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THE SPHERE THEOREMS FOR MANIFOLDS
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Abstract

Some new differentiable sphere theorems are obtained via the
Ricci flow and stable currents. We prove that if Mn is a compact
manifold whose normalized scalar curvature and sectional curva-
ture satisfy the pointwise pinching condition R0 > σnKmax, where
σn ∈ (14 , 1) is an explicit positive constant, then M is diffeomor-
phic to a spherical space form. We also provide a partial answer
to Yau’s conjecture on the pinching theorem. Moreover, we prove
that if Mn(n ≥ 3) is a compact manifold whose (n − 2)-th Ricci
curvature and normalized scalar curvature satisfy the pointwise

condition Ric
(n−2)
min > τn(n− 2)R0, where τn ∈ (14 , 1) is an explicit

positive constant, then M is diffeomorphic to a spherical space
form. We then extend the sphere theorems above to submanifolds
in a Riemannian manifold. Finally we give a classification of sub-
manifolds with weakly pinched curvatures, which improves the
differentiable pinching theorems due to Andrews, Baker, and the
authors.

1. Introduction

Studying curvature and topology of manifolds plays an important
role in global differential geometry. The sphere theorem for Riemann-
ian manifolds was initiated by Rauch [37] in 1951. During the past
six decades, there has been much progress on sphere theorems for Rie-
mannian manifolds and submanifolds [3, 6, 8, 11, 43, 44, 49]. The
Brendle-Schoen Differentiable Sphere Theorem [9, 10] brought us a big
breakthrough in the investigation of curvature and topology of mani-
folds. The following results, due to Brendle and Schoen [5, 10], are very
important throughout this paper.

Theorem A ([5]). Let (M,g0) be a compact Riemannian manifold
of dimension n(≥ 4). Assume that

R1313 + λ2R1414 +R2323 + λ2R2424 − 2λR1234 > 0
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for all orthonormal four-frames {e1, e2, e3, e4} and all λ ∈ [0, 1]. Then
the normalized Ricci flow with initial metric g0,

∂

∂t
g(t) = −2Ricg(t) +

2

n
rg(t)g(t),

exists for all time and converges to a constant curvature metric as t →
∞. Here rg(t) denotes the mean value of the scalar curvature of g(t).

Theorem B ([10]). Let (M,g0) be a compact, locally irreducible Rie-
mannian manifold of dimension n(≥ 4). Assume that M ×R

2 has non-
negative isotropic curvature, i.e.,

R1313 + λ2R1414 + µ2R2323 + λ2µ2R2424 − 2λµR1234 ≥ 0

for all orthonormal four-frames {e1, e2, e3, e4} and all λ, µ ∈ [−1, 1].
Then one of the following statements holds:

(i) M is diffeomorphic to a spherical space form.
(ii) n = 2m and the universal cover of M is a Kähler manifold biholo-

morphic to CPm.
(iii) The universal cover of M is isometric to a compact symmetric

space.

On the other hand, some important work on sphere theorems for man-
ifolds with positive Ricci curvature has been done by several geometers
(see [3, 15, 23, 32, 34, 40, 42, 44], etc.). In the 1990s, Cheeger, Colding,
and Petersen [15, 34] proved the following differentiable sphere theorem
for manifolds with positive Ricci curvature.

Theorem C ([15, 34]). Let Mn be a compact Riemannian n-manifold
with Ricci curvature RicM ≥ n − 1. Suppose that one of the following
conditions holds:

(i) vol(M) > ωn − εn, where ωn = vol(Sn) and εn is some positive
constant;

(ii) λn+1 < n+ θn, where λn+1 is the (n+ 1)-th eigenvalue of M and
θn is some positive constant.

Then M is diffeomorphic to Sn.

Let K(π) be the sectional curvature of M for 2-plane π ⊂ TxM ,
and Ric(u) the Ricci curvature of M for unit vector u ∈ UxM . Set
Kmax(x) := maxπ⊂TxM K(π), Ricmin(x) := minu∈UxM Ric(u). Inspired
by Shen’s topological sphere theorem [40], the authors [50] obtained the
following differentiable sphere theorem for manifolds of positive Ricci
curvatures.

Theorem D ([50]). Let Mn be a compact Riemannian n-manifold
(n ≥ 3). If Ricmin > δn(n − 1)Kmax, where δn = 1 − 6

5(n−1) , then M

is diffeomorphic to a spherical space form. In particular, if M is simply
connected, then M is diffeomorphic to Sn.
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Let Mn be a submanifold in a Riemannian manifold M
N
. Denote

by H and S the mean curvature and the squared length of the second
fundamental form of M , respectively. Denote by K(π) the sectional cur-
vature of M for 2-plane π(⊂ TxM). Set Kmax(x) := maxπ⊂TxM

K(π),

Kmin(x) := minπ⊂TxM
K(π). In [53], Xu and Zhao obtained some dif-

ferentiable sphere theorems for complete submanifolds in higher codi-
mensions via the Ricci flow and stable currents. Recently the authors
[51] proved the following differentiable sphere theorem for complete sub-
manifolds with strictly pinched curvatures, which is a generalization of
the Brendle-Schoen sphere theorem [9].

Theorem E ([51]). Let Mn be an n-dimensional complete subman-

ifold in an N -dimensional Riemannian manifold M
N
. If S < 8

3

(
Kmin −

1
4Kmax

)
+ n2H2

n−1 , then M is diffeomorphic to a spherical space form or

R
n. In particular, if M is simply connected, then M is diffeomorphic to

Sn or R
n.

The purpose of this paper is to prove some new differentiable sphere
theorems for Riemannian manifolds and submanifolds. In Section 3, we
prove the following differentiable sphere theorem for compact manifolds
with positive scalar curvature.

Theorem 1. Let Mn be an n(≥ 3)-dimensional compact Riemannian
manifold. Denote by R0 the normalized scalar curvature of M . Assume
that one of the following pointwise pinching conditions holds:

(i) R0 > σnKmax;
(ii) Kmin > ηnR0.

Then M is diffeomorphic to a spherical space form. In particular, if M
is simply connected, then M is diffeomorphic to Sn. Here

σn =

{
1− 4

n(n−1) for n = 3,

1− 12
5n(n−1) for n ≥ 4,

ηn = 1− 6

n2 − n+ 6
.

Theorem 1 improves Theorem D and gives a partial answer to Yau’s
conjecture on the pointwise pinching theorem (see [54], Problem 12).
Moreover, we obtain the following theorem.

Theorem 2. Let Mn be an n(≥ 3)-dimensional compact Riemannian

manifold. Denote by R0 and Ric(n−2) the normalized scalar curvature
and the (n−2)-th Ricci curvature of M . Assume that one of the following
pointwise pinching conditions holds:

(i) (n− 2)R0 > µnRic
(n−2)
max ;

(ii) Ric
(n−2)
min > τn(n− 2)R0.
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Then M is diffeomorphic to a spherical space form. In particular, if M
is simply connected, then M is diffeomorphic to Sn. Here

µn = 1− 6

n(n− 1)(n + 1)
,

τn = max{1− 12

(n− 2)(5n2 − 11n − 6)
, 0}.

Remark 1. We consider the case of n ≥ 4. Note that differentiable
structures of Einstein manifolds are very rich. If pinching conditions
(i) and (ii) in Theorem 2 are replaced by (n − 1)R0 > µ̃nRicmax and
Ricmin > τ̃n(n − 1)R0 respectively, where µ̃n, τ̃n ∈ (14 , 1), it’s impossi-
ble to obtain the same assertion. Therefore, the pinching conditions in
Theorem 2 are the weakest in this sense.

In Section 4, we extend the sphere theorems above to submanifolds
in a Riemannian manifold with arbitrary codimension (Theorems 13
and 14). In Section 5, we obtain a differentiable sphere theorem for
submanifolds with weakly pinched curvatures, stated as:

Theorem 3. Let Mn be an n(≥ 3)-dimensional compact submani-

fold in an N -dimensional Riemannian manifold M
N
. Assume that M

satisfies one of the following conditions:

(i) Kmin(x0) − 1
4Kmax(x0) 6= 0 for some point x0 ∈ M , and S ≤

8
3

(
Kmin − 1

4Kmax

)
+ n2H2

n−1 ;

(ii) Kmin(x)− 1
4Kmax(x) = 0 for any point x ∈ M , S ≤ n2H2

n−1 , and the
strict inequality holds for some point x0 ∈ M .

Then M is diffeomorphic to a spherical space form. In particular, if M
is simply connected, then M is diffeomorphic to Sn.

Furthermore, we prove the following classification theorem of sub-
manifolds with weakly pinched curvatures in space forms.

Theorem 4. Let Mn be an n(≥ 4)-dimensional oriented complete
submanifold in an N -dimensional simply connected space form FN (c)
with c ≥ 0. Assume that its scalar curvature R ≥ (n + 1)(n − 2)c +
n2(n−2)
n−1 H2, where c+H2 > 0. We have

(i) If c = 0, then M is either diffeomorphic to Sn, R
n, or locally

isometric to Sn−1(r)× R.
(ii) If M is compact, then M is diffeomorphic to Sn.

Remark 2. The pinching condition in Theorem 4 is equivalent to

S ≤ 2c + n2H2

n−1 . Theorems 3 and 4 improve the differentiable pinching

theorems due to Andrews-Baker and the authors [1, 51].

It should be mentioned that the second author introduced the results
above in his invited talk at the Fifth International Congress of Chinese
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Mathematicians held in Beijing from December 17 to December 22,
2010.
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2. Notation and lemmas

Let Mn be an n-dimensional submanifold in an N -dimensional Rie-
mannian manifold M

N
. We shall make use of the following convention

on the range of indices.

1 ≤ A,B,C, . . . ≤ N ; 1 ≤ i, j, k, . . . ≤ n;

if N ≥ n+ 1, n+ 1 ≤ α, β, γ, . . . ≤ N.

For an arbitrary fixed point x ∈ M ⊂ M , we choose an orthonormal

local frame field {eA} in M
N

such that ei’s are tangent to M . Denote
by {ωA} the dual frame field of {eA}. Let

Rm =
∑

i,j,k,l

Rijklωi ⊗ ωj ⊗ ωk ⊗ ωl,

Rm =
∑

A,B,C,D

RABCDωA ⊗ ωB ⊗ ωC ⊗ ωD

be the Riemannian curvature tensors of M and M , respectively. Denote
by h and ξ the second fundamental form and the mean curvature vector
of M . When N = n, h and ξ are identically equal to zero. When N ≥
n+ 1, we set

h =
∑

α,i,j

hαijωi ⊗ ωj ⊗ eα, ξ =
1

n

∑

α,i

hαiieα.

The squared norm S of the second fundamental form and the mean
curvature H of M are given by S :=

∑
α,i,j(h

α
ij)

2, H := |ξ|. Then we
have the Gauss equation

(2.1) Rijkl = Rijkl + 〈h(ei, ek), h(ej , el)〉 − 〈h(ei, el), h(ej , ek)〉.
Denote by K(·), K(·), Ric(·), Ric(·), R, and R the sectional curvatures,
the Ricci curvatures, and the scalar curvatures of M and M , respec-
tively. Then we have

Ric(ei) =
∑

j

Rijij, Ric(eA) =
∑

B

RABAB ,
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R =
∑

i,j

Rijij, R =
∑

A,B

RABAB .

SetKmin(x) = minπ⊂TxM K(π),Kmax(x) = maxπ⊂TxM K(π),Kmin(x) =
minπ⊂TxM

K(π), Kmax(x) = maxπ⊂TxM
K(π). Then by Berger’s in-

equality (see e.g. [6], Proposition 1.9), we have

(2.2) |Rijkl| ≤
2

3
(Kmax −Kmin)

for all distinct indices i, j, k, l, and

(2.3) |RABCD| ≤
2

3
(Kmax −Kmin)

for all distinct indices A, B, C, D. We set

Ricmin(x) = min
u∈UxM

Ric(u), Ricmin(x) = min
u∈UxM

Ric(u),

Ricmax(x) = max
u∈UxM

Ric(u), Ricmax(x) = max
u∈UxM

Ric(u).

For any unit tangent vector u ∈ UxM at point x ∈ M, let V k
x be a k-

dimensional subspace of TxM satisfying u ⊥ V k
x . Choose an orthonormal

basis {ei} in TxM such that ej0 = u, span{ej1 , . . . , ejk} = V k
x , where

the indices 1 ≤ j0, j1, . . . , jk ≤ n are distinct with each other. We set

Ric(k)(u;V k
x ) = Ric(k)([ej0 , . . . , ejk ]) =

k∑

q=1

Rj0jqj0jq ,

Ric
(k)
min(x) = min

u∈UxM
min

u⊥V k
x ⊂TxM

Ric(k)(u;V k
x ),

Ric(k)max(x) = max
u∈UxM

max
u⊥V k

x ⊂TxM
Ric(k)(u;V k

x ).(2.4)

We extend an orthonormal s-frame {ej0 , . . . , ejs−1
} in TxM to (k + 1)-

frame {ej0 , . . . , ejk} for 1 ≤ s ≤ k + 1 ≤ n and set

R(k,s)([ej0 , . . . , ejk ]) =
s−1∑

p=0

k∑

q=0

Rjpjqjpjq ,

R
(k,s)
min (x) = min

{ej0 ,...,ejk}⊂TxM
R(k,s)([ej0 , . . . , ejk ]),

R(k,s)
max (x) = max

{ej0 ,...,ejk}⊂TxM
R(k,s)([ej0 , . . . , ejk ]).(2.5)
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Ric[s]([ej0 , . . . , ejn−1
]) = R(n−1,s)([ej0 , . . . , ejn−1

])

=

s−1∑

p=0

n−1∑

q=0

Rjpjqjpjq ,

Ric
[s]
min(x) = min

{ej0 ,...,ejn−1
}⊂TxM

Ric[s]([ej0 , . . . , ejn−1
]),

Ric[s]max(x) = max
{ej0 ,...,ejn−1

}⊂TxM
Ric[s]([ej0 , . . . , ejn−1

]).(2.6)

R(k)([ej0 , . . . , ejk ]) = R(k,k+1)([ej0 , . . . , ejk ])

=

k∑

p=0

k∑

q=0

Rjpjqjpjq ,

R
(k)
min(x) = min

{ej0 ,...,ejk}⊂TxM
R(k)([ej0 , . . . , ejk ]),

R(k)
max(x) = max

{ej0 ,...,ejk}⊂TxM
R(k)([ej0 , . . . , ejk ]).(2.7)

Definition 1. We call Ric(k)(u;V k
x ), R(k,s)([ej0 , . . . , ejk ]),

Ric[s]([ej0 , . . . , ejn−1
]), and R(k)([ej0 , . . . , ejk ]) the k-th Ricci curvature,

(k, s)-curvature, s-th weak Ricci curvature, and k-th scalar curvature of
M , respectively.

The geometry and topology of k-th Ricci curvature was initiated by
Hartman [22] in 1979, and developed by Wu [47] and Shen [40, 41],
etc. By the definition above, it is seen that the Ricci curvature of M is
equal to the (n − 1)-th Ricci curvature, (n − 1, 1)-curvature, and 1-th
weak Ricci curvature; the scalar curvature of M is equal to (n − 1, n)-
curvature, n-th weak Ricci curvature, and (n − 1)-th scalar curvature.
For any unit tangent vector u ∈ UxM at point x ∈ M, let V k

x be a k-
dimensional subspace of TxM satisfying u ⊥ V k

x . Choose an orthonormal
basis {eA} in TxM such that eA0

= u, span{eA1
, . . . , eAk

} = V k
x , where

the indices 1 ≤ A0, A1, . . . , Ak ≤ N are distinct with each other. We
define the k-th Ricci curvature as follows:

(2.8) Ric
(k)

(u;V k
x ) =

k∑

q=1

RA0AqA0Aq .

We extend an orthonormal s-frame {eA0
, . . . , eAs−1

} in TxM to (k+1)-
frame {eA0

, . . . , eAk
} for 1 ≤ s ≤ k + 1 ≤ N and define the (k, s)-

curvature, s-th weak Ricci curvature, and k-th scalar curvature of M as
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follows:

R
(k,s)

([eA0
, . . . , eAk

]) =

s−1∑

p=0

k∑

q=0

RApAqApAq ,

Ric
[s]
([eA0

, . . . , eAN−1
]) = R

(N−1,s)
([eA0

, . . . , eAN−1
])

=

s−1∑

p=0

N−1∑

q=0

RApAqApAq ,

R
(k)

([eA0
, . . . , eAk

]) = R
(k,k+1)

([eA0
, . . . , eAk

])

=

k∑

p=0

k∑

q=0

RApAqApAq .(2.9)

Denote by Ric
(k)
min(x), R

(k,s)
min (x), Ric

[s]
min(x), R

(k)
min(x) and Ric

(k)
max(x),

R
(k,s)
max (x), Ric

[s]
max(x), R

(k)
max(x) the minimum and maximum of the cur-

vatures defined above at point x ∈ M .

We choose an orthonormal frame {e1, e2, · · · , en} such that u = en
and Ric(k)(u;V k

x ) =
∑k

i=1Rinin, where V k
x = span{e1, e2, · · · , ek}, 1 ≤

k ≤ n − 1. In particular, we see that Ric(n−1)(u;V n−1
x ) = Ric(u) and

Ric(1)(u;V 1
x ) = K(π), where π = span{e1, en}. Then we have the fol-

lowing lemma.

Lemma 1. Let Mn be an n-dimensional complete submanifold in an

N-dimensional Euclidean space R
N . If S ≤ n2H2

n−1 , H 6= 0, then

(i) ([45, 51]) Ric(k)(u;V k
x ) ≥ 0.

(ii) For each point x ∈ M there exists a unit vector u such that

Ric(k)(u;V k
x ) = 0 for some integer k ∈ [2, n − 1] if and only if

H is a constant and M is isometric to Sn−1
(
n−1
nH

)
× R.

Proof. If k = 1, the assertion follows from the result in [51]. Now
we discuss the case for 2 ≤ k ≤ n − 1. Choose an orthonormal frame
{e1, e2, · · · , eN} such that en+1 is parallel to the mean curvature vector
ξ. Then

n2H2 =
( n∑

i=1

hn+1
ii

)2

= (n− 1)
[ n∑

i=1

(hn+1
ii )2 +

∑

i 6=j

(hn+1
ij )2 +

N∑

α=n+2

n∑

i,j=1

(hαij)
2

+
n2H2

n− 1
− S

]
.(2.10)
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Note that for l 6= n

( n∑

i=1

hn+1
ii

)2
≤ (n− 1)

[
(hn+1

ll + hn+1
nn )2 +

∑

i 6=l,n

(hn+1
ii )2

]

= (n− 1)
[ n∑

i=1

(hn+1
ii )2 + 2hn+1

ll hn+1
nn

]
.

This together with (2.10) implies

(2.11) 2hn+1
ll hn+1

nn ≥
∑

i 6=j

(hn+1
ij )2 +

N∑

α=n+2

n∑

i,j=1

(hαij)
2 +

n2H2

n− 1
− S

for l 6= n. The equality holds if and only if hn+1
ii = hn+1

ll + hn+1
nn for

i 6= l, n. This together with (2.1) implies

Ric(k)(u;V k
x ) =

k∑

i=1

Rinin =
k∑

i=1

N∑

α=n+1

[hαiih
α
nn − (hαin)

2]

≥ k

N∑

α=n+1

∑

1≤i<j<n

(hαij)
2 + (k − 1)

N∑

α=n+1

n−1∑

i=1

(hαin)
2

+
k − 1

2

N∑

α=n+2

n−1∑

i=1

(hαii)
2 +

1

2

N∑

α=n+2

k∑

i=1

(hαii + hαnn)
2

+
k

2

(n2H2

n− 1
− S

)

≥ k

2

(n2H2

n− 1
− S

)
.

If S ≤ n2H2

n−1 , then Ric(k)(u;V k
x ) ≥ 0. The equality holds if and only if

hαij = 0, 1 ≤ i, j ≤ n, α 6= n+ 1; hn+1
ij = 0, i 6= j, 1 ≤ i, j ≤ n;

hn+1
nn = 0; hn+1

ii =
nH

n− 1
, 1 ≤ i ≤ n− 1.

Hence M has essential codimension one. Since the shape operator of M
has one eigenvalue of multiplicity n−1 and the other eigenvalue is zero,
it follows from a result due to Deprez (see [16], Corollary) that H is

a constant and M is isometric to Sn−1
(
n−1
nH

)
× R. This completes the

proof. q.e.d.

The following nonexistence theorem for stable currents in a compact
Riemannian manifold M isometrically immersed into FN (c) is employed
to eliminate the homology groups Hq(M ;Z) for 0 < q < n, which was
initiated by Lawson-Simons [28] and extended by Xin [48].
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Theorem 5. Let Mn be a compact submanifold in FN (c) with c ≥ 0.
Assume that

n∑

k=q+1

q∑

i=1

[2|h(ei, ek)|2 − 〈h(ei, ei), h(ek , ek)〉] < q(n− q)c

holds for any orthonormal basis {ei} of TxM at any point x ∈ M , where
q is an integer satisfying 0 < q < n. Then there do not exist any stable
q-currents. Moreover,

Hq(M ;Z) = Hn−q(M ;Z) = 0,

where Hi(M ;Z) is the i-th homology group of M with integer coefficients,
and π1(M) = 0 when q = 1.

From the proof of Lemma 2 in [45], we have
n∑

k=q+1

q∑

i=1

[2|h(ei, ek)|2 − 〈h(ei, ei), h(ek , ek)〉]

≤ q(n− q)

n

[
S − 2nH2 +

√
n|2q − n|√
q(n− q)

H
√

S − nH2

]

≤ q(n− q)

n

[
S − 2nH2 +

n(n− 4)√
2n(n− 2)

H
√

S − nH2

]
,(2.12)

for n ≥ 4 and 1 < q < n− 1. This together with Theorem 5 implies the
following.

Lemma 2. Let Mn be an n(≥ 4)-dimensional compact submanifold

in a Euclidean space R
N . If S < n2H2

n−2 , then

Hq(M ;Z) = 0, for all 1 < q < n− 1.

Lemma 3 ([21]). Let M be a compact Riemannian manifold of di-
mension n. If M has nonnegative isotropic curvature and has positive
isotropic curvature for some point in M , then M admits a metric with
positive isotropic curvature.

Lemma 4. Let M be a compact Riemannian manifold of dimension
n. If M ×R

2 has nonnegative isotropic curvature, and if M has positive
Ricci curvature and isotropic curvature, then M is diffeomorphic to a
spherical space form.

Proof. By the assumption that M has positive Ricci curvature, the

universal cover M̃ of M is compact. Since M has positive isotropic cur-

vature, M̃ also has positive isotropic curvature. Note that M̃ is simply
connected. It follows from a theorem due to Micallef and Moore [29]

that M̃ is homeomorphic to Sn. Therefore, M is locally irreducible and

the symmetric metric of M̃ would have to be of positive constant curva-
ture. Moreover, when n is even, a theorem due to Micallef and Wang [30]
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states that if M̃ has positive isotropic curvature, then H2(M̃,R) = 0.

Hence M̃ cannot be a Kähler manifold. This together with Theorem B
implies that M is diffeomorphic to a spherical space form. q.e.d.

3. Manifolds of positive scalar curvature

In this section, we will give the proof of Theorem 1. More generally, we
will prove Theorem 8. We first prove the following lemma for compact
manifolds.

Lemma 5. Let Mn be an n(≥ 4)-dimensional compact Riemannian

manifold. Denote by R(k)(·) and R(k,s)(·) the k-th scalar curvature and
(k, s)-curvature of M . If one of the following conditions holds:

(i) R
(k)
min >

(
k2 + k − 24

7

)
Kmax for some integer k ∈ [3, n − 1],

(ii) R
(k,s)
min >

s(7k2+7k−24)
7(k+1) Kmax for some integers k ∈ [3, n − 1] and

s ∈ [2, k + 1],

then πk(M) = 0 for 2 ≤ k ≤ [n2 ]. In particular, if M is simply connected,
then M is homeomorphic to a sphere.

Proof. (i) It follows from (2.7) that

R
(k)
min ≤ 2Kmin + [k(k + 1)− 2]Kmax.

Then we have

(3.1) Kmin ≥ 1

2
[R

(k)
min − (k2 + k − 2)Kmax].

Suppose {e1, e2, e3, e4} is an orthonormal four-frame. From (2.2), (3.1),
and the assumption we get

R1313 +R1414 +R2323 +R2424 − 2R1234

≥ 1

2
{R(k)

min − [k(k + 1)− 8]Kmax} −
4

3
(Kmax −Kmin)

≥ 1

2
{R(k)

min − [k(k + 1)− 8]Kmax} −
2

3
[k(k + 1)Kmax −R

(k)
min]

≥ 7

6

[
R

(k)
min −

(
k2 + k − 24

7

)
Kmax

]

> 0.(3.2)

Hence M has positive isotropic curvature. By a result due to Micallef
and Moore [29], we have πk(M) = 0 for 2 ≤ k ≤ [n2 ]. In particular, if
M is simply connected, then M is homeomorphic to a sphere.

(ii) By Definition 1, we have

(3.3)
R

(k)
min

k(k + 1)
≥ R

(k,s)
min

ks
.
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This together with the assumption implies

(3.4) R
(k)
min ≥ k + 1

s
R

(k,s)
min >

(
k2 + k − 24

7

)
Kmax.

Then the assertion follows from (i).
This completes the proof of Lemma 5. q.e.d.

By taking k = n− 1 in Lemma 5, we have the following.

Theorem 6. Let Mn be an n(≥ 4)-dimensional compact Riemannian

manifold. Denote by Ric[s](·) and R0(·) the s-th weak Ricci curvature
and normalized scalar curvature of M. If one of the following conditions
holds:

(i) Ric
[s]
min >

s(7n2−7n−24)
7n Kmax for some integer s ∈ [2, n],

(ii) R0 >
[
1− 24

7n(n−1)

]
Kmax,

then πk(M) = 0 for 2 ≤ k ≤ [n2 ]. In particular, if M is simply connected,
then M is homeomorphic to a sphere.

Corollary 1. Let Mn be an n-dimensional compact and simply con-
nected Riemannian manifold, where 4 ≤ n ≤ 6. Denote by R0 the nor-

malized scalar curvature of M . If R0 >
[
1 − 24

7n(n−1)

]
Kmax, then M is

diffeomorphic to Sn.

Proof. It follows from Theorem 6 that M has positive isotropic curva-
ture. A theorem due to Hamilton [24] says that a 4-dimensional compact
simply connected manifold with positive isotropic curvature is diffeo-
morphic to S4. It is well known that there is only one differentiable
structure on Sn, n = 5, 6. This together with Theorem 6 implies M is
diffeomorphic to Sn for n = 5, 6. This proves the corollary. q.e.d.

Lemma 6. Let Mn be an n(≥ 4)-dimensional compact Riemannian

manifold. Denote by R(k)(·) and R(k,s)(·) the k-th scalar curvature and
(k, s)-curvature of M , respectively. If one of the following conditions
holds:

(i) R
(k)
min >

(
k2 + k − 12

5

)
Kmax for some integer k ∈ [2, n − 1],

(ii) R
(k,s)
min >

s(5k2+5k−12)
5(k+1) Kmax for some integers k ∈ [2, n − 1] and

s ∈ [2, k + 1],

then M is diffeomorphic to a spherical space form.
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Proof. (i) Suppose {e1, e2, e3, e4} is an orthonormal four-frame and
λ ∈ R. From (2.2) and (3.1) we obtain

R1313 +R2323 − |R1234|

≥ 1

2

[
R

(k)
min − 2

k+1∑

i<j 6=3

Rijij

]
− 2

3
(Kmax −Kmin)

≥ 1

2
[R

(k)
min − (k2 + k − 4)Kmax]−

1

3
[k(k + 1)Kmax −R

(k)
min]

≥ 5

6

[
R

(k)
min −

(
k2 + k − 12

5

)
Kmax

]
.(3.5)

Using the same argument as above, we get

(3.6) R1414 +R2424 − |R1234| ≥
5

6

[
R

(k)
min −

(
k2 + k − 12

5

)
Kmax

]
.

From (3.5), (3.6), and the assumption, we have

R1313 + λ2R1414 +R2323 + λ2R2424 − 2λR1234

≥ R1313 +R2323 − |R1234|+ λ2(R1414 +R2424 − |R1234|)

≥ 5(1 + λ2)

6

[
R

(k)
min −

(
k2 + k − 12

5

)
Kmax

]

> 0.(3.7)

This together with Theorem A implies that M is diffeomorphic to a
spherical space form.

(ii) From (3.3) and the assumption we know that

(3.8) R
(k)
min ≥ k + 1

s
R

(k,s)
min >

(
k2 + k − 12

5

)
Kmax.

Hence the conclusion follows from (i).
This proves Lemma 6. q.e.d.

Lemma 7. Let Mn be an n(≥ 4)-dimensional compact Riemann-
ian manifold. If its k-th Ricci curvature satisfies one of the following
conditions:

(i) Ric
(k)
min > 5k−6

5k−1Ric
(k+1)
max ;

(ii) Ric
(k)
min >

(5k−6)(k+1)
(5k−1)k Ric

(k)
max,

where k is some integer in [2, n − 2], then M is diffeomorphic to a
spherical space form.

Proof. (i) From (2.4), we obtain

(3.9) Kmax ≤ Ric(k+1)
max −Ric

(k)
min,

and

Ric
(k)
min ≤ Kmin + (k − 1)Kmax,
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which implies

Kmin ≥ Ric
(k)
min − (k − 1)Kmax

≥ kRic
(k)
min − (k − 1)Ric(k+1)

max .(3.10)

Suppose {e1, e2, e3, e4} is an orthonormal four-frame and λ ∈ R. Then
we have from (2.2), (2.4), (3.9), and (3.10) that

R1313 +R2323 − |R1234|

≥ Ric
(k)
min −

k+1∑

i=3

Ri3i3 −
2

3
(Kmax −Kmin)

≥ Ric
(k)
min −

(
k − 4

3

)
[Ric(k+1)

max −Ric
(k)
min]

+
2

3
[kRic

(k)
min − (k − 1)Ric(k+1)

max ]

≥ 5k − 1

3

[
Ric

(k)
min −

5k − 6

5k − 1
Ric(k+1)

max

]
.(3.11)

Similarly, we get

(3.12) R1414 +R2424 − |R1234| ≥
5k − 1

3

[
Ric

(k)
min −

5k − 6

5k − 1
Ric(k+1)

max

]
.

From (3.11), (3.12), and the assumption we obtain

R1313 + λ2R1414 +R2323 + λ2R2424 − 2λR1234

≥ R1313 +R2323 − |R1234|+ λ2(R1414 +R2424 − |R1234|)

≥ (1 + λ2)(5k − 1)

3

[
Ric

(k)
min −

5k − 6

5k − 1
Ric(k+1)

max

]

> 0.(3.13)

This together with Theorem A implies that M is diffeomorphic to a
spherical space form.

(ii) From (2.4) we have

(3.14)
Ric

(k)
max

k
≥ Ric

(k+1)
max

k + 1
,

which together with the assumption implies

0 < Ric
(k)
min −

(5k − 6)(k + 1)

(5k − 1)k
Ric(k)max ≤ Ric

(k)
min −

5k − 6

5k − 1
Ric(k+1)

max .

Hence the assertion follows from (i).
This proves Lemma 7. q.e.d.

Taking k = n− 2 in condition (i) of Lemma 7, we have the following
theorem.
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Theorem 7. Let Mn be an n(≥ 4)-dimensional compact Riemannian
manifold. If its (n − 2)-th Ricci curvature and Ricci curvature satisfy

Ric
(n−2)
min >

5n− 16

5n− 11
Ricmax,

then M is diffeomorphic to a spherical space form. In particular, if M
is simply connected, then M is diffeomorphic to Sn.

Lemma 8. Let Mn be an n(≥ 4)-dimensional compact Riemannian

manifold. Denote by Ric(k)(·), R(k)(·), and R(k,s)(·) the k-th Ricci cur-
vature, k-th scalar curvature, and (k, s)-curvature of M , respectively. If
one of the following conditions holds:

(i) Ric
(k)
min > 5k−6

5k2+9k−8
R

(k+1)
max for some integer k ∈ [2, n − 2],

(ii) Ric
(k)
min >

(k+2)(5k−6)
s(5k2+9k−8)R

(k+1,s)
max for some integers k ∈ [2, n − 2] and

s ∈ [2, k + 2],

then M is diffeomorphic to a spherical space form.

Proof. (i) It follows from (2.4) and (2.7) that

(3.15) Kmax ≤ 1

2
[R(k+1)

max − (k + 3)Ric
(k)
min],

and

Ric
(k)
min ≤ Kmin + (k − 1)Kmax.

Then we have

Kmin ≥ Ric
(k)
min − (k − 1)Kmax

≥ 1

2
[(k2 + 2k − 1)Ric

(k)
min − (k − 1)R(k+1)

max ].(3.16)

Suppose {e1, e2, e3, e4} is an orthonormal four-frame and λ ∈ R. Com-
bining (2.2), (2.4), (3.15), and (3.16), we have

R1313 +R2323 − |R1234|

≥ Ric
(k)
min −

k+1∑

i=3

Ri3i3 −
2

3
(Kmax −Kmin)

≥ Ric
(k)
min −

(k
2
− 2

3

)
[R(k+1)

max − (k + 3)Ric
(k)
min]

+
1

3
[(k2 + 2k − 1)Ric

(k)
min − (k − 1)R(k+1)

max ]

≥ 5k2 + 9k − 8

6

[
Ric

(k)
min −

5k − 6

5k2 + 9k − 8
R(k+1)

max

]
.(3.17)

By a similar argument, we obtain
(3.18)

R1414 +R2424 − |R1234| ≥
5k2 + 9k − 8

6

[
Ric

(k)
min −

5k − 6

5k2 + 9k − 8
R(k)

max

]
.
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From (3.17), (3.18), and the assumption we obtain

R1313 + λ2R1414 +R2323 + λ2R2424 − 2λR1234

≥ R1313 +R2323 − |R1234|+ λ2(R1414 +R2424 − |R1234|)

≥ (1 + λ2)(5k2 + 9k − 8)

6

[
Ric

(k)
min −

5k − 6

5k2 + 9k − 8
R(k)

max

]

> 0.(3.19)

This together with Theorem A implies that M is diffeomorphic to a
spherical space form.

(ii) We get from (2.5) and (2.7) that

(3.20)
R

(k+1,s)
max

s(k + 1)
≥ R

(k+1)
max

(k + 1)(k + 2)
,

which together with the assumption implies

Ric
(k)
min >

(k + 2)(5k − 6)

s(5k2 + 9k − 8)
R(k+1,s)

max

≥ 5k − 6

5k2 + 9k − 8
R(k+1)

max .(3.21)

The assertion follows from (i).
This proves the lemma. q.e.d.

Theorem 8. Let Mn be an n(≥ 4)-dimensional compact Riemann-

ian manifold. Denote by Ric[s](·), Ric(k)(·), and K(·) the s-th weak Ricci
curvature, k-th Ricci curvature, and sectional curvature of M , respec-
tively. Suppose one of the following conditions holds:

(i) Ric
[s]
min >

s(5n2−5n−12)
5n Kmax for some integer s ∈ [2, n];

(ii) Ric
[s]
min >

s(n2+2n+3)
n(n+1) Ric

(n−2)
max for some integer s ∈ [2, n];

(iii) Kmin > 1
s(n−1)+6Ric

[s]
max for some integer s ∈ [2, n];

(iv) Ric
(n−2)
min >

n(5n−16)
s(5n2−11n−6)

Ric
[s]
max for some integer s ∈ [2, n].

Then the normalized Ricci flow with initial metric g0,

∂

∂t
g(t) = −2Ricg(t) +

2

n
rg(t)g(t),

exists for all time and converges to a constant curvature metric as
t → ∞. Moreover, M is diffeomorphic to a spherical space form. In
particular, if M is simply connected, then M is diffeomorphic to Sn.

Proof. (i) Taking k = n− 1 in condition (ii) of Lemma 6, we get the
conclusion.
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(ii) Since

Kmin ≥ 1

2
[R− (n+ 1)Ric(n−2)

max ]

≥ 1

2

[nRic
[s]
min

s
− (n+ 1)Ric(n−2)

max

]
,(3.22)

we obtain

Kmax ≤ Ric(n−2)
max − (n− 3)Kmin

≤ n2 − 2n − 1

2
Ric(n−2)

max − n(n− 3)

2s
Ric

[s]
min.(3.23)

Suppose {e1, e2, e3, e4} is an orthonormal four-frame and λ ∈ R. It fol-
lows from (2.2), (3.22), and (3.23) that

R1313 +R2323 − |R1234|

≥ 2Kmin −
2

3
(Kmax −Kmin)

≥ 4

3

[nRic
[s]
min

s
− (n+ 1)Ric(n−2)

max

]

−2

3

[n2 − 2n− 1

2
Ric(n−2)

max − n(n− 3)

2s
Ric

[s]
min

]

≥ 1

3

[n(n+ 1)

s
Ric

[s]
min − (n2 + 2n + 3)Ric(n−2)

max

]
.(3.24)

Similarly, we get
(3.25)

R1414 +R2424 − |R1234| ≥
1

3

[n(n+ 1)

s
Ric

[s]
min − (n2 + 2n + 3)Ric(n−2)

max

]
.

From (3.24), (3.25), and the assumption we obtain

R1313 + λ2R1414 +R2323 + λ2R2424 − 2λR1234

≥ R1313 +R2323 − |R1234|+ λ2(R1414 +R2424 − |R1234|)

≥ 1 + λ2

3

[n(n+ 1)

s
Ric

[s]
min − (n2 + 2n+ 3)Ric(n−2)

max

]

> 0.(3.26)

This together with Theorem A implies M is diffeomorphic to a spherical
space form.

(iii) By Definition 1, we get

(3.27) Kmax ≤ 1

2
{Ric[s]max − [s(n− 1)− 2]Kmin}.



524 J.-R. GU & H.-W. XU

Suppose {e1, e2, e3, e4} is an orthonormal four-frame and λ ∈ R. It fol-
lows from (2.2) and (3.27) that

R1313 +R2323 − |R1234|

≥ 2Kmin −
2

3
(Kmax −Kmin)

≥ 8

3
Kmin −

1

3
[Ric[s]max − (sn− s− 2)Kmin]

≥ 1

3
[(sn− s+ 6)Kmin −Ric[s]max].(3.28)

A similar discussion implies that

(3.29) R1414 +R2424 − |R1234| ≥
1

3
[(sn− s+ 6)Kmin −Ric[s]max].

From (3.28), (3.29), and the assumption we obtain

R1313 + λ2R1414 +R2323 + λ2R2424 − 2λR1234

≥ R1313 +R2323 − |R1234|+ λ2(R1414 +R2424 − |R1234|)

≥ 1 + λ2

3
[(sn− s+ 6)Kmin −Ric[s]max]

> 0.(3.30)

This together with Theorem A implies that M is diffeomorphic to a
spherical space form.

(iv) The assertion follows by taking k = n− 2 in (ii) of Lemma 8.
This proves the theorem. q.e.d.

We are now in a position to prove Theorem 1.

Proof of Theorem 1. (i) If n = 3, for any unit tangent vector u ∈ UxM

at x ∈ M , we choose an orthonormal three-frame {e1, e2, e3} such that
e3 = u. Then from the assumption we obtain

Ric(u) = R1313 +R2323

=
1

2
(R− 2R1212)

≥ 1

2
(R− 2Kmax)

> 0.

This together with Hamilton’s theorem [23] implies that M is diffeo-
morphic to a spherical space form. When n ≥ 4, the assertion follows
by taking k = n− 1 in (i) of Lemma 6.

(ii) If n = 3, the assertion follows from Hamilton’s work [23]. Thus
from now on we assume that n ≥ 4. By taking s = n in (iii) of Theorem
8, we conclude that M is diffeomorphic to a spherical space form.

This proves Theorem 1. q.e.d.
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In 1990, Yau [54] proposed the following conjecture (see also [39, 55]).

Yau Conjecture 1. Let Mn be a compact and simply connected
Riemannian manifold. Denote by R0 the normalized scalar curvature of
M. If Kmin > n−1

n+2R0, then M is diffeomorphic to Sn.

If n = 2, 3, the answer is affirmative. If the pinching constant in

Yau Conjecture 1 is replaced by ηn = n2−n
n2−n+6

, Theorem 1 gives an

affirmative answer. The following example shows that n−1
n+2 is the best

possible pinching constant for the conjecture in even dimensions (n ≥ 4).

Example 1. Let R0 be the normalized scalar curvature of a Rie-
mannian manifold. By a direct computation, we have the normalized
scalar curvatures of the compact rank one symmetric spaces (CROSS)
with standard metrics:

R0(CP
m) =

m+ 1

4m− 2
, dimR(CP

m) = 2m, m ≥ 2;

R0(HPm) =
m+ 2

4m− 1
, dimR(HPm) = 4m, m ≥ 2;

R0(OP 2) =
3

5
, dimR(OP 2) = 16.

On the other hand,

Kmin(CP
m) = Kmin(HPm) = Kmin(OP 2) =

1

4
,

and these are not homeomorphic to Sn. Therefore, n−1
n+2 is the best pos-

sible pinching constant for Yau Conjecture 1 in even dimensions (≥ 4).

Yau Conjecture 2. Let Mn be a compact and simply connected
Riemannian manifold. Denote by R0 the normalized scalar curvature of
M. If KM ≥ n−1

n+2 and R0 ≤ 1, then M is either diffeomorphic to Sn, or
isometric to the complex projective space CPm with n = 2m.

Recently the authors [52] proved the following optimal rigidity theo-
rem for Einstein manifolds, which provides evidence for Yau Conjectures
1 and 2.

Theorem 9. Let M be an n(≥ 4)-dimensional compact Einstein
manifold with normalized scalar curvature R0 := c. If Kmin ≥ n−1

n+2R0 >

0, then M is locally symmetric. In particular, if M is simply connected,
then M is isometric to either the standard n-sphere Sn( 1√

c
) or the com-

plex projective space CPm(c).

Motivated by Theorem 1 and Example 1, we would like to propose
the following conjectures.

Conjecture 1. Let Mn(n ≥ 4) be a compact Riemannian manifold.
If R0 > 3

5Kmax, then M is diffeomorphic to a spherical space form. In
particular, if M is simply connected, then M is diffeomorphic to Sn.
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Conjecture 2. Let Mn(n ≥ 4) be an even dimensional compact and
simply connected Riemannian manifold. If KM ≤ 1 and R0 ≥ cn, where

cn =





n+2
4(n−1) for n = 4 or 4k + 2, k ∈ Z

+,
n+8

4(n−1) for n = 4k, k ∈ Z
+
⋂
[2,∞) and k 6= 4,

3
5 for n = 16,

then M is either diffeomorphic to Sn, or isometric to a compact rank
one symmetric space.

Proof of Theorem 2. (i) If n = 3, the assertion follows from (i) of
Theorem 1. If n ≥ 4, the conclusion follows from (ii) of Theorem 8 by
taking s = n.

(ii) If n = 3, it follows from Hamilton’s work [23]. If n ≥ 4, by taking
k = n− 2 in (i) of Lemma 8, we get the conclusion.

This completes the proof of Theorem 2. q.e.d.

4. Sphere theorems for compact submanifolds

In this section, we extend the sphere theorems in Section 3 to subman-
ifolds in Riemannian manifolds with arbitrary codimension. For compact
submanifolds, we prove the following lemma.

Lemma 9. Let Mn be an n(≥ 4)-dimensional compact submanifold

in an N -dimensional Riemannian manifold M
N
. Assume that M sat-

isfies one of the following conditions:

(i) S < 7
6

[
R

(k)
min −

(
k2 + k − 24

7

)
Kmax

]
+ n2H2

n−2 for some integer k ∈
[3, N − 1];

(ii) S <
7(k+1)

6s

[
R

(k,s)
min − s(7k2+7k−24)

7(k+1) Kmax

]
+ n2H2

n−2 for some integers

k ∈ [3, N − 1] and s ∈ [2, k + 1].

Then πk(M) = 0 for 2 ≤ k ≤ [n2 ]. In particular, if M is simply connected,
then M is homeomorphic to a sphere.

Proof. (i) Since

R
(k)
min ≤ 2Kmin + [k(k + 1)− 2]Kmax,

we have

(4.1) Kmin ≥ 1

2
[R

(k)
min − (k2 + k − 2)Kmax].

Setting Sα =
∑n

i,j=1(h
α
ij)

2, we know that

(4.2)
( n∑

i=1

hαii

)2
= (n− 2)

[ n∑

i=1

(hαii)
2 +

∑

i 6=j

(hαij)
2 +

(
∑n

i=1 h
α
ii)

2

n− 2
− Sα

]
.
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Note that for all distinct p, q,m, l

( n∑

i=1

hαii

)2
≤ (n− 2)

[
(hαpp + hαqq)

2 + (hαmm + hαll)
2 +

∑

i 6=p,q,m,l

(hαii)
2
]

= (n− 2)
[ n∑

i=1

(hαii)
2 + 2hαpph

α
qq + 2hαmmhαll

]
.

This together with (4.2) implies

(4.3) 2hαpph
α
qq + 2hαmmhαll ≥

∑

i 6=j

(hαij)
2 +

(
∑n

i=1 h
α
ii)

2

n− 2
− Sα,

for all distinct p, q,m, l. Suppose {e1, e2, e3, e4} is an orthonormal four-
frame and λ ∈ R. From (2.1), (2.3), (4.1), (4.3), and the assumption we
get

R1313 +R1414 +R2323 +R2424 − 2R1234

= R1313 +R1414 +R2323 +R2424 − 2R1234

+
∑

α

[
hα11h

α
33 + hα22h

α
44 + hα22h

α
33 + hα11h

α
44

− (hα13)
2 − (hα23)

2 − (hα24)
2 − (hα14)

2 − 2(hα13h
α
24 − hα14h

α
23)

]

≥ 1

2
{R(k)

min − [k(k + 1)− 8]Kmax} −
4

3
(Kmax −Kmin)

+
∑

α

[∑

i 6=j

(hαij)
2 +

(
∑n

i=1 h
α
ii)

2

n− 2
− Sα

− 2(hα13)
2 − 2(hα23)

2 − 2(hα24)
2 − 2(hα14)

2
]

≥ 1

2
[R

(k)
min − (k2 + k − 8)Kmax]

− 2

3
[k(k + 1)Kmax −R

(k)
min] +

n2H2

n− 2
− S

≥ 7

6

[
R

(k)
min −

(
k2 + k − 24

7

)
Kmax

]
+

n2H2

n− 2
− S

> 0.(4.4)

ThereforeM has positive isotropic curvature. FromMicallef and Moore’s
theorem [29], we get πk(M) = 0 for 2 ≤ k ≤ [n2 ]. In particular, if M is
simply connected, then M is homeomorphic to a sphere.

(ii) Notice that

(4.5)
R

(k)
min

k(k + 1)
≥ R

(k,s)
min

ks
.
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We have

(4.6) R
(k)
min−

(
k2 + k− 24

7

)
Kmax ≥ k + 1

s
R

(k,s)
min −

(
k2+ k− 24

7

)
Kmax.

The assertion follows from (i), (4.6), and the assumption.
This proves Lemma 9. q.e.d.

By taking k = N − 1 in Lemma 9, we get the following theorem.

Theorem 10. Let Mn be an n(≥ 4)-dimensional compact subman-

ifold in an N -dimensional Riemannian manifold M
N
. Assume that M

satisfies one of the following conditions:

(i) S < 7
6

[
R−

(
N2 −N − 24

7

)
Kmax

]
+ n2H2

n−2 ;

(ii) S < 7N
6s

[
Ric

[s]
min − s(7N2−7N−24)

7N Kmax

]
+ n2H2

n−2 for some integer

s ∈ [2, N ].

Then πk(M) = 0 for 2 ≤ k ≤ [n2 ]. In particular, if M is simply connected,
then M is homeomorphic to a sphere.

Lemma 10. Let Mn be an n(≥ 4)-dimensional compact submani-

fold in an N -dimensional Riemannian manifold M
N
. Suppose that M

satisfies one of the following conditions:

(i) S < 5
6

[
R

(k)
min −

(
k2 + k − 12

5

)
Kmax

]
+ n2H2

n−1 , for some integer k ∈
[2, N − 1];

(ii) S <
5(k+1)

6s

[
R

(k,s)
min − s(5k2+5k−12)

5(k+1) Kmax

]
+ n2H2

n−1 , for some integers

k ∈ [2, N − 1] and s ∈ [2, k + 1].

Then M is diffeomorphic to a spherical space form.

Proof. (i) Setting Sα =
∑n

i,j=1(h
α
ij)

2, we have

(4.7)
( n∑

i=1

hαii

)2
= (n− 1)

[ n∑

i=1

(hαii)
2 +

∑

i 6=j

(hαij)
2 +

(
∑n

i=1 h
α
ii)

2

n− 1
− Sα

]
.

Note that for m 6= l

( n∑

i=1

hαii

)2
≤ (n− 1)

[
(hαmm + hαll)

2 +
∑

i 6=m,l

(hαii)
2
]

= (n− 1)
[ n∑

i=1

(hαii)
2 + 2hαmmhαll

]
.

This together with (4.7) implies

(4.8) 2hαmmhαll ≥
∑

i 6=j

(hαij)
2 +

(
∑n

i=1 h
α
ii)

2

n− 1
− Sα
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for all distinct m, l, and the equality holds if and only if hαii = hαmm+hαll
for all i 6= m, l. Suppose {e1, e2, e3, e4} is an orthonormal four-frame and
λ ∈ R. From (2.1), (2.3), (4.1), and (4.8), we obtain

R1313 +R2323 − |R1234|

≥ 1

2

[
R

(k)
min − 2

k+1∑

A<B 6=3

RABAB

]
− 2

3
(Kmax −Kmin) +

∑

α

[
hα11h

α
33

+hα22h
α
33 −

3

2
(hα13)

2 − 3

2
(hα23)

2 − 1

2
(hα24)

2 − 1

2
(hα14)

2
]

≥ 1

2

[
R

(k)
min − (k2 + k − 4)Kmax

]
− 1

3
[k(k + 1)Kmax −R

(k)
min]

+
∑

α

[∑

i 6=j

(hαij)
2 +

(
∑n

i=1 h
α
ii)

2

n− 1
− Sα

− 3

2
(hα13)

2 − 3

2
(hα23)

2 − 1

2
(hα24)

2 − 1

2
(hα14)

2
]

≥ 5

6

[
R

(k)
min −

(
k2 + k − 12

5

)
Kmax

]
+

n2H2

n− 1
− S.(4.9)

Similarly, we get

R1414 +R2424 − |R1234|

≥ 5

6

[
R

(k)
min −

(
k2 + k − 12

5

)
Kmax

]
+

n2H2

n− 1
− S.(4.10)

From (4.9) and (4.10), we obtain

R1313 + λ2R1414 +R2323 + λ2R2424 − 2λR1234

≥ R1313 +R2323 − |R1234|+ λ2(R1414 +R2424 − |R1234|)

≥ (1 + λ2)
{5

6

[
R

(k)
min −

(
k2 + k − 12

5

)
Kmax

]
+

n2H2

n− 1
− S

}
.(4.11)

This together with Theorem A and the assumption implies M is diffeo-
morphic to a spherical space form.

(ii) From (4.5) we have

(4.12) R
(k)
min−

(
k2+k− 12

5

)
Kmax ≥ k + 1

s
R

(k,s)
min −

(
k2+k− 12

5

)
Kmax.

Therefore the assertion follows from (i), (4.12), and the assumption.
This completes the proof. q.e.d.

Lemma 11. Let Mn be an n(≥ 4)-dimensional compact submani-

fold in an N -dimensional Riemannian manifold M
N
. Suppose that M

satisfies one of the following conditions:

(i) S < 5k−1
3

[
Ric

(k)
min − 5k−6

5k−1Ric
(k+1)
max

]
+ n2H2

n−1 for some integer k ∈
[2, N − 2];
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(ii) S < 5k−1
3

[
Ric

(k)
min − (5k−6)(k+1)

(5k−1)k Ric
(k)
max

]
+ n2H2

n−1 , for some integer

k ∈ [2, N − 2].

Then M is diffeomorphic to a spherical space form.

Proof. Since

(4.13) Kmax ≤ Ric
(k+1)
max −Ric

(k)
min,

and

Ric
(k)
min ≤ Kmin + (k − 1)Kmax,

we have

Kmin ≥ Ric
(k)
min − (k − 1)Kmax

≥ kRic
(k)
min − (k − 1)Ric

(k+1)
max .(4.14)

Suppose {e1, e2, e3, e4} is an orthonormal four-frame and λ ∈ R. From
(2.1), (2.3), (4.8), (4.13), and (4.14) we get

R1313 +R2323 − |R1234|

≥ Ric
(k)
min −

k+1∑

A=3

RA3A3 −
2

3
(Kmax −Kmin) +

∑

α

[
hα11h

α
33

+hα22h
α
33 −

3

2
(hα13)

2 − 3

2
(hα23)

2 − 1

2
(hα24)

2 − 1

2
(hα14)

2
]

≥ Ric
(k)
min −

(
k − 4

3

)
[Ric

(k+1)
max −Ric

(k)
min]

+
2

3
[kRic

(k)
min − (k − 1)Ric

(k+1)
max ]

+
∑

α

[∑

i 6=j

(hαij)
2 +

(
∑n

i=1 h
α
ii)

2

n− 1
− Sα

−3

2
(hα13)

2 − 3

2
(hα23)

2 − 1

2
(hα24)

2 − 1

2
(hα14)

2
]

≥ 5k − 1

3

[
Ric

(k)
min −

5k − 6

5k − 1
Ric

(k+1)
max

]
+

n2H2

n− 1
− S.(4.15)

Similarly, we have

R1414 +R2424 − |R1234|

≥ 5k − 1

3

[
Ric

(k)
min −

5k − 6

5k − 1
Ric

(k+1)
max

]
+

n2H2

n− 1
− S.(4.16)
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This together with (4.15) and the assumption implies

R1313 + λ2R1414 +R2323 + λ2R2424 − 2λR1234

≥ R1313 +R2323 − |R1234|+ λ2(R1414 +R2424 − |R1234|)

≥ (1 + λ2)
{5k − 1

3

[
Ric

(k)
min −

5k − 6

5k − 1
Ric

(k+1)
max

]
+

n2H2

n− 1
− S

}

> 0.(4.17)

The assertion follows from Theorem A.
(ii) Since

(4.18)
Ric

(k)
max

k
≥ Ric

(k+1)
max

k + 1
,

we have

Ric
(k)
min −

(5k − 6)(k + 1)

(5k − 1)k
Ric

(k)
max ≤ Ric

(k)
min −

5k − 6

5k − 1
Ric

(k+1)
max .

The assertion follows from the assumption and (i).
This completes the proof. q.e.d.

Taking k = N − 2 in (i) of Lemma 11, we get the following theorem.

Theorem 11. Let Mn be an n(≥ 4)-dimensional compact submani-

fold in an N -dimensional Riemannian manifold M
N
. If S < 5N−11

3

[
Ric

(N−2)
min

− 5N−16
5N−11Ricmax

]
+ n2H2

n−1 , then M is diffeomorphic to a spherical space

form. In particular, if M is simply connected, then M is diffeomorphic
to Sn.

Lemma 12. Let Mn be an n(≥ 4)-dimensional compact submani-

fold in an N -dimensional Riemannian manifold M
N
. Suppose that M

satisfies one of the following conditions:

(i) S < 5k2+9k−8
6

[
Ric

(k)
min − 5k−6

5k2+9k−8
R

(k+1)
max

]
+ n2H2

n−1 , for some integer

k ∈ [2, N − 2];

(ii) S < 5k2+9k−8
6

[
Ric

(k)
min − (k+2)(5k−6)

s(5k2+9k−8)
R

(k+1,s)
max

]
+ n2H2

n−1 , for some in-

tegers k ∈ [2, N − 2] and s ∈ [2, k + 1].

Then M is diffeomorphic to a spherical space form.

Proof. (i) It’s seen from (2.8) and (2.9) that

(4.19) Kmax ≤ 1

2
[R

(k+1)
max − (k + 3)Ric

(k)
min],

and

Ric
(k)
min ≤ Kmin + (k − 1)Kmax,
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which implies

Kmin ≥ Ric
(k)
min − (k − 1)Kmax

≥ 1

2
[(k2 + 2k − 1)Ric

(k)
min − (k − 1)R

(k+1)
max ].(4.20)

Suppose {e1, e2, e3, e4} is an orthonormal four-frame and λ ∈ R. It fol-
lows from (2.1), (2.3), (4.8), (4.19), and (4.20) that

R1313 +R2323 − |R1234|

≥ Ric
(k)
min −

k+1∑

A=3

RA3A3 −
2

3
(Kmax −Kmin) +

∑

α

[
hα11h

α
33

+hα22h
α
33 −

3

2
(hα13)

2 − 3

2
(hα23)

2 − 1

2
(hα24)

2 − 1

2
(hα14)

2
]

≥ Ric
(k)
min −

(k
2
− 2

3

)
[R

(k+1)
max − (k + 3)Ric

(k)
min]

+
1

3
[(k2 + 2k − 1)Ric

(k)
min − (k − 1)R

(k+1)
max ] +

n2H2

n− 1
− S

≥ 5k2 + 9k − 8

6

[
Ric

(k)
min −

5k − 6

5k2 + 9k − 8
R

(k+1)
max

]
+

n2H2

n− 1
− S.(4.21)

By a similar computation, we get

R1414 +R2424 − |R1234|

≥ 5k2 + 9k − 8

6

[
Ric

(k)
min −

5k − 6

5k2 + 9k − 8
R

(k+1)
max

]
+

n2H2

n− 1
− S.(4.22)

From (4.21) and (4.22), we obtain

R1313 + λ2R1414 +R2323 + λ2R2424 − 2λR1234

≥ R1313 +R2323 − |R1234|+ λ2(R1414 +R2424 − |R1234|)

≥ (1 + λ2)
{5k2 + 9k − 8

6

[
Ric

(k)
min −

5k − 6

5k2 + 9k − 8
R

(k+1)
max

]

+
n2H2

n− 1
− S

}
.(4.23)

From (4.23), Theorem A, and the assumption, we see that M is diffeo-
morphic to a spherical space form.

(ii) It follows from (2.9) that

(4.24)
R

(k+1,s)
max

s(k + 1)
≥ R

(k+1)
max

(k + 1)(k + 2)
,

which implies

Ric
(k)
min −

5k − 6

5k2 + 9k − 8
R

(k+1)
max

≥ Ric
(k)
min −

(k + 2)(5k − 6)

s(5k2 + 9k − 8)
R

(k+1,s)
max .(4.25)
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Thus, the assertion follows from (i) and the assumption.
This completes the proof. q.e.d.

Theorem 12. Let Mn be an n(≥ 4)-dimensional compact subman-

ifold in an N -dimensional Riemannian manifold M
N
. Assume that M

satisfies one of the following conditions:

(i) S < 5N
6s

[
Ric

[s]
min − s(5N2−5N−12)

5N Kmax

]
+ n2H2

n−1 ;

(ii S <
N(N+1)

3s

[
Ric

[s]
min − s(N2+2N+3)

N(N+1) Ric
(N−2)
max

]
+ n2H2

n−1 ;

(iii) S < sN−s+6
3

[
Kmin − 1

sN−s+6Ric
[s]
max

]
+ n2H2

n−1 ;

(iv) S < 5N2−11N−6
6

[
Ric

(N−2)
min − N(5N−16)

s(5N2−11N−6)
Ric

[s]
max

]
+ n2H2

n−1 ,

for some integer s ∈ [2, N ]. Then the normalized Ricci flow with initial
metric g0,

∂

∂t
g(t) = −2Ricg(t) +

2

n
rg(t)g(t),

exists for all time and converges to a constant curvature metric as
t → ∞. Moreover, M is diffeomorphic to a spherical space form. In
particular, if M is simply connected, then M is diffeomorphic to Sn.

Proof. (i) Taking k = N−1 in (ii) of Lemma 10, we get the conclusion.
(ii) Since

Kmin ≥ 1

2
[R− (N + 1)Ric

(N−2)
max ]

≥ 1

2

[NRic
[s]
min

s
− (N + 1)Ric

(N−2)
max

]
,(4.26)

we obtain

Kmax ≤ Ric
(N−2)
max − (N − 3)Kmin

≤ N2 − 2N − 1

2
Ric

(N−2)
max − N(N − 3)

2s
Ric

[s]
min.(4.27)

Suppose {e1, e2, e3, e4} is an orthonormal four-frame and λ ∈ R. Com-
bining (2.1), (2.3), (4.8), (4.26), and (4.27), we obtain
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R1313 +R2323 − |R1234|

≥ 2Kmin −
2

3
(Kmax −Kmin) +

∑

α

[
hα11h

α
33 + hα22h

α
33

−3

2
(hα13)

2 − 3

2
(hα23)

2 − 1

2
(hα24)

2 − 1

2
(hα14)

2
]

≥ n2H2

n− 1
− S +

4

3

[N
s
Ric

[s]
min − (N + 1)Ric

(N−2)
max

]

−1

3

[
(N2 − 2N − 1)Ric

(N−2)
max − N(N − 3)

s
Ric

[s]
min

]

≥ N + 1

3

[N
s
Ric

[s]
min −

N2 + 2N + 3

N + 1
Ric

(N−2)
max

]
+

n2H2

n− 1
− S.(4.28)

A similar discussion implies that

R1414 +R2424 − |R1234|

≥ N + 1

3

[N
s
Ric

[s]
min −

N2 + 2N + 3

N + 1
Ric

(N−2)
max

]
+

n2H2

n− 1
− S.(4.29)

From (4.28) and (4.29), we get

R1313 + λ2R1414 +R2323 + λ2R2424 − 2λR1234

≥ R1313 +R2323 − |R1234|+ λ2(R1414 +R2424 − |R1234|)

≥ (1 + λ2)
{N + 1

3

[N
s
Ric

[s]
min −

N2 + 2N + 3

N + 1
Ric

(N−2)
max

]

+
n2H2

n− 1
− S

}
.(4.30)

Hence we get the conclusion from (4.30), the assumption, and Theo-
rem A.

(iii) It’s seen from (2.9) that

(4.31) Kmax ≤ 1

2
[Ric

[s]
max − (sN − s− 2)Kmin].

Suppose {e1, e2, e3, e4} is an orthonormal four-frame and λ ∈ R. By
(2.1), (2.3), (4.8), and (4.31), we have

R1313 +R2323 − |R1234|

≥ 2Kmin −
2

3
(Kmax −Kmin) +

∑

α

[
hα11h

α
33 + hα22h

α
33

−3

2
(hα13)

2 − 3

2
(hα23)

2 − 1

2
(hα24)

2 − 1

2
(hα14)

2
]

≥ 8

3
Kmin −

1

3
[Ric

[s]
max − (sN − s− 2)Kmin] +

n2H2

n− 1
− S

≥ 1

3
[(sN − s+ 6)Kmin −Ric

[s]
max] +

n2H2

n− 1
− S.(4.32)
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By using a similar argument, we get

R1414 +R2424 − |R1234|

≥ 1

3
[(sN − s+ 6)Kmin −Ric

[s]
max] +

n2H2

n− 1
− S.(4.33)

It follows from (4.32) and (4.33) that

R1313 + λ2R1414 +R2323 + λ2R2424 − 2λR1234

≥ R1313 +R2323 − |R1234|+ λ2(R1414 +R2424 − |R1234|)

≥ (1 + λ2)
{1

3
[(sN − s+ 6)Kmin −Ric

[s]
max] +

n2H2

n− 1
− S

}
,(4.34)

which together with the assumption and Theorem A implies the con-
clusion.

(iv) The assertion follows from (ii) of Lemma 12 by taking k = N−2.
This proves the theorem. q.e.d.

Theorem 13. Let M be a 3-dimensional compact submanifold in an

N -dimensional Riemannian manifold M
N
. Assume that M satisfies one

of the following conditions:

(i) S < 1
2 [R − (N2 −N − 4)Kmax] +

9
2H

2;

(ii) S < R− (N + 1)Ric
(N−2)
max + 9

2H
2;

(iii) S < 2Kmin +
9
2H

2;

(iv) S < N2−3N−2
2

[
Ric

(N−2)
min − N−4

N2−3N−2
R
]
+ 9

2H
2 for N ≥ 4.

Then M is diffeomorphic to a spherical space form. In particular, if M
is simply connected, then M is diffeomorphic to Sn.

Proof. For any unit tangent vector u ∈ UxM at x ∈ M , we choose an
orthonormal three-frame {e1, e2, e3} such that e3 = u.

(i) From (2.1), (4.8), and the assumption, we obtain

Ric(u) = R1313 +R2323

=
1

2

(
R− 2

∑

A<B 6=3

RABAB

)

+
∑

α

[hα11h
α
33 + hα22h

α
33 − (hα13)

2 − (hα23)
2]

≥ 1

2
[R − (N2 −N − 4)Kmax]

+
∑

α

[∑

i 6=j

(hαij)
2 +

(
∑3

i=1 h
α
ii)

2

2
− Sα − (hα13)

2 − (hα23)
2
]

≥ 1

2
[R − (N2 −N − 4)Kmax] +

9

2
H2 − S

> 0.(4.35)
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(ii) It follows from (2.8) that

(4.36) Kmin ≥ 1

2
[R− (N + 1)Ric

(N−2)
max ],

which together with (2.1), (4.8), and the assumption implies

Ric(u) = R1313 +R2323

≥ 2Kmin +
∑

α

[hα11h
α
33 + hα22h

α
33 − (hα13)

2 − (hα23)
2]

≥ R− (N + 1)Ric
(N−2)
max +

n2H2

n− 1
− S

> 0.(4.37)

(iii) From (2.1), (4.8), and the assumption, we obtain

Ric(u) = R1313 +R2323

≥ 2Kmin +
∑

α

[hα11h
α
33 + hα22h

α
33 − (hα13)

2 − (hα23)
2]

≥ 2Kmin +
n2H2

n− 1
− S

> 0.(4.38)

(iv) It’s seen from (2.8) that

(4.39) Kmax ≤ 1

2
[R− (N + 1)Ric

(N−2)
min ].

This together with (2.1), (4.8), and the assumption implies that

Ric(u) = R1313 +R2323

≥ Ric
(N−2)
min − (N − 4)Kmax

+
∑

α

[hα11h
α
33 + hα22h

α
33 − (hα13)

2 − (hα23)
2]

≥ Ric
(N−2)
min − N − 4

2
[R − (N + 1)Ric

(N−2)
min ] +

n2H2

n− 1
− S

≥ N2 − 3N − 2

2

[
Ric

(N−2)
min − N − 4

N2 − 3N − 2
R
]
+

n2H2

n− 1
− S

> 0.(4.40)

The assertion follows from (4.35), (4.37), (4.38), (4.40), and Hamilton’s
theorem [23]. This completes the proof of Theorem 13. q.e.d.

Theorem 14. Let Mn be an n(≥ 4)-dimensional compact subman-

ifold in an N -dimensional Riemannian manifold M
N
. Assume that M

satisfies one of the following conditions:

(i) S < 5
6N(N − 1)(R0 − σNKmax) +

n2H2

n−1 ,

(ii) S <
N(N2−1)
3(N−2)

[
(N − 2)R0 − µNRic

(N−2)
max

]
+ n2H2

n−1 ,
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(iii) S < N2−N+6
3 (Kmin − ηNR0) +

n2H2

n−1 ,

(iv) S < 5N2−11N−6
6

[
Ric

(N−2)
min − τN (N − 2)R0

]
+ n2H2

n−1 ,

where σN , µN , ηN , and τN are defined as in Theorems 1 and 2. Then M

is diffeomorphic to a spherical space form. In particular, if M is simply
connected, then M is diffeomorphic to Sn.

Proof. By taking k = N − 1 in (i) of Lemma 10, s = N in (ii) and
(iii) of Theorem 12, and k = N − 2 in (i) of Lemma 12, respectively,
we conclude that M is diffeomorphic to a spherical space form. In par-
ticular, if M is simply connected, then M is diffeomorphic to Sn. This
proves the theorem. q.e.d.

5. Submanifolds with weakly pinched curvatures

In this section, we improve the differentiable sphere theorems [51] for
submanifolds with strictly pinched curvatures and obtain a classifica-
tion theorem for submanifolds with weakly pinched curvatures.

Proof of Theorem 3. If n ≥ 4, suppose {e1, e2, e3, e4} is an orthonor-
mal four-frame and λ ∈ R. From (2.1), (2.3), and (4.8), we have

R1313 + λ2R1414 + µ2R2323 + λ2µ2R2424 − 2λµR1234

≥ (1 + λ2 + µ2 + λ2µ2)Kmin −
4|λµ|
3

(Kmax −Kmin)

+
∑

α

{hα11hα33 − (hα13)
2 + µ2λ2[hα22h

α
44 − (hα24)

2] + 2µλhα14h
α
23

+µ2[hα22h
α
33 − (hα23)

2] + λ2[hα11h
α
44 − (hα14)

2]− 2µλhα13h
α
24}

≥ (1 + λ2 + µ2 + λ2µ2)
(4Kmin −Kmax)

3

+
∑

α

{∑

i<j

(hαij)
2 +

(
∑n

i=1 h
α
ii)

2

2(n − 1)
− Sα

2
− (hα13)

2 − (hα14)
2 − (hα23)

2

+µ2λ2
[∑

i<j

(hαij)
2 +

(
∑n

i=1 h
α
ii)

2

2(n− 1)
− Sα

2
− (hα24)

2 − (hα14)
2 − (hα23)

2
]

+µ2
[∑

i<j

(hαij)
2 +

(
∑n

i=1 h
α
ii)

2

2(n − 1)
− Sα

2
− (hα23)

2 − (hα13)
2 − (hα24)

2
]

+λ2
[∑

i<j

(hαij)
2 +

(
∑n

i=1 h
α
ii)

2

2(n − 1)
− Sα

2
− (hα14)

2 − (hα13)
2 − (hα24)

2
]}

≥ (1 + µ2 + λ2 + λ2µ2)
[(4Kmin −Kmax)

3

+
n2H2

2(n− 1)
− S

2

]
.(5.1)



538 J.-R. GU & H.-W. XU

From (5.1) and the assumption that S ≤ 8
3

(
Kmin− 1

4Kmax

)
+ n2H2

n−1 , we

have

(5.2) R1313 + λ2R1414 + µ2R2323 + λ2µ2R2424 − 2λµR1234 ≥ 0,

i.e., M × R
2 has nonnegative isotropic curvature.

On the other hand, it follows from (2.1), (2.3), and (4.8) that

R1313 +R2323 − |R1234|

≥ 2Kmin −
2

3
(Kmax −Kmin) +

∑

α

[
hα11h

α
33 + hα22h

α
33

−3

2
(hα13)

2 − 3

2
(aα23)

2 − 1

2
(hα24)

2 − 1

2
(hα14)

2
]

≥ 8

3

(
Kmin −

1

4
Kmax

)
+

n2H2

n− 1
− S.(5.3)

The equalities in (5.3) hold only if

hαij = hα33 = 0, for all distinct i, j and any α,

and

(5.4) hαii = hαjj, for i, j 6= 3 and any α,

i.e.,

(5.5) S =
n2H2

n− 1
.

It follows from (5.3), (5.5), and the assumption that the Ricci curvature
of M is quasi-positive. This together with Aubin’s theorem [2] implies
that M admits a metric with positive Ricci curvature.

By a similar discussion, we have

(5.6) R1414 +R2424 − |R1234| ≥
8

3

(
Kmin −

1

4
Kmax

)
+

n2H2

n− 1
− S.

The equality in (5.6) holds only if

hαij = hα44 = 0, for all distinct i, j and any α,

and

(5.7) hαii = hαjj, for i, j 6= 4 and any α.

From (5.3), (5.5), and (5.6), we have

R1313 +R1414 +R2323 +R2424 − 2R1234

= (R1313 +R2323 − |R1234|) + (R1414 +R2424 − |R1234|)

≥ 2
[8
3

(
Kmin −

1

4
Kmax

)
+

n2H2

n− 1
− S

]
,(5.8)

and the equality holds only if S = n2H2

n−1 . This together with the as-
sumption and Lemma 3 implies that M admits a metric with positive
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isotropic curvature. By Lemma 4, we conclude that M is diffeomorphic
to a spherical space form. In particular, if M is simply connected, then
M is diffeomorphic to Sn.

If n = 3, for any unit tangent vector u ∈ UxM at x ∈ M , we choose
an orthonormal three-frame {e1, e2, e3} such that e3 = u. From (4.8)
and (4.38), we obtain

Ric(u) = R1313 +R2323 ≥ 2Kmin +
n2H2

n− 1
− S,

and the equality holds only if S = n2H2

n−1 . Then from the assumption
we know that M has quasi-positive Ricci curvature. Hence M admits
a metric with positive Ricci curvature by Aubin’s theorem [2]. This
together with Hamilton’s theorem [23] implies that M is diffeomorphic
to a spherical space form. In particular, if M is simply connected, then
M is diffeomorphic to Sn.

This completes the proof of Theorem 3. q.e.d.

Corollary 2. Let Mn be an n(≥ 3)-dimensional complete submani-

fold in an N -dimensional Riemannian manifold M
N
. If S ≤ 8

3

(
Kmin−

1
4Kmax

)
+ n2H2

n−1 and the strict inequality holds for some point x0 ∈ M ,

then M is diffeomorphic to a spherical space form or R
n. In particular,

if M is simply connected, then M is diffeomorphic to Sn or R
n.

Proof. From the assumption and Lemma 4.1 in [51], we know that M
has quasi-positive sectional curvature. When M is noncompact, it fol-
lows from the Cheeger-Gromoll-Meyer-Perelman soul theorem [14, 18,
33] that M is diffeomorphic to R

n. When M is compact, the assertion
follows from Theorem 3. This proves the corollary. q.e.d.

For submanifolds in a sphere, we have the following theorem.

Theorem 15. Let Mn be an n-dimensional compact submanifold in
the unit sphere SN . Assume that

S ≤ 2 +
n2H2

n− 1
.

We have the following possibilities:

(i) If n = 2, then either M is diffeomorphic to S2, RP 2, or M is flat.
(ii) If n = 3, then M is diffeomorphic to a spherical space form.

(iii) If n ≥ 4, then M is diffeomorphic to Sn.

Proof. If n = 2, it’s seen from the Gauss equation that 2KM = 2 +
4H2 − S. This together with the assumption and the Gauss-Bonnet
theorem implies the conclusion.
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If n = 3, we see from Proposition 2.1 in [45] that

Ric(u) ≥ 2

3

[
3 + 6H2 − S − 3√

6
H(S − 3H2)1/2

]

=
2

3

[
(3 +

27

4
H2 − 3

2
S) +

3

4
H2

+
1

2
(S − 3H2)− 3√

6
H(S − 3H2)1/2

]

≥ 2 +
9

2
H2 − S

holds for any unit vector u ∈ TxM at each point x ∈ M, and the last
inequality becomes an equality only if S = 9

2H
2. This together with the

assumption implies M has positive Ricci curvature. Hence the assertion
follows from Hamilton’s theorem [23].

If n ≥ 4, from (4.8) we get
n∑

k=2

[2|h(e1, ek)|2 − 〈h(e1, e1), h(ek, ek)〉]− (n− 1)

=
∑

α

n∑

k=2

[2(hα1k)
2 − hα11h

α
kk]− (n− 1)

≤
∑

α

n∑

k=2

{
2(hα1k)

2 − 1

2

[∑

i 6=j

(hαij)
2 +

(
∑n

i=1 h
α
ii)

2

n− 1
− Sα

]}

−(n− 1)

≤ n− 1

2

(
S − n2H2

n− 1
− 2

)
.(5.9)

The equalities in (5.9) hold only if S = n2H2

n−1 . From the assumption

S ≤ 2 + n2H2

n−1 , we obtain

(5.10)

n∑

k=2

[2|h(e1, ek)|2 − 〈h(e1, e1), h(ek, ek)〉]− (n− 1) < 0.

This together with Theorem 5 implies that M is simply connected. By
Theorem 3, we see that M is diffeomorphic to Sn. This proves Theorem
15. q.e.d.

Moreover, we get the following classification for complete submani-
folds in a Euclidean space.

Theorem 16. Let Mn be an n-dimensional oriented complete sub-
manifold in the Euclidean space R

N . Assume that

S ≤ n2H2

n− 1
, H 6= 0.

We have the following possibilities:
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(i) If n = 2, then either M is diffeomorphic to S2, R2, or M is flat.

(ii) If n = 3, then M is either diffeomorphic to a spherical space form,
R
3, or isometric to S2(r0)×R.

(iii) If n ≥ 4, then M is either diffeomorphic to Sn, R
n, or locally

isometric to Sn−1(r)× R.

Proof. It follows from the assumption and Lemma 1 that KM ≥ 0.
(i) Suppose that M is compact. If n = 2, it is seen from the Gauss-

Bonnet theorem that M is diffeomorphic to S2 or M is flat.
If n = 3, we know that RicM ≥ 0. This together with Hamilton’s

theorem [23] and Lemma 1 implies that M is diffeomorphic to a spher-

ical space form, or H is a constant and M is isometric to S2
(

2
3H

)
×R.

Since M is compact, the latter case is ruled out.

If n ≥ 4, from the assumption S ≤ n2H2

n−1 and Lemma 1, we know
RicM ≥ 0. We claim that M admits a metric with positive Ricci curva-
ture. Otherwise, it’s seen from Aubin’s theorem [2] that for each point
x in M , there exists a unit vector u in TxM such that Ric(u) = 0.
By Lemma 1, we know that H is constant and M is isometric to

Sn−1
(
n−1
nH

)
×R, which is noncompact. This contradicts the compactness

of M . By the Bonnet-Myers theorem, the fundamental group π1(M) is

finite. Moreover, from the assumption, we know that S < n2H2

n−2 . It’s seen

from Lemma 2 that Hq(M ;Z) = 0 for all 1 < q < n − 1. Then we get
from the universal coefficient theorem that Hn−1(M ;Z) has no torsion,
and hence neither does H1(M ;Z) by the Poincaré duality. This together
with the fact that π1(M) is finite implies H1(M ;Z) = 0. Therefore we

have Hn−1(M ;Z) = 0. Denote by M̃ the universal Riemannian covering

of M . We may consider M̃ to be a Riemannian submanifold of RN , and

hence M̃ is a homology sphere. Since M̃ is simply connected, it is a
topological sphere, which together with a result of Sjerve [46] implies
that M is simply connected.

On the other hand, from (5.1) and the assumption, we know that
M × R

2 has nonnegative isotropic curvature. Moreover, it follows from
(5.4), (5.7), and the assumption H 6= 0 that the equalities in (5.3)
and (5.6) cannot hold simultaneously. Hence we see from (5.8) and the
assumption that M has positive isotropic curvature. It follows from
Lemma 4 that M is diffeomorphic to a spherical space form. Since M

is simply connected, M is diffeomorphic to Sn.
(ii) Suppose M is noncompact. If n = 2, it follows from the Cheeger-

Gromoll-Meyer-Perelman soul theorem that M is diffeomorphic to R
2

or M is flat.
If n = 3, a theorem due to Schoen-Yau [38] and Zhu [57] states that

if the Ricci curvature of M is quasi-positive, then M is diffeomorphic
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to R
3. This together with Lemma 1 implies M is diffeomorphic to R

3

or isometric to S2(r0)× R.
If n ≥ 4, we consider the following two cases:
Case I. KM ≥ 0 and K(π) > 0 for any 2-plane π ⊂ Tx0

M at some
point x0 ∈ M . By the Cheeger-Gromoll-Meyer-Perelman soul theorem,
we know that M is diffeomorphic to R

n.
Case II. For each point x ∈ M there exists some 2-plane π ⊂ TxM

such that K(π) = 0. In this case, we get S ≡ n2H2

n−1 . Moreover, it follows

from Lemma 1 and a result due to Ozgur (see [31], Theorem 4.1) that
M is conformally flat. This together with a theorem due to Carron [13]
implies thatM is diffeomorphic to Rn or locally isometric to Sn−1(r)×R.

This completes the proof of Theorem 16. q.e.d.

Proof of Theorem 4. Combining Theorems 15 and 16 for n ≥ 4, we
complete the proof. q.e.d.

Corollary 3. Let Mn be an n(≥ 4)-dimensional oriented complete
submanifold in an N -dimensional simply connected space form FN (c)

with c ≥ 0. Denote by Ric[s](·) the s-th weak Ricci curvature of M.
Assume that

Ric
[s]
min ≥ s(n+ 1)(n − 2)c

n
+

sn(n− 2)

n− 1
H2

for some integer s ∈ [1, n − 1], where c+H2 > 0. We have
(i) If c = 0, then M is either diffeomorphic to Sn, Rn, or locally iso-
metric to Sn−1(r)× R.
(ii) If M is compact, then M is diffeomorphic to Sn.

Proof. For R ≥ n
sRic

[s]
min, the assertion follows from Theorem 4. q.e.d.
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