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KÄHLER C-SPACES AND QUADRATIC
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Albert Chau & Luen-Fai Tam

Abstract

In this article we give necessary and sufficient conditions for
an irreducible Kähler C-space with b2 = 1 to have nonnegative
or positive quadratic bisectional curvature, assuming the space is
not Hermitian symmetric. In the cases of the five exceptional Lie
groups E6, E7, E8, F4, G2, the computer package MAPLE is used
to assist our calculations. The results are related to two conjectures
of Li-Wu-Zheng.

1. Introduction

Let (Mn, g) be a Kähler manifold of complex dimension n and let
o ∈ M . M is said to have nonnegative quadratic orthogonal bisectional
curvature at o if for any unitary frame ei at o and real numbers ξi we
have

(1.1)
∑

i,j

Rīijj̄(ξ
i − ξj)2 ≥ 0.

Here Rīijj̄ = R(ei, ēi, ej , ēj). Recall that M is said to have nonnegative

bisectional curvature at o if for any X,Y ∈ T
(1,0)
o (M), R(X, X̄, Y, Ȳ ) ≥

0, and M is said to have nonnegative orthogonal bisectional curvature at

o if R(X, X̄, Y, Ȳ ) ≥ 0 for all unitary pairs X,Y ∈ T
(1,0)
o (M). Following

[16] we abbreviate by QB ≥ 0 for nonnegative quadratic orthogonal
bisectional curvature, B ≥ 0 for nonnegative bisectional curvature, and
B⊥ ≥ 0 for nonnegative orthogonal bisectional curvature. It is obvious
that B ≥ 0 ⇒ B⊥ ≥ 0 ⇒ QB ≥ 0. Note that in dimension n = 2, the
conditions B⊥ ≥ 0 and QB ≥ 0 are the same.

It is well-known that compact manifolds with B ≥ 0 have been com-
pletely classified by the works [18, 20, 14, 1, 17]. By these works, we
know that any compact simply connected irreducible Kähler manifold
with B ≥ 0 is either biholomorphic to CP

n or is isometrically biholo-
morphic to an irreducible compact Hermitian symmetric space of rank
at least 2. While the condition B⊥ ≥ 0 seems weaker, by the works of
Chen [10] (see also [22]) and Gu-Zhang [13] we know that a compact
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simply connected irreducible Kähler manifold with B⊥ ≥ 0 is also either
biholomorphic to CPn or is isometrically biholomorphic to an irreducible
compact Hermitian symmetric space of rank at least 2. In this sense,
no new compact complex manifolds are introduced when we weaken the
condition B ≥ 0 to the condition B⊥ ≥ 0.

The condition QB ≥ 0 was first considered by Wu-Yau-Zheng [24]
where they proved that on a compact Kähler manifold with QB ≥ 0
any class in the boundary of the Kähler cone can be represented by
a smooth closed (1,1) form which is everywhere nonnegative. There
are other interesting properties satisfied by compact Kähler manifolds
with QB ≥ 0. A fundamental property of such manifolds, implicit from
earlier works [3] (see [8] for additional references) is that all harmonic
real (1,1) forms are parallel. Recently it has been proved in [8] that
the scalar curvature of such a manifold must be nonnegative, and if the
manifold is irreducible, then the first Chern class is positive.

The ultimate goal is to classify Kähler manifolds with QB ≥ 0. For
the compact case, a partial classification of the de Rham factors of
the universal cover of such a manifold is given in [8]. Hence it remains
to study the structure of compact simply connected irreducible Kähler
manifolds with QB ≥ 0. By the parallelness of real harmonic (1,1)
forms mentioned above, such Kähler manifolds also have b2 = 1 (see
[14]). In view of the above results for B⊥ ≥ 0, one may wonder if any
new compact complex manifolds are introduced when we weaken the
condition B⊥ ≥ 0 to the condition QB ≥ 0. To address this, Li, Wu,
and Zheng [16] constructed the first example of a simply connected
irreducible compact Kähler manifold having QB ≥ 0, which does not
support a Kähler metric having B⊥ ≥ 0. Their example is (B3, α2), a
classical Kähler C-space with second Betti number b2 = 1. It was further
conjectured that all Kähler C-spaces with second Betti number b2 = 1
must have QB ≥ 0, and the following conjectures were raised in [16]:

Conjecture 1.1. (1) Any Kähler C-space with b2 = 1 satisfies
QB ≥ 0 everywhere.

(2) A compact simply connected irreducible Kähler manifold (Mn, g)
with QB ≥ 0 is biholomorphic to a Kähler C-space with b2 = 1.

(3) In (2), if the manifold is not CPn, then g is a constant multiple
of the standard metric.

A Kähler C-space is a compact simply connected Kähler manifold
such that the group of holomorphic isometries acts transitively on the
manifold; see [21, 15]. There is a complete classification of Kähler C-
spaces with b2 = 1, and this is associated with the classification of sim-
ple complex Lie algebras which are just An = sln+1, Bn = so2n+1, Cn =
sp2n,Dn = so2n and the exceptional cases E6, E7, E8, F4, G2. Motivated
by the work [16], we establish the following theorems related to conjec-
tures (1) and (3). For the classical types we have the following:
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Theorem 1.1.

(i) The Kähler C-space (Bn, αp), n ≥ 3, 1 < p < n satisfies QB ≥ 0
if and only if 5p + 1 ≤ 4n. Moreover, QB > 0 if and only if
5p+ 1 < 4n.

(ii) The Kähler C-space (Cn, αp), n ≥ 3, 1 < p < n satisfies QB ≥ 0
if and only if 5p ≤ 4n + 3. Moreover, QB > 0 if and only if
5p < 4n + 3.

(iii) The Kähler C-space (Dn, αp), n ≥ 4, 1 < p < n − 1 satisfies
QB ≥ 0 if and only if 5p+3 ≤ 4n. Moreover, QB > 0 if and only
if 5p + 3 < 4n.

For the exceptional cases, we have the following:

Theorem 1.2.

(i) The Kähler C-space (G2, α2) satisfies QB > 0.

(ii) The Kähler C-space (F4, αp), 1 ≤ p ≤ 4 satisfies QB ≥ 0 iff
p = 1, 2, 4, in which cases QB > 0.

(iii) The Kähler C-space (E6, αp), 2 ≤ p ≤ 5 satisfies QB ≥ 0 iff
p = 2, 3, 5, in which cases QB > 0.

(iv) The Kähler C-space (E7, αp), 1 ≤ p ≤ 6 satisfies QB ≥ 0 iff
p = 1, 2, 5, in which cases QB > 0.

(v) The Kähler C-space (E8, αp), 1 ≤ p ≤ 8 satisfies QB ≥ 0 iff
p = 1, 2, 8, in which cases QB > 0.

We only consider Kähler C-spaces that are not Hermitian symmetric.
According to Itoh [15], Theorem 1.1 and 1.2 include all such Kähler C-
spaces with b2 = 1. Here QB > 0 means that (1.1) is a strict inequality
unless all ξi are the same. Note that ifQB > 0, then a small perturbation
of the Kähler metric will still satisfy QB > 0; see Lemma 2.6 (and
Remark 2.1). Hence conjecture (1) for the classical types is true only
under some restrictions mentioned in Theorem 1.1, while conjecture (3)
is too strong. Conjecture (2), however, may still be true in general.

Theorems 1.1 and 1.2 give more information on the curvature prop-
erties of Kähler C-spaces with b2 = 1. It is well-known that CPn has
B > 0, and Hermitian symmetric spaces with rank at least 2 have B ≥ 0
but not B > 0. All other Kähler C-spaces which are non-Hermitian sym-
metric spaces do not have B ≥ 0 or even B⊥ ≥ 0. On the other hand,
Itoh [15] proved that a Kähler C-space with b2 = 1 is a Hermitian
symmetric space if and only if its curvature operator has at most two
distinct eigenvalues. Our results show that as far as the sign of curva-
ture is concerned, Kähler C-spaces with b2 = 1 which are not Hermitian
symmetric are further divided into two groups: some of them satisfy
QB ≥ 0 and others do not have such a property.
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We give here an idea of the proof and refer to §2 for details. Consider
a Lie algebra as above, and a corresponding system ∆ ⊂ R

n of root vec-
tors in R

n where the induced Killing form is induced by the standard
Euclidean inner product. Then each associated Kähler C-space corre-
sponds to a certain subset of m+ ⊂ ∆ representing a unitary frame in
which curvature approximation reduces to taking sums and inner prod-
ucts of the vectors in m+ ⊂ ∆ (we can calculate exact values in the case
of bisectional curvatures). We combine this with symmetry, counting,
and eigenvalue estimate arguments to obtain Theorem 1.1. For the five
exceptional cases in Theorem 1.2, the computer package MAPLE was
used to assist our calculations and details are provided in the appendix.
Theorem 1.1 was proved in an earlier version of this article [9], and
while similar in spirit, our proof here is somewhat simpler, eliminating
the need for many calculations from the appendix of [9].

The organization of the paper is as follows. In §2 we will state basic
properties and formulae for Kähler C-spaces that will be used through-
out the paper. We will discuss the conditions QB ≥ 0 and QB > 0 in
general, then in relation to the Kähler C-spaces. In §3 we prove Theorem
1.1 for the classical Kähler C-spaces; details for some of the calculations
in these sections can be found in the appendices of [9], which is an ear-
lier version of this article. In §4 we present the details of our results on
Theorem 1.2 for the exceptional Kähler C-spaces, with details of our
use of MAPLE provided in the appendix.

Acknowledgments. The authors would like to thank F. Zheng for
valuable comments and interest in this work.

The first author’s research was partially supported by NSERC grant
no. #327637-11. The second author’s research was partially supported
by Hong Kong RGC General Research Fund #CUHK 403011.

2. Basic facts

2.1. The Kähler C-spaces and curvature formulae. Consider a
compact Kähler C-space (M,ω) with transitive holomorphic isometry
group G, and suppose b2(M) = 1. Then any real (1, 1) form ρ on M
is given by ρ = cω +

√
−1∂∂f for some constant c and function f

where ω is the Kähler form. Now if ρ is G invariant, then ∆gf is also
G invariant and hence constant on M . Thus f is constant on M and
ρ = cω. In particular, g is the unique G invariant Kähler metric on M
and it is Kähler Einstein. For more discussions on Kähler C-space, see
[2, 15, 21, 16].

Kähler C-spaces with second Betti number b2 = 1 are obtained as
follows (see [4, 5, 6, 15, 16, 21]). Let G be a simply connected, complex
Lie group, and let g be its Lie algebra with Cartan subalgebra h and
corresponding root system ∆ ⊂ h∗. Then g = h⊕⊕

α∈∆CEα, where Eα

is a root vector of α. Let l = dimC h and fix a fundamental root system
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α1, . . . , αl ⊂ ∆. This gives an ordering of roots in ∆. Let ∆+ and ∆− be
the set of positive and negative roots, respectively. Let K be the Killing
form for g. Then we may choose root vectors {Eα}, α ∈ ∆ such that

K(Eα, E−α) = −1, α ∈ ∆+; [Eα, Eβ] = nα,βEα+β

such that nα,β = n−α,−β ∈ R with nα,β = 0 if α + β is not a root.
Together with a suitable basis in h, they form a Weyl canonical basis
for g. Now for any 1 ≤ r ≤ l, let

∆+
r (k) = {

∑

i

niαi ∈ ∆+| nr = k}, ∆+
r =

⋃

k>0

∆+
r (k).

Let P be the subgroup whose Lie algebra is h ⊕⊕
α∈∆\∆+

r
CEα. Then

G/P is a complex homogeneous space having b2 = 1. Now let

m+
k =

⊕

α∈∆+
r (k)

CEα, m−
k =

⊕

α∈∆−
r (k)

CEα, t = h⊕
⊕

α∈∆+(0)

(CEα⊕CE−α).

Then m+ =
⊕

k>0m
+
k can be identified with the tangent space of G/P .

As given in [4, 15, 16], the G-invariant Kähler form on G/P is given
by:

Lemma 2.1.

(i) In a Weyl canonical basis, let ωα, ωᾱ be the dual of Eα and Ēα :=
−E−α, α ∈ ∆+

r . The G invariant Kähler form on G/P is

g = 2
∑

k>0

k
∑

α∈∆+
r (k)

ωα · ωᾱ =
∑

k>0

(−kK)|
m

+
k
×m

−
k
.

(ii) [t,m±
k ] ⊂ m±

k , [m
±
k ,m

±
l ] ⊂ m±

k+l, [m
+
k ,m

−
k ] ⊂ t. If k > l > 0, then

[m+
k ,m

−
l ] ⊂ m+

k−l, [m
−
k ,m

+
l ] ⊂ m−

k−l.

The Kähler C space thus obtained is denoted as (g, αr). Conversely,
every Kähler C space with b2 = 1 can be obtained by the construction.
Thus the set {eα := 1/

√
kEα}; α ∈ ∆+

k , k ≥ 1 forms a unitary basis
for the tangent space of (g, αr) in the metric g. We call this basis as a
Weyl frame. To compute the curvature tensor in this frame, we have the
following from Li-Wu-Zheng [16, Proposition 2.1], using the method in
[15]. For the sake of completeness, we give a proof.

Proposition 2.1. [Li-Wu-Zheng] Let Xi ∈ m+
i , Y

j ∈ m+
j , Z

k ∈
m+

k ,W
l ∈ m+

l . Suppose i+ k = j + l. Then

R(Xi, Ȳ j ,Zk, W̄ l) =

(
(k − j)ξk−j −

kl

i+ k

)
K([Xi, Zk], [Ȳ j , W̄ l])

+ (−(k − j)ξk−j + kξi−j + lξj−i + lδijδkl)K([Xi, Ȳ j], [Zk, W̄ l]).

(2.1)

R(Xi, Ȳ j , Zk, W̄l) = 0 if i+ k 6= j + l.
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Here ξq = 1 if q > 0 and ξq = 0 if q ≤ 0.

Proof. Note that g(U, V̄ ) = −kK(U, V̄ ), on m+
k ×m−

k etc.
Then [15, p. 43]

R(Xi, Ȳ j , Zk, W̄l) =g(R(Xi, Ȳ j)Zk, W̄ l)

=g([Λ(Xi),Λ(Ȳ j)]Zk, W̄ l)− g(Λ([Xi, Ȳ j ]m)Z
k, W̄ l)

− g([[Xi, Ȳ j]t, Z
k], W̄ l),

(2.2)

where Λ(U)V = n′/(n+ n′)[U, V ]m+ if U ∈ m+
n , V ∈ m+

n′ , and Λ(Ū)V =
[Ū , V ]m+ , for all U, V ∈ m+; see [15, p. 45]. Here [U, V ]m+ is the com-
ponent of [U, V ] in m+. Now if i+ k = j + l,

[Λ(Xi),Λ(Ȳ j)]Zk =
(
Λ(Xi)Λ(Ȳ j)− Λ(Ȳ j)Λ(Xi)

)
Zk

=Λ(Xi)([Ȳ j , Zk]m+)− k

i+ k
Λ(Ȳ j)([Xi, Zk])

=
(k − j)

l
ξk−j[X

i, [Ȳ j , Zk]]− k

i+ k
[Ȳ j, [Xi, Zk]]m+ .

(2.3)

Here each term is in m+
l . Hence

g([Λ(Xi),Λ(Ȳ j)]Zk, W̄ l)

=− (k − j)ξk−jK([Xi, [Ȳ j, Zk]], W̄ l) +
kl

i+ k
K([Ȳ j, [Xi, Zk]], W̄ l)

=− (k − j)ξk−jK(Xi, [[Ȳ j, Zk], W̄ l]) +
kl

i+ k
K([Ȳ j, [Xi, Zk]], W̄ l)

= (k − j)ξk−jK(Xi, [[W̄ l, Ȳ j], Zk] + [[Zk, W̄ l]], Ȳ j)

+
kl

i+ k
K([W̄ l, Ȳ j], [Xi, Zk]])

=− (k − j)ξk−jK([Xi, Ȳ j ], [Zk, W̄ l])

+

(
(k − j)ξk−j −

kl

i+ k

)
K([Xi, Zk], [Ȳ j , W̄ l]).

(2.4)

Now [Xi, Ȳ j ]m is in m+
i−j if i > j, and m−

j−i if j > i, and is 0 if i = j. So

g(Λ([Xi, Ȳ j ]m)Z
k, W̄ l) = − (kξi−j + lξj−i)K

(
[Xi, Ȳ j], [Zk, W̄ l]

)
.

Also, [Xi, Ȳ j]t = 0 unless i = j. If i = j, then [[Xi, Ȳ j ]t, Z
k] ∈ m+

k .
Hence

g([[Xi, Ȳ j]t, Z
k], W̄ l) = δijδklg([[X

i, Ȳ j], Zk], W̄ l)

= −lδijδklK
(
[Xi, Ȳ j ], [Zk, W̄ l]

)
.
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Also, R(Xi, Ȳ j , Zk, W̄l) = 0 if i+ k 6= j + l. q.e.d.

Lemma 2.2. Same notations as in Proposition 2.1. Assume X,Z,W
are canonical Weyl basis vectors and Z 6= W ; then

R(X, X̄, Z, W̄ ) = 0.

Proof. Since i = j, the lemma is true if k 6= l by Proposition 2.1.
Hence we assume k = l. We first assume that k ≤ i. Then

R(X, X̄, Z, W̄ ) = − k2

i+ k
K([X,Z], [X̄, W̄ ]) + kK([X, X̄ ], [Z, W̄ ]).

Now let X = Eα, Z = Eβ, W = Eγ with β 6= γ. Note that Ēα = −E−α.
Then [X,Z] = nα,βEα+β , [X,W ] = nα,γEα+γ . Hence

K([X,Z], [X̄, W̄ ]) = −nα,βnα,γK(Eα+β , E−α−β).

If α + β or α + γ is not a root, then nα,β = 0 or nα,γ = 0 and
K([X,Z], [X̄, W̄ ]) = 0. Otherwise, both Eα+β and Eα+γ are canonical

Weyl basis vectors and are in m+
i+k by Lemma 2.1. Since β 6= γ, and K

is proportional to g on m+
i+k×m−

i+k, we also have K([X,Z], [X̄, W̄ ]) = 0.
On the other hand, by the fact that K([x, y], z) = K(z, [y, z]), we

have

(2.5) K([X, X̄ ], [Z, W̄ ]) = K(X, [X̄, [Z, W̄ ]]).

Now [Z, W̄ ] = nβ,−γEβ−γ , [X̄, [Z, W̄ ]] = n−α,β−γnβ,−γE−α+β−γ . If β−γ
or −α+β− γ is not a root, then as before we have K(X, [X̄, [Z, W̄ ]]) =
0. Otherwise, by Lemma 2.1, [Z, W̄ ] ∈ t and [X̄, [Z, W̄ ]] ∈ m−

i . Since
−α+ β − γ 6= −α, so as before

K([X, X̄ ], [Z, W̄ ]) = K([X, [X̄, [Z, W̄ ]) = 0.

Hence the lemma is true when k ≤ i.
Suppose i < k. Then it is equivalent to prove R(X, Ȳ , Z, Z̄) = 0, but

assuming i > k and X 6= Y . In this case,

R(X, Ȳ , Z, Z̄) = − k2

i+ k
K([X,Z], [Ȳ , Z̄]) + kK([X, Ȳ ], [Z, Z̄ ]).

The previous argument implies the lemma is true in this case as well.
q.e.d.

To use the formula in Proposition 2.1, we need to compute the Lie
bracket and Killing form in the given Weyl basis. Now the Killing form
K is negative definite on h and thus induces a positive definite bilinear
form, denoted also byK, on the dual h∗. We can then identify h∗ with R

l

(or a subspace of some R
n) so that K becomes the standard Euclidean

inner product and the root system is represented by a subset ∆ ⊂ R
l.

It turns out that a corresponding Weyl basis {Eα}α∈∆+ exists in which
the Lie bracket and Killing form are computed in terms of Euclidean
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inner products and addition of the vectors α. We describe this in more
detail below.

Let g be a semi simple Lie algebra, and let ∆ = {α, β, . . .} ⊂ R
n

be a corresponding root system with standard inner product (·, ·) cor-
responding to the induced Killing form K. To the positive roots there
corresponds a Chevalley basis {Xα,X−α,Hα}α∈∆+ where for each α,
Xα,X−α are root vectors for α,−α respectively, Hα ∈ h, and the fol-
lowing relations are satisfied (see [19, p. 51]):

[Xα,X−α] =Hα,

[Xα,Xβ ] =

{
Nα,βXα+β , if α+ β is a root, Nα,β = −N−α,−β ;
0, if α+ β 6= 0 is not a root.

Nα,β =± (p + 1), p is the largest integer so that β − pα is a root.

[Hα,Xβ ] =β(Hα)Xβ .

(2.6)

We also have:

(a) β(Hα) = 2 (β,α)
(α,α) , [11, p. 337];

(b) K(Hα,Hα) = 2K(Xα,X−α), [11, p. 207].

By these and [11, p. 207–208], we have the formulas

K(Hα,H−α) =
4

(α,α)
,

K(Xα,X−α) =
2

(α,α)
,

K(Hα,Hβ) =
4(α, β)

|α|2|β|2 ,

(2.7)

where in the last equation we have used the first equation of (2.6), (2.5),
(a), and the second formula in (2.7).

Lemma 2.3. For positive roots α, let

(2.8) Eα =
|α|√
2
Xα, E−α = − |α|√

2
X−α.

Then for positive roots α, β

K(Eα, E−α) =− 1,

[Eα, Eβ] =nα,βEα+β ,

[E−α, E−β] =n−α,−βE−α−β,

[Eα, E−β] =nα,−βEα−β , if α− β 6= 0,

(2.9)

where

n−α,−β = nα,β =

{
|α||β|√
2|α+β|Nα,β, if α+ β is a root,

0, if α+ β is not a root,
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and

nα,−β =





|α||β|√
2|α−β|Nα,−β , if α− β is a positive root,

− |α||β|√
2|α−β|Nα,−β, if α− β is a negative root,

0, if α− β is not a root.

Hence {Eα} form a Weyl canonical basis.

Proof. It is easy to see that K(Eα, E−α) = −1. If α + β is a root,
then

[Eα, Eβ ] =
|α||β|
2

[Xα,Xβ ]

=Nα,β
|α||β|
2

Xα+β

=
|α||β|√
2|α+ β|

Nα,βEα+β = nα,βEα+β

[E−α, E−β ] =
|α||β|
2

[X−α,X−β]

=N−α,−β
|α||β|
2

X−α−β

=Nα,β
|α||β|√
2|α+ β|

E−α−β = nα,βE−α−β

where nα,β = |α||β|√
2|α+β|Nα,β. Here we have used the fact that Nα,β =

−N−α,−β and X−α−β = −
√
2

|α+β|E−α−β. If α + β is not a root, then

[E,a,Eβ ] = 0.
If α− β 6= 0 and is a positive root, then

[Eα, E−β] =
|α||β|
2

[Xα,X−β ] = Nα,−β
|α||β|
2

Xα−β

=
|α||β|√
2|α− β|

Nα,−βEα−β .

If α− β 6= 0 and is a negative root, then

[Eα, E−β] =
|α||β|
2

[Xα,X−β ] = Nα,−β
|α||β|
2

Xα−β

= − |α||β|√
2|α− β|

Nα,−βEα−β.

q.e.d.

Now let η ∈ ∆+, and consider the Kähler C-space (g, η) with cor-
responding Weyl frame (unitary frame for (g, η)) eα = 1√

k
Eα for α ∈
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∆+(k). For any positive roots α, β, define

(2.10)

{
Ñα,β = |α||β|

|α+β|Nα,β;

Ñα,−β = |α||β|
|α−β|Nα,−β, if α− β 6= 0.

We can now combine Lemma 2.2 and Proposition 2.1 with Lemma
2.3, (2.6), and (2.7) to obtain the following from [15, Proposition 2.4].
In the above setting, we denote the curvature tensor R(eα, ēβ , eγ , ēδ)
also by R(α, β̄, γ, δ̄) or Rα,β̄,γ,δ̄.

Lemma 2.4. Let α ∈ ∆+(i), β ∈ ∆+(j), with i ≤ j, and let Rαᾱββ̄ =
R(eα, ēα, eβ , ēβ). Then

(2.11) Rαᾱββ̄ =
1

j

(
(α, β) +

1

2

i

i+ j
Ñ2

α,β

)
.

Next let us consider R(α, β̄, γ, δ̄) = R(eα, ēβ , eγ , ēδ) with α − β,
γ − δ 6= 0.

Lemma 2.5. Let eα ∈ ∆+(i), eβ ∈ ∆+(j), eγ ∈ ∆+(k), and eδ ∈
∆+(l).

1) If α− β 6= δ − γ, then R(α, β̄, γ, δ̄) = 0.
2) If α− β = δ − γ 6= 0, then

R(α, β̄, γ, δ̄) =− 1

2
√
ijkl

[(
(k − j)ξk−j −

kl

i+ k

)
Ñα,γÑβ,δ

]

+
1

2
√
ijkl[

(−(k − j)ξk−j + kξi−j + lξj−i + lδijδkl) Ñα,−βÑγ,−δ.
]

=:R1(α, β̄, γ, δ̄) +R2(α, β̄, γ, δ̄).

(2.12)

Proof. (1) follows from Lemma 2.2, and the fact that K(Eα, Eβ) = 0
unless α+ β = 0.

(2) Note that ēα = −e−α, etc. First assume that α+ γ and α− β are
both roots. By Lemma 2.3,

[eα, eγ ] =
1√
ik

[Eα, Eγ ]

=nα,γ
1√
ik

Eα+γ

=Nα,γ
|α||γ|√
2ik

Eα+γ .

Similarly,

[e−β , e−δ] =Nβ,δ
|γ||δ|√
2jl

E−β−δ,
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We may assume that α−β is a positive root, then γ− δ is a negative
root.

[eα, e−β ] =Nα,−β
|α||β|√
2ij

Eα−β ,

[eγ , e−δ ] =−Nγ,−δ
|γ||δ|√
2kl

Eγ−δ.

Since α + γ = β + δ and K(Eσ , E−σ) = −1, we see that (2) is true by
Proposition 2.1. The cases where α + γ or α − β is not a root can be
proved similarly.

q.e.d.

2.2. The condition QB ≥ 0. We first discuss the condition QB ≥ 0
on a Kähler manifold (M,ω) with Kähler form ω. We will also consider
the condition QB > 0 at p, which we define as: QB ≥ 0 at p with strict
inequality in (1.1) provided not all ξ′is are the same. Now define the

following bilinear forms on the space Ω1,1
R

(M) of real (1, 1) forms on M :

F (η, σ) =
∑

i,j,k,l

Rij̄kl̄ρ
il̄σkj̄ =

∑

i,j,k,l

Ril̄kj̄ρ
il̄σkj̄

G(η, σ) =
1

2
(Rij̄gkl̄ +Rkl̄gij̄)ρ

il̄σkj̄

where ρil̄, σkj̄ are the local components of ρ, σ with indices raised. Clearly,
G and F are well defined real symmetric bilinear forms on Ω1,1

R
(p) for

any p. Now let θA be a unitary frame at any p with co-frame ηA and
let aA be real numbers. Take X =

∑
A

√
−1aAηA ∧ ηAΩ

1,1
R

(p). Then a
simple calculation gives

G(X,X) − F (X,X) =
∑

A

RAĀa
2
A −

∑

A,B

RAĀBB̄aAaB

=
1

2

∑

A,B

RAĀBB̄(aA − aB)
2.

(2.13)

The following was observed by Yau [26].

Lemma 2.6. At any point p we have

(a) QB ≥ 0 if and only if G− F ≥ 0.

(b) QB > 0 if and only if G− F > 0 on Ω1,1
R

(p) \Rω(p).
Here Ω1,1

R
(p)\Rω(p) are the real (1, 1) forms at p which are not multiples

of the Kähler form.

Proof. We first prove (a). The fact that G − F ≥ 0 implies QB ≥
0 follows immediately from (2.13) and the fact that θA and aA are
arbitrary. Conversely, suppose QB ≥ 0 and let X be any real (1, 1) form
at p. Then we can always diagonalize X. Namely, there exists a unitary
frame eA with co-frame ηA such that X =

∑
A

√
−1aAηA ∧ ηA. Now
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(2.13), and the assumption QB ≥ 0, immediately implies G(X,X) −
F (X,X) ≥ 0.

Now we prove (b). The proof is basically the same in part (a) once
we observe that X ∈ Rω(p) if and only if: for every unitary frame eA
at p with co-frame ηA we have X = c

∑
A

√
−1ηA ∧ ηA for some real

constant c. The fact that G−F > 0 on Ω1,1
R

(p) \Rω(p) implies QB > 0
now follows immediately from (2.13) and the fact that θA and aA are

arbitrary. Conversely, suppose QB > 0 and let X ∈ Ω1,1
R

(p) \ Rω(p).
Then there exists a unitary frame eA with co-frame ηA such that X =∑

A

√
−1aAηA ∧ ηA with a′As not all the same. Now (2.13) and the

assumption QB > 0 immediately implies G(X,X) − F (X,X) > 0.
This concludes the proof of the lemma. q.e.d.

Remark 2.1. Thus QB > 0 if and only if G − F is positive in
the orthogonal complement of Rω. In particular, if (M,g) is a compact
Kähler manifold with QB > 0, then a Kähler metric which is a small
perturbation of g will also satisfy QB > 0.

Remark 2.2. Viewed as an endomorphism on Ω1,1
R

(M), G− F is in
fact the curvature term in the Weitzenböck identity for real (1, 1) forms:
∆g−∆ is given by G−F up to a positive constant multiple where ∆g is
the Bochner Laplacian with respect to g and ∆ is the Laplace-Beltrami
operator. The standard Bochner technique and Lemma 2.6 then give: all
real harmonic (1,1) forms onM are parallel provided QB ≥ 0; moreover,

dim(H1,1
R

(M)) = 1 provided QB > 0 where H1,1
R

(M) is the space of real
harmonic (1,1) forms on M . See §1 for a reference to these facts and
their implicit appearance in earlier works.

By Lemma 2.6, to check whether QB ≥ 0 (or QB > 0), it is sufficient
to consider G − F ≥ 0 in a unitary frame of our choice. In the case of
Kähler C-spaces, the natural choice is a Weyl frame. By Lemmas 2.2
and 2.6, we have:

Corollary 2.1. On a Kähler C-space, let Ric = µg and let eA be
a Weyl frame. Then QB ≥ 0 if and only if the largest eigenvalues of
the quadratic forms

∑
A,B RAĀBB̄xAxB, with xA’s real, and

∑
A,B,C,D;

A6=B,C 6=D

RAB̄CD̄xABxCD, with xAB = xBA, are at most µ. QB > 0 if QB ≥ 0
and the eigenvalue µ of

∑
A,B RAĀBB̄xAxB is simple and the largest

eigenvalue of
∑

A,B,C,D;

A6=B,C 6=D

RAB̄CD̄xABxCD is less than µ.

The following simple fact will be used throughout the paper to esti-
mate the largest eigenvalue of a quadratic form.

Lemma 2.7. [row sums] Let x1, . . . , xn, a1, . . . , an, and λ be real or
complex numbers. Suppose |xk| = max{|xi| 1 ≤ i ≤ n} > 0 and

λxk =

n∑

i=1

aixi.
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Then

|λ| ≤
n∑

j=1

|ai|.

In particular, if λ is an eigenvalue of an n× n matrix (aij), then

|λ| ≤ max
i




n∑

j=1

|aij |


 .

We also note the following modification of Lemma 2.7 which will only
be needed in a few exceptional cases.

Lemma 2.8. [weighted row sums] Let λ be an eigenvalue of an n×n
matrix A = (aij) such that |λ| > 0. Let µ > 0 be a positive number.

Define bsj inductively: b
(0)
j = 1, and

b
(s+1)
j = min(1,

∑

l

|ajl|
b
(s)
l

µ
).

Then for all s ≥ 0,

(2.14) |λ| ≤ max{max
i




n∑

j=1

|aij |b(s)j


 , µ}.

In particular, if for some s ≥ 0,

(2.15) max
i




n∑

j=1

|aij |b(s)j


 < µ,

then |λ| < µ.

Proof. First we show that b
(s+1)
j ≤ b

(s)
j for all j. Note that by defi-

nition 1 ≥ b
(s)
j ≥ 0. It is obviously true that b

(1)
j ≤ 1 = b

(0)
j . Suppose

b
(s+1)
j ≤ b

(s)
j for all j; then

b
(s+2)
j = min(1,

∑

l

|ajl|b(s+1)
l /µ) ≤ min(1,

∑

l

|ajl|b(s)l /µ) = b
(s+1)
j .

To prove the lemma: If |λ| ≤ µ, then the lemma is true. Suppose
|λ| > µ. Let xi be the components of an eigenvector of A with eigenvalue
λ. Suppose, without loss of generality, that maxi |xi| = 1. We claim that
for all s ≥ 0,

|xi| ≤ b
(s)
i

for all i ≥ 1. For s = 1, then, for any j,

λxj =
∑

l

ajlxl
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and

|xj| ≤
1

|λ|
∑

l

|ajlxl| ≤
1

|λ|
∑

l

|ajl|.

So |xj| ≤ b
(1)
j because |λ| > µ and |xj| ≤ 1. Now suppose |xj| ≤ b

(s)
j for

all j. Then as before,

|λ||xj | ≤
∑

l

|ajl||xl| ≤
∑

l

|ajl|b(s)l

and

|xj | ≤
∑

l

|ajl|
b
(s)
l

µ
.

Hence |xj | ≤ b
(s+1)
j . Hence the claim is true.

Now we may assume without loss of generality that |x1| = 1. (2.14)
is true for s = 0 by the previous lemma. For s ≥ 1,

|λ| = |λx1| ≤
∑

l

|a1l|xl| ≤
∑

l

|a1lb(s)l .

Hence (2.14) is also true in this case.
If (2.15) is true, then it is still true if µ is replaced by µ− ǫ for ǫ > 0

small enough. Then by (2.14), |λ| ≤ µ− ǫ < µ.
q.e.d.

3. Kähler C-spaces of classical type

According to [15], the Kähler C-spaces with b2 = 1 of classical type
which are not Hermitian symmetric spaces are (Bn, αp), with n ≥ 3,
1 < p < n, (Cn, αp), with n ≥ 3, 1 < p < n, and (Dn, αp), with n ≥ 4,
1 < p < n − 1. For each Lie algebra Bn, Cn,Dn below, we assume an
identification has been made between h∗, the dual Cartan subalgebra,
and V = R

n so that the induced Killing form corresponds to the Eu-
clidean inner product (·, ·). We will then present the corresponding root
system ∆ as a set of vectors in V = Rn. We refer to [7] for details.

3.1. The spaces (Bn, αp). We first consider the space (Bn, αp), with
n ≥ 3, 1 < p < n. Let V = R

n and let εi be the standard basis on V .
The root system for Bn is

(3.1) ∆ = {±εi ± εj|1 ≤ i, j ≤ n, i 6= j} ∪ {±εi| 1 ≤ i ≤ n}
Simple positive roots are

(3.2) α1 = ε1 − ε2, α2 = ε2 − ε3, . . . , αn−1 = εn−1 − εn, αn = εn.

Positive roots are

(3.3) ∆+ = {εi + εj}i<j ∪ {εi − εj}i<j ∪ {εi}.
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In terms of the αi’s, the positive roots are

εi =αi + · · ·+ αn

εi + εj =αi + · · ·+ αj−1 + 2αj + · · · + 2αn, i < j

εi − εj =αi + · · ·+ αj−1, i < j.

(3.4)

Let 1 < p < n. Recall that

∆+
p (k) =



α ∈ ∆+| α = kαp +

∑

i 6=p

miαi,mi ≥ 0,mi ∈ Z



 .

By (3.3) and (3.4), we have

∆+
p (1) ={εa| 1 ≤ a ≤ p}

⋃
{εa + εi|1 ≤ a ≤ p, p+ 1 ≤ i ≤ n}

⋃
{εa − εi|1 ≤ a ≤ p, p+ 1 ≤ i ≤ n},

(3.5)

∆+
p (2) ={εa + εb|1 ≤ a < b ≤ p}.(3.6)

(3.7) ∆+
p (k) = ∅

for k ≥ 3. The dimension of (Bm, αp) is
1
2p(4n− 3p+1). We denote the

elements of the ∆+
p (k)’s by: Xai = εa − εi, Yai = εa + εi, 1 ≤ a ≤ p,

p + 1 ≤ i ≤ n; Ua = εa, Wab = εa + εb, 1 ≤ a, b ≤ p. In the following
a, b, . . . will range from 1 to p and i, j, . . . will range from p + 1 to n.
Thus

∆+
p (1) ={Xai}1≤a≤p;p+1≤i≤n

⋃
{Yai}1≤a≤p;p+1≤i≤n

⋃
{Ua}1≤a≤p,

∆+
p (2) ={Wab}1≤a<b≤p.

Now recall that Nα,β = ±(p + 1) where p is the largest integer, so

that β − pα is a root, and also the definition of Ñα,β in (2.10).

Lemma 3.1. Let α, β be positive roots in (Bn, αp); then Ñα,β =√
2 sgn(Nα,β). If α− β 6= 0, then Ñα,−β =

√
2 sgn(Nα,−β).

Proof. Note that if σ is a root, then either |σ|2 = 1 or |σ|2 = 2. We
begin by proving the first part of the lemma. Let α, β be positive roots.
We may assume α + β is a root; otherwise the first part of the lemma
is obviously true.

Suppose |α|2 = |β|2 = 1 and suppose |α+ β|2 = 1; then (α, β) = −1
2 ,

and this is impossible because one can see that (α, β) is an integer.
Hence |α+ β|2 = 2 and (α, β) = 0. So α− β is also a root [11, p. 324].
α−2β is not a root because |α−2β|2 = 5. Hence Nα,β = ±2. Therefore,

by the definition of Ñα,β in (2.10), Ñα,β =
√
2 sgn(Nα,β).

Suppose |α|2 = 1 and |β|2 = 2. As before, one can prove that (α, β) =

−1 and Nα,β = ±1. Hence Ñα,β =
√
2 sgn(Nα,β).
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Suppose |α|2 = |β|2 = 2. As before, one can prove that (α, β) = −1,

Nα,β = ±1, and hence Ñα,β =
√
2 sgn(Nα,β).

The case for Ñα,−β can be proved similarly. q.e.d.

By Lemmas 2.4, 2.5, and 3.1 and the fact that R(α, β̄, γ, δ̄) =
R(α, δ̄, γ, β̄), we have:

Corollary 3.1. Let α ∈ ∆+(i), β ∈ ∆+(j), γ ∈ ∆+(k), and δ ∈
∆+(l).

1)

Rαᾱββ̄ =





(α, β) + 1
2(sgn(Nα,β)

2), i = j = 1,
1
2(α, β), i = 1, j = 2;
1
2(α, β), i = j = 2,

2) If α− β 6= δ − γ, then R(α, β̄, γ, δ̄) = 0.
3) If α− β = δ − γ 6= 0, then for (i, j, k, l) = (1, 1, 1, 1),

R(α, β̄, γ, δ̄) =





1
2sgn(Nα,γ)sgn(Nβ,δ), if α− β is not a root,
sgn(Nα,−β)sgn(Nγ,−δ), if α+ γ is not a root,
−1

2sgn(Nα,γ)sgn(Nδ,β), if β − γ 6= 0 is not a root.

For other cases,

R(α, β̄, γ, δ̄) =





1
2sgn(Nα,−β)sgn(Nγ,−δ), if (i, j, k, l) = (1, 1, 2, 2),
1
2sgn(Nα,−β)sgn(Nγ,−δ), if (i, j, k, l) = (2, 2, 2, 2),
1
2sgn(Nα,−β)sgn(Nγ,−δ) if (i, j, k, l) = (1, 2, 2, 1).

To compute the Ricci curvature, we know that Ric = µg and thus

µ =Ric(W12, W̄12)

=
∑

a,i

[
R(W12, W̄12,Xai, X̄ai) +R(W12, W̄12, Yai, Ȳai)

]

+
∑

a

R(W12, W̄12, Ua, Ūa) +
∑

a<b

R(W12, W̄12,Wab, W̄ab)

=
1

2
[2(n− p) + 2(n − p)] + 1 +

1

2
(p+ (p − 2))

= 2n− p.

Lemma 3.2. Let λ be the largest eigenvalue of the quadratic form
∑

A,B

RAĀBB̄xAxB

in the Weyl frame, where xA are real.

(a) λ ≤ 2n− p if and only if 5p + 1 ≤ 4n.
(b) If 5p+1 < 4n, then λ = (2n− p) iff the corresponding eigenvector

satisfies xA = xB for all A,B.
(c) If 5p+1 = 4n, then there is an eigenvector with eigenvalue (2n−p)

such that xA 6= xB for some A 6= B.
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Proof. We begin with the proof of (a). Let v = (xA) be an eigenvector
corresponding to the largest eigenvalue λ for the quadratic form. Assume
the components satisfy maxA|xA| = 1. Let us denote the components
xA more specifically by xai, yai, a ≤ p < i;ua, a ≤ p; tab, a < b ≤ p, and
let us denote R(Xai, X̄ai,Xbj , X̄bj) by R(Xai,Xbj) etc. Then P (v) =∑

A,B RAĀBB̄xAxB is equal to:

P (v) =
∑

a,b≤p<i,j

R(Xai,Xbj)xaixbj +
∑

a,b≤p<i,j

R(Yai, Ybj)yaiybj

+
∑

a,b≤p<i,j

R(Xai, Ybj)xaiybj +
∑

a,b≤p<i,j

R(Yai,Xbj)yaixbj

+ 2
∑

a,c≤p<i

R(Xai, Uc)xaiuc + 2
∑

a,c≤p<i

R(Yai, Uc)yaiuc

+ 2
∑

a<b,c≤p<i

R(wab,Xci)tabxci + 2
∑

a<b,c≤p<i

R(wab, Yci)tabyci

+
∑

a,b≤p

R(Ua, Ub)uaub + 2
∑

a<b,c≤p

R(wab, Uc)tabuc

+
∑

a<b≤p,c<d≤p

R(Wab,Wcd)tabtcd.

(3.8)

From Corollary 3.1, it is easy to see that R(Xai,Xbj) = R(Yai, Ybj),
R(Xai, Ybj) = R(Yai,Xbj), R(Xai, Ub) = R(Yai, Ub), R(Xai,Wbc) =
R(Yai,Wbc). We see that if we interchange xai and yai for all a, i and ob-
tain a vector w, then P (v) = P (w) and |v| = |w|. We may then assume
that either xai = yai for all a, i, or by considering v−w, that xai = −yai
and ua = tab = 0 for all a, b.

Suppose |ua| = 1 for some a. We may assume that ua = 1. By Corol-
lary 3.1, R(Ua, Ūa, x, x̄) ≥ 0 because (Ua, x) ≥ 0 for all x ∈ ∆+

p (k), k =
1, 2.

λua =
∑

b≤p

R(Ua, Ub)ub +
∑

b≤p<i

R(Xbi, Ua)xbi +
∑

b≤p<i

R(Ybi, Ua)ybi

+
∑

c<d≤p

R(wcd, Ua)tcd.

(3.9)

Notice that the coefficients are all nonnegative and the sum is just
Ric(Ua, Ūa) = 2n − p. Hence λ ≤ 2n − p. Moreover, if λ = 2n − p,
then we must in fact have

(3.10) xa,i = ya,i = ub = tcd = 1
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for all a, b ≤ p < i and c < d ≤ p.
Since (Wab, x) ≥ 0 for all x ∈ ∆+

p (k), k = 1, 2. We have a similar
result when |tab| = 1.

Suppose xai = 1 for some a, i.
Case 1 (xbj = ybj for all b, j.): As above, we have

λxai =
∑

b,j

R(Xai,Xbj)xbj +
∑

b,j

R(Xai, Ybj)ybj +
∑

b

R(Xai, Ub)ub

+
∑

c<d

R(Xai,Wcd)tcd.

(3.11)

Since xbj = ybj , this equation is the same as:

λxai =
∑

b,j

1

2
(R(Xai,Xbj) +R(Xai, Ybj))xbj +

∑

b,j

1

2
(R(Xai,Xbj)

+R(Xai, Ybj))ybj +
∑

b

R(Xai, Ub)ub +
∑

c<d

R(Xai,Wcd)tcd.

(3.12)

By Corollary 3.1, R(Xai,Xbj)+R(Xai, Ybj) ≥ 0 since (Xai,Xbj +Ybj) =
2δab ≥ 0. Hence the coefficients are all nonnegative. Also, the sum of the
coefficients is still the Ricci curvature 2n− p. Hence we have λ ≤ 2n− p
as before, and if equality holds, then (3.10) is true.

Case 2 (xbj = −ybj and uc = wcd = 0 for all b, c, d, j.): Then

λxai =
∑

b,j

R(Xai,Xbj)xbj +
∑

b,j

R(Xai, Ybj)ybj

=
∑

b,j

(R(Xai,Xbj)−R(Xai, Ybj)) xbj .
(3.13)

By Corollary 3.1, R(Xai,Xbj) − R(Xai, Ybj) ≥ 0 because (Xai,Xbj −
Ybj) = 2δij . Hence the coefficients are all nonnegative. The sum of the
coefficients is:

∑

b,j

(
(δab + δij)−

(
δab − δij +

1

2
δij(1− δab)

))
= p+

1

2
(p+ 1)

=
1

2
(3p + 1).

(3.14)

Here we have used the fact that Xai +Xbj is not a root, and Xai + Ybj

is a root if and only if b 6= a and j = i. Hence if 5p + 1 ≤ 4n, then
λ ≤ 2n− p. Moreover, if 5p+ 1 < 4n then λ < 2n − p

Now suppose 5p + 1 > 4n. Let v be such that xai = −yai = 1,
ua = wab = 0 for all a, b. Then

P (v) = 2
∑

a,b≤p<i,j

(R(Xai,Xbj)−R(Xai, Ybj)) = p(n− p)(3p + 1).
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On the other hand, |v|2 = 2p(n− p). Hence P (v) > (2n− p)|v|2 because
5p+ 1 > 4n.

The case that yai = 1 for some a, i is similar. This completes the
proof of (a).

To prove (b), suppose 5p+1 < 4n. Then λ ≤ 2n− p, and as (2n− p)
is always an eigenvalue, we have λ = 2n−p. Let v be the corresponding
eigenvector with components xai, yai, ua, tcd. Thus P (v) = λ|v|2. The
above proof then shows that if xai = yai for all a, i, then (3.10) must
be true, while if xai 6= yai for some a, i, then we must have λ < 2n− p,
which is impossible by our assumption. Hence (b) is true.

To prove (c), suppose 5p+1 = 4n. Then λ = 2n− p in this case too.
Let v be such that xai = −yai = 1, ua = wab = 0 for all a, b. Then the
computations above give P (v) = λ|v|2. Since xai 6= yai, (c) is true. q.e.d.

Lemma 3.3. Let λ be the largest eigenvalue of the quadratic form

∑

A,B,C,D;A 6=B,C 6=D

RAB̄CD̄xABxCD

in the Weyl frame, where xAB = xBA.

(a) If 5p + 1 ≤ 4n, then λ ≤ 2n− p.
(b) If 5p + 1 < 4n, then λ < 2n− p.

Proof. We want to estimate

(3.15) SAB =
∑

x 6=y

|RAB̄yx̄|

for each case of A,B. Note that SAB = SBA. Recall the following prop-
erties of the curvature from Corollary 3.1, which we repeat here for
convenience of reference:

(C1) If A−B 6= x− y, then RAB̄yx̄ = 0.
(C2) If neither A−B nor A+ y are roots, then RAB̄yx̄ = 0.

In each case we will use these to reduce the terms in (3.15) as much
as possible. Then Corollary 3.1 will be used to calculate the absolute
values of the remaining curvature terms.

Case (i) A = Xai, B = Xbj with (a, i) 6= (b, j).
Note that A,B ∈ ∆+

p (1). By (C1) we may assume that x, y ∈ ∆+
p (1)

or x, y ∈ ∆+
p (2). Note that the sum of the coordinates of X’s is 0, that

the sum of the coordinates of Y ’s is 2, that the sum of the coordinates
of U ’s is 1, and that the sum of the coordinates of W ’s is 2. Thus by
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(C1), (3.15) reduces to:

SAB =
∑

c,k,d,l

|R(Xai, X̄bj ,Xck, X̄dl)|+
∑

c,k,d,l

|R(Xai, X̄bj , Yck, Ȳdl)|

+
∑

c,d

|R(Xai, X̄bj , Uc, Ūd)|+
∑

c,d,e,f

|R(Xai, X̄bj ,Wcd, W̄ef )|

=:I + II + III + IV.

(3.16)

If a 6= b, i 6= j, then: All terms in III, IV are zero by (C1). All terms
in I are zero by (C1) except for |R(Xai, X̄bj ,Xbj , X̄ai)|, which is zero by
(C2). By (C1), the only non-zero term in II is |R(Xai, X̄bj , Ybi, Ȳaj)| =
1
2 . Hence SAB = 1/2 < 2n− p because p < n.
If a = b, i 6= j, then: All terms in III, IV are zero by (C1). By (C1),

the only non-zero terms in I are |R(Xai, X̄aj ,Xcj, X̄ci)| for any c, leaving
I = p. By (C1), the only non-zero terms in II are |R(Xai, X̄aj , Ycj, Ȳci)|
for any c, giving a contribution of 1 from the case c = a and 1/2(p− 1)
from the cases c 6= a. Hence SAB = p+1+ 1

2(p−1) = 3p/2+1/2 ≤ 2n−p
if and only if 5p+1 ≤ 4n, and SAB < 2n− p if and only if 5p+1 < 4n.

If a 6= b, i = j, we may assume that a < b, then: By (C1), the only
non-zero terms in I are |R(Xai, X̄bi,Xbk, X̄ak)| for any k, leaving I =
n−p. By (C1), the only non-zero terms in II are |R(Xai, X̄bi, Ybk, Ȳak)|,
leaving a contribution of 1/2 when k = i and a contribution of n−p−1
for the cases when k 6= i. By (C1), the only non-zero term in III is
|R(Xai, X̄bi, Ub, Ūa)|, leaving III = 1. By (C1), the only non-zero terms
in IV are |R(Xai, X̄bi,Wbc, W̄ac)| for c > b, or |R(Xai, X̄bi,Wcb, W̄ca)|
for c < a, or |R(Xai, X̄bi,Wbc, W̄ac)| for a < c < b, in which cases the
contributions to IV are 1/2(p−b), 1/2(a−1), 1/2(b−a−1) respectively.
Hence SAB = (n−p)+ 1

2+(n−p−1)+1+ 1
2(p−b)+ 1

2(a−1)+ 1
2 (b−a−1) =

2n− 3
2p− 1

2 < 2n− p.
Case (ii) A = Xai, B = Ybj .
Note that A,B ∈ ∆+

p (1). By (C1), x, y ∈ ∆+
p (1) or x, y ∈ ∆+

p (2) and
(3.15) reduces to:

SAB =
∑

c,k,d,l

|R(Xai, Ȳbj , Yck, X̄dl)|.(3.17)

If a 6= b, i 6= j: then by (C1), the only non-zero term in (3.17) is given
by |R(Xai, Ȳbj, Ybi, X̄aj)| = 1

2 . Thus SAB = 1
2 < 2n− p.

If a = b, i 6= j, then by (C1), the only non-zero terms in (3.17) are
|R(Xai, Ȳaj , Ycj , X̄ci)| or |R(Xai, Ȳaj , Yci, X̄cj)|, for any c. In the first case
the contribution to (3.17) is p, and in the second case the contribution
to (3.17) is 1 when c = a and 1

2(p − 1) from the cases c 6= a. Thus

SAB = p + 1 + 1
2(p − 1) = 3

2p +
1
2 ≤ 2n − p if and only if 5p + 1 ≤ 4n,

and SAB < 2n− p if and only if 5p + 1 < 4n.
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If a 6= b, i = j, then by (C1), the only non-zero term in (3.17) is given
by |R(Xai, Ȳbi, Ybi, X̄bi)| = 1

2 . Thus SAB = 1
2 < 2n− p.

If a = b, i = j, then by (C1), the only non-zero terms in (3.17) are
|R(Xai, Ȳai, Yci, X̄ci)| for any c. Thus SAB = 1

2(p− 1) < 2n − p.
Case (iii) A = Xai, B = Ub.
Note that A,B ∈ ∆+

p (1). By (C1), x, y ∈ ∆+
p (1) or x, y ∈ ∆+

p (2) and
(3.15) reduces to:

SAB =
∑

c,d,j

|R(Xai, Ūb, Uc, X̄dj)|+
∑

c,d,j

|R(Xai, Ūb, Ycj , Ūd|) =: I + II

(3.18)

If a 6= b, then: All terms in I are zero by (C2). By (C1), the only
non-zero term in II is |R(Xai, Ūb, Ybi, Ūa)| leaving II = 1 . Thus SAB =
1 < 2n− p.

If a = b then: By (C1), the only non-zero terms in I are |R(Xai, Ūa, Uc,
X̄ci)| for any c, leaving I = p. By (C1), the only non-zero terms in II
are given by |R(Xai, Ūa, Yci, Ūc)| for any c, and the contribution to II is
1 when c = a and is 1

2(p−1) from the cases c 6= a. Thus SAB = 3
2p+

1
2 <

2n− p.
Case (iv) A = Xai, B = Wbc.
Note that A ∈ ∆+

p (1), B ∈ ∆+
p (2). By (C1), x ∈ ∆+

p (1), and y ∈
∆+

p (2) and (3.15) reduces to:

SAB =
∑

d,j,e,f

|R(Xai, W̄bc,Wef , X̄dj)|.(3.19)

If a = b, then by (C1), the only non-zero terms in (3.19) are given by
|R(Xai, W̄ac,Wdc, X̄di)| for d < c, or |R(Xai, W̄ac,Wcf , X̄fi)| for f > c.
In the first case the contribution is c − 1, and in the second case, is
p− 1− c. Thus SAB = p− 1 < 2n− p.

If a 6= b then by (C1) and (C2), the only non-zero terms in (3.19) are
when a = c, in which case we get, as above, that SAB = p− 1 < 2n− p.

Case (v) A = Yai, B = Ybj, (a, i) 6= (b, j). Similar to (i).
Case (vi) A = Yai, B = Ub. Similar to (iii).
Case (vii) A = Yai, B = Wbc. Similar to (iv).
Case (viii) A = Ua, B = Ub, a < b.

From (C1) it is not hard to see here that (3.15) reduces to:

SAB =
∑

c,d,k,l

|R(Ua, Ūb,Xck, X̄dl)|+
∑

c,d,k,l

|R(Ua, Ūb, Yck, Ȳdl)|

+
∑

c,d

|R(Ua, Ūb, Uc, Ūd)|+
∑

c,d,e,f

|R(Ua, Ūb,Wcd, W̄ef )|

= I + II + III + IV.
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Now by (C1) the only non-zero terms in I are |R(Ua, Ūb,Xbi, X̄ai)| for
any i, leaving I = n− p. We similarly get II = n− p. By (C1), the only
non-zero term in III is |R(Ua, Ūb, Ub, Ūa)|, leaving III = 1

2 . By (C1),

the only non-zero terms in IV are |R(Ua, Ūb,Wbc, W̄ac)| for c > b, or
|R(Ua, Ūb,Wcb, W̄ca)| for c < a, or |R(Ua, Ūb,Wcb, W̄ac)| for a < c < b,
in which cases the respective contributions to IV are 1/2(p−b), 1/2(a−
1), 1/2(b − a − 1) respectively. Thus SAB = (n − p) + (n − p) + 1

2 +
1
2 [(p− b) + (a− 1) + (b− a− 1)] = 2n− 3

2p− 1
2 < 2n− p.

Case (ix) A = Ua, B = Wbc, b < c.
Note that A ∈ ∆+

p (1) and B ∈ ∆+
p (2). By (C1), x ∈ ∆+

p (1) and

y ∈ ∆+
p (2) and (3.15) reduces to:

SAB =
∑

d,e,f

|R(Ua, W̄bc,Wde, Ūf )|.(3.20)

Note that A+ x is never a root, and thus by (C2), the only non-zero
terms are when a = b or a = c. If a = b, then by (C1), the only non-zero
terms are |R(Ua, W̄ac,Wdc, Ūd)| for d < c, or |R(Ua, W̄ac,Wcd, Ūd)| for
c < d, in which cases the respective contributions to SAB are 1/2(c −
1), 1/2(p − c) respectively. Thus when a = b, and similarly when a = c,
we have SAB = 1

2(c− 1) + 1
2(p− c) = 1

2(p − 1) < 2n− p.
Case (x) A = Wab, B = Wcd, (a, b) 6= (c, d). We may assume that

a ≤ c.
Note that A,B ∈ ∆+

p (2), B ∈ ∆+
p (2). By (C1), x, y ∈ ∆+

p (1) or

x, y ∈ ∆+
p (2) and (3.20) reduces to:

SAB =
∑

e,f,i,j

(|R(Wab, W̄cd,Xei, X̄fj)|+
∑

e,f,i,j

(|R(Wab, W̄cd, Yei, Ȳfj)|

+
∑

e,f

|R(Wab, W̄cd, Ue, Ūf )|+
∑

e,f,g,h

|R(Wab, W̄cd,Wef , W̄gh)|

= I + II + III + IV.

Note that A + y is never a root for any positive root y. Thus by
(C2), all terms in I, II, III, IV are zero unless either a = c or b = c or
b = d. Assume that a = c, and without loss of generality that b < d.
By (C1), the only non-zero terms in I are |R(Wab, W̄ad,Xdi, X̄bi)| for
any i, leaving I = 1

2(n − p). We similarly get II = 1
2 (n − p). By (C1),

the only non-zero term in III is |R(Wab, W̄cd, Ud, Ūb)|, leaving III = 1
2 .

By (C1), the only non-zero terms in IV are |R(Wab, W̄ad,Wde, W̄be)| for
e > d, or |R(Wab, W̄ad,Wed, W̄eb)| for e < b, or |R(Wab, W̄ad,Wed, W̄be)|
for b < e < d, in which cases the respective contributions to IV are
1/2(p − d), 1/2(b − 1), 1/2(d − b − 1). Thus when a = c, and similarly
when b = c or b = d, we have SAB = 1

2(n − p) + 1
2(n − p) + 1

2 +
1
2 [(p− d) + (b− 1) + (d− b− 1)] = n− 1

2p− 1
2 < 2n − p.

This completes the proof of the lemma. q.e.d.
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Theorem 3.1. The Kähler C-space (Bn, αp), n ≥ 3, 1 < p < n
satisfies QB ≥ 0 if and only if 5p + 1 ≤ 4n. Moreover, QB > 0 if and
only if 5p+ 1 < 4n.

Proof. The first statement follows from part (a) of Lemmas 3.2 and
3.3 and Corollary 2.1. For the second statement, note that QB > 0
iff G − F > 0 on Ω1,1

R
(p) \ Rω(p) by Lemma 2.6. On the other hand,

here G = (2n − p)Id on Ω1,1
R

(p) \ Rω(p), and thus by parts (b) and
(c) of Lemma 3.2 and part (b) of Lemma 3.3, we have G − F > 0 iff
5p+ 1 < 4n. Thus we have QB > 0 if and only if 5p+ 1 < 4n. q.e.d.

3.2. The spaces (Dn, αp). In this section we will consider the space
(Dn, αp), with n ≥ 4, 1 < p < n − 1. Let V = R

n and εi be as before.
The root system for Dn is

(3.21) ∆ = {±εi ± εj |1 ≤ i, j ≤ n, i 6= j}.
Positive roots are

(3.22) ∆+ = {εi + εj}i<j ∪ {εi − εj}i<j .

Simple positive roots are

(3.23) α1 = ε1−ε2, α2 = ε2−ε3, . . . , αn−1 = εn−1−εn, αn = εn−1+εn.

In terms of the αi’s, the positive roots are

εi + εj = αi + · · · + αj−1 + 2αj + · · ·+ 2αn−2 + αn−1 + αn,

i < j ≤ n− 2

εi + εn−1 = αi + · · · + αn, i < n− 1

εi + εn = αi + · · · + αn−2 + αn, i < n− 1

εn−1 + εn = αn

εi − εj = αi + · · · + αj−1, i < j.

(3.24)

Let 1 < p < n− 1. By (3.22) and (3.24) we have

∆+
p (1) ={εa − εi|1 ≤ a ≤ p, p+ 1 ≤ i ≤ n}

⋃
{εa + εi|1 ≤ a ≤ p, p+ 1 ≤ i ≤ n},

(3.25)

∆+
p (2) ={εa + εb|1 ≤ a < b ≤ p}.(3.26)

(3.27) ∆+
p (k) = ∅

for k ≥ 0. The dimension is 1
2p(4n − 3p − 1). The structure of the

roots is similar to (Bn, αp), except that Ua’s do not appear. Hence the
computations are basically the same. In this case Ric = (2n − p− 1).

Theorem 3.2. The Kähler C-space (Dn, αp), n ≥ 4, 1 < p < n − 1
satisfies QB ≥ 0 if and only if 5p + 3 ≤ 4n. Moreover, QB > 0 if and
only if 5p+ 3 < 4n.
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Remark 3.1. As in the B cases, one can see that (Dn, αp) does not

satisfy B⊥ ≥ 0.

3.3. The spaces (Cn, αp). We will consider the space (Cn, αp), with
n ≥ 3, 1 < p < n. Let V = R

n and εi be as before. The root system for
Cn is

(3.28) ∆ = {±εi ± εj|1 ≤ i, j ≤ n}.
Positive roots are

(3.29) ∆+ = {εi + εj}i≤j ∪ {εi − εj}i<j .

Simple positive roots are

(3.30) α1 = ε1 − ε2, α2 = ε2 − ε3, . . . , αn−1 = εn−1 − εn, αn = 2εn.

In terms of the αi’s, the positive roots are

εi − εj = αi + · · ·+ αj−1, i < j ≤ n,

2εi = 2(αi + · · · + αj−1 + αj + · · · + αn−1) + αn, i < n, 2εn = αn,

εi + εj = αi + · · ·+ αj−1 + 2(αj + · · · ++αn−1) + αn, i < j ≤ n.

(3.31)

Let 1 < p < n. By (3.29) and (3.31) we have

∆+
p (1) = {εa ± εi|1 ≤ a ≤ p, p+ 1 ≤ i ≤ n}(3.32)

∆+
p (2) ={2εa|1 ≤ a ≤ p} ∪ {εa + εb|1 ≤ a < b ≤ p}(3.33)

(3.34) ∆+
p (k) = ∅,

for k ≥ 3. The dimension is 1
2p(4n− 3p+ 1).

As before, a, b, . . . will range from 1 to p, and i, j, . . . will range from
p + 1 to n. Let Xai = εa − εi, Yai = εa + εi, Ua = 2εa, Wab = εa + εb,
a < b. Then as in Lemma 3.1 and Corollary 3.1, we have the following:

Lemma 3.4. 1) Let α, β be positive roots in ∆+
p (k), k = 1, 2.

Ñα,±β =





2 sgn(Nα,±β), if {α, β} = {Xai, Yai} for some a, i, or
one of α, β is Ua for some a;√

2 sgn(Nα,±β), otherwise.

Here in the case of α− β, we assume in addition that α− β 6= 0.
2) R(Xai, X̄aj , Yai, Ȳaj) = 0 for any a if i 6= j, and R(Xai, X̄ci, Yci, Ȳai)

= ±1
2 for any i if a 6= c.

Proof. (1) Suppose α = Xai, β = Yai; then α+ β and α− β are both
roots. It is easy to see that Nα,β and Nα,−β are equal to ±2. Moreover,

|α|2 = |β|2 = 2 and |α ± β|2 = 4. Hence |α||β|
|α±β|Nα,±β = 2sgn(Nα,±β). If

α = Ua, say, then Ua + y and Ua − Ub are not roots for any y ∈ ∆+
p (k),
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k = 1, 2. Moreover, if β = Xbi, then α− β is a root if and only if b = a.
In this case, Nα,−β = ±1, |α|2 = 4, |β|2 = 2, and |α − β|2 = 2. Again
|α||β|
|α±β|Nα,±β = 2sgn(Nα,±β).

If α, β are not as above, and if α+ β is a root, then |α + β|2 = 2. In

this case, one can see that Nα,β = ±1. So |α||β|
|α±β|Nα,±β =

√
2sgn(Nα,±β).

The case for α− β is similar.
(2) Let α = Xai, β = Xaj , γ = Yai, δ = Yaj . It is easy to see that

R(Xai, X̄aj , Yai, Ȳaj) = −1

2
· |α||β||γ||δ||α+ γ|2 Nα,γN−β,−δ

+
|α||β||γ||δ|
|α− β|2 Nα,−βNγ,−δ.

On the other hand, since α− β + γ − δ = 0,

Nγ,αN−β,−δ

|α+ γ|2 +
Nα,−βNγ,−δ

|α− β|2 +
N−β,γNα,−δ

|γ − β|2 = 0,

By (1), we have

Nγ,αN−β,−δ

4
+

Nα,−βNγ,−δ

2
= ±1

2

because i 6= j. Squaring the above equality, noting thatN2
γ,α = N2

−β,−δ =

4, N2
α,−β = N2

γ,−δ = 1, we have

Nγ,αN−β,−δNα,−βNγ,−δ = −4.

Hence
Nα,γN−β,−δNα,−βNγ,−δ > 0

because Nα,γ = −Nγ,α. From this it is easy to see that R(Xai, X̄aj , Yai,
Ȳaj) = 0. The other part can be proved similarly.

q.e.d.

To compute the Ricci curvature, we know that Ric = µg and thus

µ =
∑

a,i

[
R(U1, Ū1,Xai, X̄ai) +R(U1, Ū1, Yai, Ȳai)

]
+
∑

a

R(U1, Ū1, Ua, Ūa)

+
∑

a<b

R(U1, Ū1,Wab, W̄ab)

=
1

2
(2(n− p) + 2(n − p)) + 2 + (p− 1)

=2n− p+ 1.

Lemma 3.5. Let λ be the largest eigenvalue of the quadratic form
∑

A,B

RAĀBB̄xAxB

in the Weyl frame, where xA are real.

(a) λ ≤ 2n− p+ 1 if and only if 5p ≤ 4n+ 3.
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(b) If 5p < 4n + 3, then λ = (2n− p+ 1) iff the corresponding eigen-
vector has xA = xB for all A,B.

(c) If 5p = 4n+3, then there is an eigenvector with eigenvalue (2n−
p+ 1) such that xA 6= xB for some A 6= B.

Proof. Part (a): the argument is identical to the proof of Lemma 3.2
(a) except that: in Case 1 we use that for any B the coefficients in∑

AR(A,B)xA must add to 2n− p+1 (instead of 2n− p); in Case 2 we
use that

∑

b,j

(R(Xai,Xbj)−R(Xai, Ybj)) =
3

2
p− 1

2

(instead of 3
2p+

1
2).

Parts (b) and (c): the argument is similar to the corresponding proofs
for Lemma 3.2. q.e.d.

Lemma 3.6. Let λ be the largest eigenvalue of the quadratic form

(3.35)
∑

A,B,C,D;A 6=B,C 6=D

RAB̄CD̄xABxCD

in the Weyl frame, where xAB = xBA.

(a) λ ≤ 2n− p+ 1 if and only if 5p ≤ 4n+ 3.
(b) If 5p < 4n+ 3, then λ < 2n− p+ 1.

Proof. We want to estimate

(3.36) SAB =
∑

x 6=y

|RAB̄yx̄|

for each case of A,B. Note that SAB = SBA. Recall the following prop-
erties:

(C1) If A−B 6= x− y, then RAB̄yx̄ = 0.
(C2) If neither A−B nor A+ y are roots, then RAB̄yx̄ = 0.

In each case we will use these to reduce the terms in (3.36) as much as
possible. Then Lemmas 2.5 and 3.4 will be used to calculate the absolute
values of the remaining curvature terms.

Case (i) A = Xai, B = Xbj with (a, i) 6= (b, j).
Note that A,B ∈ ∆+

p (1). By (C1) we may assume that x, y ∈ ∆+
p (1)

or x, y ∈ ∆+
p (2). Note that the sum of the coordinates of each X is 0,

the sum of the coordinates of each Y is 2, the sum of the coordinates
of each U is 2, and the sum of the coordinates of each W is 2. Thus by
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(C1), (3.36) reduces to:

SAB =
∑

c,k,d,l

|R(Xai, X̄bj ,Xck, X̄dl)|+
∑

c,k,d,l

|R(Xai, X̄bj , Yck, Ȳdl)|

+
∑

c,d,e,f

|R(Xai, X̄bj ,Wcd, W̄ef )|

+
∑

c,d,e

|R(Xai, X̄bj , Uc,Wde)|+
∑

c,d,e

|R(Xai, X̄bj ,Wde, Uc)|

=:I + II + III + IV + V.

(3.37)

If a 6= b, i 6= j, then: All terms in III, IV, V are zero by (C1). By (C1),
the only non-zero term in I is |R(Xai, X̄bj ,Xbj , X̄ai)|, leaving I = 1

4 . We

get II = 1
4 in the same way. Hence SAB = 1

4 + 1
4 = 1

2 < 2n− p+ 1.

If a = b, i 6= j, then: All terms in III, IV, V are zero by (C1). By (C1),
the only non-zero term in I is |R(Xai, X̄aj ,Xcj, X̄ci)| for any c, leaving
I = p. By (C1), the only non-zero term in II is |R(Xai, X̄aj , Ycj, Ȳci)|,
which is 0 by Lemma 3.4 if a = c, leaving II = 1

2 (p− 1). Hence SAB =

p + 0 + 1
2(p − 1) = 3p/2 − 1/2 ≤ 2n − p+ 1 if and only if 5p ≤ 4n + 3,

and SAB < 2n− p+ 1 if and only if 5p < 4n + 3.

If a 6= b, i = j, we may assume that a < b, then: By (C1), the only
non-zero terms in I are |R(Xai, X̄bi,Xbk, X̄ak)| for any k, leaving I =
n− p. By (C1), the only non-zero terms in II are |R(Xai, X̄bi, Ybk, Ȳak)|
for any k, leaving a contribution of 1/2 when k = i by Lemma 3.4
and a contribution of n − p − 1 for the cases when k 6= i. By (C1),
the only non-zero terms in III are |R(Xai, X̄bi,Wbc, W̄ac)| for c > b,
or |R(Xai, X̄bi,Wcb, W̄ca)| for c < a, or |R(Xai, X̄bi,Wcb, W̄ac)| for a <
c < b, in which cases the respective contributions to III are 1/2(p −
b), 1/2(a − 1), 1/2(b − a− 1). By (C1), the only non-zero term in IV is
|R(Xai, X̄bi, Ub,Wab)|, leaving IV =

√
2/2. By (C1), the only non-zero

term in V is |R(Xai, X̄bi,Wab, Ua)|, leaving V =
√
2/2. Hence SAB =

(n − p) + 1
2 + (n − p − 1) +

√
2 + 1

2 [(p − b) + (a− 1) + (b− a− 1)] =

2n− 3
2p− 1

2 +
√
2 < 2n− p+ 1.

Case (ii) A = Xai, Ybj.
Note that A,B ∈ ∆+

p (1). By (C1), x, y ∈ ∆+
p (1) or x, y ∈ ∆+

p (2) and
(3.36) reduces to:

SAB =
∑

c,k,d,l

|R(Xai, Ȳbj , Yck, X̄dl)|.(3.38)

If a 6= b, i 6= j, then by (C1), the only possible non-zero terms in (3.38)
are |R(Xai, Ȳbj , Ybj , X̄ai)|, which is zero by (C2), and |R(Xai, Ȳbj , Ybi,

X̄aj)|, which is 1
2 . Hence SAB = 1

2 < 2n− p+ 1.
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If a = b, i 6= j, then by (C1), the only non-zero terms in (3.38) are
|R(Xai, Ȳaj , Ycj , X̄ci)| or |R(Xai, Ȳaj , Yci, X̄cj)|, for any c. In the first case
the contribution to (3.38) is p, and in the second case the contribution
to (3.38) is 0 when c = a and 1

2 when c 6= a. Thus SAB = p+ 1
2(p− 1) =

3
2p− 1

2 < 2n − p+ 1.
If a 6= b, i = j, then by (C1), the only non-zero term in (3.38) is given

by |R(Xai, Ȳbi, Ybi, X̄bi)| = 1
2 . Thus SAB = 1

2 < 2n− p+ 1.
If a = b, i = j, then by (C1), the only non-zero terms in (3.38) are

|R(Xai, Ȳai, Yci, X̄ci)| and the contribution to (3.38) is 1 when c = a and
1
2(p−1) from the cases c 6= a by Lemma 3.4. Thus SAB = 1+ 1

2(p−1) <
2n− p+ 1.

Case (iii) A = Xai, B = Ub.
Note that A ∈ ∆+

p (1) and B ∈ ∆+
p (2). By (C1), x ∈ ∆+

p (1) and

y ∈ ∆+
p (2) and (3.36) reduces to:

SAB =
∑

c,d,j

|R(Xai, Ūb, Uc, X̄dj)|+
∑

c,d,e,j

|R(Xai, Ūb,Wcd, X̄ej)| =: I + II.

(3.39)

If a 6= b, then: All terms in II are zero by (C1). By (C1), the only
possible non-zero term in I is |R(Xai, Ūb, Ub, X̄ai)|, which in turn is zero
by (C2).

If a = b, then: By (C1), the only non-zero term in I is |R(Xai, Ūa, Ua,
X̄ai)|, leaving I = 1. By (C1), the only non-zero terms in II are |R(Xai,
Ūa,Wac, X̄ci)| for c > a, and |R(Xai, Ūa,Wca, X̄ci)| for c < a, in which

cases the respective contributions to II are
√
2
2 (p− a),

√
2
2 (a− 1). Thus

SAB = 1 +
√
2
2 ((p− a) + (a− 1)) = 1 +

√
2
2 (p− 1) < 2n− p+ 1.

Case (iv) A = Xai, B = Wbc.
Note that A ∈ ∆+

p (1), B ∈ ∆+
p (2). By (C1), x ∈ ∆+

p (1) and y ∈ ∆+
p (2)

and (3.36) reduces to:

SAB =
∑

d,j,e,f

|R(Xai, W̄bc,Wef , X̄dj)|+
∑

d,j,e

|R(Xai, W̄bc, Ue, X̄dj)| := I + II.

If a = b, then by (C1), the only non-zero terms in I are |R(Xai, W̄ac,
Wdc, X̄di)| for d < c, or |R(Xai, W̄ac,Wcf , X̄fi)| for f > c. In the first case

the contribution is 1
2(c − 1), and the contribution in the second case is

1
2(p−c). By (C1), the only non-zero term in II is |R(Xai, W̄ac, Uc, X̄ci)|,
which is

√
2. Thus SAB = 1

2(p − 1) +
√
2 < 2n− p+ 1.

If a 6= b, then by (C1) and (C2), the terms in I, II are zero unless

a = c, in which case we get, as above, that SAB = 1
2 (p − 1) +

√
2 <

2n− p+ 1.

Case (v) A = Yai, B = Ybj, (a, i) 6= (b, j). Similar to (i).
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Case (vi) A = Yai, B = Ub. Similar to (iii).
Case (vii) A = Yai, B = Wbc. Similar to (iv).
Case (viii) A = Ua, B = Ub, a < b.
From (C1) it is not hard to see that (3.36) reduces to:

SAB =
∑

c,d

|R(Ua, Ūb, Ub, Ūa)| = 0

where the last equality follows by (C2).
Case (ix) A = Ua, B = Wbc, b < c.
Note that A,B ∈ ∆+

p (2). By (C1), x, y ∈ ∆+
p (1) or A,B ∈ ∆+

p (2) and
(3.15) reduces to:

SAB =
∑

d,e,i

|R(Ua, W̄bc,Xdi, X̄ei)|+
∑

d,e,i

|R(Ua, W̄bc, Ydi, Ȳei)|

+
∑

d,e,f,g

|R(Ua, W̄bc,Wde, W̄fg)|+
∑

d,e,f

|R(Ua, W̄bc, Ud, W̄ef )|

+
∑

d,e,f

|R(Ua, W̄bc,Wde, Ūf )|

=I + II + III + IV + V.

Note that A+ x is never a root and thus, by (C2), the only non-zero
terms are when a = b or a = c. If a = b, then by (C1), the only non-zero

terms in I are |R(Ua, W̄ac,Xci, X̄ai)| for any i, leaving I =
√
2
2 (n − p).

Similarly, we get II =
√
2
2 (n − p). By (C1), the only non-zero terms in

III are |R(Ua, W̄ac,Wce, W̄ae)| for e > c, and |R(Ua, W̄ac,Wdc, W̄da)| for
d < a, and |R(Ua, W̄ac,Wdc, W̄ad)| for a < d < a, in which cases the

respective contributions to III are
√
2
2 (p− c),

√
2
2 (a− 1),

√
2
2 (c− a− 1).

By (C1), the only non-zero term in IV is |R(Ua, W̄ac, Uc, W̄ac)|, leaving
IV = 1. By (C1), the only non-zero term in V is |R(Ua, W̄ac,Wac, Ūa)|,
leaving V = 1. Thus when a = b, and similarly when a = c, SAB =√
2(n− p) +

√
2
2 (p − 2) + 2 < 2n− p+ 1.

Case (x) A = Wab, B = Wcd, (a, b) 6= (c, d). We may assume that
a ≤ c.

Note that A,B ∈ ∆+
p (2). By (C1), x, y ∈ ∆+

p (1) or x, y ∈ ∆+
p (2) and

(3.36) reduces to:

SAB =
∑

e,f,i

|R(Wab, W̄cd,Xei, X̄fi)|+
∑

e,f,i

|R(Wab, W̄cd, Yei, Ȳfi)|

+
∑

e,f,g,h

|R(Wab, W̄cd,Wef , W̄gh)|+
∑

e,f,g

|R(Wab, W̄cd,Wef , Ūg)|

+
∑

e,f,g

|R(Wab, W̄cd, Ue, W̄fg)|

=I + II + III + IV + V.
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Note that A + y is never a root for any positive root y. Thus by
(C2), all terms in I, II, III, IV, V are zero unless either a = c or b = c
or b = d. Assume that a = c, and without loss of generality that b <
d. By (C1), the only non-zero terms in I are |R(Wab, W̄ad,Xdi, X̄bi)|,
leaving I = 1

2 (n − p). We similarly get II = 1
2(n − p). By (C1), the

only non-zero terms in III are |R(Wab, W̄ad,Wde, W̄be)| for e > d, or
|R(Wab, W̄ad,Wed, W̄eb)| for e < b, or |R(Wab, W̄ad,Wed, W̄be)| for b <
e < d, in which cases the respective contributions to III are 1/2(p −
d), 1/2(b − 1), 1/2(d − b− 1). By (C1), the only non-zero term in IV is

|R(Ua, W̄ac,Wbd, Ūb)|, leaving V =
√
2
2 . Similarly, we get IV =

√
2
2 . Thus

when a = c, and similarly when b = c or b = d, SAB = (n−p)+ 1
2(n−p)+

1
2 [(p− d) + (b− 1) + (d− b− 1)] +

√
2 = n− 1− 1

2p+
√
2 < 2n− p+1.

This completes the proof of the lemma. q.e.d.

By Lemmas 3.5 and 3.6, we can proceed as in the B cases to obtain:

Theorem 3.3. The Kähler C-space (Cn, αp), n ≥ 3, 1 < p < n
satisfies QB ≥ 0 if and only if 5p ≤ 4n + 3. Moreover, QB > 0 if and
only if 5p < 4n+ 3.

Remark 3.2. As in the B cases, one can see that (Cn, αp) does not

satisfy B⊥ ≥ 0.

4. Kähler C-spaces of exceptional type

For each of the exceptional Lie algebras G2, F4, E6, E7, E8, we will
establish whether or not the corresponding Kähler C-spaces with b2 = 1
have QB ≥ 0 or not. For each case, we define the following quadratic
forms with respect to the Weyl frames:

M1 :=
∑

A,B

RAĀBB̄xAxB

M2 :=
∑

A,B,C,D;

A6=B,C 6=D

RAB̄CD̄xABxCD,

where the xA’s are real and xAB = xBA. We will study the largest
eigenvalues of these two quadratic forms. By Corollary 2.1, these will
tell us whether the space satisfies QB ≥ 0, or QB > 0.

For each exceptional Lie algebra g, we will first present an explicit
root system (in some Euclidean space Rn) and fundamental set of roots
{α1, ..}. Then for each corresponding Kähler C-space (g, αk), we present
a Weyl frame. Lemma 2.4 then allows explicit calculation of the matrix

for M1. The main point here is to determine Ñα,±β. From this point,
while eigenvalue estimates are possible by row sum and symmetry argu-
ments, as in M1 in the classical cases, we compute the eigenvalues and
Ricci curvature (row sum) of M1 directly using MAPLE.
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To estimate the largest eigenvalue of M2, we will use Lemmas 2.4 and
2.5 to compute the curvature tensor. However, in this case the lemmas
allow only an upper estimate for the absolute value of the entries of M2,
since we can only calculate the Nαβ ’s appearing there up to a sign. By
the same reason, this can only be estimated from above by |R1|+ |R2| in
the formula Lemma 2.5(2). In some cases, this becomes too large, and
we cannot get a good estimate. Hence, for A,B,C,D corresponding
to positive roots α ∈ ∆+(i), β ∈ ∆+(j), γ ∈ ∆+(k), δ ∈ ∆+(l) where

A 6= B, define R̃(A, B̄, C, D̄) as follows:
(4.1)

R̃(A, B̄, C, D̄) =





0, if α− β 6= δ − γ,
|R(A, Ā,B, B̄)|, if B = C (i.e. if β = γ),
m, if α− β = δ − γ, and β − γ 6= 0,

where m = min{|R1(A, B̄, C, D̄)| + |R2(A, B̄, C, D̄)|, |R1(C, B̄,A, D̄)|+
|R2(C, B̄,A, D̄))|}.

Note that in the last case, we also have α−δ 6= 0. SinceR(A, B̄, C, D̄) =
R(C, B̄,A, D̄) by symmetries of the curvature tensor, we have |R(A, B̄, C,

D̄)| ≤ R̃(A, B̄, C, D̄), for all A 6= B,C 6= D.

Remark 4.1. In many cases, |R(A, B̄, C, D̄)| is exactly equal to the
quantity m in (4.1). For example, this is the case if one of α + γ, α −
β, β − γ is not a root.

Consider the following matrix ZAB,CD, which is defined for all pairs
AB,CD:

(4.2) ZAB,CD =

{
0, if A = B or C = D,

R̃(A, B̄, C, D̄), otherwise.

Recall that (M2)AB,CD = R(A, B̄, CD̄) is only defined for pairs with
A 6= B, C 6= D. For any A the AAth row and column of Z has zero in
every entry, and removing these rows and columns leaves a symmetric
matrix with the same dimension asM2, boundingM2 from above, entry-
wise in absolute values. The following simple lemma justifies estimating
the largest eigenvalue of M2 by the largest absolute eigenvalue of Z.

Lemma 4.1. Let N,M be real symmetric n × n matrices such that
Nij ≥ |Mij | for all i, j. Then spectral radius (the maximal absolute value
of eigenvalues) λN of N is greater than or equal to the spectral radius
λM of M .

Proof. Let x = (x1, . . . , xn) be a unit eigenvector of M for which
|Mx| = λM . Note that |x| = (|x1|, . . . , |xn|) is also a unit vector. Then

we have λM = |Mx| =
√

|∑j Mijxi|2 ≤
√

|∑j Nij|xi||2 = N |x| ≤ λN .

q.e.d.
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We will calculate Z in each case using MAPLE. From this point, we
can of course compute the eigenvalues of Z directly using MAPLE, thus
obtaining an eigenvalue estimate for M2. However, we will use Lemmas
2.7 and 2.8 here, as they are elementary and similar to our methods
for M2 in the classical case. In fact, most of the terms in Z are zero
and one may be able to decompose Z into quadratic forms of much
smaller size so that Lemmas 2.7 and 2.8 can be applied without using
a computer. In all cases other than (G2, α2), (E7, α5), and (F4, α2), the
estimate provided by Lemma 2.7 will be sufficient, while in the cases
of (G2, α2), (E7, α5), and (F4, α2), Lemma 2.8 is used to estimate the
eigenvalue of Z.

In the subsections below, we just present the results of the MAPLE
calculations, and we indicate the algorithms used in the appendix. For
each Lie algebra below, the dual Cartan subalgebra h∗ is associated to
some Euclidean subspace V , and the root system is given as a set of
vectors in V . We refer to [7] for details. We will use ξ1, . . . , ξn to denote
the standard coordinates on R

n and ε1, . . . , εn to denote the standard
basis vectors of Rn.

4.1. The space (G2, α2). Let V be the hyperplane in R
3 with ξ1+ξ2+

ξ3 = 0. The positive roots in V are

ε1 − ε2,−2ε1 + ε2 + ε3,−ε1 + ε3,−ε2 + ε3, ε1 − 2ε2 + ε3,−ε1 − ε2 +2ε3.

Simple positive roots are α1 = ε1− ε2, α2 = −2ε1 + ε2+ ε3 with respect
to which the positive roots are

α1, α2, α1 + α2, 2α1 + α2, 3α1 + α2, 3α1 + 2α2.

Now (G2, α1) is Hermitian symmetric, so we only consider (G2, α2)
for which we have

∆+
2 (1) ={α1 + α2, 2α1 + α2, α2, 3α1 + α2}

∆+
2 (2) ={3α1 + 2α2}.

(4.3)

∆+
2 (k) = ∅, for k ≥ 3.





dim = 5,Ric = 9g,
4 largest eigenvalues of M1 are 1.5000,1.5000, 8.5000, 9.000,
eigenvalues of M2 are less than 9

(the estimate for M2 is obtained by using µ = 9 and s = 1 in Lemma
2.8, in which case the maximum weighted row sum is 8.6309). Thus the
space has QB > 0.

4.2. The spaces (F4, αi).
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4.2.1. Root system. Let V = R
4. The positive roots in V are

{εi}1≤i≤4 ∪ {εi + εj}1≤i<j≤4 ∪ {εi − εj}1≤i<j≤4 ∪ {1
2
(ε1 ± ε2 ± ε3 ± ε4)}.

There are a total of 4 + 6 + 6 + 8 = 24 positive roots. Let

A =(ai)
12
i=1 =




1
2(ε1 + ε2 + ε3 + ε4)
1
2(ε1 + ε2 − ε3 + ε4)
1
2(ε1 + ε2 + ε3 − ε4)
1
2(ε1 + ε2 − ε3 − ε4)
1
2(ε1 − ε2 + ε3 + ε4)
1
2(ε1 − ε2 − ε3 + ε4)
1
2(ε1 − ε2 + ε3 − ε4)
1
2(ε1 − ε2 − ε3 − ε4)

ε1
ε2
ε3
ε4




, B =(bi)
12
i=1 =




ε1 + ε2
ε1 + ε3
ε1 + ε4
ε2 + ε3
ε2 + ε4
ε3 + ε4
ε1 − ε2
ε1 − ε3
ε1 − ε4
ε2 − ε3
ε2 − ε4
ε3 − ε4




(4.4)

The simple positive roots are α1 = b10, α2 = b12, α3 = a12, α4 = a8.
The matrix for (αi) is

g =




0 1 −1 0
0 0 1 −1
0 0 0 1

1/2 −1/2 −1/2 −1/2


 .

The coordinates of (ai) with respect to the ordered basis {α1, . . . , α4}
are given by the columns of

(4.5) (ggt)−1gAt =




1 1 1 1 0 0 0 0 1 1 0 0

2 1 2 1 1 0 1 0 2 1 1 0

3 2 2 1 2 1 1 0 3 1 1 1

1 1 1 1 1 1 1 1 2 0 0 0




The coordinates of (bi) with respect to the ordered basis {α1, . . . , α4}
are given by the columns of

(4.6) (ggt)−1gBt =




2 1 1 1 1 0 0 1 1 1 1 0

3 3 2 2 1 1 1 1 2 0 1 1

4 4 4 2 2 2 2 2 2 0 0 0

2 2 2 0 0 0 2 2 2 0 0 0




That is, a1 = α1+2α2+3α3+α4, etc. From this it is easy to write down

the ∆+(k)′s for (F4, αi) for 1 ≤ i ≤ 4. Next, let us determine Ñα,±β.
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Lemma 4.2. Let α, β be positive roots.

(4.7) Ñα,β =

{
sgn(Nα,β), if α, β ∈ A, and |α+ β|2 = 1,√
2 sgn(Nα,β), otherwise.

If α− β 6= 0, then

(4.8) Ñα,−β =

{
sgn(Nα,−β), if α, β ∈ A, and |α− β|2 = 1,√
2 sgn(Nα,−β), otherwise.

Proof. First note that a root α is in A or −α is in A if and only if
||α||2 = 1, and it is in B or −α is in B if and only if ||α||2 = 2.

To prove (4.7), it is sufficient to consider the case that α+β is a root.
Suppose α, β ∈ A, and ||α+ β||2 = 1, then (α, β) = −1

2 . Suppose α− β

is also a root then ||α − β||2 = 1 or 2, and (α, β) = 1
2 or 0, which is

impossible. Hence Nα,β = ±1. In this case,

Ñα,β =
|α||β|
|α+ β|Nα,β = sgn(Nα,β).

Suppose ||α+β||2 = 2; then (α, β) = 0, and α−β is also a root (see [11,
p. 324]). Moreover, ||α − 2β||2 = 5 and so α − 2β is not a root. Hence

Nα,β = ±2. Then Ñα,β =
√
2 sgn(Nα,β).

Suppose α ∈ A, β ∈ B, and ||α+β||2 = 1; then (α, β) = −1. Suppose
α − β is also a root; then ||α − β||2 = 1, or 2, and (α, β) = 1 or 1

2 .

Hence α − β is not a root. In this case, Ñα,β =
√
2 sgn(Nα,β). Suppose

||α + β||2 = 2, then (α, β) = −1
2 . That (α, β) is an integer. Hence this

is impossible.
Suppose α, β ∈ B, and ||α + β||2 = 1; then (α, β) = −3

2 . This is

impossible. Hence ||α + β||2 = 2 and (α, β) = −1. As before, we can

prove that α−β is not a root. So Nα,β = ±1 and Ñα,β =
√
2 sgn(Nα,β).

This completes the proof of (4.7). The proof of (4.8) is similar.
q.e.d.

4.2.2. The space (F4, α1).

∆+
1 (1) ={a1, a2, a3, a4, a9, a10, b2, b3, b4, b5, b8, b9, b10, b11}

∆+
1 (2) ={b1}

(4.9)

∆+
1 (k) = ∅, for k ≥ 3.





dim = 15,Ric = 8g,
4 largest eigenvalues of M1 are 8, 4.5, 4.5, 4.5,
eigenvalues of M2 are at most 4.9142 (using Lemma 2.7).

Thus the space has QB > 0.
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4.2.3. The space (F4, α2).

∆+
2 (1) ={a2, a4, a5, a7, a10, a11; b5, b6, b7, b8, b11, b12}

∆+
2 (2) ={a1, a3, a9, b3, b4, b9}

∆+
2 (3) ={b1, b2}.

(4.10)

∆+
2 (k) = ∅, for k ≥ 4.





dim = 20,Ric = 5g,
4 largest eigenvalues of M1 are 5, 4.8941, 4.8941, 4.6543,
eigenvalues of M2 are less than 5.

(The estimate for M2 is obtained by using µ = 5 and s = 4 in Lemma
2.8, in which case the maximum weighted row sum is 4.9822. When
we take s = 10, then the maximal weighted row sum actually becomes
4.8070.)

Thus the space has QB > 0.

4.2.4. The space (F4, α3).

∆+
3 (1) ={a4, a6, a7, a10, a11, a12}

∆+
3 (2) ={a2, a3, a5, b4, . . . , b9}

∆+
3 (3) ={a1, a9}

∆+
3 (4) ={b1, b2, b3}.

(4.11)

∆+
3 (k) = ∅, for k ≥ 5.
{

dim = 20,Ric = 7/2g,
4 largest eigenvalues of M1 are 3.6888, 3.5, 2.4137, 2.4137.

Thus the space does not have QB ≥ 0.

4.2.5. The space (F4, α4).

∆+
4 (1) ={a1, .., a8}

∆+
4 (2) ={a9; b1, b2, b3, b7, b8, b9}.

(4.12)

∆+
4 (k) = ∅, for k ≥ 3.





dim = 15,Ric = 11/2g,
4 largest eigenvalues of M1 are 5.5, 2.1328, 2.1328, 2.1328,
eigenvalues of M2 are at most 3.9571 (using Lemma 2.7).

Thus the space has QB > 0.

4.3. The spaces (E6, αi).
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4.3.1. Root system. Consider the subspace V of R8 such that ξ6 =
ξ7 = −ξ8. The positive roots in V are ±εi+ εj, 1 ≤ i < j ≤ 5 (total 20),
and

1

2
(ε8 − ε7 − ε6 +

5∑

i=1

(−1)ν(i)εi)

so that
∑5

1 ν(i) is even, i.e. the number of minus signs is even (total 16).
Let

A =(ai)
10
i=1 =




ε1 + ε2
ε1 + ε3
ε1 + ε4
ε1 + ε5
ε2 + ε3
ε2 + ε4
ε2 + ε5
ε3 + ε4
ε3 + ε5
ε4 + ε5




, B =(bi)
10
i=1 =




−ε1 + ε2
−ε1 + ε3
−ε1 + ε4
−ε1 + ε5
−ε2 + ε3
−ε2 + ε4
−ε2 + ε5
−ε3 + ε4
−ε3 + ε5
−ε4 + ε5




(4.13)

C =(ci)
10
i=1 =

1

2




ε8 − ε7 − ε6 − ε1 − ε2 + ε3 + ε4 + ε5
ε8 − ε7 − ε6 − ε1 + ε2 − ε3 + ε4 + ε5
ε8 − ε7 − ε6 − ε1 + ε2 + ε3 − ε4 + ε5
ε8 − ε7 − ε6 − ε1 + ε2 + ε3 + ε4 − ε5
ε8 − ε7 − ε6 + ε1 − ε2 − ε3 + ε4 + ε5
ε8 − ε7 − ε6 + ε1 − ε2 + ε3 − ε4 + ε5
ε8 − ε7 − ε6 + ε1 − ε2 + ε3 + ε4 − ε5
ε8 − ε7 − ε6 + ε1 + ε2 − ε3 − ε4 + ε5
ε8 − ε7 − ε6 + ε1 + ε2 − ε3 + ε4 − ε5
ε8 − ε7 − ε6 + ε1 + ε2 + ε3 − ε4 − ε5




(4.14)

D =




d1
d2
d3
d4
d5
d6




=
1

2




ε8 − ε7 − ε6 + ε1 + ε2 + ε3 + ε4 + ε5
ε8 − ε7 − ε6 + ε1 − ε2 − ε3 − ε4 − ε5
ε8 − ε7 − ε6 − ε1 + ε2 − ε3 − ε4 − ε5
ε8 − ε7 − ε6 − ε1 − ε2 + ε3 − ε4 − ε5
ε8 − ε7 − ε6 − ε1 − ε2 − ε3 + ε4 − ε5
ε8 − ε7 − ε6 − ε1 − ε2 − ε3 − ε4 + ε5




(4.15)

Simple positive roots are: α1 = d2, α2 = a1, α3 = b1, α4 = b5, α5 =
b8, α6 = b10. The matrix for (αi) is
(4.16)

g =




1/2 −1/2 −1/2 −1/2 −1/2 −1/2 −1/2 1/2
1 1 0 0 0 0 0 0
−1 1 0 0 0 0 0 0
0 −1 1 0 0 0 0 0
0 0 −1 1 0 0 0 0
0 0 0 −1 1 0 0 0
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The coordinates of ai relative to the ordered basis {α1, . . . , α6} are the
columns of

(4.17) (ggt)−1gAt =




0 0 0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1 1 1
0 0 0 0 1 1 1 1 1 1
0 1 1 1 1 1 1 2 2 2
0 0 1 1 0 1 1 1 1 2
0 0 0 1 0 0 1 0 1 1




The coordinates of bi relative to the ordered basis {α1, . . . , α6} are the
columns of

(4.18) (ggt)−1gBt =




0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
1 1 1 1 0 0 0 0 0 0
0 1 1 1 1 1 1 0 0 0
0 0 1 1 0 1 1 1 1 0
0 0 0 1 0 0 1 0 1 1




The coordinates of ci relative to the ordered basis {α1, . . . , α6} are the
columns of

(4.19) (ggt)−1gCt =




1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1
2 2 2 2 1 1 1 1 1 1
3 2 2 2 2 2 2 1 1 1
2 2 1 1 2 1 1 1 1 0
1 1 1 0 1 1 0 1 0 0




The coordinates of di relative to the ordered basis {α1, . . . , α6} are the
columns of

(4.20) (ggt)−1gDt =




1 1 1 1 1 1
2 0 0 0 0 0
2 0 1 1 1 1
3 0 0 1 1 1
2 0 0 0 1 1
1 0 0 0 0 1




We can determine Ñα,β as before.

Lemma 4.3. Let α, β be positive roots; then

(4.21) Ñα,β =
√
2 sgn(Nα,β).

If α− β 6= 0, then

(4.22) Ñα,−β =
√
2 sgn(Nα,−β).

Proof. The proof is similar to the proof of Lemma 4.2, using the fact
that if α is a root, then |α|2 = 2. q.e.d.
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Since (E6, α1) and (E6, α6) are Hermitian symmetric spaces, we only
consider (E6, αi), 2 ≤ i ≤ 5 below.

4.3.2. The space (E6, α2).

∆+
2 (1) ={a1, . . . , a10; c1, . . . , c10}

∆+
2 (2) ={d1}

(4.23)

∆+
2 (k) = ∅, for k ≥ 3.





dim = 21,Ric = 11g,
4 largest eigenvalues of M1 are 5.5000, 5.5000, 5.5000, 11.0000,
eigenvalues of M2 are at most 5.5 (using Lemma 2.7).

Thus the space has QB > 0.

4.4. The space (E6, α3).

∆+
3 (1) ={a5, . . . , a10; b1, . . . , b4; c5, . . . , c10; d3, . . . , d6}

∆+
3 (2) ={c1, . . . , c4; d1}

(4.24)

∆+
3 (k) = ∅, for k ≥ 3.





dim = 25,Ric = 9g,
4 largest eigenvalues of M1 are 5.3117, 5.3117, 8.5000, 9.0000,
eigenvalues of M2 are at most 8.5 (using Lemma 2.7).

Thus the space has QB > 0.

4.4.1. The space (E6, α4).

∆+
4 (1) ={a2, . . . , a7; b2, . . . , b7; c8, . . . , c10; d4, . . . , d6}

∆+
4 (2) ={a8, . . . , a10; c2, . . . , c7}

∆+
4 (3) ={c1, d1}.

(4.25)

∆+
4 (k) = ∅, for k ≥ 4.
{

dim = 29,Ric = 7g,
4 largest eigenvalues of M1 are 5.8226, 5.8226, 7.0000, 7.1468.

The space does not have QB ≥ 0.

4.4.2. The space (E6, α5).

∆+
5 (1) ={a3, a4, a6, . . . , a9; b3, b4, b6, . . . , b9; c3, c4, c6, . . . , c9; d5, d6}

∆+
5 (2) ={a10; c1, c2, c5; d1}

(4.26)

∆+
5 (k) = ∅, for k ≥ 3.
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dim = 25,Ric = 9g,
4 largest eigenvalues of M1 are 5.3117, 5.3117, 8.5000, 9.0000,
eigenvalues of M2 are at most 8.5 (using Lemma 2.7).

Thus the space has QB > 0.

4.5. The spaces (E7, αi).

4.5.1. Root system. Consider the subspace V of R8, orthogonal to
ε7 + ε8. The positive roots in V are ±εi + εj , 1 ≤ i < j ≤ 6 (total 30),
−ε7 + ε8, and

1

2
(ε8 − ε7 +

6∑

i=1

(−1)ν(i)εi)

so that
∑6

1 ν(i) is odd, i.e. the number of minus signs, is odd (total 32).
Let

A =(ai)
15

i=1
=




ε1 + ε2
ε1 + ε3
ε1 + ε4
ε1 + ε5
ε1 + ε6
ε2 + ε3
ε2 + ε4
ε2 + ε5
ε2 + ε6
ε3 + ε4
ε3 + ε5
ε3 + ε6
ε4 + ε5
ε4 + ε6
ε5 + ε6




, B =(bi)
16

i=1
=




−ε1 + ε2
−ε1 + ε3
−ε1 + ε4
−ε1 + ε5
−ε1 + ε6
−ε2 + ε3
−ε2 + ε4
−ε2 + ε5
−ε2 + ε6
−ε3 + ε4
−ε3 + ε5
−ε3 + ε6
−ε4 + ε5
−ε4 + ε6
−ε5 + ε6
−ε7 + ε8




(4.27)

C =




c1
c2
c3
c4
c5
c6




=
1

2




ε8 − ε7 − ε1 + ε2 + ε3 + ε4 + ε5 + ε6
ε8 − ε7 + ε1 − ε2 + ε3 + ε4 + ε5 + ε6
ε8 − ε7 + ε1 + ε2 − ε3 + ε4 + ε5 + ε6
ε8 − ε7 + ε1 + ε2 + ε3 − ε4 + ε5 + ε6
ε8 − ε7 + ε1 + ε2 + ε3 + ε4 − ε5 + ε6
ε8 − ε7 + ε1 + ε2 + ε3 + ε4 + ε5 − ε6




(4.28)
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D =
(
di

)20
i=1

=
1

2




ε8 − ε7 − ε1 − ε2 − ε3 + ε4 + ε5 + ε6
ε8 − ε7 − ε1 − ε2 + ε3 − ε4 + ε5 + ε6
ε8 − ε7 − ε1 − ε2 + ε3 + ε4 − ε5 + ε6
ε8 − ε7 − ε1 − ε2 + ε3 + ε4 + ε5 − ε6
ε8 − ε7 − ε1 + ε2 − ε3 − ε4 + ε5 + ε6
ε8 − ε7 − ε1 + ε2 − ε3 + ε4 − ε5 + ε6
ε8 − ε7 − ε1 + ε2 − ε3 + ε4 + ε5 − ε6
ε8 − ε7 − ε1 + ε2 + ε3 − ε4 − ε5 + ε6
ε8 − ε7 − ε1 + ε2 + ε3 − ε4 + ε5 − ε6
ε8 − ε7 − ε1 + ε2 + ε3 + ε4 − ε5 − ε6
ε8 − ε7 + ε1 − ε2 − ε3 − ε4 + ε5 + ε6
ε8 − ε7 + ε1 − ε2 − ε3 + ε4 − ε5 + ε6
ε8 − ε7 + ε1 − ε2 − ε3 + ε4 + ε5 − ε6
ε8 − ε7 + ε1 − ε2 + ε3 − ε4 − ε5 + ε6
ε8 − ε7 + ε1 − ε2 + ε3 − ε4 + ε5 − ε6
ε8 − ε7 + ε1 − ε2 + ε3 + ε4 − ε5 − ε6
ε8 − ε7 + ε1 + ε2 − ε3 − ε4 − ε5 + ε6
ε8 − ε7 + ε1 + ε2 − ε3 − ε4 + ε5 − ε6
ε8 − ε7 + ε1 + ε2 − ε3 + ε4 − ε5 − ε6
ε8 − ε7 + ε1 + ε2 + ε3 − ε4 − ε5 − ε6




(4.29)

E =




e1
e2
e3
e4
e5
e6




=
1

2




ε8 − ε7 + ε1 − ε2 − ε3 − ε4 − ε5 − ε6
ε8 − ε7 − ε1 + ε2 − ε3 − ε4 − ε5 − ε6
ε8 − ε7 − ε1 − ε2 + ε3 − ε4 − ε5 − ε6
ε8 − ε7 − ε1 − ε2 − ε3 + ε4 − ε5 − ε6
ε8 − ε7 − ε1 − ε2 − ε3 − ε4 + ε5 − ε6
ε8 − ε7 − ε1 − ε2 − ε3 − ε4 − ε5 + ε6




(4.30)

Simple positive roots are: α1 = e1, α2 = a1, α3 = b1, α4 = b6, α5 =
b10, α6 = b13, α7 = b15. The matrix for (αi) is:
(4.31)

g =




1/2 −1/2 −1/2 −1/2 −1/2 −1/2 −1/2 1/2
1 1 0 0 0 0 0 0
−1 1 0 0 0 0 0 0
0 −1 1 0 0 0 0 0
0 0 −1 1 0 0 0 0
0 0 0 −1 1 0 0 0
0 0 0 0 −1 1 0 0
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The coordinates of (ai) with respect to the ordered basis {α1, . . . , α7}
are given by the columns of
(4.32)

(ggt)−1gAt =




0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 0 0 0 0 1 1 1 1 1 1 1 1 1 1

0 1 1 1 1 1 1 1 1 2 2 2 2 2 2

0 0 1 1 1 0 1 1 1 1 1 1 2 2 2

0 0 0 1 1 0 0 1 1 0 1 1 1 1 2

0 0 0 0 1 0 0 0 1 0 0 1 0 1 1




The coordinates of (bi) with respect to the ordered basis {α1, . . . , α7}
are given by the columns of

(4.33)

(ggt)−1gBt =




0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2

1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 3

0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 4

0 0 1 1 1 0 1 1 1 1 1 1 0 0 0 3

0 0 0 1 1 0 0 1 1 0 1 1 1 1 0 2

0 0 0 0 1 0 0 0 1 0 0 1 0 1 1 1




The coordinates of (ci) with respect to the ordered basis {α1, . . . , α7}
are given by the columns of

(4.34) (ggt)−1gCt =




1 1 1 1 1 1

2 2 2 2 2 2

3 2 2 2 2 2

4 4 3 3 3 3

3 3 3 2 2 2

2 2 2 2 1 1

1 1 1 1 1 0
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The coordinates of (di) with respect to the ordered basis {α1, . . . , α7}
are given by the columns of (ggt)−1gDt, which are:
(4.35)


1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1

3 3 3 3 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1

3 2 2 2 2 2 2 1 1 1 2 2 2 1 1 1 1 1 1 0

2 2 1 1 2 1 1 1 1 0 2 1 1 1 1 0 1 1 0 0

1 1 1 0 1 1 0 1 0 0 1 1 0 1 0 0 1 0 0 0




The coordinates of (ei) with respect to the ordered basis {α1, . . . , α7}
are given by the columns of

(4.36) (ggt)−1gEt =




1 1 1 1 1 1

0 0 0 0 0 0

0 1 1 1 1 1

0 0 1 1 1 1

0 0 0 1 1 1

0 0 0 0 1 1

0 0 0 0 0 1




Since α is a root implies |α|2 = 2, it is easy to see that Lemma 4.3 is
still true in this case. Note that (E7, α7) is Hermitian symmetric.

4.5.2. The space (E7, α1).

∆+
1 (1) ={c1, . . . , c6, d1, . . . , d20, e1, . . . , e6}

∆+
1 (2) ={b16},

(4.37)

∆+
1 (k) = ∅ for k ≥ 3.





dim = 33,Ric = 17g,
4 largest eigenvalues of M1 are 17, 7.5, 7.5, 7.5,
eigenvalues of M2 are at most 7.5 (using Lemma 2.7).

Thus the space has QB > 0.

4.5.3. The space (E7, α2).

∆+
2 (1) ={a1, . . . , a15, d1, . . . , d20}

∆+
2 (2) ={c1, . . . , c6, b16},

(4.38)
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∆+
2 (k) = ∅ for k ≥ 3.





dim = 42,Ric = 14g,
4 largest eigenvalues of M1 are 14, 8.012, 8.012, 8.012,
eigenvalues of M2 are at most 9 (using Lemma 2.7).

Thus the space has QB > 0.

4.5.4. The space (E7, α3).

∆+
3 (1) ={a6, . . . , a15, b1, . . . , b5, d11, . . . , d20, e2, . . . , e6}

∆+
3 (2) ={d1, . . . , d10, c2, . . . , c6}

∆+
3 (3) ={b16, c1}

(4.39)

∆+
3 (k) = ∅ for k ≥ 4.

{
dim = 47,Ric = 11g,
4 largest eigenvalues of M1 are 12.1411, 11, 7.6829, 7.6829.

Thus the space does not have QB ≥ 0.

4.5.5. The space (E7, α4).

∆+
4 (1) ={a2, . . . , a9, b2, . . . , b9, d17, . . . , d20, e3, . . . , e6}

∆+
4 (2) ={a10, . . . , a15, d5, . . . , d16}

∆+
4 (3) ={c3, . . . , c6, d1, . . . , d4}

∆+
4 (4) ={b16, c1, c2}

(4.40)

∆+
4 (k) = ∅ for k ≥ 5.

{
dim = 53, Ric = 8g,
4 largest eigenvalues of M1 are 9.5692, 8.1727, 8.1727, 8.

Thus the space does not have QB ≥ 0

4.5.6. (E7, α5).

∆+
5 (1) ={a3, . . . , a5, a7, . . . , a12, b3, . . . , b5, b7, . . . , b12, d8, . . . , d10, d14, . . . ,

d19, e4, . . . , e6}
∆+

5 (2) ={a13, . . . , a15, c4, . . . , c6, d2, . . . , d7, d11, . . . , d13}
∆+

5 (3) ={b16, c1, c2, c3, d1}

(4.41)

∆+
5 (k) = ∅ for k ≥ 4.
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dim = 50,Ric = 10g,
4 largest eigenvalues of M1 are 10, 9.7882, 9.7882, 8.0097,
eigenvalues of M2 are less than 10.

(The estimate for M2 is obtained by using µ = 10 and s = 1 in Lemma
2.8, in which case the maximum weighted row sum is 9.9806.)

Thus the space has QB > 0.

4.5.7. The space (E7, α6).

∆+
6 (1) ={a4, a5, a8, a9, a11, . . . , a14, b4, b5, b8, b9, b11, . . . , b14, c5, c6, d3, d4,

d6, . . . , d9, d12, . . . , d15, e5, e6, d17, d18}
∆+

6 (2) ={a15, b16, c1, c2, c3, c4, d1, d2, d5, d11}

(4.42)

∆+
6 (k) = ∅ for k ≥ 3.

{
dim = 42, Ric = 13g,
4 largest eigenvalues of M1 are 13.5, 13, 7.1504, 7.1504.

Thus the space does not have QB ≥ 0.

4.6. The spaces (E8, αi).

4.6.1. Root system. Let V = R
8. The positive roots in V are ±εi +

εj , 1 ≤ i < j ≤ 8 (total 56), and

1

2
(ε8 +

7∑

i=1

(−1)ν(i)εi)

so that
∑7

i=1 ν(i) is even, i.e. the number of minus signs is even (total
21 + 35 + 8 = 64). Let
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A =
(

ai

)28

i=1
=











































































































ε1 + ε2
ε1 + ε3
ε1 + ε4
ε1 + ε5
ε1 + ε6
ε1 + ε7
ε1 + ε8
ε2 + ε3
ε2 + ε4
ε2 + ε5
ε2 + ε6
ε2 + ε7
ε2 + ε8
ε3 + ε4
ε3 + ε5
ε3 + ε6
ε3 + ε7
ε3 + ε8
ε4 + ε5
ε4 + ε6
ε4 + ε7
ε4 + ε8
ε5 + ε6
ε5 + ε7
ε5 + ε8
ε6 + ε7
ε6 + ε8
ε7 + ε8











































































































, B =
(

bi
)28

i=1
=











































































































−ε1 + ε2
−ε1 + ε3
−ε1 + ε4
−ε1 + ε5
−ε1 + ε6
−ε1 + ε7
−ε1 + ε8
−ε2 + ε3
−ε2 + ε4
−ε2 + ε5
−ε2 + ε6
−ε2 + ε7
−ε2 + ε8
−ε3 + ε4
−ε3 + ε5
−ε3 + ε6
−ε3 + ε7
−ε3 + ε8
−ε4 + ε5
−ε4 + ε6
−ε4 + ε7
−ε4 + ε8
−ε5 + ε6
−ε5 + ε7
−ε5 + ε8
−ε6 + ε7
−ε6 + ε8
−ε7 + ε8











































































































(4.43)

C =
(

ci
)21

i=1
=













































































ε8 − ε1 − ε2 + ε3 + ε4 + ε5 + ε6 + ε7
ε8 − ε1 + ε2 − ε3 + ε4 + ε5 + ε6 + ε7
ε8 − ε1 + ε2 + ε3 − ε4 + ε5 + ε6 + ε7
ε8 − ε1 + ε2 + ε3 + ε4 − ε5 + ε6 + ε7
ε8 − ε1 + ε2 + ε3 + ε4 + ε5 − ε6 + ε7
ε8 − ε1 + ε2 + ε3 + ε4 + ε5 + ε6 − ε7
ε8 + ε1 − ε2 − ε3 + ε4 + ε5 + ε6 + ε7
ε8 + ε1 − ε2 + ε3 − ε4 + ε5 + ε6 + ε7
ε8 + ε1 − ε2 + ε3 + ε4 − ε5 + ε6 + ε7
ε8 + ε1 − ε2 + ε3 + ε4 + ε5 − ε6 + ε7
ε8 + ε1 − ε2 + ε3 + ε4 + ε5 + ε6 − ε7
ε8 + ε1 + ε2 − ε3 − ε4 + ε5 + ε6 + ε7
ε8 + ε1 + ε2 − ε3 + ε4 − ε5 + ε6 + ε7
ε8 + ε1 + ε2 − ε3 + ε4 + ε5 − ε6 + ε7
ε8 + ε1 + ε2 + ε3 + ε4 + ε5 + ε6 − ε7
ε8 + ε1 + ε2 + ε3 − ε4 − ε5 + ε6 + ε7
ε8 + ε1 + ε2 + ε3 − ε4 + ε5 − ε6 + ε7
ε8 + ε1 + ε2 + ε3 − ε4 + ε5 + ε6 − ε7
ε8 + ε1 + ε2 + ε3 + ε4 − ε5 − ε6 + ε7
ε8 + ε1 + ε2 + ε3 + ε4 − ε5 + ε6 − ε7
ε8 + ε1 + ε2 + ε3 + ε4 + ε5 − ε6 − ε7













































































(4.44)
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D =
(

di
)35

i=1
=

1

2







































































































































ε8 − ε1 − ε2 − ε3 − ε4 + ε5 + ε6 + ε7
ε8 − ε1 − ε2 − ε3 + ε4 − ε5 + ε6 + ε7
ε8 − ε1 − ε2 − ε3 + ε4 + ε5 − ε6 + ε7
ε8 − ε1 − ε2 − ε3 + ε4 + ε5 + ε6 − ε7
ε8 − ε1 − ε2 + ε3 − ε4 − ε5 + ε6 + ε7
ε8 − ε1 − ε2 + ε3 − ε4 + ε5 − ε6 + ε7
ε8 − ε1 − ε2 + ε3 − ε4 + ε5 + ε6 − ε7
ε8 − ε1 − ε2 + ε3 + ε4 − ε5 − ε6 + ε7
ε8 − ε1 − ε2 + ε3 + ε4 − ε5 + ε6 − ε7
ε8 − ε1 − ε2 + ε3 + ε4 + ε5 − ε6 − ε7
ε8 − ε1 + ε2 − ε3 − ε4 − ε5 + ε6 + ε7
ε8 − ε1 + ε2 − ε3 − ε4 + ε5 − ε6 + ε7
ε8 − ε1 + ε2 − ε3 − ε4 + ε5 + ε6 − ε7
ε8 − ε1 + ε2 − ε3 + ε4 − ε5 − ε6 + ε7
ε8 − ε1 + ε2 − ε3 + ε4 − ε5 + ε6 − ε7
ε8 − ε1 + ε2 − ε3 + ε4 + ε5 − ε6 − ε7
ε8 − ε1 + ε2 + ε3 − ε4 − ε5 − ε6 + ε7
ε8 − ε1 + ε2 + ε3 − ε4 − ε5 + ε6 − ε7
ε8 − ε1 + ε2 + ε3 − ε4 + ε5 − ε6 − ε7
ε8 − ε1 + ε2 + ε3 + ε4 − ε5 − ε6 − ε7
ε8 + ε1 − ε2 − ε3 − ε4 − ε5 + ε6 + ε7
ε8 + ε1 − ε2 − ε3 − ε4 + ε5 − ε6 + ε7
ε8 + ε1 − ε2 − ε3 − ε4 + ε5 + ε6 − ε7
ε8 + ε1 − ε2 − ε3 + ε4 − ε5 − ε6 + ε7
ε8 + ε1 − ε2 − ε3 + ε4 − ε5 + ε6 − ε7
ε8 + ε1 − ε2 − ε3 + ε4 + ε5 − ε6 − ε7
ε8 + ε1 − ε2 + ε3 − ε4 − ε5 − ε6 + ε7
ε8 + ε1 − ε2 + ε3 − ε4 − ε5 + ε6 − ε7
ε8 + ε1 − ε2 + ε3 − ε4 + ε5 − ε6 − ε7
ε8 + ε1 − ε2 + ε3 + ε4 − ε5 − ε6 − ε7
ε8 + ε1 + ε2 − ε3 − ε4 − ε5 − ε6 + ε7
ε8 + ε1 + ε2 − ε3 − ε4 − ε5 + ε6 − ε7
ε8 + ε1 + ε2 − ε3 − ε4 + ε5 − ε6 − ε7
ε8 + ε1 + ε2 − ε3 + ε4 − ε5 − ε6 − ε7
ε8 + ε1 + ε2 + ε3 − ε4 − ε5 − ε6 − ε7
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E =
(

ei
)8

i=1
=

1

2

























ε8 + ε1 + ε2 + ε3 + ε4 + ε5 + ε6 + ε7
ε8 + ε1 − ε2 − ε3 − ε4 − ε5 − ε6 − ε7
ε8 − ε1 + ε2 − ε3 − ε4 − ε5 − ε6 − ε7
ε8 − ε1 − ε2 + ε3 − ε4 − ε5 − ε6 − ε7
ε8 − ε1 − ε2 − ε3 + ε4 − ε5 − ε6 − ε7
ε8 − ε1 − ε2 − ε3 − ε4 + ε5 − ε6 − ε7
ε8 − ε1 − ε2 − ε3 − ε4 − ε5 + ε6 − ε7
ε8 − ε1 − ε2 − ε3 − ε4 − ε5 − ε6 + ε7

























(4.46)
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Simple positive roots are: α1 = e2, α2 = a1, α3 = b1, α4 = b8, α5 =
b14, α6 = b19, α7 = b23, α8 = b26. The matrix for (αi) is:

(4.47) g =




1/2 −1/2 −1/2 −1/2 −1/2 −1/2 −1/2 1/2
1 1 0 0 0 0 0 0
−1 1 0 0 0 0 0 0
0 −1 1 0 0 0 0 0
0 0 −1 1 0 0 0 0
0 0 0 −1 1 0 0 0
0 0 0 0 −1 1 0 0
0 0 0 0 0 −1 1 0




The coordinates of (ai) relative to the ordered basis {α1, . . . , α8} are
given by the rows of

(4.48)
(
(ggt)−1gAt

)t
=




0 1 0 0 0 0 0 0
0 1 0 1 0 0 0 0
0 1 0 1 1 0 0 0
0 1 0 1 1 1 0 0
0 1 0 1 1 1 1 0
0 1 0 1 1 1 1 1
2 3 3 5 4 3 2 1
0 1 1 1 0 0 0 0
0 1 1 1 1 0 0 0
0 1 1 1 1 1 0 0
0 1 1 1 1 1 1 0
0 1 1 1 1 1 1 1
2 3 4 5 4 3 2 1
0 1 1 2 1 0 0 0
0 1 1 2 1 1 0 0
0 1 1 2 1 1 1 0
0 1 1 2 1 1 1 1
2 3 4 6 4 3 2 1
0 1 1 2 2 1 0 0
0 1 1 2 2 1 1 0
0 1 1 2 2 1 1 1
2 3 4 6 5 3 2 1
0 1 1 2 2 2 1 0
0 1 1 2 2 2 1 1
2 3 4 6 5 4 2 1
0 1 1 2 2 2 2 1
2 3 4 6 5 4 3 1
2 3 4 6 5 4 3 2
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The coordinates of (bi) relative to the ordered basis {α1, . . . , α8} are
given by the rows of

(4.49)
(

(ggt)−1gBt
)t

=













































































































0 0 1 0 0 0 0 0
0 0 1 1 0 0 0 0
0 0 1 1 1 0 0 0
0 0 1 1 1 1 0 0
0 0 1 1 1 1 1 0
0 0 1 1 1 1 1 1
2 2 4 5 4 3 2 1
0 0 0 1 0 0 0 0
0 0 0 1 1 0 0 0
0 0 0 1 1 1 0 0
0 0 0 1 1 1 1 0
0 0 0 1 1 1 1 1
2 2 3 5 4 3 2 1
0 0 0 0 1 0 0 0
0 0 0 0 1 1 0 0
0 0 0 0 1 1 1 0
0 0 0 0 1 1 1 1
2 2 3 4 4 3 2 1
0 0 0 0 0 1 0 0
0 0 0 0 0 1 1 0
0 0 0 0 0 1 1 1
2 2 3 4 3 3 2 1
0 0 0 0 0 0 1 0
0 0 0 0 0 0 1 1
2 2 3 4 3 2 2 1
0 0 0 0 0 0 0 1
2 2 3 4 3 2 1 1
2 2 3 4 3 2 1 0













































































































The coordinates of (ci) relative to the ordered basis {α1, . . . , α8} are
given by the rows of

(4.50)
(

(ggt)−1gCt
)t

=















































































1 2 3 5 4 3 2 1
1 2 3 4 4 3 2 1
1 2 3 4 3 3 2 1
1 2 3 4 3 2 2 1
1 2 3 4 3 2 1 1
1 2 3 4 3 2 1 0
1 2 2 4 4 3 2 1
1 2 2 4 3 3 2 1
1 2 2 4 3 2 2 1
1 2 2 4 3 2 1 1
1 2 2 4 3 2 1 0
1 2 2 3 3 3 2 1
1 2 2 3 3 2 2 1
1 2 2 3 3 2 1 1
1 2 2 3 3 2 1 0
1 2 2 3 2 2 2 1
1 2 2 3 2 2 1 1
1 2 2 3 2 2 1 0
1 2 2 3 2 1 1 1
1 2 2 3 2 1 1 0
1 2 2 3 2 1 0 0
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The coordinates of (di) relative to the ordered basis {α1, . . . , α8} are
given by the rows of

(4.51)
(

(ggt)−1
gD

t
)t

=







































































































































1 1 2 3 3 3 2 1
1 1 2 3 3 2 2 1
1 1 2 3 3 2 1 1
1 1 2 3 3 2 1 0
1 1 2 3 2 2 2 1
1 1 2 3 2 2 1 1
1 1 2 3 2 2 1 0
1 1 2 3 2 1 1 1
1 1 2 3 2 1 1 0
1 1 2 3 2 1 0 0
1 1 2 2 2 2 2 1
1 1 2 2 2 2 1 1
1 1 2 2 2 2 1 0
1 1 2 2 2 1 1 1
1 1 2 2 2 1 1 0
1 1 2 2 2 1 0 0
1 1 2 2 1 1 1 1
1 1 2 2 1 1 1 0
1 1 2 2 1 1 0 0
1 1 2 2 1 0 0 0
1 1 1 2 2 2 2 1
1 1 1 2 2 2 1 1
1 1 1 2 2 2 1 0
1 1 1 2 2 1 1 1
1 1 1 2 2 1 1 0
1 1 1 2 2 1 0 0
1 1 1 2 1 1 1 1
1 1 1 2 1 1 1 0
1 1 1 2 1 1 0 0
1 1 1 2 1 0 0 0
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 0
1 1 1 1 1 1 0 0
1 1 1 1 1 0 0 0
1 1 1 1 0 0 0 0







































































































































The coordinates of (ei) relative to the ordered basis {α1, . . . , α8} are
given by the rows of

(4.52)
(

(ggt)−1
gE

t
)t

=

























1 3 3 5 4 3 2 1
1 0 0 0 0 0 0 0
1 0 1 0 0 0 0 0
1 0 1 1 0 0 0 0
1 0 1 1 1 0 0 0
1 0 1 1 1 1 0 0
1 0 1 1 1 1 1 0
1 0 1 1 1 1 1 1

























Since α as a root implies that |α|2 = 2, Lemma 4.3 is still true in this
case.
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4.6.2. The space (E8, α1).

∆+
1 (1) ={c1, . . . , c21; d1, . . . , d35; e1, . . . , e8}

∆+
1 (2) ={a7, a13, a18, a22, a25, a27, a28; b7, b13, b18, b22, b25, b27, b28}

(4.53)

∆+
1 (k) = ∅ for k ≥ 3.





dim = 78, Ric = 23g,
4 largest eigenvalues of M1 are 14.1102, 14.1102, 14.1102, 23,
eigenvalues of M2 are at most 14.5 (using Lemma 2.7).

Thus the space has QB > 0.

4.6.3. The space (E8, α2).

∆+
2 (1) ={a1, . . . , a6, a8, . . . , a12, a14, . . . , a17, a19, . . . , a21, a23, a24, a26;

d1, . . . , d35}
∆+

2 (2) ={b7, b13, b18, b22, b25, b27, b28, c1, . . . , c21}
∆+

2 (3) ={a7, a13, a18, a22, a25, a27, a28; e1}

(4.54)

∆+
2 (k) = ∅ for k ≥ 4.





dim = 92, Ric = 17g,
4 largest eigenvalues of M1 are 13.8336, 13.8336, 13.8336, 17.0000,
eigenvalues of M2 are not more than 15 (using Lemma 2.7).

Thus the space has QB > 0.

4.6.4. The space (E8, α3).

∆+
3 (1) ={a8, . . . , a12, a14, . . . , a17, a19, . . . , a21, a23, a24, a26; b1, . . . , b6;

d21, . . . , d35; e3, . . . , e8}
∆+

3 (2) ={c7, . . . , c21; d1, . . . , d20}
∆+

3 (3) ={a7; b13, b18, b22, b25, b27, b28; c1, . . . , c6; e1}
∆+

3 (4) ={a13, a18, a22, a25, a27, a28; b7}.

(4.55)

∆+
3 (k) = ∅ for k ≥ 5.

{
dim = 98, Ric = 13g,
4 largest eigenvalues of M1 are 11.3117, 11.3117, 13.0000, 16.9627.

Thus the space does not have QB ≥ 0.
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4.6.5. The space (E8, α4).

∆+
4 (1) ={a2, . . . , a6, a8, . . . , a12; b2, . . . , b6; b8, . . . , b12; d31, . . . , d35;

e4, . . . , e8}
∆+

4 (2) ={a14, . . . , a17, a19, . . . , a21, a23, a24, a26; d11, . . . , d30}
∆+

4 (3) ={c12, . . . , c21; d1, . . . , d10}
∆+

4 (4) ={b18, b22, b25, b27, b28; c2, . . . , c11}
∆+

4 (5) ={a7, a13, b7, b13, c1, e1}
∆+

4 (6) ={a18, a22, a25, a27, a28}.

(4.56)

∆+
4 (k) = ∅ for k ≥ 7.

{
dim = 106, Ric = 9g,
4 largest eigenvalues of M1 are 9.0798, 11.2147, 11.2147, 12.6168.

Thus the space does not have QB ≥ 0.

4.6.6. The space (E8, α5).

∆+
5 (1) ={a3, . . . , a6, a9, . . . , a12, a14, . . . , a17

b3, . . . , b6, b9, . . . , b12, b14, . . . , b17; d17, . . . , d20, d27, . . . , d34,

e5, . . . , e8}
∆+

5 (2) ={a19, . . . , a21, a23, a24, a26; c16, . . . , c21
d5, . . . , d16, d21, . . . , d26}

∆+
5 (3) ={b22, b25, b27, b28; c3, . . . , c6, c8, . . . , c15, d1, d2, d3, d4}

∆+
5 (4) ={a7, a13, a18; b7, b13, b18, c1, c2, c7; e1}

∆+
5 (5) ={a22, a25, a27, a28}.

(4.57)

∆+
5 (k) = ∅ for k ≥ 6.

{
dim = 104, Ric = 11g,
4 largest eigenvalues of M1 are 11.5575, 12.0012, 12.0012, 12.0012.

Thus the space does not have QB ≥ 0.
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4.6.7. The space (E8, α6).

∆+
6 (1) ={a4, . . . , a6, a10, . . . , a12, a15, . . . , a17, a19, . . . , a21;

b4, . . . , b6, b10, . . . , b12, b15, . . . , b17, b19, . . . , b21; c19, . . . , c21

d8, . . . , d10, d14, . . . , d19, d24, . . . , d29, d31, . . . , d33, e6, . . . , e8}
∆+

6 (2) ={a23, a24, a26; b25, b27, b28; c4, . . . , c6, c9, . . . , c11, c13, . . . , c18;
d2, . . . , d7, d11, . . . , d13, d21, . . . , d23}

∆+
6 (3) ={a7, a13, a18, a22; b7, b13, b18, b22; c1, . . . , c3, c7, c8, c12, d1, e1}

∆+
6 (4) ={a25, a27, a28}

(4.58)

∆+
6 (k) = ∅ for k ≥ 5.

{
dim = 97, Ric = 14g,
4 largest eigenvalues of M1 are 11.4257, 14.0000, 16.0721, 16.0721.

Thus the space does not satisfy QB ≥ 0.

4.6.8. The space (E8, α7).

∆+
7 (1) ={a5, a6, a11, a12, a16, a17, a20, a21; a23, a24;

b5, b6, b11, b12, b16, b17, b20, b21, b23, b24, b27, b28;

c5, c6, c10, c11, c14, c15, c17, . . . , c20;

d3, d4, d6, . . . , d9, d12, . . . , d15, d17, d18, d22, . . . , d25d27d28, d31, d32,

e7, e8}
∆+

7 (2) ={a7, a13, a18, a22, a25, a26; b7, b13, b18, b22, b25;
c1, . . . , c4, , c7, c8, c9, c12, c13, c16; d1, d2, d5, d11, d21, e1}

∆+
7 (3) ={a27, a28}

(4.59)

∆+
7 (k) = ∅ for k ≥ 4.

{
dim = 83, Ric = 19g,
4 largest eigenvalues of M1 are 11.4093, 11.4093, 19.0000, 22.1376.

Thus the space does not satisfy QB ≥ 0.

4.6.9. The space (E8, α8).

∆+
8 (1) ={a6, a7, a12, a13, a17, a18, a21, a22, a24, a25, a26, a27;

b6, b7, b12, b13, b17, b18, b21, b22, b24, b25, b26, b27

c1, . . . , c5, c7, . . . , c10, c12, . . . , c14, c16, c17, c19

d1, . . . , d3, d5, d6, d8, d11, d12, d14, d17, d21, d22, d24, d27, d31, e1, e8}
∆+

8 (2) ={a28}

(4.60)
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∆+
8 (k) = ∅ for k ≥ 3.





dim = 57, Ric = 29g,
4 largest eigenvalues of M1 are 11.5000, 11.5000, 11.5000, 29.0000,
eigenvalues of M2 are at most 11.5 (using Lemma 2.7).

Thus the space has QB > 0.

5. Appendix

We illustrate how we initialize the Kähler C-space (G2, α2), then
calculate bisectional curvatures and estimate the eigenvalues of M2 in
MAPLE. The main formulas used to calculate the curvatures will apply
to all the other cases. Actual MAPLE code below will be italicized.

5.1. Initializing (G2, α2). We begin by initializing the root system.
1. Begin by defining the positive root system in R

3, then define S as
the set of all positive and negative roots:

> a1:=[1,-1,0]; a2:=[-1,0,1]; a3:=[0,-1,1]; b1:=[-2,1,1]; b2:=[1,-2,1];
b3:=[-1,-1,2];
> S:={a1,. . . ,b1,. . . ,-a1,. . . ,-b1,. . . }

2. By expressing the positive roots in terms of the simple positive
roots, identify the corresponding sets ∆+

2 (1),∆
+
2 (2),∆

+
2 (3) (appearing

as m1,m2,m3 below). Refer to the ordered elements of ∆+
2 by either

C(i) or c(i) below, depending on how they are used. The function g(i)
is 1, 2, 3 depending on whether C(i) is in m1,m2, or m3 respectively.

> m1:={a2,a3,b1,b2};
> m2 := {b3};
> m3 := {};
> A := Matrix([a2, a3, b1, b2, b3]);
> C:=i − > convert(Row(A,i), list)
> c:=i − > Row(A,i)
> g:=i − >

if evalb(C(i) in m1) then 1
elif evalb(C(i) in m2) then 2
elif evalb(C(i) in m3) then 3 else 0 end if;

5.2. Bisectional curvature formula and matrix. Here we compute
the matrix M1 using Lemma 2.4.

1. We first need to define some basic functions appearing in Lemma
2.4. Below N(i, j) calculates NC(i),C(j), while T (i, j)N(i, j) calculates

ÑC(i),C(j). The function Nm(i, j) calculates NC(i),−C(j), while Tm(i, j)

Nm(i, j) calculates ÑC(i),−C(j) and the MAPLE codes for these are
similar.

> N:= (i,j) − >
if evalb(C(i)+C(j) in S and C(i)-2*C(j) in S) then 3
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elif evalb(C(i)+C(j) in S and C(i)-C(j) in S) then 2
elif evalb(C(i)+C(j) in S) then 1
else 0 end if;

> T:= (i,j) − >
if evalb(not(N(i,j)=0))
then sqrt(c(i).c(i))*sqrt(c(j).c(j))/sqrt((c(i)+c(j)).(c(i)+c(j)))
else 0 end if;

2. The matrix for bisectional curvature is given by

> B:= Matrix(5,5, (i,j) − >

if evalb(i ≤ j) then
1/g(j)*(c(i).c(j)+(1/2)*(g(i)/(g(i)+g(j)))*N(i,j)2*T(i,j)2 )

else
1/g(i)*(c(j).c(i)+(1/2)*(g(j)/(g(j)+g(i)))*N(j,i)2*T(j,i)2 ) end if);

5.3. General curvature formula. First we want to compute general
curvatures R(α, β̄, γ, δ̄) where α 6= β, γ 6= δ and where δ = α − β + γ,
which we may assume by Lemma 2.5. In the rest of the formulas in this
subsection, we identify a triple index (i, j, k) with the quadruple of roots

α = C(k), β = C(i), γ = C(j), δ = C(k)− C(i) + C(j).

In particular, given any (i, j, k), we always have δ = α− β + γ.
1. The function allroots(i, j, k) returns true or false depending on

whether δ is a root or not. Moreover, gd(i, j, k) = l if δ is in ml and is
zero otherwise, while D(i, j, k) = l if δ = C(l) and is zero otherwise.

> allroots:=(i,j,k) − > evalb(C(k)-C(i)+C(j) in (m1 union m2 union
m3))

> gd:=(i,j,k) − >
if C(k)-C(i)+C(j) in m1 then 1
elif C(k)-C(i)+C(j) in m2 then 2
elif C(k)-C(i)+C(j) in m3 then 3
else 0;

> D:=(i,j,k) − >
if C(k)-C(i)+C(j) =C(1) then 1
elif C(k)-C(i)+C(j) =C(2) then 2
elif C(k)-C(i)+C(j) =C(3) then 3
...
else 0 end if;

2. Now we define the coefficient functions used in Lemma 2.5. Below,
xi(j, k) for example is 1 if j < k, and zero otherwise.

> xi := (k,j) − > if j < k then 1 else 0 end if;
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> delta := (k,j) − > if k = j then 1 else 0 end if;
> coeff1 := (i,j,k,l) − > (k-j)*xi(k, j)-k*l/(i+k);
> coeff2 := (i,j,k,l) − > k*xi(i, j)+l*xi(j, i)+l*delta(i, j)*delta(k, l)+(j-
k)*xi(k, j);

3. Finally, given (i, j, k) we apply the formulas above and Lemma 2.5
to calculate curvature associated to α = C(k), β = C(i), γ = C(j), δ =
C(k) − C(i) + C(j). When α 6= β and δ is a root, then Rest(i, j, k)
is the upper estimate for |R(α, β̄, γ, δ̄)|, obtained by replacing the N ′s
and their coefficients in Lemma 2.5 by their absolute values. Otherwise
Rest(i, j, k) = 0.

> Rest:=(i,j,k) − >

if (allroots(i,j,k) and not(C(k) = C(i)) then

(1/2)*(1/(sqrt(g(k))*sqrt(g(i))*sqrt(g(j))*sqrt(gd(i, j, k)))*

(|(coeff1(g(k), g(i), g(j), gd(i, j, k))|*
T(k,j)*N(k,j)*T(i,D(i,j,k))*N(i,D(i,j,k))
+
|(coeff2(g(k), g(i), g(j), gd(i, j, k))|
*Tm(k,i)*Nm(k,i)*Tm(j,D(i,j,k))*Nm(j,D(i,j,k)))
else 0 end if;

5.4. Matrix of non-bisectional curvatures. Now we calculate the
25× 25 matrix Z as defined in (4.2).

1. First we ordered all pairs of the form (C(i), C(j)) in a list of length
25 using the two commands below. For example, LIST [1] returns the
pair [C(1), C(1)], while LIST [1][2] corresponds to the second compo-
nent, C(1), of LIST [1].

> AA:= Matrix(5,5, (i,j) − > [C(i), C(j)])

> LIST:= convert(AA, list)

2. Below, l1(i) = j provided LIST [i][1] = C(j). Similarly, l2(i) = j
provided LIST [i][2] = C(j), and its MAPLE code is similar.

> l1:= i − >
> if LIST[i][1]=C(1) then 1
> if LIST[i][1]=C(2) then 2

...

3. Now we calculate the matrix Z as defined in (4.2). Associate
0 ≤ i, j ≤ 25 to the quadruple [A,B,C,D] = [LIST [i][1], LIST [i][2],
LIST [j][1], LIST [j][2]]. Now if A 6= B, A = D, and B = C, then Zij =
|R(ABBA)|. If not in the previous case and A 6= B and A−B = D−C,
then Zij is the upper estimate for |R(A,B,C,D)|, obtained by replacing
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the N ′s and their coefficients in Lemma 2.5 by their absolute values (the
minimum appearing in the formula below is justified by the curvature
identity R(A,B,C,D) = R(C,B,A,D)). If not in the previous cases,
then Zij is zero.

> Z:= Matrix(25,25, (i,j) − >
if (evalb(not(LIST[i][1]=LIST[i][2])) and evalb(LIST[i][2]=LIST[j][1])

and evalb(LIST[i][1]=LIST[j][2]))
then |B[l2(i), l1(i)]|

elif (evalb(not(LIST[i][1]=LIST[i][2]))
and evalb(LIST[i][1]-LIST[i][2]=LIST[j][2]-LIST[j][1])

then evalf(min(Rest(l2(i), l1(j), l1(i)),Rest(l2(i), l1(i), l1(j))))

else 0 end if);

Now for the matrix Z, the weighted row sums in (2.15) of Lemma 2.8
are given by S0, S1, S2, . . . in the following commands.

>b0:=Matrix((25,1), (i,j) − >1):
>S0:=max(Z.b0)

>v1:=1/9*Z.b0
>b1:=Matrix((25,1), (i,j) − > min(1, v1[i,1])):
>S1:=max(Z.b1)

>v2:=1/9* Z.b1
>b2:=Matrix((25,1), (i,j) − > min(1, v2[i,1])):
>S2:=max(Z.b2)

...

5.5. The matrices B, Z for (G2, α2). Below, we give the matrix B of
bisectional curvatures and the matrix Z as calculated in MAPLE. For
the matrix ZAB,CD, the pairs AB are ordered into a list of 25 elements
as: (C(1), C(1)), (C(2), C(1)), (C(3), C(1)), . . . The matrix Z1 gives the
first 13 columns of Z, while Z2 gives the next 12.

B =




2 5/2 3 0 3/2

5/2 2 0 3 3/2

3 0 6 −3/2 3/2

0 3 −3/2 6 3/2

3/2 3/2 3/2 3/2 3
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Z1 =















































































































































0 0 0 0 0 0 0 0 0 0 0 0 0

0 0
√
2
√
6 0 0 5/2 0 0 0 0 0 0 0

0
√
2
√
6 0 0 0 0 0 0 3/2 0 3 0 0

0 0 0 0 0 0 0 3/2 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 5/2 0 0 0 0 0 0
√
2
√
6 0

√
2
√
6 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 3/2 0 0 0 0 0 0 0 0 0

0 0 3/2 0 0
√
2
√
6 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 3 0 0
√
2
√
6 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 3/2 0

0
√
2
√
6 0 0 0 0 0 0 3 0 3/2 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 3/2 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 3/2 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0
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Z2 =













































































































































0 0 0 0 0 0 0 0 0 0 0 0

0 0 0
√
2
√
6 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 3/2 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 3 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 3/2 0 0 0

0 0 0 3/2 0 0 0 0 0 0 0 0

0 0 3/2 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 3/2 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 3/2 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

3/2 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 3/2 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 3/2 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 3/2 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0
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