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THE SPHERE THEOREMS FOR MANIFOLDS
WITH POSITIVE SCALAR CURVATURE

JuaN-Ru GU & HoNG-WEI XU

Abstract

Some new differentiable sphere theorems are obtained via the
Ricci flow and stable currents. We prove that if M™ is a compact
manifold whose normalized scalar curvature and sectional curva-
ture satisfy the pointwise pinching condition Ry > 0, Kyax, where
on € (%,1) is an explicit positive constant, then M is diffeomor-
phic to a spherical space form. We also provide a partial answer
to Yau’s conjecture on the pinching theorem. Moreover, we prove
that if M™(n > 3) is a compact manifold whose (n — 2)-th Ricci
curvature and normalized scalar curvature satisfy the pointwise
condition Ricl(:i;m > 7,,(n — 2)Ro, where 7, € (%, 1) is an explicit
positive constant, then M is diffeomorphic to a spherical space
form. We then extend the sphere theorems above to submanifolds
in a Riemannian manifold. Finally we give a classification of sub-
manifolds with weakly pinched curvatures, which improves the
differentiable pinching theorems due to Andrews, Baker, and the
authors.

1. Introduction

Studying curvature and topology of manifolds plays an important
role in global differential geometry. The sphere theorem for Riemann-
ian manifolds was initiated by Rauch [37] in 1951. During the past
six decades, there has been much progress on sphere theorems for Rie-
mannian manifolds and submanifolds [3, 6, 8, 11, 43, 44, 49]. The
Brendle-Schoen Differentiable Sphere Theorem [9, 10] brought us a big
breakthrough in the investigation of curvature and topology of mani-
folds. The following results, due to Brendle and Schoen [5, 10], are very
important throughout this paper.

Theorem A ([5]). Let (M, go) be a compact Riemannian manifold
of dimension n(> 4). Assume that

Riz13 + A Rig14 + Roszaz + A Ragaq — 2\Rya34 > 0
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for all orthonormal four-frames {e1,es,es,eq} and all X € [0,1]. Then
the normalized Ricci flow with initial metric gg,

0 ) 2
Eg(t) = —2Ricyy) + Erg(t)g(t)a
exists for all time and converges to a constant curvature metric as t —
oo. Here 1y denotes the mean value of the scalar curvature of g(t).

Theorem B ([10]). Let (M, go) be a compact, locally irreducible Rie-
mannian manifold of dimension n(> 4). Assume that M x R? has non-
negative isotropic curvature, i.e.,

Riziz + AN Rig1a + 12 Rogas + N1 Ragos — 2M\1R1234 > 0

for all orthonormal four-frames {ey,ea,es,eq} and all \,p € [—1,1].
Then one of the following statements holds:

(i) M is diffeomorphic to a spherical space form.
(ii) n = 2m and the universal cover of M is a Kdhler manifold biholo-
morphic to CP™.
(iii) The universal cover of M is isometric to a compact symmetric
space.

On the other hand, some important work on sphere theorems for man-
ifolds with positive Ricci curvature has been done by several geometers
(see [3,15, 23, 32, 34, 40, 42, 44], etc.). In the 1990s, Cheeger, Colding,
and Petersen [15, 34| proved the following differentiable sphere theorem
for manifolds with positive Ricci curvature.

Theorem C ([15, 34]). Let M™ be a compact Riemannian n-manifold
with Ricci curvature Ricyy > n — 1. Suppose that one of the following
conditions holds:

(i) vol(M) > wy — &y, where w, = vol(S™) and e, is some positive

constant;
(il) Apy1 < n+ 0y, where A\yy1 is the (n + 1)-th eigenvalue of M and
0,, is some positive constant.

Then M 1is diffeomorphic to S™.

Let K(m) be the sectional curvature of M for 2-plane ©# C T, M,
and Ric(u) the Ricci curvature of M for unit vector v € U,M. Set
Knax(x) := maxgcp,n K (), Ricmin(x) := mingey, s Ric(u). Inspired
by Shen’s topological sphere theorem [40], the authors [50] obtained the
following differentiable sphere theorem for manifolds of positive Ricci
curvatures.

Theorem D ([50]). Let M™ be a compact Riemannian n-manifold
(n > 3). If Ricmin > 6p(n — 1) Kyax, where 6, = 1 — ﬁ, then M
1s diffeomorphic to a spherical space form. In particular, if M is simply

connected, then M is diffeomorphic to S™.
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Let M™ be a submanifold in a Riemannian manifold 37" . Denote
by H and S the mean curvature and the squared length of the second
fundamental form of M, respectively. Denote by K (7) the sectional cur-
vature of M for 2-plane 7(C T, M). Set Kpyax(z) = max, ., 17 K (),
K min(x) := min__, 37 K (). In [53], Xu and Zhao obtained some dif-
ferentiable sphere theorems for complete submanifolds in higher codi-
mensions via the Ricci flow and stable currents. Recently the authors
[51] proved the following differentiable sphere theorem for complete sub-
manifolds with strictly pinched curvatures, which is a generalization of
the Brendle-Schoen sphere theorem [9].

Theorem E ([51]). Let M™ be an n-dimensional complete subman-
ifold in an N-dimensional Riemannian manifold Y If S < %(Fmin —

%Fmax> + ": ;Hf, then M is diffeomorphic to a spherical space form or
R™. In particular, if M is simply connected, then M is diffeomorphic to
S™ or R™.

The purpose of this paper is to prove some new differentiable sphere
theorems for Riemannian manifolds and submanifolds. In Section 3, we
prove the following differentiable sphere theorem for compact manifolds
with positive scalar curvature.

Theorem 1. Let M™ be an n(> 3)-dimensional compact Riemannian
manifold. Denote by Ry the normalized scalar curvature of M. Assume
that one of the following pointwise pinching conditions holds:

(1) RO > UnKmaX;

(ii) Kmin > ’I’}nRo.
Then M 1is diffeomorphic to a spherical space form. In particular, if M
1s simply connected, then M is diffeomorphic to S™. Here

an:{l_@ for m =3,
1-— Sntn=T) for n >4,
6
n2—n+6
Theorem 1 improves Theorem D and gives a partial answer to Yau’s

conjecture on the pointwise pinching theorem (see [54], Problem 12).
Moreover, we obtain the following theorem.

Tlnzl_

Theorem 2. Let M™ be an n(> 3)-dimensional compact Riemannian
manifold. Denote by Ry and Ric"=2) the normalized scalar curvature
and the (n—2)-th Ricci curvature of M. Assume that one of the following
pointwise pinching conditions holds:

(i) (n—2)Ry > pnRicki?;

(i) Ric""=? > r,(n — 2)R,.
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Then M is diffeomorphic to a spherical space form. In particular, if M
1s simply connected, then M is diffeomorphic to S™. Here
6
n(n—1)(n+1)’
12
0}.
(n—2)(5n%2 — 11n — 6)’ }

REMARK 1. We consider the case of n > 4. Note that differentiable
structures of Einstein manifolds are very rich. If pinching conditions
(i) and (ii) in Theorem 2 are replaced by (n — 1)Ry > finRicmax and
Ricpin > Tn(n — 1) Ry respectively, where fip, 7, € (%, 1), it’s impossi-
ble to obtain the same assertion. Therefore, the pinching conditions in
Theorem 2 are the weakest in this sense.

pn =1 —

Tp, = max{l —

In Section 4, we extend the sphere theorems above to submanifolds
in a Riemannian manifold with arbitrary codimension (Theorems 13
and 14). In Section 5, we obtain a differentiable sphere theorem for
submanifolds with weakly pinched curvatures, stated as:

Theorem 3. Let M™ be an n(> 3)-dimensional compact submani-

fold in an N-dimensional Riemannian manifold M. Assume that M
satisfies one of the following conditions:
(i) Kmin(z0) — K max(z0) # 0 for some point zy € M, and S <
— — 2172
%(Kmin - %Kmax> + nnffl ;
(ii) Kmin(z) — ifmax(x) =0 for any point x € M, S < 7‘:?2, and the
strict inequality holds for some point xg € M.

Then M 1is diffeomorphic to a spherical space form. In particular, if M
18 simply connected, then M is diffeomorphic to S™.

Furthermore, we prove the following classification theorem of sub-
manifolds with weakly pinched curvatures in space forms.

Theorem 4. Let M™ be an n(> 4)-dimensional oriented complete
submanifold in an N -dimensional simply connected space form FN(c)
with ¢ > 0. Assume that its scalar curvature R > (n + 1)(n — 2)c +

"2("_2)H2, where ¢ + H? > 0. We have

n—1

(i) If ¢ = 0, then M is either diffeomorphic to S™, R™, or locally
isometric to S"71(r) x R.

(ii) If M is compact, then M is diffeomorphic to S™.

REMARK 2. The pinching condition in Theorem 4 is equivalent to
S < 2c+ 22 Theorems 3 and 4 improve the differentiable pinching

n—1

theorems due to Andrews-Baker and the authors [1, 51].

It should be mentioned that the second author introduced the results
above in his invited talk at the Fifth International Congress of Chinese
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Mathematicians held in Beijing from December 17 to December 22,
2010.
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2. Notation and lemmas

Let M™ be an n-dimensional submanifold in an N-dimensional Rie-
mannian manifold M~ . We shall make use of the following convention
on the range of indices.

1<AB,C,... <N; 1<i,jk,... <n;
fN>n+1, n+1<a,8,7,... <N.

For an arbitrary fixed point « € M C M, we choose an orthonormal

local frame field {e4} in Y such that e;’s are tangent to M. Denote
by {wa} the dual frame field of {e4}. Let

Rm = Z Rijklwi R wj Q@ Wk Q w,
i7j7k7l

Rm = Z RaBcpwA ®@ wp ® we @ wp
A,B.C,D

be the Riemannian curvature tensors of M and M, respectively. Denote
by h and £ the second fundamental form and the mean curvature vector
of M. When N = n, h and £ are identically equal to zero. When N >
n+ 1, we set

1
h:Z‘hf}wié?wj@ea, g:EZhﬁéea.
a,2,] [62Y]

The squared norm S of the second fundamental form and the mean
curvature H of M are given by S := ) h%)z, H := [¢|. Then we
have the Gauss equation

(X?i?j(

(2.1) Rijkl = Rijkl + (h(ei, ek), h(ej, el)> — (h(ei, el), h(ej, ek)>

Denote by K(-), K(-), Ric(-), Ric(-), R, and R the sectional curvatures,
the Ricci curvatures, and the scalar curvatures of M and M, respec-
tively. Then we have

Ric(e;) = ZRZ-M, Ric(ea) = ZRABAB,
j B
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RS Ry R= Y Fapas
i,] A,B

Set Kmin(2) = mingcr, m K (7), Kmax(2) = maxzcr,m K (1), Kunin(z) =
min_ 57 K(7), Kmax(¥) = max 57 K (7). Then by Berger’s in-
equality (see e.g. [6], Proposition 1.9), we have

2
(22) |Rijkl| < g(Kmax - Kmin)
for all distinct indices 4, j, k, [, and

_ 9 _
(23) ’RABC'D‘ < g(Kmax - Kmin)
for all distinct indices A, B, C, D. We set
Ricmin() = min Ric(u), Ricmin(z) = min Ric(u),
uEUxM UEUzM
Ricmax(r) = max Ric(u), Ricmax(r) = max Ric(u).

UEU:CM UEUZM

For any unit tangent vector u € U,M at point = € M, let V¥ be a k-
dimensional subspace of T, M satisfying u L ka. Choose an orthonormal
basis {e;} in T, M such that ej, = u, span{e;,... e } = V. where

the indices 1 < jg, j1, . .-, jr < n are distinct with each other. We set

k
Ric™® (u; VF) = Ric™ ([ejo, ..., €,]) =D Rijgjoja:
q=1

Ric™® () = min min  Ric® (u; VF),

min w€Us M uLVFCTy M
(2.4) Rict®) ()= max  max Ric®(u; VF).
wEU M y L VECT, M
We extend an orthonormal s-frame {ej,,...,ej, ,} in T, M to (k+ 1)-
frame {ej,,...,e; } for 1 <s <k+1<n and set
s—1 k
R(k78)([ej0’ R ejk]) = Z Z ijjqujq’
p=0 q=0
R*9 () = min R®&3) (e, ... e:]),
min ( ) {6j0,...,6jk}CTzM ([ J0 ]k])
(2'5) Rr(rlféi)(ﬂj) = max R(k’s)([ejo’ oo 7ejk])‘

(g iy }CTeM
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RZ’CM([EJ()’ s 7ejn71]) = R(H_LS)([EJM s 7ejn71:|)

s—1n—1
= ijjqujq’
p=0 ¢=0
. [s] . . . [s] ) )
Ric . (z) = min Ric™(lejos - s€,11)s
m]n( ) {Ejo,---,ejnil}CTxM ([ Jo J 1])
(2.6) Rickl (z) = max Ric[s}([ejo, € ])-

{esrrsin 1 CToM

R(k)([ejm cee 7ejk]) = R(k7k+1)([ejm ceey ejk])

k k
= § : § :ijjqujq’
p:O q:O

R (z) = min _ R®([ejo, ... e;]),

min
{6j0 ,...,6]‘k}CTzM

(2.7) RW) () = max R®([ejy, - - -, €5.])-

{ejg s, yCTw M

Definition 1. We call Ric®)(u;VF), RE(lej,,...,e5]),
Ricl¥l([ejy, .. e, 1]), and R¥)([ejq,..., e;.]) the k-th Ricci curvature,
(k, s)-curvature, s-th weak Ricci curvature, and k-th scalar curvature of
M, respectively.

The geometry and topology of k-th Ricci curvature was initiated by
Hartman [22] in 1979, and developed by Wu [47] and Shen [40, 41],
etc. By the definition above, it is seen that the Ricci curvature of M is
equal to the (n — 1)-th Ricci curvature, (n — 1, 1)-curvature, and 1-th
weak Ricci curvature; the scalar curvature of M is equal to (n — 1,n)-
curvature, n-th weak Ricci curvature, and (n — 1)-th scalar curvature.
For any unit tangent vector u € U,M at point € M, let V¥ be a k-
dimensional subspace of T,, M satisfying v L ka. Choose an orthonormal
basis {e4} in T, M such that es, = u, span{ea,,...,ea,} = V¥, where
the indices 1 < Ag, Aq,..., A < N are distinct with each other. We
define the k-th Ricci curvature as follows:

(2.8) Ric' (u; VI = ZRAOA ApAq-

We extend an orthonormal s-frame {e4,,...,ea, ,} in ToM to (k+ 1)-
frame {e4,,...,eq,} for 1 < s < k+1 < N and define the (k,s)-
curvature, s-th weak Ricci curvature, and k-th scalar curvature of M as
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follows:
s—1 k

—(k,s —
R )([ery---aeAk]) = ZZRApAquAq7

p=0 ¢=0

s —(N—-1,s
ch[ ](I:eAO’""eAN—l:I) = R( )([er,---,eszfl])

R eay, ... ea,]) = R
ko ko
(2.9) = ZZRApAquAq-

Denote by Ricyi, (@), Ry (2), Rico (@), Ru(w) and Ricy (),
Rgf )( ), Ri cEn]aX( ), Ry () the minimum and maximum of the cur-

vatures defined above at point z € M.

We choose an orthonormal frame {ej,eq, - ,e,} such that u = e,
and Ric) (u; mG) = Zle Rinin, where mG = span{ey,ea, - e}, 1 <
k < n — 1. In particular, we see that Ric"~Y(u; V*~!) = Ric(u) and
RicW (u; V}) = K(x), where 7 = span{ey, e, }. Then we have the fol-
lowing lemma.

Lemma 1. Let M™ be an n-dimensional cmnplete submanifold in an
N-dimensional Euclidean space RN . If § < n?H? , H #0, then

(i) ([45, 51]) Ric® (u; VF) > 0.
(ii) For each point x € M there exists a unit vector u such that
Ric®) (u; VEY = 0 for some integer k € [2,n — 1] if and only if
H is a constant and M is isometric to S?1 (7; 1) x R.
Proof. If k = 1, the assertion follows from the result in [51]. Now
we discuss the case for 2 < k < n — 1. Choose an orthonormal frame

{e1,eq,--- ,en} such that e, is parallel to the mean curvature vector
&. Then

n2H? — <Zhn+1)

= (=D D+ > () + Z Z

i=1 1#£] a=n+21,j=1

n
2.1
(2.10) L
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Note that for | # n

(Zhn+1> < (n—l)[(hﬁ“—i—hzﬂ Z%:n (R }
_ (n—l){i(hﬁ“) +2hn+1hn+l]‘

i=1
This together with (2.10) implies

(211)  2h AT > > (Rt Z Z + = 1 -5

1#£] a=n+21,j=1

for I # n. The equality holds if and only if h"Jr1 = h"Jr1 + R for
i # l,n. This together with (2.1) implies

k
RZC(k)(U,ka) = Z nin Z Z hgh%n_ han)2]
i=1

i=1 a=n+1
N N n-—-1
> k> g+ Z
a=n+11<i<j<n =n+1 z:l
o 1 N n-—-1 1 N
D D (g D D ()
a=n+2 i=1 a=n+2 i=1

k n?H?
* 2 (n -1 S)
k (n*H?
> - -5).
-2 (n -1 >
fs<z H , then Rict®)(u; VF) > 0. The equality holds if and only if

he=0,1<i,j<n a#n+1; B =0,i#j,1<ij<n

nH

htl =0, ATt = ,1<i<n—1

Hence M has essential codimension one. Since the shape operator of M
has one eigenvalue of multiplicity n — 1 and the other eigenvalue is zero,
it follows from a result due to Deprez (see [16], Corollary) that H is

a constant and M is isometric to S7~! (Z—}{l) X R. This completes the
proof. g.e.d.

The following nonexistence theorem for stable currents in a compact
Riemannian manifold M isometrically immersed into F'V(c) is employed
to eliminate the homology groups H,(M;Z) for 0 < ¢ < n, which was
initiated by Lawson-Simons [28] and extended by Xin [48].
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Theorem 5. Let M™ be a compact submanifold in F'™ (c) with ¢ > 0.
Assume that

Z Z[2[h(ei,ek)\2 — (h(ei,ei), heg,er))] < q(n —q)c
k=q+1 i=1

holds for any orthonormal basis {e;} of T,M at any point x € M, where
q s an integer satisfying 0 < q < n. Then there do not exist any stable
g-currents. Moreover,

Hy(M;Z) = Hp—¢(M;Z) =0,

where H;(M;Z) is the i-th homology group of M with integer coefficients,
and m (M) =0 when ¢ = 1.

From the proof of Lemma 2 in [45], we have

Z Zplh(ei?ek)e - <h(ei7ei)7h(ek7ek)>]

k=q+1 i=1
< M[S_gnermH S—nHQ}
n q(n —q)
(212) < 4r=9 [5 Conm2s M= g nH2] ,
n 2n(n — 2)

for n > 4 and 1 < ¢ < n — 1. This together with Theorem 5 implies the
following.

Lemma 2. Let M™ be an n(> 4)-dimensional compact submanifold
in a Euclidean space RN. If S < n2H2 then

n—2 "’

H,(M;Z)=0, forall 1<g<n-—1.

Lemma 3 ([21]). Let M be a compact Riemannian manifold of di-
mension n. If M has nonnegative isotropic curvature and has positive
1sotropic curvature for some point in M, then M admits a metric with
positive isotropic curvature.

Lemma 4. Let M be a compact Riemannian manifold of dimension
n. If M x R? has nonnegative isotropic curvature, and if M has positive
Ricci curvature and isotropic curvature, then M 1is diffeomorphic to a
spherical space form.

Proof. By the assumption that M has positive Ricci curvature, the
universal cover M of M is compact. Since M has positive isotropic cur-
vature, M also has positive isotropic curvature. Note that M is simply
connected. It follows from a theorem due to Micallef and Moore [29]
that M is homeomorphic to S™. Therefore, M is locally irreducible and
the symmetric metric of M would have to be of positive constant curva-
ture. Moreover, when n is even, a theorem due to Micallef and Wang [30]
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states that if M has positive isotropic curvature, then H Q(M ,R) = 0.

Hence M cannot be a Kihler manifold. This together with Theorem B
implies that M is diffeomorphic to a spherical space form. q.e.d.

3. Manifolds of positive scalar curvature

In this section, we will give the proof of Theorem 1. More generally, we
will prove Theorem 8. We first prove the following lemma for compact
manifolds.

Lemma 5. Let M™ be an n(> 4)-dimensional compact Riemannian
manifold. Denote by R¥) () and R*™%)(.) the k-th scalar curvature and
(k, s)-curvature of M. If one of the following conditions holds:

i) R%)

> <k‘2 +k— 2—74)Kmax for some integer k € [3,n — 1],
(ii) Rgfi’i) > WK,MX for some integers k € [3,n — 1] and
s€2,k+1],
then (M) = 0 for 2 < k < [§]. In particular, if M is simply connected,
then M is homeomorphic to a sphere.

Proof. (i) It follows from (2.7) that

Rgffn < 2Kpmin + [k(k + 1) — 2] K pax-
Then we have
1
(3.1) Knin > 5[3& — (K 4k — 2) Kmax].

Suppose {eq, e, €3, €4} is an orthonormal four-frame. From (2.2), (3.1),
and the assumption we get

Ri313 + Ri1a14 + Ro323 + Ros24 — 2R1234

1 4
> (B = [k + 1) = 8K} — 5 (Kunax — Kunin)
1 2
> §{Rr(rlf1)n - [k(k + 1) - 8]Kmax} - g[k(k + 1)Kmax - Rgfl)n]
"Rk 2 24
> — P _ -
> = [Rmm (k k- >Kmx]
(32) > 0.

Hence M has positive isotropic curvature. By a result due to Micallef
and Moore [29], we have 7;,(M) = 0 for 2 < k < [5]. In particular, if
M is simply connected, then M is homeomorphic to a sphere.

(ii) By Definition 1, we have

R0 plks)
. min > min X
(3:3) W+ 1) = ks
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This together with the assumption implies

1 s 24
(3.4) BB 5 B Lpke <k2 tk— —)Kmax.

min — S min 7

Then the assertion follows from (i).
This completes the proof of Lemma 5. q.e.d.

By taking k =n — 1 in Lemma 5, we have the following.

Theorem 6. Let M™ be an n(> 4)-dimensional compact Riemannian
manifold. Denote by Ricl*)(-) and Ro() the s-th weak Ricci curvature
and normalized scalar curvature of M. If one of the following conditions
holds:

(i) Rici}in > WK,H” for some integer s € [2,n],

(i) Ro > [1 - %]Kmax,

then (M) = 0 for 2 < k < [§]. In particular, if M is simply connected,
then M 1is homeomorphic to a sphere.

Corollary 1. Let M™ be an n-dimensional compact and simply con-
nected Riemannian manifold, where 4 < n < 6. Denote by Ry the nor-

malized scalar curvature of M. If Ry > [1 — %] Kiax, then M is
diffeomorphic to S™.

Proof. 1t follows from Theorem 6 that M has positive isotropic curva-
ture. A theorem due to Hamilton [24] says that a 4-dimensional compact
simply connected manifold with positive isotropic curvature is diffeo-
morphic to S%. It is well known that there is only one differentiable
structure on S™, n = 5,6. This together with Theorem 6 implies M is
diffeomorphic to S™ for n = 5,6. This proves the corollary. q.e.d.

Lemma 6. Let M™ be an n(> 4)-dimensional compact Riemannian
manifold. Denote by R¥) () and R¥™%)(.) the k-th scalar curvature and
(k, s)-curvature of M, respectively. If one of the following conditions
holds:

(i) R®)

min

> <k‘2 +k— %)Kmax for some integer k € [2,n — 1],
(ii) Rgfi’j) > %Kmax for some integers k € [2,n — 1] and

s€2,k+1],

then M 1is diffeomorphic to a spherical space form.
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Proof. (i) Suppose {e1,e9,e3,e4} is an orthonormal four-frame and
A € R. From (2.2) and (3.1) we obtain

Riz13 + R2323 — |R1234|

= [Rfrlfm 2 Z RZJZJ] Y max - Kmin)
1<j#3
1
> SIRED (2 4~ ) K] = K+ 1)K — R
5 (k) 2 12
5) > - - .
(35 = 3 RO — (k2 + - ) Komax |

Using the same argument as above, we get

(3.6)  Rigia + Rosos — [Riz34] > {R(k) <k2 +k— 12)Kmax}.

min 5
From (3.5), (3.6), and the assumption, we have
Ris13 + A’ Rig14 + Rasos + A’ Ragog — 2\ R1a34

> Riziz + Rogos — |Rizsa| + A (Ria14 + Rosos — |Ri234])
5(1+ )\2) () 9 12
> - 7 _ =
> T B = (k) Ko
3.7 > 0.

This together with Theorem A implies that M is diffeomorphic to a
spherical space form.
(ii) From (3.3) and the assumption we know that
k+1 12
(3.8) RW > EF —— R > > (k2 + k- E)Kmax.

Hence the conclusion follows from (i).
This proves Lemma 6. q.e.d.

Lemma 7. Let M™ be an n(> 4)-dimensional compact Riemann-
tan manifold. If its k-th Ricci curvature satisfies one of the following
conditions:

(1) chgfl)n i_?Ri S{f;t}’,
k k
(ii) chfm)n (5]z5k6)(1k)+1)R gn?)le

where k is some integer in [2,n — 2|, then M is diffeomorphic to a
spherical space form.

Proof. (i) From (2.4), we obtain
(3.9) Kinax < Rictk+D — Rjc®)

min’

and
ch(k) < Kyin + (k - 1)Kmax,

min
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which implies
Kmin > ch(k) - (k - 1)Kmax
k) (k — 1)Rick+HD,

- min max

v
-
=
Q/\

(3.10)

Suppose {e1, e2,€3,e4} is an orthonormal four-frame and A € R. Then
we have from (2.2), (2.4), (3.9), and (3.10) that

Ri313 + Ra303 — \31234\
k41

> mln E Rz323 - Kmin)
(k) 4 (k1) g (R)
>
> Ric, | — (k; 3> [Ricyay’ — Ric, ;]
2[RRI, — (k= D Riclks)
> -
(3.11) > = | Ricly), - o Ric} =)

Similarly, we get

5k —17 .. 5k —6 _.
(3.12)  Rusia + Roaza — [Rugsu| = 3 [ch(k-) — 7ch(k+1)].

min 5k — 1 max
From (3.11), (3.12), and the assumption we obtain

Riz13 + AN Ri14 + Rogoz + A2 Rasoy — 2AR1234

> Riz13 + Rosos — |Riosa| + A2 (Ri414 + Rosos — |Ri234|)
A+ M)k =1)7,. k) 5k—6 ekt )
>
= 3 [mem 5k 1 e ]
(3.13) > 0.

This together with Theorem A implies that M is diffeomorphic to a
spherical space form.
(ii) From (2.4) we have

Rz’cgfglx S Ricgf;;l)
k= k417
which together with the assumption implies

h) _OE=6)k+1) o ) o p: (k) _ k=6, g1
0 < Ric.{, GE— 1k Ricyy < Ric) ) 5I<:—1chmax .

(3.14)

Hence the assertion follows from (i).
This proves Lemma 7. q.e.d.

Taking £ = n — 2 in condition (i) of Lemma 7, we have the following
theorem.
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Theorem 7. Let M™ be an n(> 4)-dimensional compact Riemannian
manifold. If its (n — 2)-th Ricci curvature and Ricci curvature satisfy
. (n—2) _ on — 16
Ritwin™ > 57710

then M is diffeomorphic to a spherical space form. In particular, if M
1s simply connected, then M is diffeomorphic to S™.

Lemma 8. Let M™ be an n(> 4)-dimensional compact Riemannian
manifold. Denote by Ric®) (), R¥)(.), and R%*%)(.) the k-th Ricci cur-
vature, k-th scalar curvature, and (k, s)-curvature of M, respectively. If
one of the following conditions holds:

(1) Rz'cfrlfi)n > % Qf;;” for some integer k € [2,n — 2],

(ii) Ricgfi)n > %RS@’S) for some integers k € [2,n — 2] and
s€2,k+ 2],

then M 1is diffeomorphic to a spherical space form.

Proof. (i) It follows from (2.4) and (2.7) that
1
(3.15) Ko < 5[REE = (k+3)Ricl} ),
and
Ric®) < Kupin + (k — 1) Kinax.

Then we have

Kyin > RZ'CE:;)H - (k - 1)Kmax
(3.16) > %[(k;? + 2k — DRic™ — (k — 1)REHD).

Suppose {e1, €2, €3,e4} is an orthonormal four-frame and A € R. Com-
bining (2.2), (2.4), (3.15), and (3.16), we have

Ri313 + Ra323 — |Ri234]
k41

. (k) 2
> R in Rii__Kmax_Kmin
> Ricyg, ; 3i3 — 5 )
> Ric® _ (E - 2) [REFD — (k + 3)Ric™) |
— min 2 3 max min
1
5[0 + 2k = DRicy, — (k — DRI
5k + 9k — 8 Q) 5k — 6
1 s SOk -8rp i  Bh=6 paen)
B 2 5 Fichin ~ 5o =5 P |
By a similar argument, we obtain
(3.18)
5k% +9k — 8. (k) 5k — 6
_ > o I 2 ) 7 pk) |
Ri414 + Ross — [Rio34| > 5 [chmm e SRmaX]



522 J-R. GU & H.-W. XU

From (3.17), (3.18), and the assumption we obtain

Ri313 + AN Ria1a + Rozoz + A2 Raaoq — 2AR1234

> Riziz + Rogos — |Rizsa| + A (Ria1a + Rosos — |Ri234l)
(1+X2)(5k% + 9k — 8) [ . (k) 5k — 6 )
> R O — &
= 6 [ min T 5p2Tgr g maX]
(3.19) > 0.

This together with Theorem A implies that M is diffeomorphic to a
spherical space form.
(ii) We get from (2.5) and (2.7) that

(k+1,s) (k+1)
3'20 max > max ,
(8:20) s(k+1) = (k+ 1)(k +2)

which together with the assumption implies

(k) (k+2)(5k —6) (kt1.9)
Miemin = (557 4 ok —g) mex
(3.21) Ok =6yt

~ Bk249k—8 M
The assertion follows from (i).

This proves the lemma. q.e.d.

Theorem 8. Let M™ be an n(> 4)-dimensional compact Riemann-
ian manifold. Denote by Ricl¥(-), Ric®)(.), and K(-) the s-th weak Ricci
curvature, k-th Ricci curvature, and sectional curvature of M, respec-
tively. Suppose one of the following conditions holds:

(i) Rick > MKmax for some integer s € [2,n];

min 5n
(ii) Rici}in > %Ricﬁrg{m for some integer s € [2,n];

(iii) Kpmin > mRicﬁ]&X for some integer s € [2,n];

(IV) Ric(n_2) n(5n—16)

nin mRicLﬁ}ax for some integer s € [2,n].

>
Then the normalized Ricci flow with initial metric go,

0
at”
exists for all time and converges to a constant curvature metric as

t — o0o. Moreover, M is diffeomorphic to a spherical space form. In
particular, if M is simply connected, then M is diffeomorphic to S™.

. 2
(t) = —QRZCg(t) + Erg(t)g(t),

Proof. (i) Taking k =n — 1 in condition (ii) of Lemma 6, we get the
conclusion.
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(ii) Since
Kmin > %[R — (n+ 1) Ric";2)
(3.22) > %[nRZTCL“}“ —(n+ 1)Rz'cg;gf>],
we obtain
Kmax < Ric™2? — (n — 3)Kpin
(3.23) < %ng‘;ﬁ) - 771(”2; 3) Ricll |

Suppose {e1, e, €3, e4} is an orthonormal four-frame and A € R. It fol-
lows from (2.2), (3.22), and (3.23) that

Ri1313 + Rag23 — |Ri234]
2
2[(min - _(Kmax - Kmin)

>
- 3
4 rnRic!
> |77 min ic(n—2)
z2 3|7 (n+ 1) Ricy oy ]
2rn?—2n—1 n(n—3) .
A Tl (n-2) M T 9) 5 [s)
3 5 Ricy 5% chmm}
17 1 s . (n—
(3.24) > 3 @R@L}m —(n*+2n+ 3)&4;;3)]
Similarly, we get
(3.25)
1 +1) s o
Ris14 + Rogoq — |R1234] > 3 [%ch}m}in - (n2 +2n + 3)chfnax2)}.

From (3.24), (3.25), and the assumption we obtain

Ri313 + A Ryg1a + Razaz + A2 Rosos — 2ARy234

> Riz13 + Rosos — |Riosa| + A2 (Ri414 + Rosos — |Ri234|)
14+ M2 1 s
> 2/\ n(ns—l— )Ricyin — (n? +2n + 3)Ricl"?
(3.26) > 0.

This together with Theorem A implies M is diffeomorphic to a spherical
space form.
(iii) By Definition 1, we get

(3.27) Kmax < %{Ricg}ax —[s(n —1) — 2] Kin -
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Suppose {eq, €2, €3,€4} is an orthonormal four-frame and A € R. Tt fol-
lows from (2.2) and (3.27) that

Ri313 + Rag23 — | Ri234]

2 2[(min - g(Kmax - Kmin)
> —Kpin — o |[Ric — (sn— s — 2) Kyin]
3 3
1
(3.28) > Sllsn — s+ 6) Kumin — Riclsl .

A similar discussion implies that

1
(3.29) Ri414 + Royos — ‘R1234‘ > g[(sn — S+ G)Kmin — Ricl[[fl]ax].

From (3.28), (3.29), and the assumption we obtain
Ri313 + A Rig1a + Razas + A2 Ragos — 2ARy234

> Riz13 + Rogos — |Riosa| + A (Rig1a + Roazs — |Ri234))
1+ A2 . 3]
> 3 [(sn — s+ 6)Kpin — Ricl ]
(3.30) > 0.

This together with Theorem A implies that M is diffeomorphic to a
spherical space form.
(iv) The assertion follows by taking k = n — 2 in (ii) of Lemma 8.
This proves the theorem. q.e.d.

We are now in a position to prove Theorem 1.

Proof of Theorem 1. (i) If n = 3, for any unit tangent vector u € U, M
at x € M, we choose an orthonormal three-frame {e1, e3,e3} such that
e3 = u. Then from the assumption we obtain

Ric(u) = Rizi3 + Rases
1
= 5(3 — 2R1212)
1
2 E(R - 2Kmax)
> 0.

This together with Hamilton’s theorem [23] implies that M is diffeo-
morphic to a spherical space form. When n > 4, the assertion follows
by taking k =n — 1 in (i) of Lemma 6.

(ii) If n = 3, the assertion follows from Hamilton’s work [23]. Thus
from now on we assume that n > 4. By taking s = n in (iii) of Theorem
8, we conclude that M is diffeomorphic to a spherical space form.

This proves Theorem 1. q.e.d.
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In 1990, Yau [54] proposed the following conjecture (see also [39, 55]).

Yau Conjecture 1. Let M™ be a compact and simply connected
Riemannian manifold. Denote by Ry the normalized scalar curvature of

M. If Kpin > Z—J:%Ro, then M is diffeomorphic to S™.

If n = 2,3, the answer is affirmative. If the pinching constant in

Yau Conjecture 1 is replaced by n, = n?ii;%, Theorem 1 gives an
affirmative answer. The following example shows that Z—jré is the best

possible pinching constant for the conjecture in even dimensions (n > 4).

Example 1. Let Ry be the normalized scalar curvature of a Rie-
mannian manifold. By a direct computation, we have the normalized
scalar curvatures of the compact rank one symmetric spaces (CROSS)
with standard metrics:

m+1
my __ : my __ > 9.
Ry(CP™) = pre—" dimg (CP™) = 2m, m > 2;
m+ 2
m - = : m — > .
Ry(HP™) = =1’ dimg (HP™) = 4m, m > 2;

Ro(OP?) = g dimg (OP?) = 16.

On the other hand,
1
1
is the best pos-

Kunin(CP™) = Kuin(HP™) = Kuin(OP?) =

and these are not homeomorphic to S™. Therefore, Z—jré

sible pinching constant for Yau Conjecture 1 in even dimensions (> 4).

Yau Conjecture 2. Let M™ be a compact and simply connected
Riemannian manifold. Denote by Ry the normalized scalar curvature of
M. If Ky > Z—j_; and Ry <1, then M is either diffeomorphic to S™, or
isometric to the complex projective space CP™ with n = 2m.

Recently the authors [52] proved the following optimal rigidity theo-
rem for Einstein manifolds, which provides evidence for Yau Conjectures
1 and 2.

Theorem 9. Let M be an n(> 4)-dimensional compact FEinstein
manifold with normalized scalar curvature Ry := c. If Ky > Z—jr%Ro >
0, then M 1is locally symmetric. In particular, if M is simply connected,

1

then M is isometric to either the standard n-sphere S“(\/E) or the com-
plex projective space CP™(c).

Motivated by Theorem 1 and Example 1, we would like to propose
the following conjectures.

Conjecture 1. Let M™(n > 4) be a compact Riemannian manifold.
If Ry > %Kmax, then M 1is diffeomorphic to a spherical space form. In
particular, if M is simply connected, then M is diffeomorphic to S™.
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Conjecture 2. Let M™(n > 4) be an even dimensional compact and
simply connected Riemannian manifold. If Ky < 1 and Ry > ¢, where

4(7:1+21) form=4ordk+2, keZ",
Cn = 4(,2*81) forn =4k, keZT 2 00) and k # 4,

5 for n =16,

then M is either diffeomorphic to S™, or isometric to a compact rank
one symmetric space.

Proof of Theorem 2. (i) If n = 3, the assertion follows from (i) of
Theorem 1. If n > 4, the conclusion follows from (ii) of Theorem 8 by
taking s = n.

(ii) If n = 3, it follows from Hamilton’s work [23]. If n > 4, by taking
k=mn—21in (i) of Lemma 8, we get the conclusion.

This completes the proof of Theorem 2. g.e.d.

4. Sphere theorems for compact submanifolds

In this section, we extend the sphere theorems in Section 3 to subman-
ifolds in Riemannian manifolds with arbitrary codimension. For compact
submanifolds, we prove the following lemma.

Lemma 9. Let M™ be an n(> 4)-dimensional compact submanifold
in an N-dimensional Riemannian manifold M. Assume that M sat-
isfies one of the following conditions:

(i) S< %[Rfm)n - <k:2 +k— )Kmax] + H for some integer k €

B, N —1];
. 7(k+1) [B(k,s)  s(Tk24T7k—24)5=
() 5 < TRl sy }

min 7(k+1)
ke [3,N—1] and s € 2,k + 1].
Then (M) = 0 for2 < k < [§]. In particular, if M is simply connected,
then M is homeomorphic to a sphere.

Proof. (i) Since

R < 2Kmin + bk + 1) = 2R oy,
we have
(4.1) Roin > 5[Bh — (& — 2)F ]
Setting S, = ZZj:l(h%)27 we know that

2 () = -+ Togr - G s

1=1 1#£]
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Note that for all distinct p, g, m, 1

(L)

IN

(n = 2) (g, + R+ (i + B2+ D ()]
1#£p,q,m,l
= (n=2)[ D(h)? + 2 b, + 20 b -
1=1
This together with (4.2) implies

a pa « a a (Zz: zi)2
(4.3) 2hipphaq + 2hpm by > Z(hij)2 + n7i2 — Sa,
i#]

for all distinct p, q, m,l. Suppose {e1, s, e3,e4} is an orthonormal four-
frame and A € R. From (2.1), (2.3), (4.1), (4.3), and the assumption we
get

Ri313 + Ri414 + Rag23 + Roso4 — 2R1234
= Ri313 + Ri414 + Ra323 + Rosoa — 2R1234

+ Z[ 1153 + hoyhiy + hyhis + hiyhiy
«

— (hfs)* — (h33)* — (h$y)* — (h§4)? — 2(hf3h$y — h§yhSs)

1 — — 4 _
> §{R£r]f1)n - [k(k + 1) - S]Kmax} - g(Kmax - Kmin)
a2 (Z?:l hg‘)2
+ X[+ =y s
a i
—2(hfy)? — 2(h5)? — 2(h5)? — 2(h,)?]
1 _
> SR — 4 k= 8)K ]
2 — —(k), n?H?
) 1 Kmax ~ “lmin -
(k1R max — ] + - = 8
7 1—(k) 9 24\ — n?H?
> — Lo— S — —
> <[ B — (B 4k = = ) K| + =5 =8
(4.4) > 0.

Therefore M has positive isotropic curvature. From Micallef and Moore’s
theorem [29], we get m(M) = 0 for 2 < k < [5]. In particular, if M is
simply connected, then M is homeomorphic to a sphere.

(ii) Notice that

Ra) _RLY

(45) R+ 1) = ks
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We have
H(k) 2 M\ S ktloks (o, 24
(4.6) B = (K4 k= 2 ) Fona = R = (K24 b = = ) Ko

The assertion follows from (i), (4.6), and the assumption.
This proves Lemma 9. q.e.d.

By taking k = N — 1 in Lemma 9, we get the following theorem.

Theorem 10. Let M™ be an n(> 4)-dimensional compact subman-

ifold in an N-dimensional Riemannian manifold M . Assume that M
satisfies one of the following conditions:

() § < 2[R— (N2 = N = 2) o] + 22

(i) S < 765 [ch][jm - an}w] + 2 H for some integer
€ [2, N].

Then 7Tk(M) =0 for2 < k < [§]. In particular, if M is simply connected,
then M is homeomorphic to a sphere.

Lemma 10. Let M™ be an n(> 4)-dimensional compact submani-
fold in an N-dimensional Riemannian manifold as Suppose that M
satisfies one of the following conditions:

(i) S<2 [Rfm)n — (k:2 +k— )Kmax} + %, for some integer k €

[27N - ];
(11) S < 5(]2—:1) R(k,s) S(5k2+5k‘ lQ)K ] + n2H?2

B n—1"

min 5(k+1)
ke[2,N —1] and s € 2,k + 1].

Then M s diffeomorphic to a spherical space form.

Proof. (i) Setting S, = > (ho‘) we have

for some integers

ij=1
(zh) n_l{z N Py i) g
Note that for m #{

(Zn:h?i)? < (n—l)[(hf‘nm+hﬁ)2+ Z(h )2
i=1 Bt

- (n—l)[Z(ha) +one a]

i=1
This together with (4.7) implies

« « a2 (Zz 1 h%)
(4'8) 2hmmhll > g(hw) + ﬁ Sa
7]
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for all distinct m, [, and the equality holds if and only if hf; = Ay, + hj}

for all i # m, . Suppose {e1, €2, €3, e4} is an orthonormal four-frame and
A € R. From (2.1), (2.3), (4.1), and (4.8), we obtain

Ri313 + Rasas — |Ri234]

k41
11— — 2 — —
> §|:Rfrlfl)n—2 Z RABAB:| —g(Kmax_Kmin)—i_Z |: (111 §3
A<B#3 «a
« 6] 3 6] 3 6] 1 o] 1 «
+ hoyhss — 5( %) — 5( %)% — 5( 5)? — 5( 14)2}
_ _ 1 _ _
> o[B8 k= )R] — S+ )R s — Bl
o im1 hg)?
P [y e
a it
3 3

[0} (63 1 [e% 1 [e%
— S(h8)? = S(h85)? — S(h80)? — 5(h5)?]
9 [=(k) 9 12\ — n?H?
> = - S — —S.
(4.9) > G[Rmm <I<: tk 5)Kmax}+ S

Similarly, we get

Ri14 + Rosos — |Rio34|
5 [—=(k) 9 12\ — n?H?
> = Lo S — - 9.
(4.10) z & {Rmm (k: +k z )Kmax] + S

From (4.9) and (4.10), we obtain

Ri313 + A2 Rig14 + Razos + A Raaos — 2AR1234
> Riz13 + Rosos — |Rizsa| + A (Ri14 + Rosos — |Rio34l)
411> (1+ )\2){§ [E(’“? - <k2 Ny 9)? } | R S}.
= 6 min 5 max n—1

This together with Theorem A and the assumption implies M is diffeo-
morphic to a spherical space form.
(ii) From (4.5) we have

—(k) < 2 12\ — kE+ 1—5k,s) < 2 12\ —
4.12 = —— | Kax > R, — (k" +k—— ) Knpax-
( ) len k +k: 5 > s min + 5 >
Therefore the assertion follows from (i), (4.12), and the assumption.
This completes the proof. q.e.d.

Lemma 11. Let M™ be an n(> 4)-dimensional compact submani-

fold in an N-dimensional Riemannian manifold as Suppose that M
satisfies one of the following conditions:
(i) S < %[ﬁﬁn - %%Eﬁ;”] + % for some integer k €

2, N —2];
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(ii)) S < % [Rlcfm)n - %ch(k) + ”:ff, for some integer

ke[2,N—2].

Then M 1is diffeomorphic to a spherical space form.
Proof. Since

——(k+1)
Crmax

— Rico,,

(4.13) K max < Ric

and

R—( ) S Kmln + (k - 1)Fn’1ax;

we have
Fmin Z mgfl)n - (k - 1)Fmax
(4.14) > kRico) — (k — ) Rico D,

Suppose {e1, €2, €3,e4} is an orthonormal four-frame and A € R. From
(2.1), (2.3), (4.8), (4.13), and (4.14) we get

R1313 + Raga3 — |R1234|
k+1

> mm Z RA3A3 . _max - Fmin) + Z [h?l hgg
o 1o 3 o 3w 1 1
+hiohss — 5( )2 — 5( 93)% — 5( 5)° — §(h14) ]
——(k) A\ 5—(k+1) (k)
> ) _(r_2
— RZlen <k 3) [Rlcmax R mln]
[k:Rz Ricuin — (k — 1) Ricum, |
o i1 hg)?
+ Z [Z(hij)z + 7(Zn_i 1 S Sa
a it
()2 = S (h5)? = 5(8,)* = 5(h8)?]
5k — 1mer(k) 5k — 6 (ki) n?H?
15) > - P — -2 s
(415) > = [mem - Ric,, ] +o— -5

Similarly, we have

Rig14 + Roo4 — |R1234|

_ n2H?
(4.16) > 5I<:3 1 ik Ok — R (k+1)]+ H

mln 5k _ 1 S
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This together with (4.15) and the assumption implies
Ri313 + A Ryg14 + Raosaz + A2 Rosos — 2ARy234

> Riz1z + Rogos — |Riosa| + A2 (Rig1a + Roazs — |Ri234))
Ok —11—=—k) 5k —6—5—(k+1) n?H?
> CAY St ) _
> (1+A ){ 3 [chmm - 1chmax ] +— 1 S}
(4.17) > 0.
The assertion follows from Theorem A.
(ii) Since
(418) R -, R,
' k - k+17
we have
==y Ok =6)(k+1)=—(k) _ 5=(k) 5k —Oo—(k+1)
7 < v " )
chmln (5k _ 1)k R maX — R mln 5k _ 1 Zcmax

The assertion follows from the assumption and (i).
This completes the proof. q.e.d.

Taking k = N — 2 in (i) of Lemma 11, we get the following theorem.

Theorem 11. Let M"™ be an n(> 4)—dz’mensz’onal compact submani-

fold in an N -dimensional Riemannian manifold Y JfS < 5N 1l [Rz ffl\lfn 2
— g%:}?chmaX] + =21, then M is diffeomorphic to a spherical space

form. In particular, zf M is simply connected, then M is diffeomorphic
to S™.

Lemma 12. Let M™ be an n(> 4)-dimensional compact submani-
fold in an N-dimensional Riemannian manifold as Suppose that M

satisfies one of the following conditions:

(i) S< M [Rz fm)n — %RE&S)} + ":i{f, for some integer
ke 2, N 2);

k219k—8 [Br(k) k+2)(5k—6) 5(k+1,s) n2 H2
(i) § < BEEI=8[Red — B B | + 222,

tegers k € [2, N — 2] and s € [2,k + 1].

Then M 1is diffeomorphic to a spherical space form.

for some in-

Proof. (i) It’s seen from (2.8) and (2.9) that

— 1
(419) Kmax =9 [R(k+1) (k + 3)RZC( )

max mln]

and
R—( ) < Kmln + (k - 1)Kmaxa

mm _
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which implies

Kmin 2 mr(ji)n - (k - 1)Kmax
1 _ _
(4.20) > Sl + 2k - DR — (k- HRE,

Suppose {eq, €2, €3,€4} is an orthonormal four-frame and A € R. Tt fol-
lows from (2.1), (2.3), (4.8), (4.19), and (4.20) that

Ri313 + Ra323 — |Ri234]
k41

Bk D 2 = T a pa
> Rlcfni)n - Z RA3A3 - g(Kmax - Kmin) + Z [hll h33
A=3 o
+haohgs — 5( )2 — 5( 93)% — 5( 8)° — 5( 14)2]
——(k) ko 2\ sk+1) ——(k)
> ) _(E_ =z _ .
— chmln (2 3> [Rmax (k + 3)Ricmln]
1 — — 22
5[k + 2k - DRie™) — (x — )RED 4 Z — -
5k% + 9k — 8 [=—(k) 5k—6  —k+1)]  n*H?
421) > —|Rie, ;. — ————R - 5.
( ) — 6 |: ZCI‘I]IH 5k2 +9k_8 max :| _ 1
By a similar computation, we get
Ria14 + Roaza — |Ri234]
5k% + 9k — 8 [——(k) 5k—6  —k+1)]  n*H?
422) > 2 TIHRTO ) 98— 0 _g
(422) 2 6 [mem SR 1 Ok — 8§ max } i

From (4.21) and (4.22), we obtain
Ri313 + M Rig1a + Razas + M Rasos — 2ARi234

> Riziz + Rogos — |Rizsa| + A (Ria1a + Rosos — |Ri234l)
5k% 4+ 9k — 8 (k) S5k —6  —(k+1)
> (1 LAY b e ) _ TP

n2H?
4.2 - .
(4.23) e s}

From (4.23), Theorem A, and the assumption, we see that M is diffeo-

morphic to a spherical space form.
(ii) It follows from (2.9) that

Egcixl,s) Fk+1)

4.24 > uax ,
( ) s(k+1) = (E+1)(k+2)
which implies
R~ 512 g5 o

5k2 + 9k — 8 ™M

——(k) (k +2)(5k — 6) R(k-‘,—l,s)

(4.25) Ric

Y

min 8(5]{324-9]{7—8) max
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Thus, the assertion follows from (i) and the assumption.
This completes the proof. q.e.d.

Theorem 12. Let M™ be an n(> 4)-dimensional compact subman-

ifold in an N-dimensional Riemannian manifold M. Assume that M
satisfies one of the following conditions:

. - 2_ — - 2172
(1) S < 56_127 [chi}in - =GN 5]?[N 12) Kmax] + Zi )

(i S < N(];f:l) [m[s] _ s(NPH2N43) Hr(N=2)] | ffif;

min N(N+1) max
(111) S < sN—35+6 [Fmin _ 1 m[s] } n?H? .

SN—s+6 max + n—1"

. 2_11N_6 [5—(N-2) N(BN—-16) 18] 2p2
(IV) S < W |:RZCmin - mRZCmaX] + nnffl ’

for some integer s € [2, N]. Then the normalized Ricci flow with initial
metric gg,

0 ) 2
Eg(t) = —2Ricyy) + ;Tg(t)g(t)v

exists for all time and converges to a constant curvature metric as
t — o0o. Moreover, M is diffeomorphic to a spherical space form. In
particular, if M is simply connected, then M is diffeomorphic to S™.

Proof. (i) Taking k = N—1 in (ii) of Lemma 10, we get the conclusion.
(ii) Since

_ 1 — — (N—
Kmin Z §[R_(N+1)RZCI(I]1\;X2)]
——{s]
1 [ NRic™ (N
(4.26) N (N+1)Ricgax2)],
2 S
we obtain
Koae < Rich 2 (N - 3)Kmin
2 — 1l—=(N— - S
(4.27) < WR@'CS\;XQ) —WR@L&H.
S

Suppose {eq, €2, €3,€e4} is an orthonormal four-frame and A € R. Com-
bining (2.1), (2.3), (4.8), (4.26), and (4.27), we obtain
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Ri313 + Rasas — |Ri234]

y7a 2 — T a o [ Ne]
> 2K min — g(KmaX - Kmin) + E [hll 33+ h22 33
5 ()2 = S (h55)” = S(h8))? — S(5)?
n’H? 47N ——s) —=—(N-2)
- B ATNo—s] .
2 S+ 3 { . Ricyyin — (N + 1)Ricy ]
1 ——(N— N(N — s
—5 | (V2 = 2N — D) Ric” - N —3) 3)Ric£n}in}
3 s
N+1[N—— N?2+2N+3—-—n-27 n?H?
428)> — | R L e rE s
(4282 —3 [stmm N1 Cmax }—i_n—l S
A similar discussion implies that
Ri14 + Ra2a24 — | R1234]
N+4+1[N——s  N?*+2N+3_—n-2] n?H?
4.29)> —|—Ric,;, ———R - S.
( )— 3 [S Crmin N +1 1Cmax :|+Tl—1

From (4.28) and (4.29), we get
Ri313 + A Ryg1a + Rasaz + A2 Rosos — 2ARy234

> Riz13 + Rosos — |Riosa| + A2 (Ri414 + Rosos — |Ri234|)
N+1[N—— N?+2N+3—_-—n-2
> 22D S N B o
n2H?
(4.30) o —S}.

Hence we get the conclusion from (4.30), the assumption, and Theo-
rem A.
(iii) It’s seen from (2.9) that

(4.31) Komax < %[%[S] — (N — 5 — 2) K min]-

max

Suppose {e1,e2,e3,€e4} is an orthonormal four-frame and A € R. By
(2.1), (2.3), (4.8), and (4.31), we have

Ri313 + Ras2s — |Ri234]

¥7d 2 — T a pa [y Ne]
> 2Kmin — g(Kmax — Komin) + ) [hnhss + haahis

—S ()7 — S(8)? — S(h80)? — 5(h54)?]

8— 1 =4 — n?H?
> 2 .z _ e i _
> 3Kmm 3[chmax (SN — s — 2) K in] + — S

1 —— s
(4.32) > g[(sN — 5+ 6)Kmin — RiCLI]aX] +

n2H?
n—1

S.
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By using a similar argument, we get

Ri414 + Roa24 — |Ri234]

1 — ——s
S[(SN = 54 6)Konin — Rt +
It follows from (4.32) and (4.33) that

n2H?
n—1

(4.33) > S.

Ri313 + M Ri14 + Rozoz + A Raaoq — 2\R1234

> Riziz + Rogos — |Rizsa| + A (Ria1a + Rosos — |Ri234)
1 — ——1s] n2H?
4.34) > (14 M) Z[(sN — K min — - S,
(434) = (14 N[N = 5+ 6)Koin — Ricp + —= — 5}

which together with the assumption and Theorem A implies the con-
clusion.
(iv) The assertion follows from (ii) of Lemma 12 by taking k = N —2.
This proves the theorem. q.e.d.

Theorem 13. Let M be a 3-dimensional compact submanifold in an
N -dimensional Riemannian manifold M. Assume that M satisfies one
of the following conditions:

(i) S <i[R— (N? =N — 4K oy + $H?;

(i) S <R — (N + D)Ricow " + $H?
(ili) S < 2K min + JH?;

(iv) § < A2=gN=2 (R i) — SNl R+ SH? for N > 4.
Then M is diffeomorphic to a spherical space form. In particular, if M

1s simply connected, then M is diffeomorphic to S™.

Proof. For any unit tangent vector v € U, M at x € M, we choose an
orthonormal three-frame {eq, ez, €3} such that e3 = u.
(i) From (2.1), (4.8), and the assumption, we obtain

Ric(u) = Rizi3 + Rasos

= %(E—2 Z RABAB)

A<B#3
‘1'2[ $1h8s + h3ahs — (hf5)? — (h33)?]
«

> %[ﬁ — (N? = N = 4)K pax]
3 )2
P[4 =B g g2 )]
o it
> %[R— (N2 = N — )R] + §H2 s
(4.35) > 0.
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(ii) It follows from (2.8) that

— 1 — —(N—
(436) Kmin 2 §[R - (N + 1)Ricfr]1\;x2)]7

which together with (2.1), (4.8), and the assumption implies
Ric(u) Riz13 + Ragas
> 2K min + Z[ f1h85 + h3ahs — (hf5)? — (h33)7]
(e

— ——(N-2) | n’H?

> R—(N+1)Ricpy +-——
(4.37) > 0.
(iii) From (2.1), (4.8), and the assumption, we obtain
Ric(u) = Riziz3 + Rases
> 2K min + Z[ 1785 + h3ahgs — (hf5)* — (h33)?]
> 2K pmin + I S
n—1
(4.38) > 0.
(iv) It’s seen from (2.8) that
(4.39) K pax < %[E — (N + 1) Richy, )
This together with (2.1), (4.8), and the assumption implies that
Ric(u) = Rizi3 + Roszs
> Ricon? = (N = 9K max
‘1'2[ f1h83 + h3ahgs — (hf5)? — (h33)?]
> Ry, — %[E— (N + 1) Rico, 7]+ % -5
2 27172
= W[mcgﬂ B N?Jj31\§—2R] * Zfll -9
(4.40) > o.
The assertion follows from (4.35), (4.37), (4.38), (4.40), and Hamilton’s
theorem [23]. This completes the proof of Theorem 13. q.e.d.

Theorem 14. Let M™ be an n(> 4)-dimensional compact subman-

ifold in an N-dimensional Riemannian manifold M. Assume that M
satisfies one of the following conditions:

(i) S < 3N(N = 1)(Ro — onKmax) + 22

n—1"

.. 2_ — ——(N—2 n
(ii)) S < ]\QEJX,_Q;) [(N —2)Ry — :UNRZC](max ) + iff,
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(iii) S < ME=NEO(Ky, — v Ro) + B,
(iv) § < BN=]N=6 7T

—_— 27172
min N(N - 2)R0] + r;Li{l )
where oy, UN, NN, and TN are defined as in Theorems 1 and 2. Then M
is diffeomorphic to a spherical space form. In particular, if M is simply
connected, then M is diffeomorphic to S™.

Proof. By taking k = N — 1 in (i) of Lemma 10, s = N in (ii) and
(iii) of Theorem 12, and k = N — 2 in (i) of Lemma 12, respectively,
we conclude that M is diffeomorphic to a spherical space form. In par-
ticular, if M is simply connected, then M is diffeomorphic to S™. This
proves the theorem. q.e.d.

5. Submanifolds with weakly pinched curvatures

In this section, we improve the differentiable sphere theorems [51] for
submanifolds with strictly pinched curvatures and obtain a classifica-
tion theorem for submanifolds with weakly pinched curvatures.

Proof of Theorem 3. If n > 4, suppose {e1, 2, e3,e4} is an orthonor-
mal four-frame and A € R. From (2.1), (2.3), and (4.8), we have

Riz13 + N Rigia + 4% Rosas + N2 1? Roos — 2\ 1R1934
A | —

> (1 + )\2 + ,U2 + )\2M2)Fmin - T(Kmax - Kmin)
+Z{h?1 S5 — (h$3)” + N2 [h3ahsy — (hS1)%] + 2uhS b
‘2)‘ a o a \2 2rpa a \2 [ 9 Ne
7 [hgohSs — (ho3)™] + AR hiy — (h14)7] — 2puARi5hS,
4Kmin _Fmax
> (1+/\2+u2+A2u2)( 2 )
a2 (Z?:l hg)z SO! a \2 a \2 a \2
+Za:{;(hij) +m—7—( 13)7 = (hf4)” — (h33)
242 a2 (Z?:lh%)2_&_ a2 _ (pa N2 pa 2
+ poA [;(hij) + 2(n—1) 5 (h34)" — (hiy) (h23)]
2 a2 (Z?:lhgp_&_ a2 (po N2 pa 2
+p [;(hij) + 2(n—1) 5 (hg3)” — (hi3)” — (h%y) }
2 a2 (Zzﬂzlh%F_&_ a2 _ (a2 (a2
+A [;(h’zy) + 2(n —1) 9 (h4)” = (hi3)" — (h3y) ”

> (T4 p? + 22+ \2%u?)
n?H? S}

|:(4Fmin - K max)
3

(5.1) +m—§ .
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From (5.1) and the assumption that S < %(Fmin — ifmax) + n2H? e

n—1"7
have
(5.2) Riz13 + AN Ryg1a + 12 Rogoz + N p? Ragag — 2M\ R34 > 0,

i.e., M x R? has nonnegative isotropic curvature.
On the other hand, it follows from (2.1), (2.3), and (4.8) that

Ri313 + Ra323 — |Ri234]

T~ 2 — T7 a o (eI No's
> 2Kmin_§(Kmax_Kmin)+Z [hll 33+h22h33
3 o 3 (0% 1 (0% 1 (0%
—5( 13)2—5(%3)2—5( 24)2—5( 14)2}
8 /— 1 n’H?
. i~ Kmin__KmaX - -
(5-3) - 3( 4 > + n—1 5

The equalities in (5.3) hold only if

h% = h§y =0, for all distinct 7, j and any «,

and
(5.4) hi = h3;, for i,j # 3 and any «,
ie.,
n?H?
(5.5) S = 7

It follows from (5.3), (5.5), and the assumption that the Ricci curvature
of M is quasi-positive. This together with Aubin’s theorem [2] implies
that M admits a metric with positive Ricci curvature.

By a similar discussion, we have

n2H?

n—l_s'

8 /— 1—
(5.6)  Risqia + Roaza — |Ri234| > 3 <Kmin - ZKmax) +

The equality in (5.6) holds only if
h{; = hgy = 0, for all distinct 4, j and any «,
and

(5.7) h; = hg;, for i, j # 4 and any a.

From (5.3), (5.5), and (5.6), we have

Ri313 + Ria14 + Ro323 + Rosoq — 2R1234

= (Ri313 + Rasas — |Ri234|) + (R1414 + Roa24 — |Ri234])
8 /— 1— n?H?
. > 2|:_<Kmin__Kmax> - ]7
(5.8) > 3 1 + p— S

and the equality holds only if S = % This together with the as-
sumption and Lemma 3 implies that M admits a metric with positive
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isotropic curvature. By Lemma 4, we conclude that M is diffeomorphic
to a spherical space form. In particular, if M is simply connected, then
M is diffeomorphic to S™.

If n = 3, for any unit tangent vector v € U, M at x € M, we choose
an orthonormal three-frame {e1,es,e3} such that e3 = w. From (4.8)
and (4.38), we obtain

n2H?
n—1

Ric(u) = Ri313 + Rasas > 2K min + S,

and the equality holds only if § = "nzz{lz Then from the assumption
we know that M has quasi-positive Ricci curvature. Hence M admits
a metric with positive Ricci curvature by Aubin’s theorem [2]. This
together with Hamilton’s theorem [23] implies that M is diffeomorphic
to a spherical space form. In particular, if M is simply connected, then
M is diffeomorphic to S™.

This completes the proof of Theorem 3. q.e.d.

Corollary 2. Let M™ be an n(> 3)-dimensional complete submani-
fold in an N -dimensional Riemannian manifold . IfS < %(fmin —

%Fmax> + ”:ff and the strict inequality holds for some point xo € M,
then M 1is diffeomorphic to a spherical space form or R™. In particular,

if M is simply connected, then M is diffeomorphic to S™ or R™,

Proof. From the assumption and Lemma 4.1 in [51], we know that M
has quasi-positive sectional curvature. When M is noncompact, it fol-
lows from the Cheeger-Gromoll-Meyer-Perelman soul theorem [14, 18,
33] that M is diffeomorphic to R™. When M is compact, the assertion
follows from Theorem 3. This proves the corollary. q.e.d.

For submanifolds in a sphere, we have the following theorem.

Theorem 15. Let M™ be an n-dimensional compact submanifold in
the unit sphere S™. Assume that
n?H?

n—1

S <2+

We have the following possibilities:
(i) If n = 2, then either M is diffeomorphic to S?, RP?, or M is flat.
(ii) If n =3, then M is diffeomorphic to a spherical space form.

(iii) If n > 4, then M is diffeomorphic to S™.
Proof. If n = 2, it’s seen from the Gauss equation that 2K, = 2 +

4H? — S. This together with the assumption and the Gauss-Bonnet
theorem implies the conclusion.
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If n = 3, we see from Proposition 2.1 in [45] that

2
Ric(w) > 2[3+6H% -5~ %H(S — 3H)]
- g g 2_§ § 2
- 3[(3+4H SS)+ 1H
1 3
(S —3H2) — 2_H(S — 3H2)/2
+2(S3)\/6(S3)]
> 2+§H2—S

holds for any unit vector v € T, M at each point x € M, and the last
inequality becomes an equality only if S = %H 2. This together with the
assumption implies M has positive Ricci curvature. Hence the assertion
follows from Hamilton’s theorem [23].

If n > 4, from (4.8) we get

n

> R2lh(er, en)? = (hlerser), hlex, ex))] — (n — 1)

k=2
= ZZ[Q( ?k)Q — hihig] — (n—1)
a k=2
< S5 (oot 3T SR g )
a k=2 i#£j
—(n—1)

n—1 n2H?
59) < (s- -2).
(5:9) = 2 n—1
The equalities in (5.9) hold only if S = ":f[f From the assumption
S <2+ fﬂz, we obtain

n

(5.10) > [2lh(er, ex)” = (hler,ex), hle, ex))] — (n — 1) < 0.
k=2

This together with Theorem 5 implies that M is simply connected. By
Theorem 3, we see that M is diffeomorphic to S™. This proves Theorem
15. g.e.d.

Moreover, we get the following classification for complete submani-
folds in a Euclidean space.

Theorem 16. Let M™ be an n-dimensional oriented complete sub-
manifold in the Euclidean space RN . Assume that
2H2
s<” - H£Q.

n —

We have the following possibilities:
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(i) If n =2, then either M is diffeomorphic to S?, R?, or M is flat.

(ii) Ifn = 3, then M is either diffeomorphic to a spherical space form,
R3, or isometric to S%(rg) x R.

(iii) If n > 4, then M is either diffeomorphic to S™, R™, or locally
isometric to S"1(r) x R.

Proof. Tt follows from the assumption and Lemma 1 that Ky; > 0.

(i) Suppose that M is compact. If n = 2, it is seen from the Gauss-
Bonnet theorem that M is diffeomorphic to S? or M is flat.

If n = 3, we know that Ricyy > 0. This together with Hamilton’s
theorem [23] and Lemma 1 implies that M is diffeomorphic to a spher-

ical space form, or H is a constant and M is isometric to S? (?%H) x R.

Since M is compact, the latter case is ruled out.

If n > 4, from the assumption S < ":ff and Lemma 1, we know
Ricpyr > 0. We claim that M admits a metric with positive Ricci curva-
ture. Otherwise, it’s seen from Aubin’s theorem [2] that for each point
x in M, there exists a unit vector u in T, M such that Ric(u) = 0.
By Lemma 1, we know that H is constant and M is isometric to

n—1(n—1
) nH

of M. By the Bonnet-Myers theorem, the fundamental group m (M) is
finite. Moreover, from the assumption, we know that S < ”: 5{22. It’s seen
from Lemma 2 that H,(M;Z) = 0 for all 1 < ¢ < n — 1. Then we get
from the universal coefficient theorem that H"~!(M;Z) has no torsion,
and hence neither does Hq(M;Z) by the Poincaré duality. This together

with the fact that 71 (M) is finite implies H;(M;Z) = 0. Therefore we
have H,,_1(M;Z) = 0. Denote by M the universal Riemannian covering

) xR, which is noncompact. This contradicts the compactness

of M. We may consider M to be a Riemannian submanifold of RY and
hence M is a homology sphere. Since M is simply connected, it is a
topological sphere, which together with a result of Sjerve [46] implies
that M is simply connected.

On the other hand, from (5.1) and the assumption, we know that
M x R? has nonnegative isotropic curvature. Moreover, it follows from
(5.4), (5.7), and the assumption H # 0 that the equalities in (5.3)
and (5.6) cannot hold simultaneously. Hence we see from (5.8) and the
assumption that M has positive isotropic curvature. It follows from
Lemma 4 that M is diffeomorphic to a spherical space form. Since M
is simply connected, M is diffeomorphic to S™.

(ii) Suppose M is noncompact. If n = 2, it follows from the Cheeger-
Gromoll-Meyer-Perelman soul theorem that M is diffeomorphic to R?
or M is flat.

If n = 3, a theorem due to Schoen-Yau [38] and Zhu [57] states that
if the Ricci curvature of M is quasi-positive, then M is diffeomorphic
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to R3. This together with Lemma 1 implies M is diffeomorphic to R?
or isometric to S?(rg) x R.

If n > 4, we consider the following two cases:

Case I. Kjy > 0 and K (m) > 0 for any 2-plane 7 C T,,,M at some
point zg € M. By the Cheeger-Gromoll-Meyer-Perelman soul theorem,
we know that M is diffeomorphic to R™.

Case II. For each point x € M there exists some 2-plane m C T, M
such that K(m) = 0. In this case, we get S = ":f{lz Moreover, it follows
from Lemma 1 and a result due to Ozgur (see [31], Theorem 4.1) that
M is conformally flat. This together with a theorem due to Carron [13]
implies that M is diffeomorphic to R™ or locally isometric to S"~1(r) xR.

This completes the proof of Theorem 16. q.e.d.

Proof of Theorem 4. Combining Theorems 15 and 16 for n > 4, we
complete the proof. q.e.d.

Corollary 3. Let M™ be an n(> 4)-dimensional oriented complete
submanifold in an N -dimensional simply connected space form FN(c)
with ¢ > 0. Denote by Ricl*l(-) the s-th weak Ricci curvature of M.
Assume that
5] < s(n+1)(n —2)c N sn(n — 2)

. 2
Ric,;, > H

n n—1

for some integer s € [1,n — 1], where ¢ + H? > 0. We have

(¢) If ¢ = 0, then M is either diffeomorphic to S™, R™, or locally iso-
metric to S"(r) x R.

(ii) If M is compact, then M is diffeomorphic to S™.

Proof. For R > %Ricfl}in, the assertion follows from Theorem 4. q.e.d.
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