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KAHLER C-SPACES AND QUADRATIC
BISECTIONAL CURVATURE
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Abstract

In this article we give necessary and sufficient conditions for
an irreducible Kéhler C-space with b = 1 to have nonnegative
or positive quadratic bisectional curvature, assuming the space is
not Hermitian symmetric. In the cases of the five exceptional Lie
groups Fg, E7, Eg, Fy, Go, the computer package MAPLE is used
to assist our calculations. The results are related to two conjectures
of Li-Wu-Zheng.

1. Introduction

Let (M™,g) be a Kdhler manifold of complex dimension n and let
o € M. M is said to have nonnegative quadratic orthogonal bisectional
curvature at o if for any unitary frame e; at o and real numbers & we
have

(1.1) Y R =€) >0.
Z"j
Here R;;; = R(e;, €;,¢€;,€;). Recall that M is said to have nonnegative

bisectional curvature at o if for any X,Y € To(l’o)(M), R(X,X,Y,Y)>
0, and M is said to have nonnegative orthogonal bisectional curvature at
oif R(X,X,Y,Y) > 0 for all unitary pairs X,Y € To(l’o) (M). Following
[16] we abbreviate by @B > 0 for nonnegative quadratic orthogonal
bisectional curvature, B > 0 for nonnegative bisectional curvature, and
Bt > 0 for nonnegative orthogonal bisectional curvature. It is obvious
that B> 0= B+ > 0= QB > 0. Note that in dimension n = 2, the
conditions B+ > 0 and QB > 0 are the same.

It is well-known that compact manifolds with B > 0 have been com-
pletely classified by the works [18, 20, 14, 1, 17]. By these works, we
know that any compact simply connected irreducible Kahler manifold
with B > 0 is either biholomorphic to CP" or is isometrically biholo-
morphic to an irreducible compact Hermitian symmetric space of rank
at least 2. While the condition B+ > 0 seems weaker, by the works of
Chen [10] (see also [22]) and Gu-Zhang [13] we know that a compact
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simply connected irreducible Kihler manifold with B+ > 0 is also either
biholomorphic to CP" or is isometrically biholomorphic to an irreducible
compact Hermitian symmetric space of rank at least 2. In this sense,
no new compact complex manifolds are introduced when we weaken the
condition B > 0 to the condition B+ > 0.

The condition @B > 0 was first considered by Wu-Yau-Zheng [24]
where they proved that on a compact Kéhler manifold with QB > 0
any class in the boundary of the Kéahler cone can be represented by
a smooth closed (1,1) form which is everywhere nonnegative. There
are other interesting properties satisfied by compact Kéahler manifolds
with @B > 0. A fundamental property of such manifolds, implicit from
earlier works [3] (see [8] for additional references) is that all harmonic
real (1,1) forms are parallel. Recently it has been proved in [8] that
the scalar curvature of such a manifold must be nonnegative, and if the
manifold is irreducible, then the first Chern class is positive.

The ultimate goal is to classify Kahler manifolds with @B > 0. For
the compact case, a partial classification of the de Rham factors of
the universal cover of such a manifold is given in [8]. Hence it remains
to study the structure of compact simply connected irreducible K&hler
manifolds with @B > 0. By the parallelness of real harmonic (1,1)
forms mentioned above, such Kéhler manifolds also have by = 1 (see
[14]). In view of the above results for B+ > 0, one may wonder if any
new compact complex manifolds are introduced when we weaken the
condition B > 0 to the condition QB > 0. To address this, Li, Wu,
and Zheng [16] constructed the first example of a simply connected
irreducible compact Kéhler manifold having QB > 0, which does not
support a Kihler metric having B+ > 0. Their example is (B3, az), a
classical Kéhler C'-space with second Betti number by = 1. It was further
conjectured that all Kahler C-spaces with second Betti number by = 1
must have @B > 0, and the following conjectures were raised in [16]:

Conjecture 1.1. (1) Any Kdihler C-space with by = 1 satisfies
@B > 0 everywhere.

(2) A compact simply connected irreducible Kdhler manifold (M™, g)
with QB > 0 is biholomorphic to a Kdhler C-space with by = 1.

(3) In (2), if the manifold is not CP", then g is a constant multiple
of the standard metric.

A Kahler C-space is a compact simply connected Kéahler manifold
such that the group of holomorphic isometries acts transitively on the
manifold; see [21, 15]. There is a complete classification of Kéhler C-
spaces with by = 1, and this is associated with the classification of sim-
ple complex Lie algebras which are just A,, = sl,11, By, = 502,41,Cp =
5Pa,, Dn = 502, and the exceptional cases Eg, E7, Eg, Fy, Go. Motivated
by the work [16], we establish the following theorems related to conjec-
tures (1) and (3). For the classical types we have the following:
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Theorem 1.1.

(i) The Kdihler C-space (Bp,ap), n >3, 1 < p < n satisfies QB > 0
if and only if bp + 1 < 4n. Moreover, QB > 0 if and only if
op+ 1 < d4n.

(ii) The Kdhler C-space (Cp, ), n >3, 1 < p < n satisfies QB > 0
if and only if bp < 4n + 3. Moreover, QB > 0 if and only if
op < 4n + 3.

(iii) The Kdhler C-space (Dy,0p), n > 4,1 < p < n — 1 satisfies
QB > 0 if and only if 5p+ 3 < 4n. Moreover, QB > 0 if and only
if 5p + 3 < 4n.

For the exceptional cases, we have the following:

Theorem 1.2.

(i) The Kdhler C-space (Ga,a2) satisfies QB > 0.

(ii) The Kdhler C-space (Fy,0p), 1 < p < 4 satisfies QB > 0 iff
p=1,2,4, in which cases QB > 0.

(i) The Kdihler C-space (Eg,0p), 2 < p < 5 satisfies QB > 0 iff
p=2,3,5, in which cases QB > 0.

(iv) The Kdhler C-space (E7,0p), 1 < p < 6 satisfies QB > 0 iff
p=1,2,5, in which cases QB > 0.

(v) The Kdhler C-space (Eg,ap), 1 < p < 8 satisfies QB > 0 iff
p=1,2,8, in which cases QB > 0.

We only consider Kéhler C-spaces that are not Hermitian symmetric.
According to Itoh [15], Theorem 1.1 and 1.2 include all such Kéahler C-
spaces with by = 1. Here @B > 0 means that (1.1) is a strict inequality
unless all &; are the same. Note that if QB > 0, then a small perturbation
of the Kahler metric will still satisfy @B > 0; see Lemma 2.6 (and
Remark 2.1). Hence conjecture (1) for the classical types is true only
under some restrictions mentioned in Theorem 1.1, while conjecture (3)
is too strong. Conjecture (2), however, may still be true in general.

Theorems 1.1 and 1.2 give more information on the curvature prop-
erties of Kahler C-spaces with by = 1. It is well-known that CP™ has
B > 0, and Hermitian symmetric spaces with rank at least 2 have B > 0
but not B > 0. All other Kéhler C-spaces which are non-Hermitian sym-
metric spaces do not have B > 0 or even BL > 0. On the other hand,
Itoh [15] proved that a Kéhler C-space with by = 1 is a Hermitian
symmetric space if and only if its curvature operator has at most two
distinct eigenvalues. Our results show that as far as the sign of curva-
ture is concerned, Kéahler C'-spaces with by = 1 which are not Hermitian
symmetric are further divided into two groups: some of them satisfy
@B > 0 and others do not have such a property.
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We give here an idea of the proof and refer to §2 for details. Consider
a Lie algebra as above, and a corresponding system A C R™ of root vec-
tors in R™ where the induced Killing form is induced by the standard
Fuclidean inner product. Then each associated Kéahler C-space corre-
sponds to a certain subset of m* C A representing a unitary frame in
which curvature approximation reduces to taking sums and inner prod-
ucts of the vectors in m* C A (we can calculate exact values in the case
of bisectional curvatures). We combine this with symmetry, counting,
and eigenvalue estimate arguments to obtain Theorem 1.1. For the five
exceptional cases in Theorem 1.2, the computer package MAPLE was
used to assist our calculations and details are provided in the appendix.
Theorem 1.1 was proved in an earlier version of this article [9], and
while similar in spirit, our proof here is somewhat simpler, eliminating
the need for many calculations from the appendix of [9].

The organization of the paper is as follows. In §2 we will state basic
properties and formulae for Kéhler C-spaces that will be used through-
out the paper. We will discuss the conditions QB > 0 and @B > 0 in
general, then in relation to the Kéhler C-spaces. In §3 we prove Theorem
1.1 for the classical Kahler C-spaces; details for some of the calculations
in these sections can be found in the appendices of [9], which is an ear-
lier version of this article. In §4 we present the details of our results on
Theorem 1.2 for the exceptional Kéahler C-spaces, with details of our
use of MAPLE provided in the appendix.
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2. Basic facts

2.1. The Kéihler C-spaces and curvature formulae. Consider a
compact Kéhler C-space (M,w) with transitive holomorphic isometry
group G, and suppose by(M) = 1. Then any real (1,1) form p on M
is given by p = cw + +/—199f for some constant c¢ and function f
where w is the Kahler form. Now if p is G invariant, then A, f is also
G invariant and hence constant on M. Thus f is constant on M and
p = cw. In particular, g is the unique G invariant Kéhler metric on M
and it is Kéahler Einstein. For more discussions on Kéahler C-space, see
2, 15, 21, 16].

Kahler C-spaces with second Betti number bs = 1 are obtained as
follows (see [4, 5, 6, 15, 16, 21]). Let G be a simply connected, complex
Lie group, and let g be its Lie algebra with Cartan subalgebra h and
corresponding root system A C b*. Then g = h &P, CEq, where E,
is a root vector of a. Let | = dim¢ h and fix a fundamental root system
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ai,...,op C A. This gives an ordering of roots in A. Let A* and A~ be

the set of positive and negative roots, respectively. Let K be the Killing

form for g. Then we may choose root vectors {E,},a« € A such that
K(EQ,E_Q) = —1,0& c A+; [Ea,EB] = na,BEoe-i-B

such that no,g = n_q—g € R with n, 3 = 0 if a + 8 is not a root.
Together with a suitable basis in b, they form a Weyl canonical basis
for g. Now for any 1 < r <1, let

AF(k) ={D nioi € AT n. =k}, AF = AF(R).
i k>0
Let P be the subgroup whose Lie algebra is b & ®a€A\AZ.L CE,. Then
G/P is a complex homogeneous space having by = 1. Now let

W= @ CEumi— @ CE.i-to @ (CEGCEL
aeAf (k) Ay (k) a€AT(0)
Then m* = P, ,m; can be identified with the tangent space of G/P.
As given in [4, 15, 16|, the G-invariant Kéahler form on G/P is given
by:
Lemma 2.1.

(i) In a Weyl canonical basis, let w®, w® be the dual of E, and E, =
—E_o, a € Af. The G invariant Kdhler form on G/P is

g= ZZk Z w - w® :Z(_kK)|m§xm;'

k>0 aeAi(k) k>0

(i) [t,m] Cmy, [mp,m] C mp,, mf,my] Ct Ifk>1>0, then

mi,m ] cm! ,, [m, ,m]Ccm_,.

The Kahler C' space thus obtained is denoted as (g, ). Conversely,
every Kahler C' space with bs = 1 can be obtained by the construction.
Thus the set {eq := 1/VkE.}; @ € Af, k > 1 forms a unitary basis
for the tangent space of (g, ., ) in the metric g. We call this basis as a
Weyl frame. To compute the curvature tensor in this frame, we have the
following from Li-Wu-Zheng [16, Proposition 2.1], using the method in
[15]. For the sake of completeness, we give a proof.

Proposition 2.1. [Li-Wu-Zheng] Let X' € m}, Y7 € m;r, 7k e
m;’,Wl € ml+. Suppose i +k =75+ 1. Then
(2.1)

RX\YIZF W = (k- 5)é—j — M

) ) ) -7 1+ 2

(= (k= §)Eh—j + KEimj + 1€ + 16;;00) K (X', V7], (2%, W1)).
R(X\,YI,ZF W) =0ifi+k#j+1.

) KX, 24, (79, W)
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Here {; =1if g >0and § =0if ¢ <0.

Proof. Note that g(U,V) = —kK(U,V), on m\ x m_ etc.

Then [15, p. 43]
(2.2)
R(X', Y7, 28 Wi) =g(R(X", Y7 28, W)

=g([A(X"), A(Y7)]Z5, W) — g(A([IX", Y7 ]m) 2%, W)
- g([[Xia Yj]ta Zk]v Wl)?

where A(U)V =n//(n+n')[U,V]p+ if U € m},V emf,, and A(U)V =

[U,V]ms, for all U,V € m™; see [15, p. 45]. Here [U, V],+ is the com-
ponent of [U, V] in m™. Now if i + k =5 +1,

(2.3)
AGE), AFDLZF = (ACXAT) — AT)A(X) 2*
NI k > i
MOV, ZH]e) — AV (X, 24)
T g 0, 179,24 = 9, X, 2 e
Here each term is in m;r. Hence
(2.4)
o(IACX), A(VI)) 25, 7
= = (= )6 K (DX 79, 29, W) + (79, X, 24 7
= — (k= ) K (X 77, 24, W) + (79, X, 24, W)
= (k - j)&k—jK(Xi’ [[le Yj]’ Zk] + [[Zk’ Wl“v Y])
KLy i
+ H_—kK([ley ]7 [X 7Zk]])
= - (k - ])fk—jK([le ?jL [Zkv Wl])
‘ ki g1 195
(= d)6cs - 7 ) KX 24,17,

Now [X? Y], is in mj_j if i > j, and m;_; if j > i, and is 0 if i = 5. So

Also, [X%, Y]y = 0 unless i = j. If i = j, then [[X?, Y], Z*] € m].
Hence

g([(X*, Y9, ZF), W) = 6;56ma([[X7, Y], ZF), W)
= 160K ([Xi, Y9, [ 2", Wl]) .
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Also, R(X*, Y7, ZF W) =0if i+ k#j+1 q.e.d.

Lemma 2.2. Same notations as in Proposition 2.1. Assume X, Z, W
are canonical Weyl basis vectors and Z + W ; then

R(X,X,Z,W)=0.

Proof. Since i = j, the lemma is true if k # [ by Proposition 2.1.

Hence we assume k = [. We first assume that k& < . Then
k2
1+ k
Now let X = FE,, Z = Eg, W = E,, with 3 # 7. Note that E,=—-E_,.
Then [X, Z] = ng gFatps, (X, W] =nqFatry. Hence
K([X, Z], [X7 W]) = _na,ﬁna,’yK(EOH-B’ E—a—ﬁ)'

R(X,X,Z,W)=— K(X,Z),[ X, W)+ kK([X, X],[Z,W)).

If o« + 8 or o + 7 is not a root, then n,3 = 0 or n,, = 0 and
K([X,Z],[X,W]) = 0. Otherwise, both E,,3 and E,4, are canonical
Weyl basis vectors and are in mitrk by Lemma 2.1. Since § # ~, and K
is proportional to g on m:jrk xm;_ ., we also have K ([X, Z], (X, W]) =0.

On the other hand, by the fact that K([z,y],z) = K(z, [y, z]), we

have
(2.5) K([X,X],[Z,W]) = K(X,[X,[Z,W]).

Now [Z, W] = n57—’YEB—'yv (X, [Z,W]] = n—a,ﬁ—'ynﬁ,—'yE—a-tB—'y- I£5_7
or —a+ (3 — is not a root, then as before we have K (X, [X,[Z,W]]) =
0. Otherwise, by Lemma 2.1, [Z,W] € t and [X,[Z, W]] € m. Since
—a+ B — v # —a, so as before

K([X,X],[Z2,W]) = K(X,[X,[Z,W]) = 0.
Hence the lemma is true when k£ < 3.

Suppose i < k. Then it is equivalent to prove R(X,Y,Z, Z) = 0, but
assuming ¢ > k and X # Y. In this case,

_ _ k2
R(X7Y727Z) = _+
2

kK([X, Z),[Y,Z)) + kK([X,Y],[Z, Z]).

The previous argument implies the lemma is true in this case as well.
q.e.d.

To use the formula in Proposition 2.1, we need to compute the Lie
bracket and Killing form in the given Weyl basis. Now the Killing form
K is negative definite on h and thus induces a positive definite bilinear
form, denoted also by K, on the dual h*. We can then identify h* with R!
(or a subspace of some R™) so that K becomes the standard Euclidean
inner product and the root system is represented by a subset A C RE.
It turns out that a corresponding Weyl basis { E, }aea+ exists in which
the Lie bracket and Killing form are computed in terms of Euclidean
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inner products and addition of the vectors . We describe this in more
detail below.

Let g be a semi simple Lie algebra, and let A = {«,3,...} C R”
be a corresponding root system with standard inner product (-,-) cor-
responding to the induced Killing form K. To the positive roots there
corresponds a Chevalley basis {Xa, X—a, Hataca+ where for each a,
Xao, X_o are root vectors for «, —« respectively, H, € b, and the fol-
lowing relations are satisfied (see [19, p. 51]):

(2.6)
(Xa, X o] =Hq,
| NopXotp, ifa+pBisaroot, Nyg=—-N_q_3;
[Xa’XB]_{ 0, if a+ 8 # 0 is not a root.

Napg==x(p+1), pis the largest integer so that 8 — pa is a root.
[Ho, Xg] =B(Ha)Xp.
We also have:
(a) B(Ha) =222, [11, p. 337);

(@)’

(b) K (Ho, Ha) = 2K (X, X_q), [11, p. 207]
By these and [11, p. 207-208], we have the formulas

4
K(Hy, H-o) = (@a)
(2.7) K(XaaX—a) = (a2a)’
4«
Kt H) = i

where in the last equation we have used the first equation of (2.6), (2.5),
(a), and the second formula in (2.7).

Lemma 2.3. For positive roots o, let

(2.8) E,= %XQ,E_Q —%X_a
Then for positive roots ., 3
K(Ea, E_q) =
29) [Ea, E] =na BEa+B=
(B B_g] =n—a—5E-a_s,
[Eo, E_g] =nq._pEq—p,if a —  #0,
where

\allﬁ\ . )
0’ if a4+ B is not a root,
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and
Jall8] N »
\/§|(|X_H%‘| a—p, if a— B is a positive root,
Mo,—f = _ﬂt)‘éa_mNa,—ﬁ, if @« — B is a negative root,
0, if o — 3 s not a root.

Hence {Ey} form a Weyl canonical basis.

Proof. Tt is easy to see that K(FE,,E_,) = —1. If a + 8 is a root,
then

ol|p
20 23] =20, x5
|a]|]
=Nap—— Xa+s
\aHB!
= E =Ny sl
Q
BB =W )
of|8
ZN—m—B' ! |X—oc—5
a8
——————F o g=nagE_o_
where n, g = \/gwi | 5 Va6 Here we have used the fact that N,z =
—N_q-p and X_,_g = Ia\{r_ﬁ\E_o‘ g. If a + B3 is not a root, then
[Ea,Eg] =0.
If @« — 8 # 0 and is a positive root, then
allB af|p
[ECUE_] | || |[XO£7X ] N B| ! | a B
Iallﬁl
=——N,_gE\_3.
Vaa—p| T
If @« — B # 0 and is a negative root, then
allB af|p
[Ea,E_ ] | || ||:XQ,X ] NOC’_B| ! |Xa_6

\OéHBI
Ny —gEq—3.
V2la—p] " press

q.e.d.

Now let n € AT, and consider the Kahler C-space (g,n) with cor-
responding Weyl frame (unitary frame for (g,7)) e, = %E for a €
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AT (k). For any positive roots a, 3, define

N — B .

N = (2B} N,

Nop={28IN, 5, ifa—p#0.

We can now combine Lemma 2.2 and Proposition 2.1 with Lemma
2.3, (2.6), and (2.7) to obtain the following from [15, Proposition 2.4].
In the above setting, we denote the curvature tensor R(eq,€g, €, €s)

also by R(Cl, B? Vs 5) or RQ’B7«/7S'

(2.10)

Lemma 2.4. Let a € A (i), § € AT (j), withi < j, and let R, 555 =
R(eq,€q,€5,€3). Then

1 1 7 =
2.11 Roass=~|(a,) + =——N2,]).
( ) aaBf ] ((a B) 27+ ,ﬁ>
Next let us consider R(a,f,7,) = R(eq,€s,ey,65) with a — 3,

~v—9#0.
Lemma 2.5. Let e, € AT(i), eg € AT(j), e, € AT(k), and e5 €
A+ ().
1) If a =B # 6 — 7, then R(a, 3,7,8) = 0.
2) Ifa—pB=86—~#0, then
(2.12)
1 kl

R(a767775) = 2\/W |:<(k7 _])gk—] - Z“‘—k‘> j\vfa,’*fﬁﬁ,(s]
1
NN
[(—(k‘ — J)&k—j + ki + 15— + 16i0m) Nm—ﬁj\vfw,—é-]
::Rl (OZ, By Y, 5) + RQ(OZ, Bv v, 5)

Proof. (1) follows from Lemma 2.2, and the fact that K(E,, Eg) =0
unless a4+ 3 = 0.

(2) Note that e, = —e_g, etc. First assume that o+~ and o — 3 are
both roots. By Lemma 2.3,

[ear 5] :T%[E“’E”

1
:na,’yﬁEa‘f"Y
a1
:Nwﬁ%ﬂ.

Similarly,

[y [19]

_g,e_s| =Ngs——F_5_
le_g,e—s] T R
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We may assume that o — 8 is a positive root, then v — ¢ is a negative
root.

o] |B]
ay C— :Na— > .Ea— )
[e € 5] =B m B
oo bl
v = Y= m v

Since o + v =B+ 6 and K(E,, E_,) = —1, we see that (2) is true by
Proposition 2.1. The cases where a + v or o — 3 is not a root can be
proved similarly.

q.e.d.

2.2. The condition B > 0. We first discuss the condition QB > 0
on a Kéhler manifold (M, w) with Kéhler form w. We will also consider
the condition @B > 0 at p, which we define as: @B > 0 at p with strict
inequality in (1.1) provided not all /s are the same. Now define the
following bilinear forms on the space Q%Q’I(M ) of real (1, 1) forms on M:
F(n,0) = 3 Rgup'e" = 3 Raygp'o™
Z"j7k7l i7j7k7l
1 il_kj
G(n,0) = 5(Rijon + Birgiz)p"o
where pil— , 0% are the local components of p, o with indices raised. Clearly,
G and F are well defined real symmetric bilinear forms on Q%Q’l(p) for
any p. Now let 84 be a unitary frame at any p with co-frame 74 and
let a4 be real numbers. Take X = > 4, v/ —laana A n_AQ]%g’l(p). Then a
simple calculation gives
G(X,X) = F(X,X) =) Ruza% — Y Ruippasap
A

AB
(2.13)

1
=3 > Ruapplas —ap)’.
AB
The following was observed by Yau [26].

Lemma 2.6. At any point p we have
(a) @B >0 if and only if G — F > 0.
(b) @B >0 if and only if G — F >0 on Q[lel(p) \ Rw(p).

Here Q[lel(p)\]Rw(p) are the real (1,1) forms at p which are not multiples
of the Kdhler form.

Proof. We first prove (a). The fact that G — F > 0 implies QB >
0 follows immediately from (2.13) and the fact that 04 and a4 are
arbitrary. Conversely, suppose @B > 0 and let X be any real (1,1) form
at p. Then we can always diagonalize X. Namely, there exists a unitary
frame ey with co-frame 14 such that X = Y, v/—laana A 7a. Now
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(2.13), and the assumption @B > 0, immediately implies G(X, X) —
F(X,X) > 0.

Now we prove (b). The proof is basically the same in part (a) once
we observe that X € Rw(p) if and only if: for every unitary frame ey
at p with co-frame n4 we have X = ¢>_ ,+/—1na A Ma for some real
constant c¢. The fact that G — F > 0 on Q]%’l(p) \ Rw(p) implies QB > 0
now follows immediately from (2.13) and the fact that 04 and a4 are
arbitrary. Conversely, suppose QB > 0 and let X € Q%gl(p) \ Rw(p).
Then there exists a unitary frame e4 with co-frame n4 such that X =
S 4V —laana A Tx with a/ys not all the same. Now (2.13) and the
assumption @B > 0 immediately implies G(X, X) — F(X, X) > 0.

This concludes the proof of the lemma. g.e.d.

Remark 2.1. Thus @B > 0 if and only if G — F' is positive in
the orthogonal complement of Rw. In particular, if (M, g) is a compact
Kahler manifold with @B > 0, then a Kéhler metric which is a small
perturbation of g will also satisfy QB > 0.

Remark 2.2. Viewed as an endomorphism on Q]E’l(M), G—Fisin
fact the curvature term in the Weitzenbock identity for real (1,1) forms:
Ay —Ais given by G — F up to a positive constant multiple where A, is
the Bochner Laplacian with respect to g and A is the Laplace-Beltrami
operator. The standard Bochner technique and Lemma 2.6 then give: all
real harmonic (1,1) forms on M are parallel provided QB > 0; moreover,
dz'm(Hﬂlg’l(M)) = 1 provided QB > 0 where H[é’l(M) is the space of real
harmonic (1,1) forms on M. See §1 for a reference to these facts and
their implicit appearance in earlier works.

By Lemma 2.6, to check whether @B > 0 (or @B > 0), it is sufficient
to consider G — F' > 0 in a unitary frame of our choice. In the case of
Kahler C-spaces, the natural choice is a Weyl frame. By Lemmas 2.2
and 2.6, we have:

Corollary 2.1. On a Kdhler C-space, let Ric = pg and let es be
a Weyl frame. Then QB > 0 if and only if the largest eigenvalues of

the quadratic forms Y 4 g Ryipgraxp, with x4’s real, and ) a,8,c,p;
) A#B,C#D

R gcprABTCD, With TAB = xR, are at most . QB > 0 if QB > 0
and the eigenvalue p of ZA’B R, igprazp is simple and the largest

eigenvalue of Y as.cp;, Rigopraprcp is less than p.
A#B,C#D

The following simple fact will be used throughout the paper to esti-
mate the largest eigenvalue of a quadratic form.

Lemma 2.7. [row sums] Let x1,...,&y, a1,...,a,, and X be real or
complex numbers. Suppose |zi| = max{|z;| 1 <i<n} >0 and

n
AT = E a;x;.
i=1
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Then
A<D adl.
j=1

In particular, if X is an eigenvalue of an n x n matriz (a;j), then

n
Al < max > lasj]
j=1

We also note the following modification of Lemma 2.7 which will only
be needed in a few exceptional cases.

Lemma 2.8. [weighted row sums] Let A be an eigenvalue of an n xn
matric A = (ai;) such that |\| > 0. Let p1 > 0 be a positive number.

Define b3 inductively: bg-o) =1, and

s ) b(s)
b = win(1, 3 gl =),
l

Then for all s > 0,

(2.14) Al < max{max | > layb{ |, ).
7 =

In particular, if for some s > 0,
n
(2.15) max Z |aij|b§-s) < W,
j=1

then |\ < p.

Proof. First we show that b§5+1) < bgs) for all j. Note that by defi-

nition 1 > bg-s) > 0. It is obviously true that bg-l) <1= b§-0). Suppose

bgsﬂ) < bg-s) for all j; then

b = min(1, Y Jagulb™ ™ /) < min(1, Y Jaglb™ /) = o,
l l

To prove the lemma: If |A\| < p, then the lemma is true. Suppose
|A| > p. Let x; be the components of an eigenvector of A with eigenvalue
A. Suppose, without loss of generality, that max; |z;| = 1. We claim that
for all s > 0,

ji] < b
for all ¢ > 1. For s = 1, then, for any 7,

Axj = E a1
1
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and

1 1
|| < WZ |ajim| < WZ\%‘I\-
l !

So |z;] < bg-l) because |A| > p and |z;| < 1. Now suppose |z;| < bgs
all j. Then as before,

Mlzgl <3 lagllal < 3 Jazle!
l l

)

for

and
b
2] < lajl -
. 1%

s+1). Hence the claim is true.

Hence |z;| < bg-
Now we may assume without loss of generality that |z1]| = 1. (2.14)
is true for s = 0 by the previous lemma. For s > 1,

A= D] < 3 fanlz] <3 Jaub]”.
! l

Hence (2.14) is also true in this case.
If (2.15) is true, then it is still true if p is replaced by p— € for e > 0
small enough. Then by (2.14), |A| < p—€ < p.
q.e.d.

3. Kahler C-spaces of classical type

According to [15], the Kéhler C-spaces with by = 1 of classical type
which are not Hermitian symmetric spaces are (B, ), with n > 3,
1 <p<n, (Cpap), withn > 3,1 <p<n,and (Dy,q,), with n > 4,
1 < p < n—1. For each Lie algebra B,,C,, D, below, we assume an
identification has been made between h*, the dual Cartan subalgebra,
and V = R" so that the induced Killing form corresponds to the Eu-
clidean inner product (-, -). We will then present the corresponding root
system A as a set of vectors in V' = R". We refer to [7] for details.

3.1. The spaces (B, ;). We first consider the space (B, ap), with
n>3 1<p<mn. Let V=R" and let ¢; be the standard basis on V.
The root system for B,, is

(3.1) A={te;£ej|1 <i,j<n,i#jtU{xe1<i<n}
Simple positive roots are

(3.2) Q] = €1 —E2,Q0090 = E9 —€3,...,0p_1 = En_1 — En, Up = En.
Positive roots are

(3.3) At = {g + €jticj U{ei —€}icj U{ei}.
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In terms of the «;’s, the positive roots are
€ =0+ -+ ap

(3.4) €i+€j:Oéi—l-"'—l—()éj_l—I—ZOZj—I-"'—I-QOén,i<j

g —¢j=a;+ - +aj1, i <]

Let 1 < p < n. Recall that
A;(k‘) ={acAT|a= kap—i—Zmiai,mi >0,m; €2
i#p
By (3.3) and (3.4), we have
Af(1) ={ea] 1<a<pt JHea+ell <a<pp+1<i<n}

(3.5)

Ulea—aill <a<pp+1<i<nl,
(3.6) AT(2) ={ea + el <a<b<p}
(3.7) A (k) =10

for k > 3. The dimension of (B, o) is 3p(4n — 3p + 1). We denote the
elements of the A;(k‘)’s by: Xoi = €a —€i, Yo = o tei, 1 < a <p,
p+1<i<n U, =¢€q, Wop = €4 +6p, 1 <a,b < p. In the following
a,b,... will range from 1 to p and 4, 7j,... will range from p + 1 to n.
Thus

A (1) ={Xaihagppri<iza | {¥aih <agpprizizn [ J{Uahizazp,
A;(2) :{Wab}1§a<b§p-

Now recall that N, 3 = £(p + 1) where p is the largest integer, so
that 8 — pa is a root, and also the definition of N, g in (2.10).

Lemma 3.1. Let o, be positive roots in (B, ayp); then Naﬁ =
\/isgn(Na,g). If o = B#0, then No,_g = ﬂsgn(Na,_B).

Proof. Note that if o is a root, then either |o|> = 1 or |o|?> = 2. We
begin by proving the first part of the lemma. Let «, 8 be positive roots.
We may assume « + [ is a root; otherwise the first part of the lemma
is obviously true.

Suppose |a|? = |8|? = 1 and suppose |a + B|? = 1; then (o, 8) = —3,
and this is impossible because one can see that (a, ) is an integer.
Hence |a + B]?> = 2 and (a, 8) = 0. So a — 3 is also a root [11, p. 324].
a— 28 is not a root because | —28]* = 5. Hence N, g = #2. Therefore,
by the definition of Naﬁ in (2.10), Naﬁ = v2sgn(Na g).

Suppose |a|? = 1 and |3|> = 2. As before, one can prove that (o, 3) =
—1 and N, g = £1. Hence Na,ﬁ = \/Esgn(Naﬁ).
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Suppose |a|? = |B]?> = 2. As before, one can prove that (o, ) = —1,
Nopg = =*1, and hence Nag = \/_ng( Nag).
The case for N, _g can be proved similarly. q.e.d.

By Lemmas 2.4, 2.5, and 3.1 and the fact that R(a, B,7,6) =
R(a, 6,7, 8), we have:

Corollary 3.1. Let a € AT (i), B € AT(j), v € AT(k), and § €
A+ ().

1)

—~

a,B) + 3(sgn(Nap)?), i
(v, B),
(a, B), )
2) Ifa— B +#6—7, then R(a, 3,7,8) = 0.
3) If()é—ﬁ—é /7750 thenfO’f’(i,j,k’,l):(1,1,1,1),
B 1sgn(No)sgn(Ngs),  if o — B is not a root,
R(a,B,7,0) = ¢ sgn(Ng,—g)sgn(Ny,—s), if a+~ is not a root,
—2sgn(Nay)sgn(Ns,g), if B—~ # 0 is not a root.
For other cases,
L 3380 (Na,—g)sgn(No,—s), if (i,5,k.1) = (1,1,2,2),
R(Oﬁ,,@,’}’, 6) = _Sgn(Na,—ﬁ)Sgn(N’y,—é)7 Zf (i7j7 k7l) = (2727272)7
ESgn(Na,—B)Sgn(N’Y,—(S) Zf (i7j7 k) l) = (17 27 27 1)
To compute the Ricci curvature, we know that Ric = pg and thus
p = Ric(Wia, Wia)

= Z [R(Wia, Wia, Xai, Xai) + R(Wia, Wia, Yai, Yai)|

Roapp =

N N, .,
Il

n o=
\.l\'J

J
1,
J

D[ 00|
|| <.

+ ZR (Wia, Wiz, Ua, Ua) + > R(Wia, Wiz, Wap, W)

a<b
1 1
=52 —p)+20n—p)|+1+5(p+(p—2)
=2n —p.
Lemma 3.2. Let A be the largest eigenvalue of the quadratic form
> Ruipprars
AB

in the Weyl frame, where x4 are real.
(a) A <2n—p if and only if 5p + 1 < 4n.
(b) If 5p+1 < 4n, then A = (2n —p) iff the corresponding eigenvector
satisfies x4 = xp for all A, B.
(¢) If5p+1 = 4n, then there is an eigenvector with eigenvalue (2n—p)
such that x4 # xp for some A # B.
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Proof. We begin with the proof of (a). Let v = (z4) be an eigenvector
corresponding to the largest eigenvalue A for the quadratic form. Assume
the components satisfy max4|xa| = 1. Let us denote the components
x4 more specifically by z4;, Yai,a < p < i;uq,a < p;tap,a < b < p, and
let us denote R(Xu;, Xai, Xpj, Xpj) by R(Xai, Xp;) etc. Then P(v) =
>4 Raipprars is equal to:

(3.8)
P)= Y R(Xa Xpj)raize;+ > R(Yai, Yej)Yaithy
a,b<p<i,j a,b<p<i,j
+ Z Xaza Y;)] Tailbj + Z Yaiy ij)yaixbj
a,b<p<i,j a,b<p<i,j
+2 Z Xau U xazuc +2 Z Yaia Uc)yaiuc
a,c<p<i a,c<p<i
+2 Z R(waba Xci)tabxci +2 Z R(waba Y;i)tabyci
a<b,c<p<i a<b,c<p<i
+ Z Ua7 Ub UqUp + 2 Z waba Uc)tabuc
a,b<p a<b,c<p

+ Z R(Wab7 ch)tabtcd-
a<b<p,c<d<p

From Corollary 3.1, it is easy to see that R(X;, Xp;) = R(Yas, Ya;),
R(X4i,Ysj) = R(Yai, Xpj), R(X4isUp) = R(Yai, Up), R(Xai, Wee) =
R(Y,i, Wy.). We see that if we interchange z,; and y,; for all a, and ob-
tain a vector w, then P(v) = P(w) and |v| = |w|. We may then assume
that either x,; = yq; for all a, ¢, or by considering v —w, that x4 = —ya
and u, =ty = 0 for all a, b.

Suppose |uy| = 1 for some a. We may assume that u, = 1. By Corol-
lary 3.1, R(Uq, Uq, x, &) > 0 because (Uq,z) > 0 for all z € Af(k), k =
1,2.

(3.9)
Mg =Y R(Ua, Upuy + Y R(Xpi, Ua)toi + Y R(Voi, Ua)ysi
b<p b<p<i b<p<i
+ Z R('wcdyUa)tcd
c<d<p

Notice that the coefficients are all nonnegative and the sum is just
Ric(U,y,U,) = 2n — p. Hence A < 2n — p. Moreover, if A = 2n — p,
then we must in fact have

(3.10) Tai = Ya,i = Up = beq = 1
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forall a,b<p<iandc<d<np.

Since (Wap, ) > 0 for all € A} (k),k = 1,2. We have a similar
result when |t = 1.

Suppose z4; = 1 for some a,1.

Case 1 (xp; = yp; for all b,j.): As above, we have

(3 11)
AL = ZR XaZ7ij Lpj +ZR X[l%}/bj Ybj +ZR XaZ7Ub)
b.j b.j
+ Z R(Xai7 ch)tcd-
c<d

Since xp; = yp;, this equation is the same as:

(3.12)
1 1
AZgi = Z 5 (R(Xais Xpj) + R(Xai, Vo)) w5 + Z 5 (B(Xai, Xbj)
b.j b.j
+ R(Xau }/b] Yoj + Z R Xau Ub Up + Z R Xau ch) cd-
c<d

By Corollary 3.1, R(Xai, Xp;) +R(Xm-,Y},j) > 0 since (Xqi, Xpj +Ysj) =
2845 > 0. Hence the coefficients are all nonnegative. Also, the sum of the
coefficients is still the Ricci curvature 2n — p. Hence we have A < 2n—p
as before, and if equality holds, then (3.10) is true.

Case 2 (wp; = —yp; and ue = weq = 0 for all b, ¢, d, j.): Then

ALq; = Z R(Xai, Xoj)we; + > R(Xai, Yi; s
b7j

(3.13)
—Z XaZ7ij R(Xai,%j))$bj-

By Corollary 3.1, R(Xm-,ij) — R(X4i,Ysj) > 0 because (Xgi, Xpj —

Yyj) = 20;;. Hence the coefficients are all nonnegative. The sum of the

coefficients is:

(3.14) %: <(6ab +95) = <5ab — 0 + %%‘(1 — 5ab)>> =p+ %(p +1)

1
= 1).
2(3p+ )

Here we have used the fact that X,; + Xj; is not a root, and X,; + Yj;
is a root if and only if b # a and j = i. Hence if 5p + 1 < 4n, then
A < 2n — p. Moreover, if 5p + 1 < 4n then A < 2n —p

Now suppose 5p +1 > 4n. Let v be such that x, = —yu = 1,
Ug = Wep = 0 for all a,b. Then

P)=2 Y (R(Xai, Xpj) = R(Xai, Yoj)) = p(n — p)(3p + 1)

a,b<p<i,j
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On the other hand, |[v|? = 2p(n — p). Hence P(v) > (2n — p)|v|? because
5p+ 1> 4n.

The case that y,; = 1 for some a,t is similar. This completes the
proof of (a).

To prove (b), suppose 5p + 1 < 4n. Then A < 2n —p, and as (2n — p)
is always an eigenvalue, we have A = 2n —p. Let v be the corresponding
eigenvector with components i, Yai, Ua,teqg- Thus P(v) = A|v|?. The
above proof then shows that if x4 = y4 for all a,d, then (3.10) must
be true, while if x4; # yq; for some a,, then we must have A < 2n — p,
which is impossible by our assumption. Hence (b) is true.

To prove (c), suppose 5p + 1 = 4n. Then A = 2n — p in this case too.
Let v be such that 4 = —y4; = 1, ug = wey = 0 for all a,b. Then the
computations above give P(v) = A|v|?. Since 4; # Yai, () is true. q.e.d.

Lemma 3.3. Let A be the largest eigenvalue of the quadratic form

> Rypeprarep
A,B,C,D;A£B,C#D

in the Weyl frame, where xop = TBA-

(a) If 5p + 1 < 4n, then A < 2n — p.
(b) If5p+ 1 < 4n, then X\ < 2n — p.

Proof. We want to estimate

(3.15) Sap = |Rapy;l
Ty

for each case of A, B. Note that S4p = Spa. Recall the following prop-
erties of the curvature from Corollary 3.1, which we repeat here for
convenience of reference:

(C1) If A— B # x —y, then Ryp,; = 0.
(C2) If neither A — B nor A +y are roots, then R,p,; = 0.

In each case we will use these to reduce the terms in (3.15) as much
as possible. Then Corollary 3.1 will be used to calculate the absolute
values of the remaining curvature terms.

Case (i) A= X4, B = Xp; with (a,) # (b, j).

Note that A, B € Af(1). By (C1) we may assume that 2,y € Af(1)
or z,y € Af(2). Note that the sum of the coordinates of X’s is 0, that
the sum of the coordinates of Y’s is 2, that the sum of the coordinates
of U’s is 1, and that the sum of the coordinates of W’s is 2. Thus by
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(C1), (3.15) reduces to:

(3.16)
SAB = Z |R(Xai7ij7Xck7Xdl)| + Z |R(thi7ij7YYck7Ydl)|
c,k,d,l ck,d,l
+ 3 R (Xaiy X4 Ue, Ug) | + D [ R(Xag, Xoj, Wea, Wey)|
C,d C7d7e7f
=]+ II+1IT+1V.

If a # b, i # j, then: All terms in 111, IV are zero by (C1). All terms
in I are zero by (C1) except for |R(Xai, Xpj, Xpj» Xai)|, which is zero by
(C2). By (C1), the only non-zero term in I is |R(Xq;, Xpj, Yoi, Yaj)| =
%. Hence Sap =1/2 < 2n — p because p < n.

If a =b, i # j, then: All terms in I11,IV are zero by (C1). By (C1),
the only non-zero terms in I are |R(Xa;, X4j, X¢j, Xei)| for any c, leaving
I = p. By (C1), the only non-zero terms in II are |R(Xai, Xaj, Yej, Yei)|
for any ¢, giving a contribution of 1 from the case ¢ = a and 1/2(p — 1)
from the cases ¢ # a. Hence Syap = p—l—l—l—%(p—l) =3p/2+1/2 <2n—p
if and only if 5p+ 1 < 4n, and Sap < 2n — p if and only if 5p 4+ 1 < 4n.

If a # b, 1 = j, we may assume that a < b, then: By (C1), the only
non-zero terms in I are |R(Xyi, Xpi, Xpk, Xar)| for any k, leaving I =
n—p. By (C1), the only non-zero terms in I are |R(Xai, Xp;i, Yok, Yar)|,
leaving a contribution of 1/2 when k = i and a contribution of n—p—1
for the cases when k # i. By (C1), the only non-zero term in I17 is
|R(X i, Xpi, Uy, Uy)|, leaving I11 = 1. By (C1), the only non-zero terms
in IV are |R(Xai, Xpis Whe, Wae)| for ¢ > b, or |R(Xai, Xpis Wep, Wea)|
for ¢ < a, or |R(Xai, Xpi, Wee, Wae)| for a < ¢ < b, in which cases the
contributions to I'V are 1/2(p—0b),1/2(a—1),1/2(b—a—1) respectively.
Hence Sap = (n—p)+i+(n—p—1)+1+3(p—b)+3(a—1)+3(b—a—1) =
2n—%p—%<2n—p.

Case (ii) A = X, B =Y.

Note that A, B € Af(1). By (C1), z,y € Ay (1) or z,y € Af(2) and
(3.15) reduces to:

(3.17) SaB = Z |R(Xais Yoj, Yor, Xar) |-
ekd,l

If a # b, i # j: then by (C1), the only non-zero term in (3.17) is given
by |R(Xai, Yoj, Yoi, Xaj)| = % Thus Syup = % < 2n —p.

If a = b, i # j, then by (C1), the only non-zero terms in (3.17) are
|R(Xai, Yaj, Ye;, Xei)| or |R(Xas, Yaj, Y, ch)|, for any c. In the first case
the contribution to (3.17) is p, and in the second case the contribution
to (3.17) is 1 when ¢ = a and 1(p — 1) from the cases ¢ # a. Thus
SaB :p—l-l—l-%(p—l) = %p—l—% < 2n — p if and only if 5p + 1 < 4n,
and Sap < 2n — p if and only if 5p + 1 < 4n.
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If a # b, i = j, then by (C1), the only non-zero term in (3.17) is given
by |R(Xai, Yoi, Yoi, Xoi)| = 3. Thus Sap = 3 < 2n —p.

If a = b, i = j, then by (C1), the only non-zero terms in (3.17) are
|R(Xui, Yai, Yei, Xei)| for any e. Thus Sap = %(p —1)<2n—p.

Case (iii) A = X4, B ="U,.

Note that A, B € Af(1). By (C1), z,y € Ay (1) or z,y € Af(2) and
(3.15) reduces to:

(3.18)

Sap = Z | R(Xai, Up, Ue, Xgj)| + Z |R(Xai, Up, Yei,Ug|) = T+ I1
C,d,j C,d,j

If @ # b, then: All terms in I are zero by (C2). By (C1), the only
non-zero term in I71 is |R(Xy;, Uy, Y, Uy)| leaving IT =1 . Thus Sap =
1 <2n—np.

If a = b then: By (C1), the only non-zero terms in I are |R(Xy;, U,, U,
X.)| for any ¢, leaving I = p. By (C1), the only non-zero terms in I
are given by |R(X4;, Us, Yei, Ue)| for any ¢, and the contribution to IT is
1 when ¢ = a and is £(p—1) from the cases ¢ # a. Thus Sap = 3p+3 <
2n — p.

Case (iv) A = X4, B = W,

Note that A € AF(1),B € Af(2). By (Cl), z € Af(1), and y €
Af(2) and (3.15) reduces to:

(319) SAB = Z |R(Xai7Wb07Wef,de)|-
d7j7e7f

If a = b, then by (C1), the only non-zero terms in (3.19) are given by
|R(Xui, Wae, Wae, Xai)| for d < ¢, or \R(Xai,Wac,ch,Xfi)\ for f > c.
In the first case the contribution is ¢ — 1, and in the second case, is
p—1—c Thus Syp=p—1<2n—p.

If a # b then by (C1) and (C2), the only non-zero terms in (3.19) are
when a = ¢, in which case we get, as above, that Sagp =p—1 < 2n —p.

Case (v) A=Yy, B =Y, (a,i) # (b,j). Similar to (i).
Case (vi) A =Y, B = Up. Similar to (iii).

Case (vii) A =Yg, B = Wj.. Similar to (iv).

Case (viii) A=U,, B=U, a <b.

From (C1) it is not hard to see here that (3.15) reduces to:

Sap =Y |R(Ua,Up, Xew, Xa)| + > |R(Ua, Uy, Yo, Yar)|

c,dk,l c,dk,l
+ Y |R(Ua, Uy, Ue, Ul + > |R(Ua, Uy, Weg, Weg)|
c,d c,d.e,f

=I1+IT+1IT+1V.
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Now by (C1) the only non-zero terms in I are |R(Uy, Uy, Xpi, X4i)| for
any i, leaving I = n — p. We similarly get 11 = n —p. By (C1), the only
non-zero term in 111 is |R(Uq, Uy, Uy, Uy)|, leaving I11 = 3. By (C1),
the only non-zero terms in IV are |R(U,, Uy, Wi, Wae)| for ¢ > b, or
|R(Uy, Uy, Wep, Weo)| for ¢ < a, or |R(U,, Uy, Weyy, Wae)| for a < ¢ < b,
in which cases the respective contributions to IV are 1/2(p—b),1/2(a—
1),1/2(b — a — 1) respectively. Thus Sap = (n —p) + (n —p) + 3 +
slp=b)+(@a—1)+(b-—a-1)]=2n-3p— 1 <2n—p.

Case (ix) A=U,, B=Wp, b<ec.

Note that A € A¥(1) and B € A}(2). By (Cl), = € Af(1) and
y € Af(2) and (3.15) reduces to:

(320) SAB = Z |R(Ua7 WbC7 Wdea Uf)|
d.e,f

Note that A+ z is never a root, and thus by (C2), the only non-zero
terms are when a = b or a = c. If a = b, then by (C1), the only non-zero
terms are |R(Ug, Wae, Wae, Ug)| for d < ¢, or |R(Uy, Wae, Weg, Ug)| for
¢ < d, in which cases the respective contributions to Sap are 1/2(c —
1),1/2(p — ¢) respectively. Thus when a = b, and similarly when a = ¢,
we have Sap = 3(c—1)+3(p—c)=3(p—1) < 2n —p.

Case (x) A = Wy, B = Weq, (a,b) # (¢, d). We may assume that
a<ec

Note that A, B € Af(2),B € Af(2). By (C1), z,y € Af(1) or
r,y € Af(2) and (3.20) reduces to:

Sap = Z (|R(Wap, Wea, Xeis Xgj)| + Z (|R(Wa, Weg, Yei, Yrj)|

e7f7i7j e7f7i7j
+Z‘R(Wab7chaU67Uf)‘ + Z ’R(Wab7WCd7Wef7Wgh)’
6,f 67f7g7h
=I+II+IIT+1V.

Note that A + y is never a root for any positive root y. Thus by
(C2), all terms in I,II,II1,IV are zero unless either a = ¢ or b = ¢ or
b = d. Assume that a = ¢, and without loss of generality that b < d.
By (C1), the only non-zero terms in I are |R(Wap, Waa, Xai, Xp;)| for
any i, leaving I = %(n — p). We similarly get IT = %(n —p). By (C1),
the only non-zero term in I11 is |R(Wap, Weq, Ug, Up)|, leaving I11 = %
By (C1), the only non-zero terms in IV are |R(Wap, Waa, Wae, Wpe )| for
e>d, or ’R(Wab, V_Vad, Wed, V_Veb)’ for e < b, or ‘R(Wab, Wady Wed, Wbe)‘
for b < e < d, in which cases the respective contributions to IV are
1/2(p — d),1/2(b — 1),1/2(d — b — 1). Thus when a = ¢, and similarly
when b = c or b = d, we have Sap = 2(n —p) + 3(n —p) + 3 +
Hp-d)+ -1+ @d=b-1]=n—dp—L<2n—p.

This completes the proof of the lemma. q.e.d.
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Theorem 3.1. The Kdhler C-space (By,0p), n > 3, 1 < p < n
satisfies QB > 0 if and only if bp + 1 < 4dn. Moreover, QB > 0 if and
only if 5p+ 1 < 4n.

Proof. The first statement follows from part (a) of Lemmas 3.2 and
3.3 and Corollary 2.1. For the second statement, note that QB > 0
if G—F >0 on Q[lel(p) \ Rw(p) by Lemma 2.6. On the other hand,
here G = (2n — p)Id on Q%gl(p) \ Rw(p), and thus by parts (b) and
(c) of Lemma 3.2 and part (b) of Lemma 3.3, we have G — F > 0 iff
5p+ 1 < 4n. Thus we have @B > 0 if and only if 5p+ 1 < 4n. q.e.d.

3.2. The spaces (D,,q;). In this section we will consider the space
(Dp,ap), withn >4, 1 <p<n—1. Let V =R" and ¢; be as before.
The root system for D,, is

(3.21) A= {te +eil1 <i,j <n,i#j}
Positive roots are
(3.22) AT = {ei +gj}ics U {ei — €5}icy-

Simple positive roots are
(3.23) ag =e1—€2,9 =€9—€3,..., Q1 = En—1—En, Oy = En—1+En-
In terms of the «;’s, the positive roots are
gtej=o;+ - +oj_1+ 205+ + 20p2 + ap_1 + Qp,
1<j<n—2
Eiten1=a;+ - +ap i<n-—1
(3.24) .
Eiten=a;+ - Fapot+a, 1<n—1
En—1tEn =0y
g—¢g =+ t+aj_1, 1 <]
Let 1 <p<n—1.By (3.22) and (3.24) we have
AF(L) ={ea—eill <a<pp+1<i<n}

(3.25) .
Ulea+eall <a<pp+1<i<nl,

(3.26) AF(2) ={ea + e/l <a<b<p}.

(3.27) A (k) =0

for k > 0. The dimension is ip(4n — 3p — 1). The structure of the
roots is similar to (B, o), except that U,’s do not appear. Hence the
computations are basically the same. In this case Ric = (2n —p — 1).

Theorem 3.2. The Kdhler C-space (Dp,ap), n>4,1<p<n-—1
satisfies QB > 0 if and only if bp + 3 < 4dn. Moreover, QB > 0 if and
only if bp 4+ 3 < 4n.
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Remark 3.1. As in the B cases, one can see that (D, o) does not
satisfy B+ > 0.

3.3. The spaces (Cy,a;). We will consider the space (Cy,ayp), with
n>3,1<p<n. Let V=R"and ¢; be as before. The root system for
C, is
(3.28) A= {te; £e;]1 <i,j <n}.
Positive roots are
(3.29) AT ={e;+e;}tici U {ei —gjticy
Simple positive roots are
(3.30) @1 =¢€1—€9,a9 =€9 —€3,...,0p_1 = En—1 — En, Op = 2&,.
In terms of the «;’s, the positive roots are
(3.31)

g—g=a;+ - t+aj1, 1<j<n,

26 =2(a; + -+ oj1 a4 Fap1) Fap, i <N, 26, = o,
gitej=a;+ - +oj1+2aj+ -+ Foap_1) oy, i <j<n.
Let 1 < p < n. By (3.29) and (3.31) we have

(3.32) AY(1)={eateill<a<pp+1<i<n}

(3.33) AF(2) ={2e4]1 <a < p}U{es+ e/l <a<b<p}

(3.34) Af (k) =0,

for k > 3. The dimension is $p(4n — 3p + 1).

As before, a, b, ... will range from 1 to p, and 4, j, ... will range from
p+1lton. Let Xy =4 — &4, Yoo = €a 65, Uy = 264, Wap = €4 + €b,
a < b. Then as in Lemma 3.1 and Corollary 3.1, we have the following:

Lemma 3.4. 1) Let o, 8 be positive roots in Al‘f(k‘), k=1,2.

N 2sgn(No18), if {a, B} = {Xai, Yai} for some a,i, or
No+p = one of a, B is U, for some a;
V2sgn(Ny +5), otherwise.
Here in the case of a — B, we assume in addition that o — 5 # 0.
2) R(Xm-,Xaj, Yai,}_faj) =0 for any a ifi # j, and R(Xai, Xeiy Yeis Yai)
:i% for any i if a # c.

Proof. (1) Suppose o = X5, 8 = Ygi; then o+ § and o — (3 are both
roots. It is easy to see that N, g and N, _g are equal to +2. Moreover,

|a|? = |32 = 2 and |a & B|? = 4. Hence ||21g|\Na7i5 = 2sgn(Ny 15). If

o = Uy, say, then U, 4y and U, — U, are not roots for any y € A (k),
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k = 1,2. Moreover, if 8 = X;, then o« — (§ is a root if and only if b = a.
In this case, N, 5 = £1, o> = 4, |3]> = 2, and |a — B|> = 2. Again
Kl%'\ Nozp = 2580 (No,25)-

If o, B are not as above, and if a + 3 is a root, then |a + 8| = 2. In

this case, one can see that N, 3 = £1. So “(ﬂ%" Na+p = V2sg0(Na +5)-

The case for o — 3 is similar.
(2) Let o = X4, 8 = Xoj, ¥ = Yai, 0 = Y. It is easy to see that

¢ >y _ _ L |aflBlvl9]

R(Xainajyyai,Yaj) = 5 ’a +’Y‘2 “a,’y“—ﬁ,—(s
| 1B]1119]
Ny _gN, _s.
+ ‘04—5’2 a,—fB4Vy,—6

On the other hand, since a — 4+ v — 4§ =0,
NyaN-g—s  Na-gNy—s  N-gyNa-s _,
o+ /2 la — BJ? Iy — B ’
By (1), we have
NyoN_g 5 No—pNy_s 1
) ) ) ) — j:_
4 * 2 2
because i # j. Squaring the above equality, noting that N%a =N? g6 =
4, Ng 5= N,f_é =1, we have

N’YvaN_ﬁv_(sNa’_BNﬁﬁ_& = _4'

Hence
NayN-p,—5Na,~pNy,—5 > 0
because N, = —N, . From this it is easy to see that R(Xg;, Xaj, Y,

Y,;) = 0. The other part can be proved similarly.
q.e.d.

To compute the Ricci curvature, we know that Ric = pg and thus

M= Z [R(Ub U17 Xai7 Xai) + R(U17 Uh Yai7 Yai)] +Z R(U17 Ulv Uav Ua)

+ Z R(Ub U17 Wab7 Wab)

a<b
=5 (2n—p) +2n—p)) + 2+ (p— 1)
=2n—p+1.
Lemma 3.5. Let A be the largest eigenvalue of the quadratic form
> Ryipprars
A,B

in the Weyl frame, where x4 are real.
(a) A<2n—p+1 if and only if 5p < 4n + 3.
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(b) If 5p < 4n + 3, then A = (2n — p+ 1) iff the corresponding eigen-
vector has to = xp for all A, B.

(¢) If 5p = dn+ 3, then there is an eigenvector with eigenvalue (2n —
p+ 1) such that x g # xp for some A # B.

Proof. Part (a): the argument is identical to the proof of Lemma 3.2
(a) except that: in Case 1 we use that for any B the coefficients in
> 4 R(A, B)x 4 must add to 2n —p+1 (instead of 2n — p); in Case 2 we
use that

3 1
Z (R(Xainbj) - R(Xai7 Y;)])) = §p - 5
b.j

(instead of 2p + 1).
Parts (b) and (c): the argument is similar to the corresponding proofs
for Lemma 3.2. q.e.d.

Lemma 3.6. Let A be the largest eigenvalue of the quadratic form

(3.35) > RypcDpTABTCD
A,B,C,D;A#B,C#D

in the Weyl frame, where xop = TBA-

(a) A< 2n—p+1 if and only if 5p < 4n + 3.
(b) If 5p < 4n+ 3, then A < 2n —p+ 1.

Proof. We want to estimate

(3.36) Sap =Y |Rapyl
T#y

for each case of A, B. Note that Sap = Spa. Recall the following prop-
erties:

(Cl) If A— B # x —y, then Ryp,; = 0.
(C2) If neither A — B nor A +y are roots, then Ryp,. = 0.

In each case we will use these to reduce the terms in (3.36) as much as
possible. Then Lemmas 2.5 and 3.4 will be used to calculate the absolute
values of the remaining curvature terms.

Case (i) A= X4, B = Xp; with (a,) # (b, j).

Note that A, B € Af(1). By (C1) we may assume that 2,y € Af(1)
or z,y € AF(2). Note that the sum of the coordinates of each X is 0,
the sum of the coordinates of each Y is 2, the sum of the coordinates
of each U is 2, and the sum of the coordinates of each W is 2. Thus by
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(C1), (3.36) reduces to:
(3.37)

Sap = Z ‘R(Xai,ij,Xckdel)‘ + Z ’R(Xainbj7}/;kaYdl)‘
c,k,d,l c,k,d,l

+ Z ’R(Xainbijcdawef)‘
c,de,f

+ Y |R(Xai, Xoj, Ue, Wae)| + > |R(Xais Xij, Wae, Ue)|

c,d,e c,d,e

=l + 11+ 11T+1V + V.

Ifa # b,i # j, then: All terms in I11, IV, V are zero by (C1). By (C1),
the only non-zero term in I is |R(Xas, Xpj, Xpj, Xai)l|, leaving I = 3. We

get II:iinthesameway. Hence SAB:i+%:%<2n—p—|—

Ifa=0,i+# j, then: All terms in 11,1V, V are zero by (C1). By (C1),
the only non-zero term in I is |R(Xgi, Xaj, Xcj» Xei)| for any c, leaving
I = p. By (C1), the only non-zero term in I7 is |R(Xai, Xaj, Yej, Yei),
which is 0 by Lemma 3.4 if a = ¢, leaving I] = %(p —1). Hence Spp =
p+0+4(p—1)=3p/2—1/2<2n—p+1if and only if 5p < 4n + 3,
and Sap < 2n — p+ 1 if and only if 5p < 4n + 3.

If a # b, 1 = j, we may assume that a < b, then: By (C1), the only
non-zero terms in I are |R(Xyi, Xpi, Xpk, Xar)| for any k, leaving I =
n — p. By (C1), the only non-zero terms in IT are |R(Xui, Xbi, Yok, Yak )|
for any k, leaving a contribution of 1/2 when & = i by Lemma 3.4
and a contribution of n — p — 1 for the cases when k # i. By (C1),
the only non-zero terms in I1T are |R(Xa;, Xpi, Whe, Wae)| for ¢ > b,
or |R(Xai, Xpi, Wep, Wea)| for ¢ < a, or |R(Xai, Xpis Wep, Wae)| for a <
¢ < b, in which cases the respective contributions to IIT are 1/2(p —
b),1/2(a —1),1/2(b —a —1). By (C1), the only non-zero term in IV is
|R(Xai, Xpi, Up, Wap)|, leaving IV = 1/2/2. By (C1), the only non-zero
term in V is |R(Xui, Xpi, Wap, Ua)|, leaving V = 1/2/2. Hence Sap =
(n=p)+3+m—p-D+V2+5[p-b+@-1)+b-a-1)] =
2n—%p—%+\/§<2n—p+1.

Case (ii) A = X4, Ys;.

Note that A, B € Af(1). By (C1), z,y € AF(1) or z,y € Af(2) and
(3.36) reduces to:

(3.38) Sap = Z |R(Xaiy}/bjy}/ckaXdl)|-
ekd,l

Ifa # b, i # j, then by (C1), the only possible non-zero terms in (3.38)
are |R(Xai, Ypj, Yoj, Xai)|, which is zero by (C2), and |R(Xas, Ys;, Yeis
Xaj)|, which is % Hence Sap = % <2n-—p+1.
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If a = b, i # j, then by (C1), the only non-zero terms in (3.38) are
|R(Xai, Yaj, Ye;, Xei)| or |R(Xas, Yaj, Y, ch)|, for any c. In the first case
the contribution to (3.38) is p, and in the second case the contribution
to (3.38) is 0 when ¢ = a and  when ¢ # a. Thus Sap =p+3(p—1) =
%p—%<2n—p—|—1.

If a # b, i = j, then by (C1), the only non-zero term in (3.38) is given
by |R(Xais Yoi, Yoi, Xpi)| = 3. Thus Sap =1 <2n—p+1.

If a = b, i = j, then by (C1), the only non-zero terms in (3.38) are
|R(Xui, Yai, Yei, Xei)| and the contribution to (3.38) is 1 when ¢ = a and
$(p—1) from the cases ¢ # a by Lemma 3.4. Thus Sap = 1+1(p—1) <
2n —p+1.

Case (iii) A = X4, B ="U,.

Note that A € AF(1) and B € AF(2). By (C1), = € Af(1) and
y € A} (2) and (3.36) reduces to:

(3.39)

Sag =Y |IR(Xei, U, U, Xgi)| + Y |R(Xai, Up, Weg, Xej)| =: T+ I1.
¢,d,j c,d,e,j

If a # b, then: All terms in II are zero by (C1). By (C1), the only
possible non-zero term in I is |R(Xui, Uy, Uy, X4i)|, which in turn is zero
by (C2).

If a = b, then: By (C1), the only non-zero term in I is |R(Xa;, Us, Uq,
Xai)|, leaving I = 1. By (C1), the only non-zero terms in IT are |R(Xg;,
Uay Wae, Xei)| for ¢ > a, and |R(X i, Uy, Wea, Xei)| for ¢ < a, in which

cases the respective contributions to I are @(p —a), @(a —1). Thus

Sap=1+L((p-a)+@—-1)=1+L@p-1)<2n—p+1.

Case (iv) A = X,i, B = W,

Note that A € Af(1),B € Af(2). By (C1),z € Af(1)andy € Af(2)
and (3.36) reduces to:

Sa =Y |R(Xai,Woe, We, Xgi)| + > |R(Xas, Whe, Ue, Xj)| o= 1 + I1.
d.j.e,f d,j,e

If a = b, then by (C1), the only non-zero terms in I are |R(Xai, Wae,
Wae, Xai)| for d < ¢, or |R(Xai, Wae, Wes, X1i)| for f > c. In the first case
the contribution is %(c — 1), and the contribution in the second case is
$(p—c). By (C1), the only non-zero term in I7 is |R(Xq;, Wae, Ue, Xei)|,

which is v/2. Thus Sup = %(p— D+vV2<2n—p+1.

If a # b, then by (C1) and (C2), the terms in I, I are zero unless
a = ¢, in which case we get, as above, that Sap = %(p ~-1D+V2<
2n—p+1.

Case (v) A=Y, B =Y, (a,i) # (b, 7). Similar to (i).
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Case (vi) A =Yy, B = U, Similar to (iii).

Case (vii) A =Y,;, B = Wj. Similar to (iv).

Case (viii) A=U,, B="Up, a <b.

From (C1) it is not hard to see that (3.36) reduces to:

Sag =Y _|R(Uaq, Uy, Uy, Ug)| = 0
c,d

where the last equality follows by (C2).

Case (ix) A=U,, B=W, b<ec.

Note that A, B € Af(2). By (C1), z,y € Af(1) or A, B € Af(2) and
(3.15) reduces to:

Sag =Y |R(Ua, Whe, Xai» Xei)| + > | R(Ua, Wee, Yai, Yei)

d,e,i d,e,i
+ Z ’R(Umedeea ng)’ + Z ‘R(Uaa Wmeda Wef)‘
d,e,f,g d767f
+ Z ‘R(Uaa Wbc: Wd67 [jf)’
d.e,f
=I+I1I+IIT+1V +V.

Note that A+ x is never a root and thus, by (C2), the only non-zero
terms are when a = b or a = c. If a = b, then by (C1), the only non-zero
terms in I are |R(Uy, Wae, Xeiy Xqi)| for any i, leaving I = @(n - p).
Similarly, we get II = @(n —p). By (C1), the only non-zero terms in
IIT are |R(Uy, Wae, Wee, Wae )| for e > ¢, and |R(Uy, Wae, Wae, Waq )| for
d < a, and |R(Uy, Wae, Wye, Waq)| for a < d < a, in which cases the
respective contributions to II1 are @(p —0), @(a - 1), @(c —a—1).
By (C1), the only non-zero term in IV is |R(Uy, W, Ue, Woe)|, leaving
IV = 1. By (C1), the only non-zero term in V is |R(Uy, Wae, Wae, Ud)|,
leaving V' = 1. Thus when a = b, and similarly when a = ¢, Sap =
\/i(n—p)+§(p—2)+2<2n—p+l.

Case (x) A = Wy, B = Weq, (a,b) # (¢, d). We may assume that
a<ec

Note that A, B € Af(2). By (C1), z,y € Ay (1) or z,y € Af(2) and
(3.36) reduces to:

Sap = Z |R(Wp, V_Vcd, Xeis sz)‘ + Z |R(Wap, V_Vcda Yei, Yfz)‘
6,f,7: eufvi
+ Z ‘R(Waba ch7 W6f7 V_Vgh)’ + Z ‘R(Waba cha Wefa ﬁg)‘
e,f,g,h eufvg
+ Z ’R(Waby V_Vcd7 Uea ng)’

e f.g
=I+IIT+IIIT+1V +V.
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Note that A 4+ y is never a root for any positive root y. Thus by
(C2), all terms in I, I1,I11,IV,V are zero unless either a = cor b = ¢
or b = d. Assume that a = ¢, and without loss of generality that b <
d. By (C1), the only non-zero terms in I are |R(Way, Waa, Xai, Xui)|,
leaving I = $(n — p). We similarly get I] = £(n — p). By (C1), the
only non-zero terms in IT1 are |R(Wap, Wag, Wae, Wie)| for e > d, or
‘R(Wabawadawedaweb)‘ for e < b, or ’R(Wabawadawedywbe)‘ for b <
e < d, in which cases the respective contributions to 111 are 1/2(p —
d),1/2(b—1),1/2(d — b —1). By (C1), the only non-zero term in I'V is
|R(Uy, Wae, Wy, Up)|, leaving V' = @ Similarly, we get IV = @ Thus
when a = ¢, and similarly when b =corb=d, Sup = (n—p)+%(n—p)—|—
Hp-d)+ G-+ @d=b-1)+V2=n—1—-ip+V2<2n—p+1.

This completes the proof of the lemma. q.e.d.

By Lemmas 3.5 and 3.6, we can proceed as in the B cases to obtain:

Theorem 3.3. The Kdhler C-space (Cp,ap), n > 3,1 < p < n
satisfies QB > 0 if and only if bp < 4n + 3. Moreover, QB > 0 if and
only if bp < 4n + 3.

Remark 3.2. As in the B cases, one can see that (C), o) does not
satisfy B+ > 0.

4. Kahler C-spaces of exceptional type

For each of the exceptional Lie algebras Gs, Fy, Eg, Er7, Eg, we will
establish whether or not the corresponding Kéahler C-spaces with by = 1
have QB > 0 or not. For each case, we define the following quadratic
forms with respect to the Weyl frames:

M1 = ZRAABBxA‘TB
A,B

My:= Y RupopTaBTcp,

A,B,C,D;
A#B,C#D

where the x4’s are real and Tag = xpa. We will study the largest
eigenvalues of these two quadratic forms. By Corollary 2.1, these will
tell us whether the space satisfies @B > 0, or QB > 0.

For each exceptional Lie algebra g, we will first present an explicit
root system (in some Euclidean space R™) and fundamental set of roots
{aq,..}. Then for each corresponding Kahler C-space (g, ay ), we present
a Weyl frame. Lemma 2.4 then allows explicit calculation of the matrix
for Mj. The main point here is to determine N, +g. From this point,
while eigenvalue estimates are possible by row sum and symmetry argu-
ments, as in M; in the classical cases, we compute the eigenvalues and
Ricci curvature (row sum) of Mj directly using MAPLE.
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To estimate the largest eigenvalue of My, we will use Lemmas 2.4 and
2.5 to compute the curvature tensor. However, in this case the lemmas
allow only an upper estimate for the absolute value of the entries of Mo,
since we can only calculate the N,g’s appearing there up to a sign. By
the same reason, this can only be estimated from above by |R;|+|Rz| in
the formula Lemma 2.5(2). In some cases, this becomes too large, and
we cannot get a good estimate. Hence, for A, B,C, D corresponding
to positive roots o € AT (i), € AT(j),y € At(k),6 € At(l) where
A # B, define ]A%(A, B,C, D) as follows:

(4.1)
_ 0, ifa—pF#d5—17,
R(A,B,C,D) =< |R(A,A,B,B)|, if B=C (ie. if B =1),
m, ifa—pf=90—~,and g —v #0,

where m = min{|R1 (A, B,C, D)| + |R2(A, B,C, D)|,|R\(C, B, A, D)| +
|R2(C, B, A, D))|}. _ _

Note that in the last case, we also have a—4§ # 0. Since R(A, B, C, D) =
R(C, B, A, D) by symmetries of the curvature tensor, we have |R(A, B, C,
D)| < R(A,B,C, D), for all A+ B,C # D.

Remark 4.1. In many cases, |R(A, B,C, D)| is exactly equal to the
quantity m in (4.1). For example, this is the case if one of o + v, —
8,8 — 7 is not a root.

Consider the following matrix Zapg cp, which is defined for all pairs
AB,CD:

0, ifA=Bor C=D,
(4.2) ZAB,CD = { ~

R(A,B,C,D), otherwise.

Recall that (Ms2)apcp = R(A,B,CD) is only defined for pairs with
A # B, C # D. For any A the AAth row and column of Z has zero in
every entry, and removing these rows and columns leaves a symmetric
matrix with the same dimension as M, bounding Ms from above, entry-
wise in absolute values. The following simple lemma justifies estimating
the largest eigenvalue of My by the largest absolute eigenvalue of Z.

Lemma 4.1. Let N, M be real symmetric n X n matrices such that
Nij > |M;j| for alli, j. Then spectral radius (the mazimal absolute value
of eigenvalues) \n of N is greater than or equal to the spectral radius

Ay of M.

Proof. Let x = (x1,...,2,) be a unit eigenvector of M for which
|Mx| = A\ps. Note that |x| = (|1],...,|x,|) is also a unit vector. Then
we have Ay = |Maz| = \/y > Mijai]? < \/y > Nijlzill2 = Nlz| < Ay.
q.e.d.
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We will calculate Z in each case using MAPLE. From this point, we
can of course compute the eigenvalues of Z directly using MAPLE, thus
obtaining an eigenvalue estimate for M. However, we will use Lemmas
2.7 and 2.8 here, as they are elementary and similar to our methods
for My in the classical case. In fact, most of the terms in Z are zero
and one may be able to decompose Z into quadratic forms of much
smaller size so that Lemmas 2.7 and 2.8 can be applied without using
a computer. In all cases other than (Ge, as), (E7,a5), and (Fy, a9), the
estimate provided by Lemma 2.7 will be sufficient, while in the cases
of (Ga,2), (E7,a5), and (Fy, ag), Lemma 2.8 is used to estimate the
eigenvalue of Z.

In the subsections below, we just present the results of the MAPLE
calculations, and we indicate the algorithms used in the appendix. For
each Lie algebra below, the dual Cartan subalgebra h* is associated to
some Euclidean subspace V', and the root system is given as a set of
vectors in V. We refer to [7] for details. We will use &1, . ..,&, to denote
the standard coordinates on R” and €1,...,¢, to denote the standard
basis vectors of R".

4.1. The space (Gg,as). Let V be the hyperplane in R? with &; +& +
&3 = 0. The positive roots in V' are

€1 —€9,—2e1 +eg+e3,—€1+€3,—€a+€3,61 — 263 + €3, —£1 — €2 + 2¢e3.

Simple positive roots are oy = €1 — €9, g = —2¢7 + €9 + €3 with respect
to which the positive roots are

aq, e, a1 + ag, 20n + ag, 301 + ag, 3an + 2a0.

Now (Ga, 1) is Hermitian symmetric, so we only consider (Ga, o)
for which we have

AT (1) ={a1 + a9,20a1 + @z, 9,301 + s}

3 AF(2) ={3ar + 205},

AT (k) =0, for k > 3.

dim = 5, Ric = 9g,
4 largest eigenvalues of M; are 1.5000,1.5000, 8.5000, 9.000,
eigenvalues of My are less than 9

(the estimate for M, is obtained by using = 9 and s = 1 in Lemma
2.8, in which case the maximum weighted row sum is 8.6309). Thus the
space has QB > 0.

4.2. The spaces (Fy, a;).
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4.2.1. Root system. Let V = R*. The positive roots in V are

1
{eiticicaU{ei +eihi<icj<a U{ei — €5 }1<ici<a U {5(61 teoteztey))

There are a total of 4 + 6 + 6 + 8 = 24 positive roots. Let
(4.4)

%(614—624—634—64)
s(e1+e2—e3+ey) ?j:iz
1 3
s(e1+teates—eq) £l + ey
%(51+62—€3—E4) €2+ €3
te1—eateg+en) €2+ &4
1 €3+ ¢
A=(a)2 = | 3(e1—e2—este) |, B=(b)32, = Ei’ _ E;l
%(51_52+53_E4) €1 — €3
%(61—82—83—64) 1 — &1
€1 €2 — €3
€9 €2 —¢&4
€3 €3 — &4

€4

The simple positive roots are oy = byg, o = b13, a3 = a12, 4 = as.
The matrix for (o) is

0 1 —1 0
|l o o 1 -1
=1 o o 0 1
1/2 —1/2 —1/2 —1/2
The coordinates of (a;) with respect to the ordered basis {aq,...,a4}
are given by the columns of
111 1000O0T11O00O0
w5 (eg)laai_| 2L 2TLLOTO21 10
' 9995 =392 121103111
111111112000

The coordinates of (b;) with respect to the ordered basis {aq,..., a4}
are given by the columns of

211110011110
3322111120011

@6 ) 9B =1 9 2 2 992 0 0 0
222000222000

That is, a1 = a1 +2a2 + 3as + ay, etc. From this it is easy to wriNte down
the AT (k)'s for (Fy, ;) for 1 <i < 4. Next, let us determine N, 1g.
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Lemma 4.2. Let o, 8 be positive roots.

~ [ sgn(Napg), ifa,B €A, and |a+ B* =1,
(4.7) N _{ V2sgn(N, ), otherwise.

If a — B #0, then

~ [ sgn(Ny—p), ifo, B €A, and |a — B]*> =1,
(4.8)  No—p _{ V2sgn(N, _g), otherwise.

Proof. First note that a root « is in A or —« is in A if and only if
lla||> = 1, and it is in B or —a is in B if and only if ||a|? = 2.

To prove (4.7), it is sufficient to consider the case that a+ S is a root.
Suppose «, 3 € A, and ||a + 3||> = 1, then (o, 8) = —%. Suppose a — 3
is also a root then |la — f||* = 1 or 2, and (o, §) = % or 0, which is

impossible. Hence N, g = £1. In this case,

~ o 5
Na,ﬁ = "a L‘- ;‘Naﬁ = SgH(Na,B)-

Suppose ||a+ B||> = 2; then (a, ) = 0, and a — 3 is also a root (see [11,
p. 324]). Moreover, ||a — 23||> = 5 and so a — 2f3 is not a root. Hence
Ny = £2. Then Na,ﬁ = \/Esgn(Naﬁ).

Suppose a € A, 3 € B, and ||+ B||> = 1; then («, 3) = —1. Suppose
o — 3 is also a root; then ||a — S[]* = 1, or 2, and (a,3) = 1 or %
Hence a — 3 is not a root. In this case, Na,g = ﬁsgn(Naﬁ). Suppose
|lov + B||* = 2, then (o, B) = —3. That (o, 3) is an integer. Hence this
is impossible.

Suppose o, 3 € B, and ||a + B||?> = 1; then (o, 8) = —%. This is
impossible. Hence ||a + 8]|* = 2 and (o, 3) = —1. As before, we can
prove that a — 3 is not a root. So N, g3 = £1 and Naﬂ = \/isgn(Naﬂ).
This completes the proof of (4.7). The proof of (4.8) is similar.

q.e.d.

4.2.2. The space (Fy,a;).

AT (1) ={a1, a2, a3, as, ag, aro, bz, bs, b, bs, bs, bo, b1g, b11 }

W ar) =)

AT (k) =0, for k> 3.

dim = 15, Ric = &g,
4 largest eigenvalues of M; are 8, 4.5, 4.5, 4.5,
eigenvalues of My are at most 4.9142 (using Lemma 2.7).

Thus the space has @B > 0.
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4.2.3. The space (Fy,a2).

A (1) ={as, a4, as,ar,aio, ai1;bs, be, bz, bs, b11,b12}
(410) A;_(2) :{a17a37a97b37b47b9}
AF (3) ={b1, b2}

A (k) =0, for k > 4.

dim = 20, Ric = b5y,
4 largest eigenvalues of My are 5, 4.8941, 4.8941, 4.6543,
eigenvalues of My are less than 5.

(The estimate for M, is obtained by using u = 5 and s = 4 in Lemma
2.8, in which case the maximum weighted row sum is 4.9822. When
we take s = 10, then the maximal weighted row sum actually becomes
4.8070.)

Thus the space has @B > 0.

4.2.4. The space (Fy,as).

A;(l) :{a47a67 a7, aio, a11,a12}

AT(2) ={as,as,as,b4,...,b
(4.11) i() {az,a3,as,b4 9}

Az (3) ={a1,a9}

Ay (4) ={b1, b2, b3}

A3 (k) =0, for k > 5.

dim = 20, Ric = 7/2g,
4 largest eigenvalues of M; are 3.6888, 3.5, 2.4137, 2.4137.

Thus the space does not have QB > 0.
4.2.5. The space (Fy,ay).

A (1) ={a1,..,as}

(4.12) N
A4 (2) :{(19; b17 b27 b37 b77 b87 bg}

Af(k) =0, for k > 3.

dim = 15, Ric = 11/2g,
4 largest eigenvalues of M; are 5.5, 2.1328, 2.1328, 2.1328,
eigenvalues of My are at most 3.9571 (using Lemma 2.7).

Thus the space has @B > 0.

4.3. The spaces (Eg, ;).
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4.3.1. Root system. Consider the subspace V of R® such that & =

&7 = —&. The positive roots in V are +e; +¢;,1 < i < j < 5 (total 20),
and

5
1 .
5(68 — &7 —¢gg + E (—1)V(Z)Ei)
i=1

so that "2 (i) is even, i.e. the number of minus signs is even (total 16).

Let

€1t &2 —&1+ &2

€1+ €3 —€1 + €3

f1te —e1 + &4

€1+¢5 —€1 +¢5

o asty= | 512 Lo | 210
€2+¢5 —€9 + €5

et e —e3 + &4

€3 +¢s5 —€3+ €5

€4 t6s —€4 + €5

Eg —E7—Eg— €1 — €2+ €3+ ¢&4+ €5

€g —€E7 —€g —€1t€E2—€3+¢€4+¢€5

€g — €7 —¢€¢ —€1téEx+eE3—¢e4t¢Es

€8 —€E7—€¢ —€1téExt+eE3+¢E4—¢5

(4.14) C:(ci)lﬂzl €s — €7 — €6+ €1 —E2—€E3+E4teEs
= Eg —E7 —€6 T €1 — €2+ €3 —€4+¢5

Eg —E7 —€6 T €1 — €2+ €3+ €4—65

E§ —E7 — €+ €1 +E2—€3—€4+6€5

g —E7 —€6 T E€1+E2— €3+ €4—65

g — €7 —€6 T E€1+E2+€E3—€4—65

d €g — €7 — €6 t€1tex+e3+eg+¢€5

d2 €8 — €7 — €6+ €1 — €2 —E3 — €4 —E5

(4.15) D= d3 | _ 1| es—er—eg—e1ter—e3—es—¢5
dy 2| €8 —€7—€ —€1 —€2+E3 €1 —¢€5

ds €g —E7 —E6 —E1 —E3 — €3+ E4 — €5

dﬁ E] —E7— € — €1 —E2 —E3 — &4 t+ €5

Simple positive roots are: a3 = do, a0 = a1,a3 = by, a4 = by, a5 =
bs, g = b1p. The matrix for (o) is

(4.16)
1/2 —1/2 -1/2 -1/2 -1/2 —1/2 —-1/2 1/2
1 1 0 0 0 0 0 0
| 0 0 0 0 0 0
I=1 o -1 1 0 0 0 0 0
0 0 1 1 0 0 0 0
0 0 0 1 1 0 0 0
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The coordinates of a; relative to the ordered basis {aq, ..., a4} are the

columns of
0000 O0OO0OO0DOTG OO
1 111111111

heli e | 0O0OO0DO01T 11111

(4.17) (99)" 94 = o 1 1 1111222
0 01101111 2
0001 0O01O0T11

The coordinates of b; relative to the ordered basis {1, ...,as} are the

columns of
000 O0O0O0OO0ODO0OTG OO0
0 00O0O0O0OO0ODO0OTG OO 0

-1 ot | 11110000 0O

(4.18) (990" 9B = 6 1 1111100 0
0011011110
0001 0O01O0T1T1

The coordinates of ¢; relative to the ordered basis {1, ...,as} are the

columns of
1111111111
1111111111
222 2111111

th—1_~t _

(4.19) (99)79C° =1 3 9 9 99292 111
2211211110
1110110100

The coordinates of d; relative to the ordered basis {aq,...,as} are the

columns of
111111
2 0 0 0 00

-1 n~t_ | 201 111
2 00011
1000 01

We can determine Na,g as before.

Lemma 4.3. Let o, 3 be positive roots; then

(4.21) Nujp = V2sgn(Nag).
If o — B #0, then
(4.22) Na,_g = V25gn(N,_5).

Proof. The proof is similar to the proof of Lemma 4.2, using the fact
that if o is a root, then |a|? = 2. q.e.d.
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Since (Fg, 1) and (Eg, ag) are Hermitian symmetric spaces, we only
consider (Eg, «;), 2 <i <5 below.

4.3.2. The space (Fg,a2).

A;(l) :{al,. ..,a105C1y - - - ,Cl()}

Af(2) ={di}
AF (k) =0, for k > 3.

(4.23)

dim = 21, Ric = 11g,
4 largest eigenvalues of M; are 5.5000, 5.5000, 5.5000, 11.0000,
eigenvalues of My are at most 5.5 (using Lemma 2.7).

Thus the space has QB > 0.
4.4. The space (Fs,a3).

A;(l) :{a57"-7a10;b17"'7b4;C57"-7610;d37"'7d6}

AT (2) ={e1,. .. a3 dr}
AT (k) =0, for k > 3.

(4.24)

dim = 25, Ric = 9g,
4 largest eigenvalues of M; are 5.3117, 5.3117, 8.5000, 9.0000,
eigenvalues of My are at most 8.5 (using Lemma 2.7).

Thus the space has QB > 0.
4.4.1. The space (Eg,ay).
Ai(l) ={ag,...,azr;ba,...,br;cs,...,C10;ds, ..., ds}
(4.25) AL (2) ={as,...,a10;¢2,...,c7}
A7 (3) ={er, dv}.
Af(k) =0, for k > 4.

dim = 29, Ric = 7y,
4 largest eigenvalues of M7 are 5.8226, 5.8226, 7.0000, 7.1468.

The space does not have QB > 0.

4.4.2. The space (Fg,as).

(4.26)
AF (1) ={as,a4,a6,...,a9;b3,b4,bg, ..., by;c3,c4,C6,. .., C9;d5,dg}

AT (2) ={ai0;c1, 2, 05;d1}
AT (k) =0, for k > 3.
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dim = 25, Ric = 9g,

4 largest eigenvalues of M; are 5.3117, 5.3117, 8.5000, 9.0000,

eigenvalues of My are at most 8.5 (using Lemma 2.7).

Thus the space has QB > 0.

4.5. The spaces (E7,q;).
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4.5.1. Root system. Consider the subspace V of R®, orthogonal to
e7 + €g. The positive roots in V are +¢; +¢;,1 < i < j < 6 (total 30),
—e7 + €8, and

6
1 .
sles —er+ §_1<—1>”%>

so that Z? v(i) is odd, i.e. the number of minus signs, is odd (total 32).

Let

(4.27)

(4.28)

A:

C:

15
(a’i)i:1 =

C1
C2
C3
Cq
Cs
C6

€1t ¢e2 _ii I iz
€1+es ety
€1+t¢é4 —e1 + 65
€1+ ¢€5 el + 6
€1+ €6 eyt e
€2+ €3 —€2 + €4
€2+ &4 e de

gat+es |, B= (bl)llil = _EQ X 65
€2+ €6 _Ez 4 Ej
€3+ €4 s+ e
gz +e€5 s+ 6
€3+ &g e +es
€4+ €5 —a+ €6
€4 t+ €6 s+ eg
€5 + €6 —er+es

eg—€E7r—€1+eg+eszt+ 4+ €5+ €6
eg — €7+ €1 —€g+ezt+eg+6e5+¢€6
eg —€7+e1+eo—e3+eg+e5+¢€¢
eg —€7te1teate3—¢e4+e5+¢6
eg —€7te1teateztes—¢e5+¢6
eg—€Er+e1+egtest+ 4+ 65 —¢€6
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€8 —€7 —€1 — €2 —€3+t¢€4+E5+¢6
€g —€E7 —€1 —€E€2+€3 —€4+¢E5+¢€¢
€g —€7 —€1 —€E€2+t€E3+eq4—¢€5+ €6
€g —€7 —€1 —€E€2+t€E3+eEq4+ €5 —¢€p
€8 —€7 —€1t€2—€3—€4+E5+¢€6
€g —€7r —€1t€a—€3+¢€4—€5+¢6
€g —€7r —€1tea—€3+tes+¢6€5 —¢€6
€g — €7 —€1t€E2+€3 —€4—€5+¢€¢
€g —E7 — €1 tEgx+€E3—€4+¢E5 — €
20 1| eg—er—e1+eateztes—e5—¢6
=1 2| eg—er+el—ea—€e3—€4+6e5+¢€6
ER —E7+E1 —E2—E3+E4—E5+ €6
ER —E7+E1 —E2—E3+E4+E5— €6
Eg — €7+ €1 — €2 +E3—€4—E51¢E¢
Eg — €7+ €1 — €2 +E3—€41+E5 —Ep
Eg — €7+ €1 — €2 +E3+€E4—E5—¢Ep
ER —E7+E1+E2—E3—E4—E5+ €6
ER —E7+E1+E2—E3—E4+E5— €6
€g — €7+ €1+ 0 —€3+¢€4—€5 —¢€¢
Eg — €7+ €1 +€E2+E3—€4—E5—Ep

el E] —E7+ €1 — €9 — €3 —E4 — €5 —Eg
€9 ER —E7 — €1 +E9—E3 —E4— €5 — Eg
(4‘30) F— €3 :1 Eg —E7 — €1 — €2+ E3— €4 —E5 —Ep
€4 2| eg—€r—€1—€2—€3+€4—E5 —Ep
es ER —E7 —E1 — €92 —E3 —E4+E5 —€p
€6 ER —E7 — €1 —E9 —E3 —E4 — €5 + €4

Simple positive roots are: a; = e, 9 = aq1,3 = by, = bg, a5 =
b1o, g = b1z, a7 = by5. The matrix for («;) is:

(4.31)
12 —1/2 -1/2 -1/2 —-1/2 —1/2 —-1/2 1/2
11 0 0 0 0 0 0
-1 1 0 0 0 0 0 0
g=| 0 -1 1 0 0 0 0 0
o o0 -1 1 0 0 0 0
0 0 0o -1 1 0 0 0
0 0 0 0o -1 1 0 0
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The coordinates of (a;) with respect to the ordered basis {«aq, ..., a7}
are given by the columns of
(4.32)
000O0OO0OOODOOOOOO0OTO 0O
11111111111 11171
0oo0o0001111111111
(g¢)'gA'= 011 111111222222
0011101111112 22
000110011011 112
00001O0O0OO0O1TO0O0O1O0T1T1
The coordinates of (b;) with respect to the ordered basis {aq,...,ar}

are given by the columns of

(4.33)
0000O0OO0OOOOO0OO0OO0OO0OTO0O0 2
0000O0OO0OOOOO0OO0OO0OO0OTO0O0 2
1 111100O0O0O0O0O0OO0OO0OO0OS3
(g¢)'gB'=| 01 1111111000000 4
00111011111 1000 3
000110011011 T1T1°O0 2
00001 0O0OO0O1O0OO0OC1TO0T1T11
The coordinates of (¢;) with respect to the ordered basis {aq,..., a7}
are given by the columns of
111111
2 2 2 2 2 2
3 2 2 2 2 2
(4.34) (g tgCt=1 4 4 3 3 3 3
3 3 3 2 2 2
2 2 2 2 11
111110
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The coordinates of (d;) with respect to the ordered basis {aq,..., a7}
are given by the columns of (gg*)~'¢gD?, which are:

(4.35)
1111111111111 1111111
1111111111111 1111111
2222222222111 1111111
3333222222222222111:1
322222211 12221111110
22112111102111101100
111011010011 01O0O01O0°O0°0
The coordinates of (e;) with respect to the ordered basis {aq,...,ar}
are given by the columns of
111111
00 0O0O0O0
011111
(4.36) (g¢)'gFt=10 0 1 1 1 1
000111
00 0O0T11
000001
Since « is a root implies |a|? = 2, it is easy to see that Lemma 4.3 is

still true in this case. Note that

™

,ar7) is Hermitian symmetric.
4.5.2. The space (E7,aq).

AT (1) ={e1,...,c6,d1,. .. d2o,e1,- .., 66}

AT (2) ={bis},

AT (k) =0 for k > 3.

(4.37)

dim = 33, Ric = 17g,
4 largest eigenvalues of M are 17, 7.5, 7.5, 7.5,
eigenvalues of My are at most 7.5 (using Lemma 2.7).

Thus the space has @B > 0.
4.5.3. The space (E7,az).

A;(l) :{al,. .. ,a15,d1,. .. ,dgo}

(4.38)
A;(2) :{Cl7 -+, Ce, b16}7
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AT (k) =0 for k > 3.

dim = 42, Ric = 14g,
4 largest eigenvalues of M; are 14, 8.012, 8.012, 8.012,
eigenvalues of My are at most 9 (using Lemma 2.7).

Thus the space has @B > 0.
4.5.4. The space (E7,as).

AT (1) ={as, ... a15,b1,...,bs,d11,...,doo, €2,... €6}
(4.39) A;’_(Q) :{dl,...,dlo,CQ,...,Cﬁ}
Ay (3) ={big, c1}
AT (k) =0 for k > 4.
dim = 47, Ric = 11g,
4 largest eigenvalues of M; are 12.1411, 11, 7.6829, 7.6829.
Thus the space does not have QB > 0.

4.5.5. The space (E7,ay).

Ai(l) :{a27-"7a97b27"'7b97d177"-7d207e37"'766}
(4.40) A{(Z) ={ai,...,a15,d5,...,di6}

A4 (3) :{Cg, ce ,CG,dl, v ,d4}

A (4) ={big,c1,c2}

dim = 53, Ric = 8y,
4 largest eigenvalues of M; are 9.5692, 8.1727, 8.1727, 8.

Thus the space does not have QB > 0
4.5.6. (E7,a5).
(4.41)
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+
AS (1) :{ag,...,a5,a7,...,alg,bg,...,b5,b7,...,bm,dg,...,dm,dm,...

dlg, €4y 66}
AT (2) ={a13,...,a15,¢4,. .., C6,da, ... d7,d11,. .., dig}
AT (3) ={bis, c1,c2,¢3,d1 }

AT (k) =0 for k > 4.
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dim = 50, Ric = 10g,
4 largest eigenvalues of My are 10, 9.7882, 9.7882, 8.0097,
eigenvalues of My are less than 10.

(The estimate for My is obtained by using = 10 and s = 1 in Lemma
2.8, in which case the maximum weighted row sum is 9.9806.)
Thus the space has QB > 0.

4.5.7. The space (E7,ag).

(4.42)
Ag(l) :{a4, as,ag, a9, i1, ..., 0a14, b4, b5, bg, bg, b11, ey b14, C5,Cq, d3, d4,

dg, .. dg,d1a, ..., d15,e5,€6,d17,d1s}
Ag_(2) :{015, b167 C1,C2, C3,C4,d1, d27d57 dll}

AL (k) =0 for k > 3.

dim = 42, Ric = 13g,
4 largest eigenvalues of M, are 13.5, 13, 7.1504, 7.1504.

Thus the space does not have QB > 0.

4.6. The spaces (Eg, ;).

4.6.1. Root system. Let VV = R®. The positive roots in V are +&; +
gj,1 <i < j <8 (total 56), and

7
1 v(t
Sles+ ;(—1) @e;)

so that S°7_ v(i) is even, i.e. the number of minus signs is even (total
21+ 35+ 8 = 64). Let
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€1+ é2 —€1 + €2
€1t+es —&1+es3
€1+ ¢€a —&1+é4
€1+ e¢s —€&1+ €5
€1+ €6 —&1+¢€s6
€1 t+er —&1 +e7
€1+ €8 —&1 + €8
€2+ €3 —e2te€3
€2+ €4 —e2+ &4
g2+ €5 —&a2 + €5
€2+ €6 —e2+¢€s6
€2 +e7 —e2t &7
€2+ €8 —&g + €8
(443)  A=(a )%, =| BT | B=(b)® =] =T
€3+ es ¢ —e3+es
€3+ ¢ —e3 + €6
€z +er —e3+ée7
€3+ es —e3 + €8
€4+ €5 —&4+ €5
€4+ €6 —e4+¢s6
ea+e7 —e4 + €7
€4+ €8 —&4 + €8
€s + €6 —&5+¢€s6
es + €7 —&5 + €7
€s + €8 —&5 + €8
€6 + &7 —&6 t+ &7
€6 + €8 —c6 + €8
€7+ € —e7 + €8

Eg —€1—€2+€3+¢eqates+ester
€g —€1+¢e2—€3+€E4+¢€5+¢E6teEr
€egs —€1+eat+e3—€4+e5+¢c6+e7
egs—€1teate3+eq—¢€5+¢es+er
s —€1teatesteqstes —eg+ter
€g —€1+t€E2+€E3+€E4+E5+E6—€7
es+e1—€2—€3+¢eq4tes+ester
est+e1—€e2+e3—¢eq4+tes+ester
€g+e1—€2+¢e3+¢€4—¢€5+¢€¢ter
es+e1—€e2+e3+eqstes —egter
(4.44) C=(c )21 =| es+er—e2testeates+eg—er
€8 +€1+€2—€3 —€4+6E5+E6+ET
€8 +€1+€E2—€3+€4—€E5+6E6+E7
es+e1tex—e3+eqstes —egter
egste1+exa+eztestes+ee—e€r
est+e1textes—eq4—¢€5+¢es+er
est+e1teates—eqates —egter
€g+€1+€E2+€3 —€4+6E5+6E6—€7
est+e1textesteq—e5 —€6+ter
€gste1+exa+e3tes—€s5+¢c6—€r
este1+exateztest+es—¢c6—€r
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(4.45)

(4.46)

D=(d )

35
i=1

A. CHAU & L.-F. TAM

N —

Eg —€1 —€E2— €3 —€4+€E5+¢E6+E7
Eg —E1 — €2 — €3+ €4 —€5+¢€6teET
€g — €1 —€2—€E3+t€s+€E5—€6t+E7
€Eg —€1—€2—€3+€Es+€E5+€E6—€7
€g — €1 —€21+€3—€4—¢€5+¢c6ter
€8 —€1 —E€2+€E3 —E€4+E5 —E6FET
€8 —€1 — €2+ €3 — €4+ E5+E6 —E7
€g —€1—€2+€3+eq—¢€5 — €6 ter
€g —€1 —€2+t€3+¢€4—¢€5+¢€6—¢€7
€g —€1—€2+t€3+es+¢e5 —€6 — €7
€g —€1t€e2—€3—¢€4—¢€5+¢c6ter
€8 —€1+ €2 —€3 —E€4+E5 —E6tET
€8 —E€1+€E2— €3 —€a4+E5+ €6

eg—€1+tez—€e3tes
€g — €1+ €2 —€3+¢€g
eg—€1+tez—e3tes
eg—€1+tezt+ez—es
€g —€1+€E2+€E3 — €4
Eg—€1tée2+€E3—¢€q
g —€1tex+e3+¢€g
€g+€1—€2— €3 — €4
Eg+ €1 —€2—€3—¢€4

— &5
— &5
+eés
— &5
— &5
+eés
— &5
— &5
+eés5

— &6
+ €6
— &6
— &6
+ €6
— &6
— &6
+ €6
— &6

— &7
+e7
— &7
— e
+e7
— &7
— e
— e
+é7
+e7

Eg+€1—€2—€3—€4+¢€5+¢€6—€7

€gt+€1—€2—¢€3+¢€s
Eg+€1—€2—¢€3+¢€a
Eg+¢€1—€2—¢€3+¢€a
€gt+€1—€2+€3— €4
Eg+€1—€2+€3—¢€4
Eg+€1—€2+€3—¢€4
€gtée1—e2+e3+én
eg+¢€1+ée2—€3—¢€4
eg+¢e1+e2—€3—¢€q
€g+e1+€e2—€3—¢€4
egt+e1t+ex—€e3+¢€q
egt+e1tex+e3—¢€4

egt+e1t+ée2+¢e3+eq
€g+€1 — €2 —€3 —€4
Eg —€1+€2 —€3— &4
Eg — €1 — €2+ €3 —¢€4
€g —€1 — €2 — €3+ €4
E —E1 — €2 —E3 — &4
€8 —&1 — €2 — €3 —¢&4
Eg —E1 — €2 — €3 — &4

— €5

— €6

+é7

— €5 +E6 —€7
+é5 — €6 — €7

— €5

— €6

+é7

—€5+E6 —€7
+é5 — €6 — €7

— €5

— €6

— €7

— €5 — &6t E7
—€s5+E6 —€7

+é5

— €6

— €7

— &5 — € — €7
— &5 — € — €7

+é5
— &5
— &5
— &5
— &5
+é5
— &5
— &5

+ €6
— &6
— &6
— &6
— &6
— &6
+ €6

— €¢

+é7
— e
— &7
— &7
— e
— &7
— e

+e7
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= bg,a5 =

b17 Qay

bae. The matrix for («;) is:

ay, 3

€2, 2

big, o7 = bag, g =

Simple positive roots are: oy

b14, ag

—1/2 —1/2 -1/2 —1/2 —1/2 —1/2 1/2

1/2

0

0

0

0

0

0

1

1

g:

(4.47)

.,ag} are

The coordinates of (a;) relative to the ordered basis {ay, ..

given by the rows of

01000000
01010000

1 0 00
11 00
11

1

0 1 01

0 1 01

0

1

0 1 01

1

01 01

2 3 3 5 43 21

1 1.0 0 0 0
1
1

1

1 0 00
11 00

2 3 45 4 3 21

1210 0 0
121 1 00

0 1
0 1

0

1
1

23 46 4 3 21

1 2 11

0 1
0

1 211

1

12 2 1 00

0 1

0

1
1

1 2 2 1
1 2 2 1
2 346 5 3 21

0 1

0 1

0

1
1

1 2 2 2
1 2 2 2
2 3 46 5 4 21

1

1

0
0

12 2 2 21

23 46 5 4 31

0 1

2 3 46 5 4 3 2

((99")'gA")"

(4.48)
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.,ag} are

The coordinates of (b;) relative to the ordered basis {aj, ..

given by the rows of

0 0 0 0 O
1

1

0

0 0 0 O

1

0 0 O

2
0 0 0 O

5 4 3
1

1 1
1

1

1
5

4
0 0 O
0 0 O
0 0 O
0 0 O
0 0 O

0 0 O

4 3 2
1 0 0 O
1 1 0

3
0 0 0 O
0 0 0 O
0 0 0 O
0 0 0 O

1
1

0 0 0 0 0 1 0

0 0 0 0 O
0 0 0 0 O

1
1

0 0 0 0 0 O
0 0 0 0 0 O

1

0 0 0 0 0 0 O

((99")'gBY)" =

(4.49)

.,ag} are

The coordinates of (¢;) relative to the ordered basis {ayq, ..

given by the rows of

2 3 5 4 3

1

2 3 4 3 3

1

2 3 4 3 2 1

1

4 3 2

2

2 2 4 3 2 1 0

1

3 3 2
3 3 2

2

0

1

((g9")gCh)*

(4.50)
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.,ag} are

The coordinates of (d;) relative to the ordered basis {aj, . .

given by the rows of

1
1

2 3 3 3 2
2 3 3 2 2
2 3 3 2
2 3 3 2

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

1

1
1

0
1

2 3 2 2 2
2 3 2 2
2 3 2 2

1

1
1

0

1
1
1

2 3 2
2 3 2
2 3 2

1

0
1

0

2 2 2 2 2
2 2 2 2
2 2 2 2
2 2 2
2 2 2
2 2 2
2 2

2 2

2 2

2 2

1

1
1

1

1
1

0

1
1
1

1

0

0

1

1
1

1

1
1

0
10 0 O

1
1
1

1

1

2 2 2 2
2 2 2
2 2 2
2 2
2 2
2 2

1
1

0

1
1

1
1

0

1

1 0 0 O

2

10 0 O
0 0 0 O

1
1

((99")*gD")" =

(4.51)

.,ag} are

The coordinates of (e;) relative to the ordered basis {aj, ..

given by the rows of

J

Since « as a root implies that |a|?> = 2, Lemma 4.3 is still true in this

case.

33 5 4 3 2 1
10 0 0 0 0 0 O
01 0 0 0 0 O
01 1 0 0 0 O
0 1 10 0 O
0 1 1 0 0
0 1 1 1 0
0 1 1 1 1

1
1
1
1
1
1
1

(4.52) ((99")'gE")" = [
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4.6.2. The space (Eg,aq).

(4.53)
AT(1) ={e1, ... con3d1, ... dssien, ... e}

Aii—(2) :{(17, ais, ais, @22, azs, A27, 428; b77 b137 b187 b227 b257 b277 b28}
AT (k) =0 for k > 3.
dim = 78, Ric = 23g,

4 largest eigenvalues of M; are 14.1102, 14.1102, 14.1102, 23,
eigenvalues of My are at most 14.5 (using Lemma 2.7).

Thus the space has @B > 0.

4.6.3. The space (Eg,a2).

(4.54)
A;(l) :{al, ...,06,08,...,012,0A14,...,QA17,A19,...,021,023,024, A26;
di,... ,d35}
AT (2) ={br, b1z, bis, baz, bas, bor, bog, c1, . .., o1 }
AT (3) ={ar, a13, a1s, aza, ass, asr, ass;er}

AF (k) =0 for k > 4.

dim = 92, Ric = 17y,
4 largest eigenvalues of M7 are 13.8336, 13.8336, 13.8336, 17.0000,
eigenvalues of My are not more than 15 (using Lemma 2.7).

Thus the space has @B > 0.

4.6.4. The space (Fs,as).

(4.55)
A:}f(l) ={as,...,a12,014, .. .,017,019, - . . , 21, 423, G24, A26; D1, . . . , bg;
da1,...,dss;€s,...,es}
AT (2) ={e7,...,ca1;d1, ... dao}
AT (3) ={az; bi3, big, bog, bos, bar, bas;c1, . . ., cei €1}

3
AT (4) ={a13, a1s, as, ass, azy, ass; br}.

AT (k) =0 for k > 5.

dim = 98, Ric = 13g,
4 largest eigenvalues of M7 are 11.3117, 11.3117, 13.0000, 16.9627.

Thus the space does not have QB > 0.
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4.6.5. The space (FEg,a4).

(4.56)
Af (1) ={as,...,a¢,as,...,a12;b2,...,be;bs, ..., bi1a;d31,. .., dss;
€4, ...,€8}
AI(2) ={a14,...,a17,019, . ..,a21, 23, 24, Q26;d11, - - . ,d30}
Af(3) ={e12,...,co1;d1,. .., dio}
A} (4) ={b1s, baa, bas, bar, basi c2, . . ., 11}
A (5) ={a7,a13,b7,b13,¢1, €1}
AZ(@ ={a1s, aze, ass, azy, ass}

Af(k)=0for k>7.

dim = 106, Ric = 9g,
4 largest eigenvalues of M; are 9.0798, 11.2147, 11.2147, 12.6168.

Thus the space does not have QB > 0.

4.6.6. The space (FEg,as).

(4.57)
Ag_(l) :{ag, sy 06,09, . ..,012,014, ... ,017
bg,... ,bﬁ,bg,... ,blg,b14,... ,b17;d17,... ,dgo,d27,... ,d34,
€5,... ,68}
A;—(Q) :{alg, ...,091,0a23,024, 4265 C16, - - - 5 C21

ds,...,dig,d21,. .., dog}
AT (3) ={baa, bas, baz, bas; cs, ..., Co, Csy - - -, C15,d1, do, d3, dy }
AT (4) ={ar,a13,a18; b7, b13,bis, c1, 2, 075 €1}

5
AT (5) ={ag, ass, asr, ass}.

AT (k) =0 for k > 6.

dim = 104, Ric = 11g,
4 largest eigenvalues of M; are 11.5575, 12.0012, 12.0012, 12.0012.

Thus the space does not have QB > 0.
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4.6.7. The space (FEjs,ag).

(4.58)

Ag_(l) :{a4, ..., Q6,0105.-.,012,015,...,Q17,319,...,021;
b4,...,bﬁ,blo,...,b12,b15,...,b17,b19,...,bgl;clg,...,621
dg,...,dlo,d14,...,d19,d24,...,dgg,dgl,...,d33,€6,...,€8}

AF(2) ={ag3, aza, aze; bas, baz, basica, . . ., Co5 Cg, - -, €11, €13, - - - , C18;
dg,...,d7,d11,...,dlg,dgl,...,d23}

AL (3) ={a7, a3, a18, as2; by, b1z, bis, bas; 1, . . ., 3, ¢7, C8, C12,dy, €1}

4

A¢(4) ={ags, a7, a}
AL (k) =0 for k > 5.

dim = 97, Ric = 14g,
4 largest eigenvalues of M; are 11.4257, 14.0000, 16.0721, 16.0721.

Thus the space does not satisfy QB > 0.

4.6.8. The space (Eg,ay).
(4.59)
AT (1) ={as, a6, a11, a12, axe, a17, a20, a21; G23, G24;

b57 b67 b117 b127 b167 b177 b207 b217 b237 b247 b277 b28;

C5,C5 €105 C11, C14, C15, C17, - - - 5 C20;
d3,dy,dg, ... dg,d12,. .. dis,d17,d18,do2, . .., dosdardag, d31, d32,
er, e}

AT (2) ={ar, a13, a1s, a2z, ass, ase; by, big, bis, bao, bas;
Cl,...,C4,,C7,C8,C9,C12,C13, Cl6; d1, da, d5, d11,d2,e1}

A7 (3) ={aar, ass}

+

7
AT (k) =0 for k > 4.

dim = 83, Ric = 19g,

4 largest eigenvalues of M; are 11.4093, 11.4093, 19.0000, 22.1376.

Thus the space does not satisfy QB > 0.

4.6.9. The space (Fg,as).

(4.60)

AF (1) ={as, ar, a12, a13, a17, as, az1, asz, aza, ass, ase, asr;
be, b7, b12, 013, b17, b1g, ba1, b2z, bag, bas, bag, bor
Cly...,C5,C7,...,C10,C12,...,C14,C16,C17,C19
di,...,ds,ds,dg,dg,d11,di2,d1g, di7, do1, dog, dog, do7, ds1, €1, €8}

A7 (2) ={ass}
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A$ (k) =0 for k > 3.

dim = 57, Ric = 29g,
4 largest eigenvalues of M; are 11.5000, 11.5000, 11.5000, 29.0000,
eigenvalues of My are at most 11.5 (using Lemma 2.7).

Thus the space has @B > 0.

5. Appendix

We illustrate how we initialize the Kéahler C-space (Ga,as), then
calculate bisectional curvatures and estimate the eigenvalues of Ms in
MAPLE. The main formulas used to calculate the curvatures will apply
to all the other cases. Actual MAPLE code below will be italicized.

5.1. Initializing (G2, a3). We begin by initializing the root system.

1. Begin by defining the positive root system in R3, then define S as
the set of all positive and negative roots:
> al:=[1,-1,0]; a2:=[-1,0,1]; a3:=[0,-1,1]; bl:=[-2,1,1]; b2:=[1,-2,1];
b3:=[-1,-1,2];
> S:={al,...,bl,...,-al,...,-bl,...}

2. By expressing the positive roots in terms of the simple positive
roots, identify the corresponding sets AF (1), A3 (2), A7 (3) (appearing
as m1l,m2,m3 below). Refer to the ordered elements of A; by either
C(7) or ¢(i) below, depending on how they are used. The function g(i)
is 1,2, 3 depending on whether C'(4) is in m1, m2, or m3 respectively.
> mi1:={a2,a3,b1,b2};
m2 := {b3};
m3 :={};

A := Matriz([a2, a3, b1, b2, b3]);

C:=i — > convert(Row(A,i), list)

c:=i — > Row(A,i)

g:=t — >

if evalb(C(i) in m1) then 1

elif evalb(C(i) in m2) then 2

elif evalb(C(i) in m3) then 3 else 0 end if;

VVVYVYVYV

5.2. Bisectional curvature formula and matrix. Here we compute
the matrix M1 using Lemma 2.4.

1. We first need to define some basic functions appearing in Lemma
2.4. Below N(i,j) calculates N¢(; c(;), while T'(i,j)N(i,j) calculates
NC(i),C(j)- The function Nm(i, j) calculates Ne (), —c(j), while Tm(i, 7)
Nm(i,j) calculates Nc(i),—c(j) and the MAPLE codes for these are
similar.
> N:= (i,j) — >

if evalb(C(i)+C(j) in S and C(i)-2*C(j) in S) then 3
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elif evalb(C(i)+C(j) in S and C(i)-C(j) in S) then 2
elif evalb(C(i)+C(j) in S) then 1
else 0 end if;
> T:= (i,j) — >
if evalb(not(N(i,j)=0))
then sqrt(c(i).c(i))*sqrt(c(j).c(j))/sart((c(i)+c(5)-(c(i)+c(5)))
else 0 end if;
2. The matrix for bisectional curvature is given by

> B:= Matriz(5,5, (i,j) — >

if evalb(i < j) then
1/9(3)*(c(i)-c(3)+(1/2)*(a(i)/(9(i)+9(3))) *N(i,3)* *T(i,5)* )

else

1/9(1)*(c(3)-c(i)+(1/2)*(9(3)/(9(3)+9(i)))*N(3.i)? *T(j,i)* ) end. if);

5.3. General curvature formula. First we want to compute general
curvatures R(a, 3,7,6) where o # 3, v # § and where § = a — 8 + v,
which we may assume by Lemma 2.5. In the rest of the formulas in this
subsection, we identify a triple index (4, j, k) with the quadruple of roots

a=C(k),B=C(i),y=C(j),0 = Ck) = Ci) + C().

In particular, given any (i, j, k), we always have § = a — 8+ .

1. The function allroots(i,j, k) returns true or false depending on
whether 0 is a root or not. Moreover, gd(i,j, k) = [ if 4 is in ml and is
zero otherwise, while D(i,j,k) =1 if § = C(l) and is zero otherwise.

> allroots:=(i,j,k) — > evalb(C(k)-C(i)+C(j) in (m1 union m2 union

> gd:=(i,5,k) — >
if C(k)-C(i)+C(j) in m1 then 1
elif C(k)-C(i)+C(j) in m2 then 2
elif C(k)-C(i)+C(j) in m3 then 3
else 0;

> D:=(i,5,k) — >
if C(k)-C(i)+C(j) =C(1) then 1
elif C(k)-C(i)+C(j) =C(2) then 2
elif C(k)-C(i)+C(j) =C(3) then 3

else 0 end if;

2. Now we define the coefficient functions used in Lemma 2.5. Below,
xi(j, k) for example is 1 if j < k, and zero otherwise.

> xi:= (k,j) — > if j <k then 1 else 0 end if;
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> delta := (k,j) — > if k = j then 1 else 0 end if;

> coeffl := (i,3,k,1) — > (k-j)*xi(k, j)-k*1/(i+Fk);

> coeff2 := (i,5,k,1) — > k*zi(i, j)+1*xi(j, i)+1*delta(i, j)*delta(k, 1)+ (j-
k) *wi(k, j);

3. Finally, given (i, j, k) we apply the formulas above and Lemma 2.5
to calculate curvature associated to a = C'(k), 5 = C(i),y = C(j),d =
C(k) — C(i) + C(j). When o # 8 and ¢ is a root, then Rest(i,j, k)
is the upper estimate for |R(c, 3,7, 6)|, obtained by replacing the N’s
and their coefficients in Lemma 2.5 by their absolute values. Otherwise
Rest(i,3,k) = 0.
> Rest:=(i,j,k) — >

if (allroots(i,j,k) and not(C(k) = C(i)) then
(1/2)%(1/(sqrt(g(k)) *sqrt(g(i)) *sqrt(9(5) ) *sqrt(gd(i, j, k)))*

(I(coeff1(g(k), 9(i), 9(3), 9d(i, 5, k))|*
T(k,j) *N(k.3)*T(i,D(i,5,k)) *N(i, D (ij,k))

_/_
|(coeff2(g(k), 9(i), 9(3), 9d(i, j, k))|
*leO(k,i);J\;m(k,i)*Tm(j,D(z’,j,k))*Nm(j,D(i,j,k)))

5.4. Matrix of non-bisectional curvatures. Now we calculate the
25 x 25 matrix Z as defined in (4.2).

1. First we ordered all pairs of the form (C(7),C(j)) in a list of length
25 using the two commands below. For example, LIST[1] returns the
pair [C(1),C(1)], while LIST[1][2] corresponds to the second compo-
nent, C(1), of LISTI1].

> AA:= Matriz(5,5, (i,j) — > [C(i), C(j)])
> LIST:= convert(AA, list)

2. Below, 11(7) = j provided LISTYi][1] = C(j). Similarly, 2(i) = j
provided LISTYi][2] = C(j), and its MAPLE code is similar.

> li=1— >
> if LIST[i][1]=C(1) then 1
> if LIST[i][1]=C(2) then 2

3. Now we calculate the matrix Z as defined in (4.2). Associate
0 < 14,7 < 25 to the quadruple [A, B,C, D] = [LISTi][1], LIST]i][2],
LIST[j][1], LIST[j]]2]]. Now if A# B, A= D, and B = C, then Z;; =
|R(ABBA)|. If not in the previous case and A # Band A—B =D —-C,
then Z;; is the upper estimate for |[R(A, B, C, D), obtained by replacing
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the N's and their coefficients in Lemma 2.5 by their absolute values (the
minimum appearing in the formula below is justified by the curvature
identity R(A,B,C,D) = R(C,B, A, D)). If not in the previous cases,
then Z;; is zero.

> Z:= Matriz(25,25, (ij) — >

if (evalb(not(LIST[i/[1]=LIST/i][2])) and evalb(LIST[i][2]=LIST[j][1])
and evalb(LIST[ij[1]=LIST[j][2]))

then |B[l2(1), 11(i)]|

elif (evalb(not(LIST[i][1]=LIST]i][2]))
and evalb(LIST[i][1]-LIST[i][2]=LIST[j][2]-LIST[j][1])
then evalf(min(Rest(12(i), 11(7), 11(1)),Rest(12(i), 11(i), 11(5))))

else 0 end if);

Now for the matrix Z, the weighted row sums in (2.15) of Lemma 2.8
are given by S0,S51,52,... in the following commands.

>b0:=Matriz((25,1), (i,j) — >1):
>S50:=maz(Z.b0)

>u1:=1/9*7.b0
>b1:=Matrix((25,1), (i,j) — > min(1, vifi,1])):
>S1:=maz(Z.b1)

>02:=1/9% Z.b1
>b2:=Matriz((25,1), (i,j) — > min(1, v2[i,1])):
>S82:=maz(Z.b2)

5.5. The matrices B, Z for (G2, a3). Below, we give the matrix B of
bisectional curvatures and the matrix Z as calculated in MAPLE. For
the matrix Zap cp, the pairs AB are ordered into a list of 25 elements
as: (C(1),C(1)),(C(2),C(1)),(C(3),C(1)),... The matrix Z; gives the
first 13 columns of Z, while Zy gives the next 12.

T2 5/2 3 0 3/27
5/2 2 0 3 3/2
B=| 3 0 6 —3/2 3/2

0 3 -3/2 6 3/2
| 3/2 3/2 3/2 3/2 3
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5/2

0

V2v6

0

26 0

0

0

0 3/2

0

V2v6 0 V2v6 0

0

5/2

3/2

0

0

V26

0

3/2

0

0

V26

0

3/2

2V6 0

0

3/2

7y =
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rTo0 0 o0 0 0 0 0 0 0 0 0 007
0 0 0 V26 0 0 O O 0 O 0 O

0 0 0 0 O 0 0 0 O 0O 0 0

0 0 o0 0 0O 0 0 0 O 0 0 O

0 0 o0 0 0O 0 0 32 0 0 0 0

0 0 0 0 O 0 0 0 O 0O 0 O

0 0 o0 0 0O 0 0 0 O 0 0 O

0 0 0 0 O 0 0 0 O O 0 0

0 0 o0 3 0O 0 0 0 O 0 0 ©0

0 0 0 0 0O 0 0 0 32 0 0 0

0 0 0 3/2 0O 0 0 0 O 0O 0 0

0 0 3/2 0 0O 0 0 0 O 0 0 O
Ze=| 0 0 0 0 o 0 0 0 O 0O 0 0
0 0 o0 0 32 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 32 0 0

0 0 0 0 0O 0 0 0 O 0O 0 0

0 0 o0 0 0O 0 0 0 O 0 0 O
3/2 0 0 0 O 0 0 0 O O 0 0
0 0 o0 0 0O 0 0 0 O 0 0 O0

0 0 0 0 0 0 0 0 0 0 3/2 0

0 0 0 0 0o 0 0 0 O O 0 0

0 0 o0 0 0O 0 0 0 O 0 0 O

0 3/2 0 0 O 0 0 0 O O 0 0

0 0 o0 0 0 0 32 0 0 0 0 0

L o o0 o 0 0O 0 0 0 0O O 0 0]
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