill’s estimates carry over easily to the
case of the Chern-Ricci flow and we will make extensive use of them
here.

A final remark about notation. In the following, C,C ′ will denote
uniform positive constants which may vary from line to line.

3. Evolution of the trace of the metric

In this section we write down a formula for the evolution of the trace
of the evolving metric with respect to a fixed Hermitian metric. We
will need this calculation in later sections. We carry out the compu-
tation here using tensorial quantities, following [10], rather than using
a particular choice of complex coordinates as in [19, 21, 43, 53], for
example.

We suppose that we have three Hermitian metrics g, g0, and ĝ such
that g = g(t) satisfies the Chern-Ricci flow (1.1), and such that the
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corresponding forms satisfy

(3.1) ω = ω0 + η(t),

for a closed (1, 1) form η(t).

We denote by ∇̂, T̂ , Γ̂, R̂ the Chern connection, torsion, Christoffel
symbols, and curvature of ĝ. Denote by T0 the torsion tensor of g0 and
by ∆ the complex Laplacian associated to g = g(t).

Note that for the purposes of this paper we will in fact only need the
case of ĝ = g0. However, we included the more general calculation below
since we anticipate that it may be useful in the future.

We have:

Proposition 3.1. The evolution of log trĝg is given by
(

∂

∂t
−∆

)

log trĝg = (I) + (II) + (III)(3.2)

where

(I) =
1

trĝg

[

− gjpgqiĝℓk∇̂kgij∇̂ℓgpq +
1

trĝg
gℓk∇̂ktrĝg∇̂ℓtrĝg

− 2Re
(

gjiĝℓkT̂ p
ki∇̂ℓgpj

)

− gjiĝℓkT̂ p
ikT̂

q
jℓgpq

]

(II) =
1

trĝg

[

gjiĝℓk(∇̂iT̂
q
jℓ − R̂iℓpj ĝ

qp)gkq

]

(III) = − 1

trĝg

[

gjiĝℓk
(

∇̂i

(

(T0)
p
jℓ(g0)kp

)

+ ∇̂ℓ

(

(T0)
p
ik(g0)pj

))

− gjiĝℓkT̂ q
jℓ(T0)

p
ik(g0)pq

]

.

Moreover, we have

(I) 6
2

(trĝg)2
Re
(

ĝℓigqk(T0)
p
ki(g0)pℓ∇̂qtrĝg

)

,

(II) 6 Ctrgĝ,

for a constant C that depends only on ĝ. If we are at a point where
trĝg > 1, then

(III) 6 C ′trg ĝ,

for C ′ depending only on g0 and ĝ.

Proof. First,

∆trĝg = gji∇̂i∇̂j(ĝ
ℓkgkℓ) = gjiĝℓk∇̂i∇̂jgkℓ.

From the definition of covariant derivative,

∇̂jgkℓ = ∂jgkℓ − Γ̂p
jℓgkp,
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and skew-symmetrizing in j, ℓ

∇̂jgkℓ = ∇̂ℓgkj + (∂ω)jkℓ − T̂ p
jℓgkp.

But from (3.1), ∂ω = ∂ω0, and we may rewrite this in terms of the

torsion of g0 as (∂ω0)jkℓ = (T0)
p
jℓ(g0)kp. Thus

∇̂i∇̂jgkℓ = ∇̂i∇̂ℓgkj + ∇̂i

(

(T0)
p
jℓ(g0)kp

)

− (∇̂iT̂
q
jℓ)gkq − T̂ q

jℓ∇̂igkq.

Switching covariant derivatives,

∇̂i∇̂ℓgkj = ∇̂ℓ∇̂igkj − R̂iℓkqĝ
qpgpj + R̂iℓpj ĝ

qpgkq.

Arguing as above,

∇̂ℓ∇̂igkj = ∇̂ℓ∇̂kgij + ∇̂ℓ

(

(T0)
p
ik(g0)pj

)

− (∇̂ℓT̂
p
ik)gpj − T̂ p

ik∇̂ℓgpj.

Combining all of these we have

∆trĝg = gjiĝℓk∇̂ℓ∇̂kgij + gjiĝℓk
(

∇̂i

(

(T0)
p
jℓ(g0)kp

)

+ ∇̂ℓ

(

(T0)
p
ik(g0)pj

)

− (∇̂iT̂
q
jℓ − R̂iℓpj ĝ

qp)gkq

− (∇̂ℓT̂
p
ik + R̂iℓkqĝ

qp)gpj − T̂ q
jℓ∇̂igkq − T̂ p

ik∇̂ℓgpj

)

.

(3.3)

We will make a change to the second to last term using

(3.4) T̂ q
jℓ∇̂igkq = T̂ q

jℓ∇̂kgiq + T̂ q
jℓ(T0)

p
ik(g0)pq − T̂ p

ikT̂
q
jℓgpq.

On the other hand,

∂

∂t
trĝg = ĝℓk∂k∂ℓ log det(g) = gjiĝℓk∂k∂ℓgij − gjpgqiĝℓk∂kgij∂ℓgpq,

and we wish to convert the partial derivatives into covariant ones. For
this, we use the relations

∂kgij = ∇̂kgij + Γ̂r
kigrj

and

∂ℓ∂kgij = ∂ℓ∇̂kgij +
(

∂ℓΓ̂
r
ki

)

grj + Γ̂r
ki∂ℓgrj

= ∇̂ℓ∇̂kgij + Γ̂s
ℓj∇̂kgis − R̂kℓiq ĝ

qrgrj + Γ̂r
ki∇̂ℓgrj + Γ̂r

kiΓ̂
s
ℓjgrs.

Substituting we get

(3.5)
∂

∂t
trĝg = gjiĝℓk∇̂ℓ∇̂kgij − gjpgqiĝℓk∇̂kgij∇̂ℓgpq − ĝℓkĝjiR̂kℓij
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and so, combining (3.3), (3.4), and (3.5),
(

∂

∂t
−∆

)

log trĝg

=
1

trĝg

(

[

− gjpgqiĝℓk∇̂kgij∇̂ℓgpq +
1

trĝg
gℓk∇̂ktrĝg∇̂ℓtrĝg

− 2Re
(

gjiĝℓkT̂ p
ki∇̂ℓgpj

)

− gjiĝℓkT̂ p
ikT̂

q
jℓgpq

]

+

[

gjiĝℓk(∇̂iT̂
q
jℓ − R̂iℓpj ĝ

qp)gkq + ĝℓk(∇̂ℓT̂
i
ik + R̂iℓkq ĝ

qi − R̂kℓiq ĝ
qi)

]

−
[

gjiĝℓk
(

∇̂i

(

(T0)
p
jℓ(g0)kp

)

+ ∇̂ℓ

(

(T0)
p
ik(g0)pj

))

− gjiĝℓkT̂ q
jℓ(T0)

p
ik(g0)pq

]

)

.

Note that in the first set of square brackets above we have used the
identity T̂ p

ki = −T̂ p
ik. To obtain (3.2) it remains to show that the expres-

sion

ĝℓk(∇̂ℓT̂
i
ik + R̂iℓkq ĝ

qi − R̂kℓiq ĝ
qi)

in the second set of square brackets vanishes. To see this, note that

R̂iℓkq − R̂kℓiq = −ĝjq∂ℓT̂
j
ik = −ĝjq∇̂ℓT̂

j
ik,

and so

ĝℓkĝqi(R̂iℓkq − R̂kℓiq) = −ĝℓkĝqiĝjq∇̂ℓT̂
j
ik = −ĝℓk∇̂ℓT̂

i
ik,

so that

(3.6) ĝℓk(∇̂ℓT̂
i
ik + R̂iℓkq ĝ

qi − R̂kℓiq ĝ
qi) = 0,

establishing (3.2).
We now give the estimates on (I), (II), (III). The bounds on (II)

and (III) follow immediately from the definitions of these quantities. It
remains to prove the bound on (I).

In the special case when g and ĝ are Kähler, then it was shown by
Aubin [1] and Yau [60] that (I) 6 0. To bound (I) in general we follow
Cherrier’s generalization of this argument [10], as follows. Consider the
inequality

K = ĝℓigjpgqkBijkBℓpq > 0,

where

Bijk = ∇̂igkj − gij
∇̂ktrĝg

trĝg
+ Cijk,
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and Cijk will be specified below. Calculate

K = ĝℓigjpgqk∇̂igkj∇̂ℓgpq +
1

trĝg
gqk∇̂ktrĝg∇̂qtrĝg

− 2Re

(

ĝℓigqk∇̂igkℓ
∇̂qtrĝg

trĝg

)

− 2Re

(

ĝjigqkCijk

∇̂qtrĝg

trĝg

)

+ 2Re
(

ĝℓigjpgqkCijk∇̂ℓgpq

)

+ ĝℓigjpgqkCijkCℓpq.

Using the identity

∇̂igkℓ = ∇̂kgiℓ + (T0)
p
ik(g0)pℓ − T̂ p

ikgpℓ,

in the third term we get

K = ĝℓigjpgqk∇̂igkj∇̂ℓgpq −
1

trĝg
gqk∇̂ktrĝg∇̂qtrĝg

− 2Re

(

ĝℓigqk(T0)
p
ik(g0)pℓ

∇̂qtrĝg

trĝg

)

− 2Re

(

ĝjigqk
[

Cijk − T̂ p
ikgpj

]∇̂qtrĝg

trĝg

)

+ 2Re
(

ĝℓigjpgqkCijk∇̂ℓgpq

)

+ ĝℓigjpgqkCijkCℓpq,

and comparing this expression with (I) we get

(I) =
1

trĝg

(

−K − 2Re

(

ĝℓigqk(T0)
p
ik(g0)pℓ

∇̂qtrĝg

trĝg

)

− 2Re

(

ĝjigqk
[

Cijk − T̂ p
ikgpj

]∇̂qtrĝg

trĝg

)

+ 2Re
(

ĝℓigjpgqk[Cijk − T̂ r
ikgrj

]

∇̂ℓgpq

)

+ ĝℓigjpgqkCijkCℓpq − gjiĝℓkT̂ p
ikT̂

q
jℓgpq

)

,

and so the obvious choice to make is

Cijk = T̂ p
ikgpj ,

which makes three terms disappear, and gives us

(3.7) (I) =
1

trĝg

(

−K − 2Re

(

ĝℓigqk(T0)
p
ik(g0)pℓ

∇̂qtrĝg

trĝg

))

.

Hence

(I) 6
2

(trĝg)2
Re
(

ĝℓigqk(T0)
p
ki(g0)pℓ∇̂qtrĝg

)

,
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as required. q.e.d.

4. Maximal existence time for the flow

In this section we give proofs of Theorem 1.2 and Theorem 1.3.

Proof of Theorem 1.2. As an aside, note that T can also be defined by

T = sup{T0 > 0 | ∀t ∈ [0, T0],∃ψ ∈ C∞(M) with αt +
√
−1∂∂ψ > 0},

for αt given by (1.3).
Fix T0 < T . We will show there exists a solution of (1.1) on [0, T0).

Define reference metrics ω̂t for t ∈ [0, T0] by

ω̂t := αt +
t

T0

√
−1∂∂fT0

=
T0 − t

T0
ω0 +

t

T0
(αT0

+
√
−1∂∂fT0

),

with fT0
a function satisfying αT0

+
√
−1∂∂fT0

> 0. Note that these
Hermitian metrics vary smoothly on the compact interval [0, T0] and
hence we have estimates on ω̂t which are uniform for t in [0, T0]. It is
convenient to write ω̂t = ω0 + tχ where χ is given by

χ =
1

T0

√
−1∂∂fT0

− Ric(ω0).

Define a volume form Ω = ωn
0 e

fT0
T0 , which satisfies

√
−1∂∂ log Ω =

χ = ∂
∂t ω̂t. Now consider the parabolic complex Monge-Ampère equation

(4.1)
∂

∂t
ϕ = log

(ω̂t +
√
−1∂∂ϕ)n

Ω
, ω̂t +

√
−1∂∂ϕ > 0, ϕ|t=0 = 0.

If ϕ solves (4.1) on some time interval, then taking
√
−1∂∂ of (4.1)

shows that ω = ω̂t +
√
−1∂∂ϕ solves (1.1) on the same time interval.

Conversely, if ω solves (1.1) on an interval contained in [0, T0], then we
have

∂

∂t
(ω− ω̂t) = −Ric(ω)−χ =

√
−1∂∂

(

log
ωn

ωn
0

− fT0

T0

)

=
√
−1∂∂ log

ωn

Ω
,

so if we choose ϕ to solve

∂

∂t
ϕ = log

ωn

Ω
, ϕ|t=0 = 0,

which is an ODE in t for each fixed point on M , then we have ∂
∂t(ω −

ω̂t −
√
−1∂∂ϕ) = 0 so that indeed ω = ω̂t +

√
−1∂∂ϕ and ϕ satisfies

(4.1). Therefore, the two flows (1.1) and (4.1) are essentially equivalent.
We know by standard parabolic theory that there exists a unique

maximal solution of (4.1) on some time interval [0, Tmax) with Tmax > 0.
We may as well assume that Tmax 6 T0. Assume for a contradiction that
Tmax < T0.

We now prove uniform estimates for ϕ solving (4.1) up to the maximal
time:
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Lemma 4.1. There is a positive constant C0, independent of t ∈
[0, Tmax), such that

(i) ‖ϕ(t)‖C0 6 C0.

(ii) ‖ϕ̇(t)‖C0 6 C0.

(iii) C−1
0 ω0 6 ω(t) 6 C0ω0.

(iv) For each k = 0, 1, 2, . . . , there exist constants Ck such that

‖ϕ(t)‖Ck(ω0) 6 Ck.

Proof. The proofs of (i) and (ii) follow almost verbatim from the
Kähler case [51], but we include brief arguments for the reader’s con-
venience. For (i), put ψ = ϕ−At for a constant A > 0. Suppose that a
maximum of ψ occurs at a point with t > 0. Then at this point, by the
maximum principle,

0 6
∂

∂t
ψ = log

(ω̂t +
√
−1∂∂ψ)n

Ω
−A < 0,

if A is chosen sufficiently large, a contradiction. Here we are using the
fact that ω̂t is a smooth family of metrics on [0, Tmax]. This gives an
upper bound for ψ and hence ϕ. The lower bound is proved similarly.

For a lower bound for ϕ̇, first note that

∂

∂t
ϕ̇ = ∆ϕ̇+ trωχ.

Put Q0 = (T0 − t)ϕ̇+ ϕ+ nt and compute
(

∂

∂t
−∆

)

Q0 = (T0−t)trωχ+n−∆ϕ = trω(ω̂t + (T0 − t)χ) = trωω̂T0
> 0.

Hence Q0 is bounded below by the maximum principle and this gives a
lower bound for ϕ̇ (since we assume Tmax < T0).

For the upper bound of ϕ̇, define Q1 = tϕ̇− ϕ− nt. Then
(

∂

∂t
−∆

)

Q1 = t trωχ− n+ trω(ω − ω̂t) = trω(tχ− ω̂t) = −trωω0 6 0,

and an upper bound for Q1 and hence ϕ̇ follows from the maximum
principle.

Note that by (ii) the volume form ωn is uniformly equivalent to a fixed
volume form ωn

0 , say. To prove (iii) then, it suffices to obtain a uniform
upper bound of trg0g. For this, we could apply the second order estimate
of Gill [19]. Instead, we give a different proof which uses a trick due to
Phong-Sturm [33], since we will use it again later in Sections 5 and 9.

Choose a constant C̃ so that ϕ+ C̃ > 1. Following [33], we compute the
evolution of

Q2 = log trg0g −Aϕ+
1

ϕ+ C̃
,
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for A a large constant to be determined. We wish to show that at a point
where Q2 achieves a maximum, trg0g is uniformly bounded from above.
It will then follow from (i) that trg0g is bounded from above on M .

We apply Proposition 3.1 with ĝ = g0 to obtain
(

∂

∂t
−∆

)

log trg0g 6
2

(trg0g)
2
Re
(

gℓk(T0)
p
kp∂ℓtrg0g

)

+ Ctrgg0,(4.2)

assuming we are calculating at a point with trg0g > 1.
To bound the first term on the right hand side of (4.2), we note that

at a maximum point of Q2 we have ∂iQ2 = 0 and hence

(4.3)
1

trg0g
∂itrg0g −A∂iϕ− 1

(ϕ+ C̃)2
∂iϕ = 0.

Then at this maximum point for Q2,
∣

∣

∣

∣

2

(trg0g)
2
Re
(

gℓk(T0)
p
kp∂ℓtrg0g

)

∣

∣

∣

∣

6

∣

∣

∣

∣

2

trg0g
Re

((

A+
1

(ϕ+ C̃)2

)

gℓk(T0)
p
kp(∂ℓϕ)

)∣

∣

∣

∣

6
|∂ϕ|2g

(ϕ + C̃)3
+ CA2(ϕ+ C̃)3

trgg0
(trg0g)

2
,(4.4)

for a uniform constant C. But we may assume that at the maximum of
Q2 we have (trg0g)

2 > A2(ϕ+ C̃)3, since otherwise we already have the
required bound on trg0g.

Thus at the maximum of Q2, using (4.2), (4.4),

0 6

(

∂

∂t
−∆

)

Q2 6
|∂ϕ|2g

(ϕ+ C̃)3
+ Ctrgg0 −

(

A+
1

(ϕ+ C̃)2

)

ϕ̇

+

(

A+
1

(ϕ+ C̃)2

)

trg(g − ĝt)−
2

(ϕ+ C̃)3
|∂ϕ|2g .

Since ĝt > c0g0 with t ∈ [0, Tmax], for some uniform c0 > 0, we may
choose A sufficiently large so that Atrgĝt > (C + 1)trgg0. Since ϕ̇ is
bounded from (ii), we obtain

trgg0 6 C ′

at the maximum of Q2, for a uniform constant C ′. Hence at the maxi-
mum of Q2,

trg0g 6
1

(n− 1)!
(trgg0)

n−1 det g

det g0
6 C ′′,

where we have applied (ii) again. Hence trg0g is uniformly bounded from
above on M , giving (iii).

Part (iv) follows from the higher order estimates of Gill [19]. q.e.d.
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It is now straightforward to complete the proof of Theorem 1.2. We
have uniform estimates for the flow ϕ(t) on [0, Tmax). Taking limits we
have a solution on [0, Tmax]. Applying the standard parabolic short time
existence theory we obtain a solution a little beyond Tmax, a contradic-
tion. Hence there exists a unique solution of (4.1) on [0, T0). Taking√
−1∂∂ of (4.1) gives us a solution of (1.1) on [0, T0). Since T0 < T was

chosen arbitrarily, we get a solution of (1.1) on [0, T ).
Uniqueness follows from uniqueness of solutions to (4.1). Clearly the

flow cannot extend beyond T . q.e.d.

Next we give a proof of Theorem 1.3.

Proof of Theorem 1.3. Note that in general if ∂∂ω0 = 0 then ∂∂ω = 0
for all later times. If n = 2 this means that the flow (1.1) preserves the
Gauduchon condition (recall that a Hermitian metric ω is Gauduchon if
∂∂ωn−1 = 0). The key result that we need is due to Buchdahl [7] and it
says that if η is a ∂∂-closed real (1, 1) form and ω0 a Gauduchon metric
on a compact complex surface M such that

∫

M
η2 > 0,

∫

M
η ∧ ω0 > 0,

∫

D
η > 0,

for all irreducible effective divisors D on M with D2 < 0, then there ex-
ists a smooth real function f such that η+

√
−1∂∂f > 0 is a Gauduchon

metric. First of all observe that the following condition

(4.5)

∫

M
η2 > 0,

∫

M
η ∧ ω0 > 0,

∫

D
η > 0,

for all D as above is enough to guarantee the same conclusion. Indeed
consider the (1, 1) forms ηt = η + tω0, and take t > 0 large so that ηt is
a Gauduchon metric. Then we have

∫

M
η ∧ ηt =

∫

M
η2 + t

∫

M
η ∧ ω0 > 0,

and so we can apply Buchdahl’s result using ηt instead of ω0. In particu-
lar, if (4.5) holds then in fact we have the strict inequality

∫

M η∧ω0 > 0.
We now apply this discussion to the (1, 1) forms αt = ω0 − tRic(ω0).

As we have seen earlier, the evolving metrics ω(t) are of the form ω(t) =
αt +

√
−1∂∂ϕt, and so it follows that T is the supremum of all t > 0

such that

(4.6)

∫

M
α2
t > 0,

∫

M
αt ∧ ω0 > 0,

∫

D
αt > 0,

for all D as above. Furthermore, if (4.6) holds at some time t then in
fact

∫

M αt ∧ ω0 > 0. Therefore T is also the supremum of all T0 > 0
such that

∫

M
α2
t > 0,

∫

D
αt > 0,



142 V. TOSATTI & B. WEINKOVE

hold for all t ∈ [0, T0]. q.e.d.

5. Estimates away from a divisor

In this section we give the proof of Theorem 1.6. Let ω = ω(t) be the
solution of (1.1) on the maximal time interval [0, T ). We assume in this
section that T <∞.

In addition, we make the assumption that there exists a smooth func-
tion fT on M such that

(5.1) ω̂T := αT +
√
−1∂∂fT > 0,

where we recall from (1.3) that αT = ω0−TRic(ω0). In the Kähler case
(5.1) corresponds to the condition that the limiting Kähler class has a
nonnegative representative. Define reference metrics

ω̂t :=
1

T
((T − t)ω0 + tω̂T ) , for t ∈ [0, T ).

Then by the same argument as in the beginning of Section 4, we may
write ω(t) = ω̂t+

√
−1∂∂ϕ where ϕ = ϕ(t) solves the parabolic complex

Monge-Ampère equation

(5.2)
∂

∂t
ϕ = log

(ω̂t +
√
−1∂∂ϕ)n

Ω
, ω̂t +

√
−1∂∂ϕ > 0, ϕ|t=0 = 0,

for the smooth volume form Ω = ωn
0 e

fT
T .

We begin with a proposition, which is exactly analogous to a result
for the Kähler-Ricci flow [50, 51] (see also the expositions in [37, 40]).

Proposition 5.1. With the assumptions above, there exists a con-
stant C such that for all t ∈ [0, T ),

(i) ‖ϕ(t)‖C0 6 C.

(ii) ϕ̇(t) 6 C.

Proof. The proof is exactly the same as in the Kähler case. Briefly:
the upper bound of ϕ follows from the same argument as in Lemma 4.1.

For the lower bound of ϕ observe that ω̂t =
(T−t)

T ω0 +
t
T ω̂T >

(T−t)
T ω0

and hence ω̂n
t > c0(T − t)nΩ for a uniform c0 > 0. The lower bound of

ϕ follows from applying the maximum principle to the quantity

Q = ϕ+ n(T − t)(log(T − t)− 1)− (log c0 − 1)t.

Indeed if Q achieves its mimimum at some point (x, t) with t > 0, then
at (x, t) we have

√
−1∂∂ϕ > 0 and

0 >
∂

∂t
Q > log

ω̂n
t

Ω
− n log(T − t)− log c0 + 1 > 1,

a contradiction. Hence Q achieves its minimum at time t = 0, which
gives the lower bound for ϕ.

The upper bound of ϕ̇ follows from the same argument as in Lemma
4.1. q.e.d.
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Next we prove a parabolic Schwarz lemma for volume forms for the
flow (1.1). It holds in the special case that ω̂T is the pull-back of a metric
from another Hermitian manifold via a holomorphic map. In the Kähler
case this is due to Song-Tian [34], and is a parabolic version of Yau’s
(volume) Schwarz lemma [61].

Proposition 5.2. Let ω = ω(t) solve (1.1) on [0, T ) with T < ∞.
Suppose we have a holomorphic map π : M → N for N a compact
Hermitian manifold of the same dimension n, equipped with a Hermit-
ian metric ωN . Suppose that ω̂T = π∗ωN . Then there exists a uniform
constant C > 0 such that on M × [0, T ),

ωn
>

1

C
(π∗ωN )n.

Proof. Call

u =
(π∗ωN )n

ωn

the ratio of the volume forms. At any point where u > 0 we can calculate
(

∂

∂t
−∆

)

log u = trωπ
∗Ric(ωN )−trωRic(ω)−gji

∂

∂t
gij = trωπ

∗Ric(ωN ).

We apply the maximum principle to

Q = log u−Aϕ−An(T − t)(log(T − t)− 1),

for a constant A to be determined (cf. [40, Lemma 7.3]). The maximum
of Q is achieved at a point where u > 0, so we compute
(

∂

∂t
−∆

)

Q = trωπ
∗Ric(ωN )−Aϕ̇+An log(T − t) +Atrω(ω − ω̂t)

= −trω((A− 1)ω̂t − π∗Ric(ωN ))−A log
ωn

Ω(T − t)n

− trωω̂t +An.

Choose A sufficiently large so that for all t ∈ [0, T ],

(A−1)ω̂t−π∗Ric(ωN ) =
(A− 1)

T
((T − t)ω0 + tπ∗ωN)−π∗Ric(ωN ) > π∗ωN .

Note that by the arithmetic-geometric means inequality,

trωω̂t >
(T − t)

T
trωω0 > c

(

(T − t)nΩ

ωn

)1/n

,

for a uniform c > 0. Then
(

∂

∂t
−∆

)

Q 6 −trωπ
∗ωN +A log

(T − t)nΩ

ωn
− c

(

(T − t)nΩ

ωn

)1/n

+An

6 −trωπ
∗ωN + C,

using the fact that the map x 7→ A log x − cx1/n is uniformly bounded
from above for x > 0. Thus at a maximum point ofQ we have trωπ

∗ωN 6
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C, and applying the arithmetic-geometric means inequality again, u
is uniformly bounded from above at this point. Since ϕ is uniformly
bounded by Proposition 5.1, this implies that Q is bounded from above,
and hence so is u. q.e.d.

Now assume that we are in the situation of Theorem 1.6. The map
π :M → N is a holomorphic map blowing down an exceptional divisor
E to a point p ∈ N . More explicitly, a neighborhood of E in M can be
identified with

B̃ = {(z, ℓ) ∈ B × P
n−1 | z ∈ ℓ},

where B is the open unit ball in C
n and elements ℓ in P

n−1 are identified
with lines through the origin in C

n. The map π on B̃ is identified with
the projection (z, ℓ) 7→ z ∈ B and the exceptional divisor E ⊂ M with

the set π−1(0) ⊂ B̃. π is a biholomorphism from M \E to N \ {p}.
By assumption, there exists a function ψ = fT with

ω̂T := αT +
√
−1∂∂fT = π∗ωN .

Now there exists a Hermitian metric h on the fibers of the line bundle [E]
associated to the divisor E with the property that for ε > 0 sufficiently
small,

(5.3) π∗ωN − εRh > 0, with Rh = −
√
−1∂∂ log h.

For a proof of this statement, see [20, p. 187]. Although it is stated there
in the Kähler case, the same proof carries over with ωN Hermitian. Fix
s a holomorphic section of [E] vanishing along E to order 1.

We have a lemma:

Lemma 5.3. With these hypotheses, there exists A > 0 and C such
that

trg0 g 6
C

|s|2Ah
.

Proof. Define, as in Tsuji’s work [56], ϕ̃ = ϕ − ε0 log |s|2h, which is
uniformly bounded from below and goes to infinity on E. Here ε0 > 0
is a small constant that will be specified below. Choose a constant C0

so that ϕ̃+C0 > 1. Following Phong-Sturm [33] (and as in Lemma 4.1
above), we compute the evolution of

Q = log trg0g −Aϕ̃+
1

ϕ̃+ C0
,

for A to be determined (assume at least Aε0 > 1). Note that the quantity
1/(ϕ̃ + C0) is bounded (in fact it lies between 0 and 1). Moreover, Q
tends to negative infinity on E and hence for each fixed time t, the
quantity Q(x, t) achieves a maximum at some point in M \ E.
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From Proposition 3.1 we have
(

∂

∂t
−∆

)

log trg0g 6
2

(trg0g)
2
Re
(

gℓk(T0)
p
kp∂ℓtrg0g

)

+ Ctrgg0,(5.4)

assuming we are calculating at a point with trg0g > 1. To bound the
first term on the right hand side, we note that at a maximum point of
Q we have ∂iQ = 0 and hence

1

trg0g
∂itrg0g −A∂iϕ̃− 1

(ϕ̃+ C0)2
∂iϕ̃ = 0.

Thus at this maximum point for Q,
∣

∣

∣

∣

2

(trg0g)
2
Re
(

gℓk(T0)
p
kp∂ℓtrg0g

)

∣

∣

∣

∣

6

∣

∣

∣

∣

2

trg0g
Re

((

A+
1

(ϕ̃+ C0)2

)

gℓk(T0)
p
kp(∂ℓϕ̃)

)
∣

∣

∣

∣

6
|∂ϕ̃|2g

(ϕ̃+ C0)3
+ CA2(ϕ̃+ C0)

3 trgg0
(trg0g)

2
,

for a uniform constant C. If at the maximum of Q we have (trg0g)
2 6

A2(ϕ̃+ C0)
3 then at the same point we have

(trg0g)|s|2Aε0
h 6 A(ϕ− ε0 log |s|2h + C0)

3

2 |s|2Aε0
h 6 CA,

for a constant CA depending on A, and so

Q = log((trg0g)|s|2Aε0
h )−Aϕ+

1

ϕ̃+ C0
6 C ′

A,

and we are done. If on the other hand at the maximum of Q we have
A2(ϕ̃+ C0)

3 6 (trg0g)
2 then

∣

∣

∣

∣

2

(trg0g)
2
Re
(

gℓk(T0)
p
kp∇ℓtrg0g

)

∣

∣

∣

∣

6
|∂ϕ̃|2g

(ϕ̃+ C0)3
+ Ctrgg0.

Now compute at the maximum of Q, using (5.4),

0 6

(

∂

∂t
−∆

)

Q 6
|∂ϕ̃|2g

(ϕ̃+ C0)3
+ Ctrgg0 −

(

A+
1

(ϕ̃+ C0)2

)

ϕ̇

+

(

A+
1

(ϕ̃+ C0)2

)

trω(ω − (ω̂t − ε0Rh))

− 2

(ϕ̃+ C0)3
|∂ϕ̃|2g.(5.5)

Since we clearly have ω̂t > cω̂T for some constant c > 0, we can use
(5.3) to get that ω̂t−ε0Rh > c0ω0 for some uniform c0 > 0, provided we
choose ε0 sufficiently small. Hence we may choose A sufficiently large so
that

trgg0 6 C log
Ω

ωn
+ C.
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Hence at the maximum of Q,

trg0g 6
1

(n− 1)!
(trgg0)

n−1 det g

det g0
6 C

ωn

Ω

(

log
Ω

ωn

)n−1

+ C 6 C ′,

because we know that ωn

Ω 6 C and x 7→ x| log x|n−1 is bounded above
for x close to zero. This implies that Q is bounded from above at its
maximum, and completes the proof of the lemma. q.e.d.

It is now straightforward to complete the proof of the theorem.

Proof of Theorem 1.6. We apply Proposition 5.2 and Lemma 5.3 to see
that for any compact set K ⊂ M \ E, there exists a constant CK > 0
such that

C−1
K ω0 6 ω(t) 6 CKω0 on K × [0, T ).

Applying the higher order estimates of Gill [19], which are local, we
obtain uniform C∞ estimates for ω(t) on compact subsets of M \ E.
In particular, for every compact set K there exists a constant C ′

K such
that

∂

∂t
ω = −Ric(ω) 6 C ′

Kω,

which implies that e−C′

K
tω(t) is decreasing in t as well as being bounded

from below. This implies that a limit for ω(t) exists as t→ T , and since
we have uniform estimates away from E, we see that ω(t) converges in
C∞ on compact subsets to a smooth Hermitian metric ωT on M \ E.
q.e.d.

6. The Chern-Ricci flow on complex surfaces

In this section we give a proof of Theorem 1.5, and we pose some
conjectures on the behavior of the Chern-Ricci flow on surfaces, and its
relation to the ‘minimal model program for complex surfaces’.

First recall that the Kodaira dimension of a compact complex mani-
fold M of dimension n is given by

κ(M) = lim sup
ℓ→+∞

log dimH0(M, ℓKM )

log ℓ
∈ {−∞, 0, 1, . . . , n}.

Proof of Theorem 1.5. (a) We need to show that if T = ∞ then M
is minimal. If M is a non-minimal compact complex surface then we
must have T < ∞, because if D is any (−1)-curve in M we have that
D ·KM < 0 and so the volume of D,

∫

D
ω(t) =

∫

D
ω0 + 2πtD ·KM ,

becomes zero in finite time.
(b) If the volume goes to zero at time T <∞, we have that

∫

M α2
T = 0,

where we recall from (1.3) that αT is the ∂∂-closed (1, 1) form αT =
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ω0−TRic(ω0). We claim that in this case the Kodaira dimension κ(M)
is negative, which by the Kodaira-Enriques classification [2, 3] implies
that M is either birational to a ruled surface or of class VII. Indeed, if
κ(M) > 0 then some power ℓKM , ℓ > 1 of the canonical bundle would
be effective. Let E be an effective divisor in |ℓKM |; then E must be
nonempty since otherwise ℓKM would be trivial, and so cBC

1 (M) = 0
and by Theorem 1.1 we would have T = ∞. We thus conclude that E
is nonempty, and let s be a section of ℓKM defining E and h a smooth
metric on the fibers of ℓKM . Then by the Poincaré-Lelong formula the
curvature η of h is a smooth closed real (1, 1) form such that

2π[E] = η +
√
−1∂∂ log |s|2h

holds as currents on M (see also [17]). In particular for any ∂∂-closed
smooth (1, 1) form γ we have

∫

M
γ ∧ η = 2π

∫

E
γ.

Moreover if γ is a Gauduchon metric we have
∫

M
γ ∧ cBC

1 (M) = −2π

ℓ

∫

E
γ < 0,

because −1
ℓη represents c

BC
1 (M). Taking γ = ω(t) and letting t approach

T we get
∫

M
αT ∧ cBC

1 (M) 6 0.

We also have

0 =

∫

M
α2
T = −T

∫

M
αT ∧ cBC

1 (M) +

∫

M
αT ∧ ω0

>

∫

M
αT ∧ ω0 > 0,

which implies that
∫

M αT ∧ ω0 = 0. Applying [6, Lemma 4], we see

that αT =
√
−1∂∂f for some smooth function f , which implies that

ω0 is Kähler and that M is Fano, contradicting the assumption that
the Kodaira dimension of M is nonnegative. To see that M cannot be
an Inoue surface, we apply the observation (below) that on an Inoue
surface, the Chern-Ricci flow exists for all time.

(c) Assume now that T < ∞ and that the volume does not collapse
at time T , so that

∫

M α2
T > 0. We know from Theorem 1.2 that there is

no smooth function f such that αT +
√
−1∂∂f > 0 (otherwise we could

continue the flow past T ). On the other hand, for ε > 0

αT + εω0 = (1 + ε)ω0 − TRic(ω0) = (1 + ε)

(

ω0 −
T

1 + ε
Ric(ω0)

)

,
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and since T
1+ε < T we have ω0 − T

1+εRic(ω0) +
√
−1∂∂f > 0 for some

function f . Therefore
∫

M
ω0 ∧ (αT + εω0) > 0,

and letting ε→ 0 we get
∫

M αT ∧ ω0 > 0; therefore
∫

M
αT ∧ (αT + εω0) =

∫

M
α2
T + ε

∫

M
αT ∧ ω0 > 0.

We now apply the main theorem of [7], and we see that there is an
irreducible effective divisor D ⊂ M with D2 < 0 such that

∫

D αT = 0.
Furthermore,

(6.1) 2πKM ·D = −
∫

D
Ric(ω0) =

1

T

∫

D
(αT − ω0) = − 1

T

∫

D
ω0 < 0,

and so by the adjunction formula D is a smooth (−1)-curve.
Assume now that M is minimal and consider first the case when M

is Kähler. If κ(M) > 0 then KM is nef thanks to [2, Corollary III.2.4],
while if κ(M) = −∞ then by the Kodaira-Enriques classification M is
either CP2 or ruled. If KM is nef then

∫

M cBC
1 (M)2 > 0 and if κ(M) > 0

then some power of KM is effective, so the argument above implies that
∫

M ω0 ∧ cBC
1 (M) < 0. Thus the volume along the flow is

Vt =

∫

M
ω(t)2 =

∫

M
ω2
0 − 2t

∫

M
ω0 ∧ cBC

1 (M) + t2
∫

M
cBC
1 (M)2,

which is always positive, so by Theorem 1.3 we have T = ∞. On the
other hand, if M is CP2 or ruled then we must have T < ∞, and since
case (c) is excluded we must be in case (b). Indeed, if M is CP2 and E
is a line inside it then E ·KM < 0 and its volume

∫

E
ω(t) =

∫

E
ω0 + 2πtE ·KM

goes to zero in finite time. The other case is when M is ruled and
E ∼= CP

1 is a fiber of the ruling; then E · E = 0 and by the genus
formula E ·KM = −2, which again implies that the volume of E goes
to zero in finite time.

If on the other handM is not Kähler, thanks to the Kodaira-Enriques
classification [2, 3] we know that minimal non-Kähler compact complex
surfaces fall into the following classes:

1) primary and secondary Kodaira surfaces,
2) surfaces of class VII with b2(M) = 0,
3) minimal surfaces of class VII with b2(M) > 0,
4) minimal properly elliptic surfaces,

where a surface of class VII is by definition a compact complex surface
with b1(M) = 1 and κ(M) = −∞, while a properly elliptic surface is
an elliptic surface with κ(M) = 1. The surfaces in (1), (2), and (4) are
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completely classified, and while there are many examples of surfaces in
(3), a complete classification is still lacking (see e.g. [2, 13, 27, 29, 46,
47, 49]). We treat each case separately.

In case (1) the manifold M has torsion canonical bundle (i.e. some
power ℓKM , ℓ > 1 is holomorphically trivial). In particular these mani-
folds have cBC

1 (M) = 0, and Theorem 1.1 says that the Chern-Ricci flow
starting from any initial Hermitian metric ω0 has a long time solution
ω(t) (so we are in case (a)) which as t goes to infinity converges smoothly
to the unique Hermitian metric of the form ω∞ = ω0+

√
−1∂∂ϕ∞ with

Ric(ω∞) = 0.
In case (2), the manifoldM is either an Inoue surface or a Hopf surface

[27, 46]. Suppose first that M is an Inoue surface. Then M does not
have any curves and by [48, Remark 4.2] any Gauduchon metric ω0

satisfies
∫

M ω0 ∧ cBC
1 (M) < 0. In particular the volume of M along the

flow is

Vt =

∫

M
ω(t)2 =

∫

M
ω2
0 − 2t

∫

M
ω0 ∧ cBC

1 (M).

Since Vt is always positive, Theorem 1.3 implies that the Chern-Ricci
flow exists for all positive time, so we are in case (a).

If M is a Hopf surface, it follows from the arguments in [48, Re-
mark 4.3] that any Gauduchon metric ω0 on them satisfies

∫

M ω0 ∧
cBC
1 (M) > 0. Indeed, as we have seen this holds whenever M has a
plurianticanonical divisor, and [48, Remark 4.3] shows that every pri-
mary Hopf surface has an anticanonical divisor. But every Hopf surface
is either primary or secondary (i.e. a finite unramified quotient M̃ →M

of a primary one) and an anticanonical divisor on M̃ gives a plurianti-
canonical divisor on M . In particular the volume of M along the flow is

Vt =

∫

M
ω(t)2 =

∫

M
ω2
0 − 2t

∫

M
ω0 ∧ cBC

1 (M),

which goes to zero in finite time, and so the Chern-Ricci flow exists for
finite time. In fact, since every curve on M is homologous to zero, the
flow exists precisely as long as the volume stays positive and then it
collapses, so we are in case (b). We will investigate the behavior of the
flow on a family of Hopf manifolds in Section 8.

In case (3), if we call b2(M) = n > 0, we have
∫

M c21(M) = −n
(see e.g. [47, p. 494]). It follows that the Chern-Ricci flow starting from
any initial Gauduchon metric ω0 exists only for finite time, because the
volume of M along the flow is

Vt =

∫

M
ω(t)2 =

∫

M
ω2
0 − 2t

∫

M
ω0 ∧ cBC

1 (M)− 4π2nt2,

which goes to zero in finite time. Furthermore, since M is minimal and
using again Theorem 1.3, we see that we are in case (b). Note that
carrying out a space-time rescaling of the flow to have constant volume
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will still produce a solution that exists only for a finite time (cf. the
discussion in [44]).

In case (4) we have
∫

M c21(M) = 0 and by definition some power of
the canonical bundle ℓKM , ℓ > 1, is effective. Arguing as before, this
implies that

∫

M
ω0 ∧ cBC

1 (M) < 0.

Therefore the volume along the Chern-Ricci flow remains positive for
all time, and since M is minimal the flow has a long time solution and
we are in case (a). q.e.d.

Furthermore, arguing as in [40, Proposition 8.4], one can show that in
case (b) the volume goes to zero quadratically only on a Fano manifold
in a positive multiple of the anticanonical class; otherwise it goes to zero
linearly.

We finish this section with some further discussions and conjectures.
We begin by considering what happens in case (c), along the lines of [40,
Theorem 8.3]. First of all note that αT is a ∂∂-closed real (1, 1) form with
∫

M α2
T > 0. It follows from [6, Lemma 4] that if ψ is another ∂∂-closed

real (1, 1) form with
∫

M ψ∧αT = 0, then
∫

M ψ2 6 0 with equality if and

only if ψ =
√
−1∂∂f for some function f . If now D1,D2 are irreducible

distinct (−1)-curves (so D1 ·D2 > 0) with
∫

D1
αT =

∫

D2
αT = 0, then

as before we can express the divisor D1 +D2 as

2π[D1 +D2] = η +
√
−1∂∂ log |s|2h,

in the sense of currents, where η is a smooth closed form that represents
2πc1(D1 +D2). Therefore, since ∂∂αT = 0,

0 =

∫

D1

αT +

∫

D2

αT =
1

2π

∫

M
η ∧ αT ,

and so 4π2(D1 + D2)
2 =

∫

M η2 6 0, with equality implying that η =√
−1∂∂f . But this would give

0 = −
∫

M
η ∧ cBC

1 (M) = 2πKM · (D1 +D2) < 0,

a contradiction. Thus we conclude that (D1 +D2)
2 < 0, which implies

that D1 · D2 = 0 and D1,D2 are disjoint. The set of all these (−1)-
curves is finite, D1, . . . ,Dk say, because they give linearly independent
classes in homology. Contracting all of them we get a contraction map
π : M → N , where N is a compact complex surface which is Kähler if
and only if M is.

In light of the behavior of the Kähler-Ricci flow on surfaces, it is
natural to ask whether the Chern-Ricci flow contracts, in the sense of
[38], the (−1)-curves D1, . . . ,Dk to points p1, . . . , pk on N . First, do
the metrics ω(t) converge smoothly on compact subsets of M \⋃iDi to



EVOLUTION OF A HERMITIAN METRIC BY ITS CHERN-RICCI FORM 151

a smooth Kähler metric ω(T ) on M \ ⋃iDi, as in Theorem 1.6? This

would hold if we can find β, a ∂∂-closed real (1, 1) form on N , and f a
smooth function on M such that π∗β = αT +

√
−1∂∂f .

Furthermore, does the family (M,ω(t)) converge in the sense of
Gromov-Hausdorff to a limiting compact metric space (N, d) as t →
T−? Can we produce a solution of the Chern-Ricci flow ω̃(t) on N for
t ∈ [T, T ′] (with T ′ > T ) such that ω̃(T ) on N \ {p1, . . . , pk} can be
identified with ω(T ) via the blow-down map? Does the family (N, ω̃(t))
converge in the Gromov-Hausdorff sense to (N, d) as t→ T+?

If this can be carried out, one could continue this process a finite num-
ber of times to obtain a solution of the Chern-Ricci flow ‘with canonical
surgical contractions’ [38] all the way to the minimal model of M .

Finally, what is the long time behavior of the Chern-Ricci flow on a
minimal modelM? In the case when M has Kodaira dimension zero, so
that it has torsion canonical bundle (and is either a Calabi-Yau surface
or a Kodaira surface) the flow always converges to a Chern-Ricci flat
metric (which need not be Kähler, even if M is Calabi-Yau) by Gill’s
Theorem 1.1. Another case (of course there are many more) is when
c1(M) < 0. We discuss this case, for any dimension, in the next section.

7. Convergence when c1(M) < 0

In this section we assume that M is a compact Kähler manifold with
c1(M) < 0 and we give the proof of Theorem 1.7.

Start by fixing a smooth volume form Ω with Ric(Ω) < 0, which
is possible because c1(M) < 0, and note that Ric(Ω) also represents
cBC
1 (M). Therefore, for all t > 0 the (1, 1) form ω0− tRic(Ω) is positive,
and by Theorem 1.2 the Chern-Ricci flow (1.1) exists for all time. Call
ω̃(s) its solution.

We consider now the rescaled metrics ω = ω̃
s+1 and a new time pa-

rameter t = log(s + 1), so that the new metrics solve

(7.1)
∂

∂t
ω = −Ric(ω)− ω, ω|t=0 = ω0,

for all positive t. First of all we show that (7.1) is equivalent to a para-
bolic complex Monge-Ampère equation. To see this, call ω̂ = −Ric(Ω)+
e−t(Ric(Ω)+ω0), and note that they are Hermitian metrics that satisfy

(7.2)
∂

∂t
ω̂ = −Ric(Ω)− ω̂, ω̂|t=0 = ω0,

and ω̂ converges smoothly to −Ric(Ω) as t goes to infinity. It follows
that

∂

∂t
(ω − ω̂) = −(ω − ω̂) +

√
−1∂∂ log

ωn

Ω
.
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Consider now the solution ϕ of the equation

(7.3)
∂

∂t
ϕ = log

ωn

Ω
− ϕ, ϕ|t=0 = 0,

which exists for all positive time as can be seen by regarding it as an
ODE in t for each fixed point on M . We have that

∂

∂t

(

et(ω − ω̂ −
√
−1∂∂ϕ)

)

= 0, (ω − ω̂ −
√
−1∂∂ϕ)|t=0 = 0,

which implies that ω = ω̂ +
√
−1∂∂ϕ holds for t > 0. Then Theorem

1.7 follows directly from:

Theorem 7.1. As t → ∞ we have that ϕ → ϕ∞ smoothly, and
ω∞ := −Ric(Ω) +

√
−1∂∂ϕ∞ equals the unique Kähler-Einstein metric

ωKE.

Proof. First, we derive uniform estimates for ϕ independent of t. The
estimates for ‖ϕ‖C0 and ‖ϕ̇‖C0 follow from the same arguments as in
[8, 51, 56]. Indeed, a simple maximum principle argument shows that
|ϕ| 6 C independent of t. Compute

(

∂

∂t
−∆

)

ϕ̇ = −ϕ̇− trω(Ric(Ω) + ω̂)

= −ϕ̇− n+∆ϕ− trωRic(Ω),

and so
(

∂

∂t
−∆

)

(ϕ+ ϕ̇) = −n− trωRic(Ω).

At the minimum of ϕ + ϕ̇, assuming it occurs for t > 0, we have
−trωRic(Ω) 6 n, and since Ric(Ω) < 0 the arithmetic-geometric means
inequality gives us ϕ + ϕ̇ = log ωn

Ω > −C at this point and hence
everywhere. Since |ϕ| 6 C, we get ϕ̇ > −C. But we also have that
Ric(Ω) + ω̂ = e−t(Ric(Ω) + ω0), and so

(

∂

∂t
−∆

)

(ϕ+ ϕ̇+ nt− etϕ̇) = trωω0 > 0,

which implies by the maximum principle that, for t > 1, ϕ̇ 6 Cte−t 6

Ce−t/2. This estimate is the same as the one in [51].
We feed this into the second order estimate as before. We have
(

∂

∂t
−∆

)

log trg0g 6
2e−t

(trg0g)
2
Re
(

gℓk(T0)
p
kp∂ℓtrg0g

)

+ Ctrgg0 − 1,

assuming we are calculating at a point with trg0g > 1. Indeed, this
follows from the calculations of Proposition 3.1 with ĝ = g0, with the
minor change that now g(t) evolves by the normalized Chern-Ricci flow.
In particular, we now have dω = e−tdω0 instead of dω = dω0.
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Arguing as in the proof of Lemma 4.1 we get that ω is uniformly
equivalent to ω0 independent of t. Uniform higher order estimates are
then provided by Gill’s paper [19]. In particular, it follows that

(

∂

∂t
−∆

)

(etϕ̇) = −trω(Ric(Ω) + ω0) > −C,

and so the maximum principle implies that ϕ̇ > −C(1+t)e−t > −Ce−t/2.
This implies that as t approaches infinity ϕ̇ converges uniformly to zero
exponentially fast, which implies that ϕ converges uniformly exponen-
tially fast to a continuous limit function ϕ∞. Since we have uniform
higher order estimates for ϕ, it follows that ϕ∞ is actually smooth
and the convergence of ϕ to ϕ∞ is in the smooth topology. There-
fore we can pass to the limit in (7.3) and see that the limiting metric
ω∞ = −Ric(Ω) +

√
−1∂∂ϕ∞ satisfies

log
ωn
∞

Ω
= ϕ∞,

and taking
√
−1∂∂ of this, we get

Ric(ω∞) = −ω∞,

so that ω∞ is the unique Kähler-Einstein metric on M . q.e.d.

8. Hopf manifolds

In this section we study the Chern-Ricci flow on some Hopf manifolds.
As in the Introduction, for α = (α1, . . . , αn) ∈ C

n \ {0} with |α1| =
· · · = |αn| 6= 1, let Mα be the Hopf manifold Mα = (Cn \{0})/ ∼, where

(z1, . . . , zn) ∼ (α1z1, . . . , αnzn) .

We consider the metric

ωH =
δij
r2

√
−1dzi ∧ dzj ,

where r2 =
∑n

j=1 |zj |2. If n = 2, ωH is ∂∂-closed, but this is false if

n > 2. We now show that ω(t) = ωH − tRic(ωH) gives an explicit
solution of the Chern-Ricci flow on Mα.

Proof of Proposition 1.8. Observe that det(ωH) = r−2n and

Ric(ωH) = n
√
−1∂∂ log r2 =

n

r2

(

δij −
zizj
r2

)√
−1dzi ∧ dzj > 0.

For t < 1
n we have the Hermitian metrics

ω(t) = ωH − tRic(ωH) =
1

r2

(

(1− nt)δij + nt
zizj
r2

)√
−1dzi ∧ dzj.

To compute the determinant of ω(t), note that the matrix nt
zizj
r2

has
eigenvalue nt with multiplicity 1 and all the other eigenvalues are zero,
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while the matrix (1−nt)δij has eigenvalue 1−nt with multiplicity n and
is diagonal in every coordinate system. Choosing a coordinate system

that makes
zizj
r2

diagonal we see that the eigenvalues of r2ω(t) are 1−nt
with multiplicity n− 1 and 1 with multiplicity 1. Therefore

det(ω(t)) =
(1− nt)n−1

r2n
,

from which it follows that Ric(ω(t)) = Ric(ωH), which implies that ω(t)
solves the Chern-Ricci flow on the maximal existence interval [0, 1n).

q.e.d.

One can also consider more general Hopf manifolds, such as the Hopf
surface Mα with |α1| 6= |α2|. In this case, Gauduchon and Ornea [18]
have constructed an explicit Gauduchon metric ωGO (which is also lo-
cally conformally Kähler). It would be interesting to see if the solution
of the Chern-Ricci flow starting at ωGO can also be written down ex-
plicitly.

Next we give the proof of Proposition 1.9.

Proof of Proposition 1.9. Write ω̂t = ωH−tRic(ωH). Then we can write
ω(t) as ω(t) = ω̂t+

√
−1∂∂ϕ for a function ϕ = ϕ(t) solving the parabolic

complex Monge-Ampère equation

(8.1)
∂

∂t
ϕ = log

(ω̂t +
√
−1∂∂ϕ)n

Ω
, ω̂t +

√
−1∂∂ϕ > 0, ϕ|t=0 = ψ,

for ψ as in the statement of Proposition 1.9. A solution exists for t ∈
[0, 1/n). In what follows, we will drop the subscript t and write ω̂ for
ω̂t.

We wish to bound trωH
ω from above. First we claim that

(

∂

∂t
−∆

)

trωH
ω = −gji(∂i∂jgℓkH )gkℓ + gℓkH g

ji(∂k∂ℓĝij − ∂i∂j ĝkℓ)

− 2Re(gji(∂ig
ℓk
H )(∂jgkℓ))− gℓkH g

jpgqi(∂kgpq)(∂ℓgij).(8.2)

To see (8.2), compute

∆trωH
ω = gji∂i∂j(g

ℓk
H gkℓ)

= gji(∂i∂jg
ℓk
H )gkℓ + gjigℓkH ∂i∂jgkℓ + 2Re(gji(∂ig

ℓk
H )(∂jgkℓ)),(8.3)

and

∂

∂t
trωH

ω = gℓkH ∂k∂ℓ log det g

= −gℓkH gjpgqi(∂kgpq)(∂ℓgij) + gℓkH g
ji∂k∂ℓgij .(8.4)

Then (8.2) follows from combining (8.3) and (8.4) and using the fact
that gij = ĝij + ϕij .
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For the first term on the right hand side of (8.2), note that

gℓkH = r2δkℓ, ∂jg
ℓk
H = zjδkℓ, ∂i∂jg

ℓk
H = δijδkℓ,

so that

(8.5) gji(∂i∂jg
ℓk
H )gkℓ =

∑

i,k

giigkk = (trωH
ω)(trωωH).

For the second term on the right hand side of (8.2), calculate

(8.6) gℓkH g
ji(∂k∂ℓĝij−∂i∂j ĝkℓ) = trωRic(ωH)−ngji zizj

r4
−(n−2)trωωH .

Indeed, to see (8.6) we compute

ĝij =
1

r2

(

(1− nt)δij + nt
zizj
r2

)

∂ℓĝij = − 1

r4
zℓ

(

(1− nt)δij +
2ntzizj
r2

)

+
ntzjδiℓ
r4

,(8.7)

and

∂k∂ℓĝij =
2

r6
zkzℓ

(

(1− nt)δij +
2ntzizj
r2

)

− 1

r4
δkℓ

(

(1− nt)δij +
2ntzizj
r2

)

− 1

r4
zℓ

(

−2ntzk zizj
r4

+
2ntziδjk

r2

)

− 2ntzkzjδiℓ
r6

+
ntδjkδiℓ
r4

=
6ntzizjzkzℓ

r8
+

1

r4
(ntδjkδiℓ − (1− nt)δkℓδij) +

2

r6
zkzℓδij

− 2nt

r6
(δkℓzizj + δjkzizℓ + δiℓzkzj + δijzkzℓ) .

Finally, this gives:

∂k∂ℓĝij − ∂i∂j ĝkℓ =
2

r6
(zkzℓδij − zizjδkℓ),

and

gjigℓkH (∂k∂ℓĝij − ∂i∂j ĝkℓ) =
2

r2
gji
(

δij −
nzizj
r2

)

= trωRic(ωH)− ngji
zizj
r4

− (n− 2)trωωH ,

establishing (8.6).
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Combining (8.2), (8.5), and (8.6) we obtain
(

∂

∂t
−∆

)

trωH
ω = −(trωH

ω)(trωωH) + trωRic(ωH)− ngji
zizj
r4

− (n− 2)trωωH − 2Re(gji(∂ig
ℓk
H )(∂jgkℓ))

− gℓkH g
jpgqi(∂kgpq)(∂ℓgij).(8.8)

The troublesome term is the 5th one on the right hand side. We write
this term as:

−2Re(gji(∂ig
ℓk
H )(∂jgkℓ)) = −2Re(gji(∂ig

ℓk
H )(∂ℓgkj))

− 2Re(gji(∂ig
ℓk
H )(∂j ĝkℓ − ∂ℓĝkj))

=: A1 +A2.(8.9)

For A2 use (8.7) to compute

∂j ĝkℓ − ∂ℓĝkj =
1

r4
(zℓδkj − zjδkℓ),

and so

A2 = − 1

r4
2Re(gjiziδkℓ(zℓδkj − zjδkℓ))

= − 1

r4
2Re

(

gji(zizj − nzizj)
)

= 2(n− 1)gji
zizj
r4

.(8.10)

To deal with A1 we introduce an inner product on tensors of type
Φ = Φijk. For tensors Ψ and Φ of this type, define

〈Ψ,Φ〉 = gjiHg
ℓkgqpΨikqΦjℓp.

Then if Φijk = ∂igjk we see that the last term on the right hand side of

(8.8) is −|Φ|2.
Now compute

A1 = −2Re(gji(∂ig
ℓk
H )(∂ℓgkj))

= −2Re(gjigℓpH g
vkguv(gH)pq(∂ig

qu
H )∂ℓgkj)

= −2Re〈Ψ,Φ〉
6 2|Ψ||Φ|,(8.11)

with Ψijk = (gH)iq(∂jg
qu
H )guk and Φijk = ∂igjk. But

Ψijk =
1

r2
δiqzjδuqguk =

1

r2
zjgik,

and so

|Ψ|2 = 1

r4
gjiHg

ℓkgqpzkgiqzℓgpj =
1

r4
gjiHgijg

ℓkzkzℓ = (trωH
ω)gℓk

zkzℓ
r4

.
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Then

A1 6 |Ψ|2 + |Φ|2

= (trωH
ω)gℓk

zkzℓ
r4

+ |Φ|2

= (trωH
ω)(trωωH)− (trωH

ω)
1

r2
gji
(

δij −
zizj
r2

)

+ |Φ|2.(8.12)

Combining (8.8), (8.9), (8.10), and (8.12), we have
(

∂

∂t
−∆

)

trωH
ω 6 trωRic(ωH)− ngji

zizj
r4

− (n− 2)trωωH

− (trωH
ω)

1

r2
gji
(

δij −
zizj
r2

)

+ 2(n− 1)gji
zizj
r4

= trωRic(ωH)− (n− 2)
1

r2
gji
(

δij −
zizj
r2

)

− 1

n
(trωH

ω)trωRic(ωH)

= trωRic(ωH)− n− 2

n
trωRic(ωH)

− 1

n
(trωH

ω)trωRic(ωH)

=

(

2

n
− 1

n
trωH

ω

)

trωRic(ωH).

Since Ric(ωH) > 0, we conclude by the maximum principle that trωH
ω

is uniformly bounded from above. q.e.d.

Finally, we remark that this implies the convergence of the Chern-
Ricci flow at the level of potentials. Indeed, recall that ω(t) = ω̂t +√
−1∂∂ϕ with ϕ solving (5.2) and ω̂t = ωH − tRic(ωH). Moreover, ω̂T is

nonnegative, so we can apply the argument of Proposition 5.1 to obtain
uniform upper bounds for |ϕ| and ϕ̇. It follows immediately that as
t → T , ϕ(t) converges pointwise to a function ϕ(T ) on Mα. On the
other hand, by Proposition 1.9 we have uniform bounds for |∆gHϕ|.
Thus standard elliptic theory gives a uniform bound for ‖ϕ(t)‖C1+β for
any β ∈ (0, 1). It follows that ϕ→ ϕ(T ) in C1+β for any β ∈ (0, 1).

9. The complex Monge-Ampère equation

In this section we prove uniform estimates for solutions of the elliptic
complex Monge-Ampère equation.

Let (Mn, ω) be a compact Hermitian manifold, F a smooth function
on M , and ω′ = ω +

√
−1∂∂ϕ a Hermitian metric that satisfies

(9.1) (ω +
√
−1∂∂ϕ)n = eFωn.
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We will give an alternative proof of the main result of [54] (see also
[4, 12] for different proofs):

Theorem 9.1. There is a constant C that depends only on (M,ω),
supM F , and infM ∆F such that

(9.2) sup
M

ϕ− inf
M
ϕ 6 C.

This is slightly weaker than the result in [54], because there is no
dependence of C on infM ∆F there (and in fact the proof of [54] can be
easily modified to have C depend only on p > n and

∫

M epF rather than
supM F ). The point of our discussion here is to establish Theorem 9.1
via a new second order estimate which we had previously established
[53] using the maximum principle only in the cases n = 2 or (M,ω)
balanced.

From now on we will normalize ϕ by assuming supM ϕ = 0. The
estimate we wish to prove is:

(9.3) trgg
′
6 CeA(ϕ−infM ϕ)

for uniform constants C,A. The reader may notice that (9.3) has the
same form as the second order estimates of Yau and Aubin [1, 60].

Theorem 9.1 then follows from (9.3). Indeed, we can then use the
arguments in [53] to derive (9.2) from (9.3). The idea is that a second
order estimate of the form (9.3), together with the condition

√
−1∂∂ϕ >

−ω, implies, via a Moser iteration argument applied to the exponential
of ϕ, a zero order estimate for ϕ. This method was employed in the
Kähler case in [59], and a related argument was used in the almost
complex setting in [55].

Proof of (9.3). Following Phong-Sturm [33] we consider the quantity

Q = log trgg
′ −Aϕ+

1

ϕ− infM ϕ+ 1
,

for A > 1 to be determined. Note that 0 < 1
ϕ−infM ϕ+1 6 1. We have

∆′Q = ∆′ log trgg
′ −An+Atrg′g −

n− trg′g

(ϕ− infM ϕ+ 1)2

+
2|∂ϕ|2g′

(ϕ− infM ϕ+ 1)3

> ∆′ log trgg
′ +Atrg′g +

2|∂ϕ|2g′
(ϕ− infM ϕ+ 1)3

−An− n,

(9.4)

writing ∆′ for the complex Laplacian associated to g′. To calculate
∆′ log trgg

′ we go back to the calculations in Proposition 3.1 where
ĝ = g0 is now replaced by g and g′ takes the role of the evolving metric



EVOLUTION OF A HERMITIAN METRIC BY ITS CHERN-RICCI FORM 159

there. With these substitutions (3.3), (3.4), and (3.6) together read

∆′trgg
′ = g′jigℓk∇ℓ∇kg

′

ij
+ g′ji∇iT ℓ

jℓ + g′jigℓkgpj∇ℓT
p
ik

− g′jigℓkg′kq(∇iT
q
jℓ −Riℓpjg

qp)

−R− 2Re
(

g′jigℓkT p
ik∇ℓg

′

pj

)

− g′jigℓkT p
ikT

q
jℓgpq + g′jigℓkT p

ikT
q
jℓg

′

pq,

where R = gℓkRC
kℓ

= gjigℓkRkℓij is the Chern scalar curvature of g. On

the other hand, by applying ∆ log to (9.1) we get

∆F −R = gℓk∂k∂ℓ log det(g
′) = g′jigℓk∂k∂ℓg

′

ij
− g′jpg′qigℓk∂kg

′

ij
∂ℓg

′

pq,

and converting these into covariant derivatives (as in the argument for
(3.5) in the proof of Proposition 3.1) we get

∆F = g′jigℓk∇ℓ∇kg
′

ij
− g′jpg′qigℓk∇kg

′

ij
∇ℓg

′

pq,

and so

∆′ log trgg
′ =

1

trgg′

(

[

g′jpg′qigℓk∇kg
′

ij
∇ℓg

′

pq −
1

trgg′
g′ℓk∇ktrgg

′∇ℓtrgg
′

+ 2Re
(

g′jigℓkT p
ki∇ℓg

′

pj

)

+ g′jigℓkT p
ikT

q
jℓg

′

pq

]

+∆F −R

+ g′ji∇iT
ℓ
jℓ + g′jigℓkgpj∇ℓT

p
ik − g′jigℓkg′kq(∇iT

q
jℓ −Riℓpjg

qp)

− g′jigℓkT p
ikT

q
jℓgpq

)

.

The Cauchy-Schwarz argument from (3.7) shows that the quantity inside
square brackets equals

[

· · ·
]

= K + 2Re

(

g′qkT i
ik

∇qtrgg
′

trgg′

)

,

and K > 0 is the same quantity as in (3.7). Putting these together we
have

(9.5) ∆′ log trgg
′
>

2

(trgg′)2
Re
(

g′qkT i
ik∇qtrgg

′

)

− Ctrg′g −C,

where we used the fact that trgg
′ > C−1, which is a simple consequence

of (9.1) and the arithmetic-geometric means inequality. Suppose that Q
achieves its maximum at a point x ∈ M . Then at x we have ∂iQ = 0
and hence

1

trgg′
∂itrgg

′ −A∂iϕ− 1

(ϕ− infM ϕ+ 1)2
∂iϕ = 0,
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and therefore
∣

∣

∣

∣

2

(trgg′)2
Re
(

g′qkT i
ik∇qtrgg

′

)

∣

∣

∣

∣

=

∣

∣

∣

∣

2

trgg′
Re

((

A+
1

(ϕ− infM ϕ+ 1)2

)

g′qkT i
ik∇qϕ

)
∣

∣

∣

∣

6
|∂ϕ|2g′

(ϕ− infM ϕ+ 1)3
+ CA2(ϕ− inf

M
ϕ+ 1)3

trg′g

(trgg′)2
.

If at x we have (trgg
′)2(x) 6 A2(ϕ(x)− infM ϕ+1)3, then we also have

(using that 3
2 log t 6 t for t > 0)

Q 6 Q(x) 6
3

2
log(ϕ(x)− inf

M
ϕ+ 1) + logA−Aϕ(x) + 1

6 −(A− 1)ϕ(x) − inf
M
ϕ+ logA+ 2 6 −A inf

M
ϕ+ logA+ 2,

and so in this case (9.3) follows immediately.
Otherwise, we have (trgg

′)2(x) > A2(ϕ(x)− infM ϕ+1)3, and so at x,

(9.6)

∣

∣

∣

∣

2

(trgg′)2
Re
(

g′qkT i
ik∇qtrgg

′

)

∣

∣

∣

∣

6
|∂ϕ|2g′

(ϕ− infM ϕ+ 1)3
+ Ctrg′g.

Combining (9.4), (9.5), and (9.6) we get, at x,

0 > ∆′Q > Atrg′g − Ctrg′g −An− n− C > trg′g − C,

if A is chosen sufficiently large. From this (9.3) follows easily. q.e.d.
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