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SMALL-TIME HEAT KERNEL ASYMPTOTICS
AT THE SUB-RIEMANNIAN CUT LOCUS
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Abstract

For a sub-Riemannian manifold provided with a smooth vol-
ume, we relate the small-time asymptotics of the heat kernel at
a point y of the cut locus from x with roughly “how much” y is
conjugate to x. This is done under the hypothesis that all min-
imizers connecting x to y are strongly normal, i.e. all pieces of
the trajectory are not abnormal. Our result is a refinement of the
one of Leandre 4t log pt(x, y) → −d2(x, y) for t → 0, in which
only the leading exponential term is detected. Our results are ob-
tained by extending an idea of Molchanov from the Riemannian
to the sub-Riemannian case, and some details we get appear to
be new even in the Riemannian context. These results permit
us to obtain properties of the sub-Riemannian distance starting
from those of the heat kernel and vice versa. For the Grushin
plane endowed with the Euclidean volume, we get the expansion
pt(x, y) ∼ t−5/4 exp(−d2(x, y)/4t) where y is reached from a -
Riemannian point x by a minimizing geodesic which is conjugate
at y.

1. Introduction

The heat kernel on sub-Riemannian manifolds has been an object of
attention starting from the late 70s [14, 16, 17, 19, 21, 26, 32, 38,
41, 54, 55], as have the geodesics and cut and conjugate loci of such
manifolds [6, 7, 2, 11, 3, 25, 29, 43, 52]. In this paper, we provide a
general approach to relate the sub-Riemannian distance to the small-
time asymptotics of the heat kernel at the cut locus, at least in the case
when there are no abnormal minimizers to the relevant point in the cut
locus.

The problem of relating the sub-Riemannian distance to the heat
kernel is an old problem (see for instance [9, 14, 19, 22, 23, 24, 31,
37, 39, 40, 45, 51, 53]). In the following we recall some of the most
relevant results. Let M be an n-dimensional smooth manifold provided
with a complete sub-Riemannian structure, inducing a distance d, and
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also provided with a smooth volume µ. Let pt(x, y) be the heat ker-
nel of the sub-Riemannian heat equation ∂tϕ = ∆ϕ, where ∆ is the
sub-Riemannian Laplacian defined as the divergence of the horizontal
gradient. In particular, ∆ could be the sum of the squares of a choice
of vector fields defining the sub-Riemannian distance (possibly with a
first-order term belonging to the distribution).

• On the diagonal. For some constant C > 0 (depending on the
sub-Riemannian structure and x), we have

pt(x, x) =
C +O(

√
t)

tQ/2
.(1)

This result is due to Ben Arous and Leandre [20]. Here Q is the
Hausdorff dimension of the sub-Riemannian manifold at x (see
also [14]).

• Off diagonal and off cut locus. Fix x 6= y. If y is not in the cut
locus of x and there are no abnormals from x to y, then for some
constant C > 0 (depending on the sub-Riemannian structure, x,
and y), one has

pt(x, y) =
C +O(t)

tn/2
e−d2(x,y)/4t.

This result is due to Ben Arous [19]. See also Taylor [55].
• In any point of the space including the cut locus.

lim
t→0

4t log pt(x, y) = −d2(x, y).(2)

This result is due to Leandre [39, 40] (see also Taylor [55]). It is
very general but is rougher than the one of Ben Arous. Roughly
speaking, it says that both on and off the cut locus, the leading

term for t→ 0 has the form e−d2(x,y)/4t.

These results hold in particular in the Riemannian case. In that case
we have Q = n and formula (2) is the celebrated Varadhan formula
obtained in [56].

In this paper we give a finer result with respect to the one of Leandre.
We show that if y belongs to the cut locus of x and all minimizers con-
necting x and y are strongly normal (a minimizer is said to be strongly
normal if every piece of it is not abnormal) then the rate of decay of
pt(x, y) depends, roughly, on “how conjugate” x and y are, along the
minimal geodesics connecting them. Intuitively, the more conjugate they
are, the slower the decay. These results include Riemannian manifolds
as a special case, for which they are completely general, since there
are no abnormal minimizers in Riemannian geometry. Some details of
the explicit relationship between the heat kernel asymptotics and the
conjugacy of the minimal geodesics appears to be new even in the Rie-
mannian context. Our results are also completely general for certain
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classes of sub-Riemannian geometries for which it is known there are no
abnormals, such as contact manifolds and CR-manifolds. For a discus-
sion of the presence of strictly abnormal minimizers in sub-Riemannian
geometry, one can see [28].

Our main result is Theorem 27 in Section 5, which relates the heat
kernel asymptotics of pt(x, y) with what we call the hinged energy func-
tion

hx,y(z) =
1

2
(d2(x, z) + d2(z, y)),(3)

on the set of midpoints of all minimizing geodesics connecting x to y. To
avoid overly complicated notation, we state here the following corollary,
which explains what happens in the case when the first terms of the
Taylor expansion of hx,y have a simple expression.

Corollary 1. Let M be an n-dimensional complete sub-Riemannian
manifold provided with a smooth volume µ, and let pt be the heat ker-
nel of the sub-Riemannian heat equation. Given distinct x, y ∈ M , let
hx,y(z) be the hinged energy function. Assume that there is only one
optimal geodesic joining x to y and that it is strongly normal, and let
z0 be the midpoint of the geodesic.

Then hx,y(z) is smooth in a neighborhood of z0 and attains its min-
imum at z0. Moreover, if there exists a coordinate system (z1, . . . , zn)
around z0 such that we have the expansion

(4) hx,y(z) =
1

4
d2(x, y)+ z2m1

1 + · · ·+ z2mn
n + o(|z1|2m1 + · · ·+ |zn|2mn),

for some integers 1 ≤ m1 ≤ m2 ≤ · · · ≤ mn, then for some constant
C > 0 (depending on the sub-Riemannian structure, x, and y), one has

(5) pt(x, y) =
C + o(1)

t
n−

∑
i

1
2mi

exp

(
−d

2(x, y)

4t

)
.

Remark 2. In the case in which there is more than one optimal
geodesic joining x to y, our technique can be applied in the following
way.

If the number of minimal geodesics connecting x to y is finite and one
has an expansion of the type (4) around each midpoint of them, then
one gets a finite number of contributions of the kind (5) and should take
the leading term (for t→ 0).

Suppose that, as a consequence of some symmetry of the sub-Rieman-
nian structure, there exists a one (or more) parameter family of optimal
geodesics joining x to y and coordinates such that hx,y does not depend
on certain variables. Then if hx,y has an expansion of the type (4) in the
remaining variables, the resulting expansion is, informally, equivalent
to (5) where some mi = +∞. Details (and further generalizations) are
given in Section 4.1. The prototypical example is the Heisenberg group,
the details of which are in Section 6.2.
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From an analysis of the relation between the expansion of hx,y and
the conjugacy of x and y, we get

Corollary 3. Let M be an n-dimensional complete sub-Riemannian
manifold provided with a smooth volume µ, and let pt be the heat kernel
of the sub-Riemannian heat equation. Let x and y be distinct and assume
that every optimal geodesic joining x to y is strongly normal.

Then there exist positive constants Ci, and t0 (depending on M , x,
and y) such that

(i)
C1

tn/2
e−d2(x,y)/4t ≤ pt(x, y) ≤

C2

tn−(1/2)
e−d2(x,y)/4t, for 0 < t < t0.

(ii) If x and y are conjugate along at least one minimal geodesic con-
necting them, then

pt(x, y) ≥
C3

t(n/2)+(1/4)
e−d2(x,y)/4t, for 0 < t < t0.

(iii) If x and y are not conjugate along any minimal geodesic joining
them, then

pt(x, y) =
C4 +O(t)

tn/2
e−d2(x,y)/4t, for 0 < t < t0.

Note that (iii) shows that the result of Ben Arous (1) holds not only
off the cut locus, but also on the cut locus if x and y are not conjugate.

In the corollaries above, the concept of sub-Riemannian manifold is
quite general. It includes Riemannian manifolds and even sub-Rieman-
nian manifolds which are rank-varying (see Sections 2 and Appendix
A for the precise definition). The estimates (i) and (iii) were already
known in Riemannian geometry (see [34] and [44] respectively), while
(ii) appears to be new even in the Riemannian context.

The sub-Riemannian heat equation is intended with respect to the
sub-Riemannian Laplacian which is defined as the divergence of the sub-
Riemannian gradient. Here the divergence is computed with respect to
a smooth volume. In the equiregular case (see Definition 6), the most
natural volume is Popp’s volume, introduced by Montgomery in his book
[45]. The hypothesis that the sub-Laplacian is computed with respect
to a smooth volume is also essential. For rank-varying sub-Riemannian
structures or for sub-Riemannian structures which are not equiregular,
one could be tempted to define a sub-Laplacian containing diverging
terms with the Popp volume (which is also diverging). This approach is
possible. However, it provides completely different results with respect
to those presented in this paper. See for instance [23] for this approach
in the case of the Grushin and Martinet structures.

In addition to these general bounds on the decay of pt(x, y), our ap-
proach provides a technique for computing the heat kernel asymptotics
in concrete situations, subject, of course, to one’s ability to determine
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explicit information about the minimal geodesics from x to y and the
behavior of hx,y near their midpoints (which is related to the conjugacy
of the minimal geodesics).

Conversely, these results allow us to realize the old idea of getting
properties of the sub-Riemannian distance from those of the heat kernel
(see for instance [9, 45]).

The hypothesis that all optimal geodesics connecting x to y are
strongly normal is essential. In the case in which x is reached by y
along an abnormal minimizer, it is not clear how to measure how much
y is conjugate to x, since abnormal extremals are not included in the ex-
ponential mapping and are in a sense isolated. The analysis of the heat
kernel asymptotics in the presence of abnormal minimizers is an ex-
tremely difficult problem (also because of the lack of information about
properties of the sub-Riemannian distance) and its study goes beyond
the purpose of this paper.

Remark 4. Notice that in our approach we start from the sub-
Riemannian structure (M,D, g), then we define an intrinsic volume, and
finally we build the Laplace operator naturally associated with these
data. This operator is by construction symmetric, negative, and has the

form ∆ =
∑k

i=1X
2
i + X0 where {Xi}ki=1 define an orthonormal frame

satisfying the Hörmander condition and X0 ∈ span{Xi}ki=1.
In the literature one more often finds the reverse procedure [36, 51]

(see also [17] and references therein). One starts from a second-order
differential operator with smooth coefficients L which is symmetric and
negative with respect to a volume µ, and then looks for a distance as a
function of which one can give estimates of the fundamental solution of
∂t−L. This distance is constructed by introducing the so-called sub-unit

curves for the operator; see for instance ([17, 22]). When L is of the

form L =
∑k

i=1X
2
i +X0 where {Xi}ki=1 are linearly independent vector

fields satisfying the Hörmander condition, the symmetry with respect
to µ implies that X0 ∈ span{Xi}ki=1. Moreover, the distance one gets
is the sub-Riemannian distance for which {Xi}ki=1 is an orthonormal
frame.

Also, let us mention that a wide literature is available about operators

of the type L =
∑k

i=1X
2
i + X0 where {Xi}ki=1 satisfy the Hörmander

condition, but X0 /∈ span{Xi}ki=1.

1.1. Structure of the paper. The structure of the paper is as follows.
In Section 2 we introduce the concept of sub-Riemannian manifold. To
avoid heavy notation, we have decided to restrict ourselves to the case
in which the dimension of the distribution does not depend on the point.
The rank-varying case is postponed to Appendix A. All the results of
the paper hold also in this case.
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In Section 3 we state and prove a result expressing the heat kernel
asymptotic as a Laplace integral over a neighborhood of the set of mid-
points of minimal geodesics (see Theorem 22). In Section 4 we discuss
the asymptotics of Laplace type integrals, and we discuss the relation
between the degeneracy of the hinged energy function hx,y around the
midpoints of the minimal geodesics connecting x and y and the conju-
gacy of the minimal geodesics connecting them (see Theorem 24). Then
in Section 5, we get our main general result, namely the estimates on
the heat kernel pt(x, y) as a consequence of the previous analysis (see
Theorem 27).

In Section 6 we apply our general results to some relevant cases. We
briefly illustrate our results on the Heisenberg group for which both the
optimal synthesis (i.e. the set of all optimal trajectories) from a given
point and the heat kernel are known.

The second example is the nilpotent free (3, 6) case. In this case we
get an asymptotic expansion on the vertical subspace (see Section 6.3),
where all points are conjugate along minimal geodesics, which agrees
with the fact that there exists a one-parameter family of optimal geo-
desic reaching these points.

Finally, in Section 7 we study the heat kernel in the Grushin plane,
with respect to the standard Lebesgue measure. The Grushin struc-
ture is the rank-varying sub-Riemannian structure on the plane (x, y)
such that X = ∂x and Y = x∂y define an orthonormal frame. The
corresponding sub-Laplacian is ∆ = X2 + Y 2. Starting from the Rie-
mannian point q0 = (−1,−π/4) we get, for the asymptotic at the point
q1 = (1, π/4), which is reached from q0 by a minimizing geodesic which

is conjugate at q1, the expression pt(q0, q1) ∼ t−5/4 exp(−d2(q0, q1)2/4t),
computing explicitly the degeneration of the hinged energy function. To
our knowledge this is the first time in which an expansion of the type
t−α exp(−d2(q0, q1)/4t), with α 6= N/2 for an integer N , is observed in
the Riemannian or sub-Riemannian context.
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2. Sub-Riemannian geometry

We start by recalling the definition of sub-Riemannian manifold in
the case of a distribution of constant rank k smaller than the dimen-
sion of the space. For the more general definition of rank-varying sub-
Riemannian structure (including as a particular case Riemannian struc-
tures,) see Appendix A.

Definition 5. A sub-Riemannian manifold is a triple (M,D, g), where
(i) M is a connected orientable smooth manifold of dimension n ≥ 3;
(ii) D is a smooth distribution of constant rank k < n satisfying the

Hörmander condition, i.e. a smooth map that associates to q ∈M
a k-dimensional subspace Dq of TqM such that

span{[X1, [. . . [Xj−1,Xj ]]]q | Xi ∈ D, j ∈ N} = TqM, ∀ q ∈M,(6)

where D denotes the set of horizontal smooth vector fields on M ,
i.e.

D = {X ∈ Vec(M) | X(q) ∈ Dq ∀ q ∈M} .
(iii) gq is a Riemannian metric on Dq which is smooth as a function of

q. We denote the norm of a vector v ∈ Dq by |v|g =
√

gq(v, v).

A Lipschitz continuous curve γ : [0, T ] → M is said to be horizontal
(or admissible) if

γ̇(t) ∈ Dγ(t) for a.e. t ∈ [0, T ].

Given a horizontal curve γ : [0, T ] →M , the length of γ is

ℓ(γ) =

∫ T

0
|γ̇(t)|g dt.(7)

Notice that ℓ(γ) is invariant under time reparametrization of the curve
γ. The distance induced by the sub-Riemannian structure on M is the
function

d(q0, q1) = inf{ℓ(γ) | γ(0) = q0, γ(T ) = q1, γ horizontal}.(8)

The hypothesis of connectedness of M and the Hörmander condition
guarantees the finiteness and the continuity of d(·, ·) with respect to the
topology of M (Chow-Rashevsky theorem; see for instance [12]). The
function d(·, ·) is called the Carnot-Caratheodory distance and gives to
M the structure of a metric space (see [12]).

Locally, the pair (D, g) can be given by assigning a set of k smooth
vector fields spanning D and that are orthonormal for g, i.e.

Dq = span{X1(q), . . . ,Xk(q)}, gq(Xi(q),Xj(q)) = δij .(9)

In this case, the set {X1, . . . ,Xk} is called a local orthonormal frame
for the sub-Riemannian structure.



380 D. BARILARI, U. BOSCAIN & R.W. NEEL

The sub-Riemannian metric can also be expressed locally in “control
form” as follows. We consider the control system,

q̇ =
m∑

i=1

uiXi(q) , ui ∈ R ,(10)

and the problem of finding the shortest curve that joins two fixed points
q0, q1 ∈M is naturally formulated as the optimal control problem

∫ T

0

√√√√
m∑

i=1

u2i (t) dt→ min, q(0) = q0, q(T ) = q1 6= q0.(11)

Definition 6. Define D1 := D,Di+1 := Di + [Di,D], for every i ≥ 1.
A sub-Riemannian manifold is said to be equiregular if for each i ≥ 1, the
dimension of Di

q does not depend on the point q ∈M . For an equiregu-
lar sub-Riemannian manifold, the Hörmander condition guarantees that
there exists (a minimal) m ∈ N, called the step of the structure, such
that Dm

q = TqM , for all q ∈M . The sequence

G := (dimD
q

k

,dimD2, . . . ,dimDm

q
n

),

is called the growth vector of the sub-Riemannian manifold. The growth
vector permits us to compute the Hausdorff dimension of (M,d) as a
metric space (see [42])

Q =

m∑

i=1

iki, ki := dimDi − dimDi−1.(12)

In particular, the Hausdorff dimension is always bigger than the topo-
logical dimension of M .

Definition 7. A sub-Riemannian manifold is said to be nilpotent if
M is a nilpotent Lie group and the sub-Riemannian structure is left-
invariant with respect to the group operation.

2.1. Minimizers and geodesics. In this section we briefly recall some
facts about sub-Riemannian geodesics. In particular, we define the sub-
Riemannian exponential map.

Definition 8. A geodesic for a sub-Riemannian manifold (M,D, g)
is an admissible curve γ : [0, T ] → M such that |γ̇(t)|g is constant and,
for every sufficiently small interval [t1, t2] ⊂ [0, T ], the restriction γ|[t1,t2]
is a minimizer of ℓ(·). A geodesic for which |γ̇(t)|g = 1 is said to be
parametrized by arclength.

A sub-Riemannian manifold is said to be complete if (M,d) is com-
plete as a metric space. If the sub-Riemannian metric is the restriction
to D of a complete Riemannian metric, then it is complete.
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Under the assumption that the manifold is complete, a version of the
Hopf-Rinow theorem (see [27, Chapter 2]) implies that the manifold is
geodesically complete (i.e. all geodesics are defined for every t ≥ 0) and
that for every two points there exists a minimizing geodesic connecting
them.

Trajectories minimizing the distance between two points are solutions
of first-order necessary conditions for optimality, which in the case of
sub-Riemannian geometry are given by a weak version of the Pontryagin
Maximum Principle ([49]).

Theorem 9. Let q(·) : t ∈ [0, T ] 7→ q(t) ∈ M be a solution of the
minimization problem (10), (11) such that |q̇(t)|g is constant, and let
u(·) be the corresponding control. Then there exists a Lipschitz map
p(·) : t ∈ [0, T ] 7→ p(t) ∈ T ∗

q(t)M \ {0} such that one and only one of the

following conditions holds:

(i) q̇ =
∂H

∂p
, ṗ = −∂H

∂q
, ui(t) = 〈p(t),Xi(q(t))〉,

where H(q, p) = 1
2

∑k
i=1〈p,Xi(q)〉2.

(ii) q̇ =
∂H
∂p

, ṗ = −∂H
∂q

, 0 = 〈p(t),Xi(q(t))〉,

where H(t, q, p) =
∑k

i=1 ui(t)〈p,Xi(q)〉.

For an elementary proof of Theorem 9, see [7].

Remark 10. If (q(·), p(·)) is a solution of (i) (resp. (ii)), then it is
called a normal extremal (resp. abnormal extremal). It is well known
that if (q(·), p(·)) is a normal extremal, then q(·) is a geodesic (see
[7, 12]). This does not hold in general for abnormal extremals. An ad-
missible trajectory q(·) can be at the same time normal and abnormal
(corresponding to different covectors). If an admissible trajectory q(·) is
normal but not abnormal, we say that it is strictly normal.

Abnormal extremals are very difficult to treat and many questions
are still open. For instance it is not known if abnormal minimizers are
smooth (see [45]).

Definition 11. A minimizer γ : [0, T ] → M is said to be strongly
normal if for every [t1, t2] ⊂ [0, T ], γ|[t1,t2] is not an abnormal minimizer.

In the following we denote by (q(t), p(t)) = et
~H(q0, p0) the solution of

(i) with initial condition (q(0), p(0)) = (q0, p0). Moreover, we denote by
π : T ∗M →M the canonical projection.

Normal extremals (starting from q0) parametrized by arclength cor-
respond to initial covectors p0 ∈ Λq0 := {p0 ∈ T ∗

q0M |H(q0, p0) = 1/2}.
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Definition 12. Let (M,D, g) be a complete sub-Riemannian mani-
fold and q0 ∈M . We define the exponential map starting from q0 as

Eq0 : Λq0 × R
+ →M, Eq0(p0, t) = π(et

~H(q0, p0)).(13)

Next, we recall the definition of cut and conjugate time.

Definition 13. Let q0 ∈M and γ(t) be an arclength geodesic start-
ing from q0. The cut time for γ is tcut(γ) = sup{t > 0, γ|[0,t] is optimal}.
The cut locus from q0 is the set Cut(q0) = {γ(tcut(γ)), γ arclength geo-
desic from q0}.

Definition 14. Let q0 ∈M and γ(t) be a normal arclength geodesic
starting from q0 with initial covector p0. Assume that γ is not abnormal.
The first conjugate time of γ is tcon(γ) = min{t > 0, (p0, t) is a critical
point of Eq0}. The (first) conjugate locus from q0 is the set Con(q0) =
{γ(tcon(γ)), γ arclength geodesic from q0}.

It is well known that, for a geodesic γ that is not abnormal, the cut
time t∗ = tcut(γ) is either equal to the conjugate time or there exists
another geodesic γ̃ such that γ(t∗) = γ̃(t∗) (see for instance [3]).

Remark 15. In sub-Riemannian geometry, the exponential map start-
ing from q0 is never a local diffeomorphism in a neighborhood of the
point q0 itself. As a consequence, the sub-Riemannian balls are never
smooth, and both the cut and the conjugate loci from q0 are adjacent
to the point q0 itself (see [1]).

2.2. The sub-Laplacian. In this section we define the sub-Riemannian
Laplacian on a sub-Riemannian manifold (M,D, g), provided with a
smooth volume µ.

The sub-Laplacian is the natural generalization of the Laplace-Beltra-
mi operator defined on a Riemannian manifold, defined as the divergence
of the gradient.

The sub-Riemannian gradient can be defined with no difficulty. On a
sub-Riemannian manifold (M,D, g), the gradient is the unique operator
∇ : C∞(M) → D defined by

gq(∇ϕ(q), v) = dϕq(v), ∀ϕ ∈ C∞(M), q ∈M, v ∈ Dq.

By definition, the gradient is a horizontal vector field. If X1, . . . ,Xk is
a local orthonormal frame, it is easy to see that it is written as follows:

∇ϕ =
∑k

i=1Xi(ϕ)Xi, where Xi(ϕ) denotes the Lie derivative of ϕ in
the direction of Xi.

The divergence of a vector field X with respect to a volume µ is
the function divX defined by the identity LXµ = (divX)µ, where LX

stands for the Lie derivative with respect to X.
The sub-Laplacian associated with the sub-Riemannian structure, i.e.

∆ϕ = div(∇ϕ), is written in a local orthonormal frame X1, . . . ,Xk as
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follows:

∆ =

k∑

i=1

X2
i + (divXi)Xi.(14)

Notice that ∆ is always expressed as the sum of squares of the element
of the orthonormal frame plus a first-order term that belongs to the
distribution and depends on the choice of the volume µ.

The existence of a smooth heat kernel for the operator (14), in the
case of a complete sub-Riemannian manifold, is stated in [54].

2.2.1. Popp’s volume and the intrinsic sub-Laplacian. In this
section we recall how to construct an intrinsic Laplacian (i.e. that de-
pends only on the sub-Riemannian structure) in the case of an equireg-
ular sub-Riemannian manifold.

On a Riemannian manifold, the Euclidean structure defined on the
tangent space defines in a standard way a canonical volume: the Rie-
mannian volume.

In the case of an equiregular sub-Riemannian manifold (M,D, g),
even if there is no global scalar product defined in TqM , it is possible
to define an intrinsic volume, namely the Popp volume [45]. This is
a smooth volume on M that is defined from the properties of the Lie
algebra generated by the family of the horizontal vector fields. In the
Riemannian case this coincides with the Riemannian volume.

On an equiregular manifold of dimension 3, the Popp volume is eas-
ily defined as ν1 ∧ ν2 ∧ ν3, where ν1, ν2, ν3 is the dual basis to X1,X2

and [X1,X2], where {X1,X2} is any local orthonormal frame for the
structure. This definition happens to be independent on the choice of
X1,X2. For the general definition, see e.g. [9, 8].

Notice that the Popp volume is not the unique intrinsic volume that
one can build from the geometric structure of (M,D, g). Since a sub-
Riemannian manifold is a metric space (with the Carnot-Caratheodory
distance), one can define the Q-dimensional Hausdorff measure on M ,
where Q is defined in (12). In contrast with the Riemannian case, start-
ing from dimension 5, the Q-dimensional Hausdorff measure does not
coincide in general with Popp’s (see [8, 15] for details about these re-
sults).

The intrinsic sub-Laplacian is defined as the sub-Laplacian where the
divergence is computed with respect to the Popp volume.

Remark 16. In the case of a left-invariant structure on a Lie group
(and in particular for a nilpotent structure), the Popp volume is left-
invariant, and hence proportional to the left Haar measure.
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For unimodular Lie groups, and in particular for nilpotent groups, one
gets for the intrinsic sub-Laplacian the “sum of squares” form (see [9])

∆ =

k∑

i=1

X2
i .

Remark 17. To define the Popp volume, the equiregularity assump-
tion is crucial. In the non-equiregular case or in the rank-varying case,
the Popp volume diverges approaching the non-regular points, as do the
coefficients of the intrinsic sub-Laplacian [9, 23].

3. General expression as a Laplace integral

From now on, by a sub-Riemannian manifold we mean a structure in
the sense of Section 2 or Appendix A, which include as a particular case
Riemannian structures.

In the following, we denote by Σ ⊂M×M the set of pairs (x, y) with
x 6= y such that there exists a unique minimizing geodesic from x to y
and such that this geodesic is strictly normal and not conjugate. Notice
that Σ is an open set in M ×M (see [4, 50] and [7, Chapter: Regularity
of SR distance]).

Recall that the heat kernel is the fundamental solution of the heat
equation ∂tϕ = ∆ϕ, where ∆ is the sub-Riemannian Laplacian defined
with respect to some smooth volume µ on a sub-Riemannian manifold
M . We begin by recalling the asymptotic expansion of the heat kernel
away from the cut locus, due to Ben Arous [19] (see Theorem 3.1, and
adjust for the fact that our heat kernel is for “∆” rather than “∆/2”).

Theorem 18. Let M be an n-dimensional complete sub-Riemannian
manifold in the sense of Section 2 or Appendix A, with a smooth volume
µ and associated heat kernel pt, and let (x, y) ∈ Σ. Then for every
non-negative integer m, we have the following asymptotic expansion as
tց 0:

pt(x, y) =
1

tn/2
exp

(
−d

2(x, y)

4t

)


m∑

j=0

cj(x, y)t
j +O(tm+1)


 .

Here the ci are smooth functions on Σ with c0(x, y) > 0. Further, if
K ⊂ Σ is a compact set, then the expansion is uniform over K.

We will also need some preliminary control of the heat kernel at the
cut locus, which is provided by a well-known result of Leandre [41]. In
particular, Theorem 1 of [39] and Theorem 2.3 of [40] give (again taking
into account our normalization of the heat kernel)

Theorem 19. Let M be a complete sub-Riemannian manifold with a
smooth volume µ and associated heat kernel pt. For any compact subset
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K of M ×M , the following holds uniformly for (x, y) ∈ K:

lim
tց0

4t log pt(x, y) = −d2(x, y).

Remark 20. Theorem 18 and 19 were originally stated in Rn for sub-
Riemannian metrics whose orthonormal frame consists of vector fields
which are bounded with bounded derivatives. However, it is not hard
to see that these results hold in the more general context of complete
sub-Riemannian structures (where closed balls are compact).

Notation. In what follows we use sometimes the abbreviation E(x, y)
= d2(x, y)/2 for the energy function. For any two distinct points x and
y, we let Γ be the set of midpoints of minimal geodesics from x to y.
Further, we let N(Γ) be a neighborhood of Γ, which we will feel free
to make small enough to satisfy various assumptions. Finally, we let
hx,y(z) = E(x, z) + E(z, y) be the hinged energy function. It’s clear
from the definition that hx,y(z) is continuous.

Lemma 21. The function hx,y attains its minimum exactly on Γ and
minhx,y = d2(x, y)/4.

Proof. Let us consider a geodesic joining x and y and denote its mid-
point by z0. We want to prove that hx,y(z0) ≤ hx,y(z) for every z and
that we have equality if and only if z is a midpoint of a geodesic joining
x and y.

Let a = d(x, z0) = d(z0, y), b = d(x, z), and c = d(y, z). By the
triangle inequality, we have 2a ≤ b + c. Moreover, we can assume that
both b and c are less than or equal to 2a, since otherwise the statement
is trivial. Let ε ≥ 0 be such that 2a+ ε = b+ c, and compute

hx,y(z) =
1

2
(b2 + c2) =

1

2
((2a + ε− c)2 + c2)

≥ a2 + (a− c)2 +
ε2

2
+ ε(2a − c) ≥ a2 = hx,y(z0).

Moreover, we have equality in the two inequalities if and only if ε = 0
and a = c, which is precisely the case where z is the midpoint of a
geodesic joining x and y. Finally hx,y(z0) = d2(x, y)/4. q.e.d.

We will need some basic assumptions about, and properties of, N(Γ).
First, basic properties of the distance function on M imply that Γ is
compact. Next, all of our work will take place under the condition that
we are “away from” any abnormal geodesics. In particular, assume that
x and y are distinct and that every minimizer from x to y is a strongly
normal geodesic. While we certainly allow y to be in the cut locus of
x (which is a symmetric arrangement), the midpoint of every minimal
geodesic from x to y will be a positive distance from the cut loci of both
x and y.
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More precisely, let λ ∈ T ∗
xM be a covector such that Ex(tλ) for t ∈

[0, d(x, y)] parametrizes a minimal geodesic from x to y. (Here we adopt

the convention that Ex(λ) = π ◦ e ~H(x, λ).) Call this geodesic γ, and let
z0 be its midpoint. Since the cut time along γ is at least d(x, y) and
since the cut time is continuous as a function on T ∗

xM near λ, it follows
that Ex is a diffeomorphism from a neighborhood U of (d(x, y)/2)λ to a
neighborhood U ′ of z0 = Ex ((d(x, y)/2)λ). Further, assuming U small
enough, there is a unique minimal geodesic from x to each point Ex(ξ)
in U ′ given by Ex(sξ) for s ∈ [0, 1], and this geodesic is not conjugate.
In the case when ξ = (d(x, y)/2)λ, we have the “first half” of γ, from
x to z0. Because γ is strongly normal, this piece of γ is strictly normal.
Because the property of being strictly normal is an open condition on
geodesics (see [4, 50] and [7, Chapter: Regularity of SR distance]), after
possibly shrinking U and U ′ we have that all of the minimal geodesics
from x to points in U ′ are also strictly normal.

One consequence is that by choosing U (and thus U ′) small enough,
the distance function from x is smooth on U ′ (which we recall is some
neighborhood of z0, the midpoint of a minimal geodesic γ from x to
y). Another is that (after possibly further shrinking U and U ′) the Ben
Arous expansion holds for pt(x, z) uniformly for z ∈ U ′.

Note that the discussion in the previous paragraph also holds if we
reverse the roles of x and y. Then, since Γ is compact, we see that for a
sufficiently small neighborhood N(Γ) the distance functions from both
x and y are smooth on N(Γ) and the Ben Arous expansion holds for
both pt(x, z) and pt(y, z) uniformly for z ∈ N(Γ). It follows that hx,y
is also smooth on N(Γ). These are the key consequences of assuming
that every minimizer from x to y is a strongly normal geodesic. We will
also occasionally take advantage of the structure of the exponential map
based at either x or y in a neighborhood of any point z ∈ N(Γ). From
now on, we will assume that, for such x and y, N(Γ) is chosen in this
way.

We now describe the main idea for determining the expansion on the
cut locus. The intuition benefits from recalling that the heat kernel is
also the transition density of Brownian motion onM . By the semi-group
property (or the Markov property, from a stochastic point of view), a
particle that travels from a point x to a point y 6= x in time t first goes to
some “halfway” point at time t/2, and then continues the rest of the way
to y. For small t, a particle traveling from x to y is most likely to do so via
a path which is approximately a geodesic (traversed at uniform speed).
This is the usual intuition from large deviation theory. Thus, at time
t/2, such a particle is likely to be near the midpoint of some minimal
geodesic from x to y. The key insight, originally due to Molchanov
[44] in the Riemannian case, is that, even in the case y ∈ Cut(x), we
can choose N(Γ) as just discussed so that the expansion of Ben Arous
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can be applied to both the first and second halves of the particle’s
journey from x to y (at least with high probability). The expansion
at the cut locus is thus obtained by “gluing together” two copies of
the Ben Arous expansion along the midpoints of the minimal geodesics
from x to y. Making this argument precise, using only geometric analysis
(we use stochastic notions only to bolster our intuition in the present
paper), provides the proof of the next theorem. (The same “gluing idea”
was employed to compute asymptotics of logarithmic derivatives in the
Riemannian case in [47, 48].)

Theorem 22. Let M be an n-dimensional complete sub-Riemannian
manifold in the sense of Section 2 or Appendix A, and let x and y be
distinct points such that all minimal geodesics from x to y are strongly
normal. Then for N(Γ) and c0 as above there exists δ > 0 such that

pt(x, y) =

∫

N(Γ)

2n

tn
e−hx,y(z)/t (c0(x, z)c0(z, y) +O(t)) µ(dz)

+ o

(
exp

[−E(x, y)/2 − δ

t

])
.

Here the O(t) term in the integral is uniform over N(Γ).

Proof: By the semi-group property (or Chapman-Kolmogorov equa-
tion, for probabilists), we have

pt(x, y) =

∫

M
pt/2(x, z)pt/2(z, y)µ(dz).

We first divide M into two regions, N(Γ) and M \ N(Γ). As just dis-
cussed, both pt(x, ·) and pt(·, y) are uniformly approximated by the Ben
Arous expansion on N(Γ) (since we assume that ε > 0 is sufficiently
small). Using just the first term, we see that

pt(x, y) =

∫

N(Γ)

(
2

t

)n

e−hx,y(z)/t (c0(x, z)c0(z, y) +O(t)) µ(dz)

+

∫

M\N(Γ)
pt/2(x, z)pt/2(z, y)µ(dz),

where the O(t) terms are uniform over N(Γ) by the uniformity of the
Ben Arous expansion there.

Next, we estimate the integral over M \N(Γ). First, assume that M
is compact. By Theorem 19, we have that, on M ,

pt(u, v) = exp

[−d2(u, v)/2 + r(t, u, v)

2t

]
,

where r(t, u, v) goes to zero uniformly with t on all ofM . (In the remain-
der of the proof, we will use r to denote a function with this property,
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the exact definition of which may change from line to line.) We see that

pt/2(x, z)pt/2(z, y) = exp

[−hx,y(z) + r(t, z)

t

]
.

Further, the minimum of hx,y(z) on M \ N(Γ) is strictly greater than
hx,y(Γ) = E(x, y)/2. Because M \N(Γ) has finite volume (by compact-
ness), we see that there exists δ > 0 such that

(15)

∫

M\N(Γ)
pt/2(x, z)pt/2(z, y)µ(dz) = o

(
exp

[−E(x, y)/2 − δ

t

])
.

Next, consider the case when M is not compact. Then for large
enough R, we see that x, y, and N(Γ) are all inside of Bx(R) (the ball
of radius R centered around x). We split the integral over M \ N(Γ)
into an integral over BR(x) \ N(Γ) and an integral over M \ BR(x).
The previous argument can be applied to the integral over BR(x) \
N(Γ). Further, for large enough R, the integral over M \BR(x) is also
o (exp [(−E(x, y)/2 − δ)/t]). Thus Equation (15) holds in the case when
M is non-compact as well. Combining these estimates completes the
proof. �

This theorem, in principle, gives the small-time asymptotics of the
heat kernel in great generality. To get more concrete information, one
needs to be able to determine the small-time asymptotics of the integral
over N(Γ). Fortunately, this is a well-studied type of integral, called a
Laplace integral, as we shall discuss shortly.

Finally, we have stopped with the first term of the Ben Arous ex-
pansion only for convenience. As much of that expansion can be kept
as desired, in which case the c0(x, z)c0(z, y) + O(t) in the integrand
is replaced by a more general product of Taylor series. However, it is
unclear how much additional information this really provides. It seems
that relatively little is known about the functions c0, and higher-order
coefficients in the Ben Arous expansion are even less well-understood.
Further, including such terms means that we would also want to de-
termine higher-order terms in the asymptotic behavior of the Laplace
integral over N(Γ), which doesn’t seem practical in general. For these
reasons, we content ourselves with the leading term.

4. Understanding the Laplace integral

We wish to determine the asymptotics of the integral that appears
in Theorem 22. To this end, we first review this type of integral, from
which we see that the behavior of hx,y near Γ is the key factor. Then we
discuss the geometric meaning of the behavior of hx,y in terms of the
conjugacy of minimal geodesics from x to y.

4.1. A brief discussion of Laplace asymptotics. We now discuss
techniques for determining the small t asymptotics of integrals of the
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type

(16)

∫

D
f(x)e−g(x)/t dx.

Here D is a compact set of Rn having the origin in its interior, f is
smooth in a neighborhood of D, and g is a function which is smooth
in a neighborhood of D, is zero at the origin, and is strictly positive
on D minus the origin. (We also assume the integral is with respect to
Lebesgue measure; to treat any other measure with a smooth density
we can simply incorporate the density into f .) Our assumption that g
has zero as its minimum is no loss of generality; for any a ∈ R we have
that ∫

D
f(x)e−(g+a)/t dx = e−a/t

∫

D
f(x)e−g(x)/t dx.

We start with the one-dimensional case. Further, we assume that g
can be written as x2m for some integer m ≥ 1. Again, if this can be
accomplished by first performing a smooth change of coordinates (and
possibly shrinking D), we can just absorb the Jacobian into f . While it
is not always possible to find such a change of coordinates, this is the
most important case. Then (see, for example, [30])
∫

D
f(x)e−x2m/t dx = f(0)

Γ (1/(2m))

m
t1/(2m) +O

(
t3/(2m)

)
, as tց 0

(here “Γ” is the usual Gamma function, not the set of midpoints of
minimal geodesics). We note that higher terms in this expansion are
known, but in the present context we continue to focus only on the
leading term.

The higher dimensional situation is more complicated. If we assume
that g can be written as

g(x) =
n∑

i=1

x2mi
i ,

for some integers 1 ≤ m1 ≤ m2 ≤ · · · ≤ mn, then the expansion es-
sentially decomposes as a product of one-dimensional integrals. This
immediately gives

∫

D
f(x)e−g(x)/t dx =

t
1

2m1
+···+ 1

2mi

[
f(0)

n∏

i=1

Γ (1/2mi)

mi
+O

(
t1/mn

)]
.

(17)

In particular, if the Hessian of g is non-degenerate at the origin, the
Morse lemma guarantees that we can always find coordinates near the
origin in which g is a sum of squares, and thus the above expansion
holds in these coordinates with mi = 1 for all i. However, if the Hessian
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is degenerate, it will not necessarily be true that g can be put into the
form of Equation (17) by a smooth change of coordinates.

Nonetheless, we recall that the “splitting lemma” for smooth func-
tions (which can be found in [33]) allows us to split off non-degenerate
directions and thus partially diagonalize g. In that spirit, the following
result guarantees that, around an isolated degenerate critical point of
corank 1, there always exists a coordinate set in which g is diagonal. It is
a generalization of the classical Morse lemma for nondegenerate critical
points and is a particular case of the splitting lemma just mentioned.

Lemma 23. Let g be a smooth function on a neighborhood of the ori-
gin in Rn, such that the origin is a local minimum of g and the only crit-
ical point of g. Assume that g(0) = dg(0) = 0 and that dimker d2g(0) =
1. Then there exists a diffeomorphism ϕ from a neighborhood of the ori-
gin to a neighborhood of the origin and a smooth function ψ : R → R

such that

g(ϕ(u)) =
n−1∑

i=1

u2i + ψ(un), where ψ(un) = O(u4n).

More generally, suppose that g is equal to its Taylor series near the
origin. Even this doesn’t cover all possible cases (in particular, if g
is smooth but not real-analytic), but it seems to be the most general
case for which there is a satisfactory theory. In the case where g is
equal to its Taylor series near the origin, Arnold and his collaborators
(see [13] and the references therein) have given a powerful analysis of
the resulting asymptotics. Briefly, if g is real-analytic with a unique
minimum of zero at the origin, then the leading term in the expansion
(assuming f(0) 6= 0) is of the form cf(0)tα| log t|m where c is a positive
constant, α is a positive rational, andm is an integer between 0 and n−1
inclusive. Estimates on α and m can be given in terms of combinatorial
information derived from which monomials in the Taylor series of g
have non-zero coefficients (more precisely, one looks at various features
of the Newton diagram of g). Moreover, generically (in a sense which
can be made precise) α and m are determined by this combinatorial
information.

The above assumes that g has an isolated minimum at the origin.
Suppose, instead, that g assumes its minimum along some smooth sub-
manifold. In this case, one can choose coordinates for the minimum set
and then extend them to coordinates near the minimum set by adding
coordinates for the normal bundle. Then at each point of the minimum
set, one can try to apply the above analysis to the corresponding fiber
of the normal bundle, and then attempt to integrate the result over
the minimum set. The simplest such case is when g is a Morse-Bott
function, in which case the asymptotics on each fiber will be just those
corresponding to a non-degenerate Hessian of the appropriate dimension
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(this is what we see, for example, for the Heisenberg group in Section
6.2), although in general the situation can be more complicated.

In the case when this is not possible (for example, if the minimum
set has a more complicated structure than a submanifold), a somewhat
more general statement can be made. If g is real-analytic, one can use
a resolution of singularities to reduce the situation to that of a sum of
integrals of the form given in Equation (16), where in each term of the
sum g is a monomial in the new coordinates and f is a smooth function
times the absolute value of a monomial. (Essentially, the resolution of
singularities amounts to a type of generalized change of coordinates un-
der which g has this more restricted form.) The small-time asymptotics
in such a case are again given by a rational power of t times an integer
power of | log t|. In contrast to the above case of an isolated minimum,
here there does not seem to be a way of understanding the powers of t
and | log t| without determining the resolution of singularities and com-
puting the asymptotics of each of the resulting integrals.

The interested reader is referred to the references above for complete
details, or to Sections 3.5 and 3.6 of [47], which contain a more detailed
summary of these results (though this seems too much of a digression
to repeat here).

4.2. Conjugacy and the behavior of hx,y. We now discuss how the
behavior of hx,y near its minima relates to the structure of the minimal
geodesics from x to y, specifically, to the conjugacy of these geodesics.
Suppose we have distinct points x and y such that every minimizer from
x to y is strongly normal. We begin by introducing notation.

Consider any point z0 ∈ Γ, which corresponds to some minimal geo-
desic γ from x to y. Then there is a unique covector λ ∈ T ∗

xM such that
Ex(2λ) = y and that Ex(2λ, t) for t ∈ [0, 1] parametrizes γ. (Recall that

Ex(λ) = π ◦ e ~H(x, λ).)
Let λ(s) be a smooth curve of covectors λ : (−ε, ε) → T ∗

xM (for
some small ε > 0) such that λ(0) = λ and the derivative never van-
ishes. Thus λ(s) is a one-parameter family of perturbations of λ which
realizes the first-order perturbation λ′(0) ∈ Tλ (T

∗
xM). Also, we let

z(s) = Ex(λ(s)), so that z(0) = z0. Because Ex is a diffeomorphism
from a neighborhood of λ to a neighborhood of z0, we see that the de-
rivative of z(s) also never vanishes. Thus z(s) is a curve which realizes
the vector z′(0) ∈ Tz0M . Further, we’ve established an isomorphism of
the vector spaces Tλ (T

∗
xM) and Tz0M by mapping λ′(0) to z′(0), ex-

cept that we’ve excluded the origin by insisting that both vectors are
non-zero.

We say that γ is conjugate in the direction λ′(0) (or with respect
to the perturbation λ′(0)) if d

dsE(2λ(s))|s=0 = 0. Note that this only
depends on λ′(0). We say that the Hessian of hx,y at z0 is degenerate in
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the direction z′(0) if d2

ds2
hx,y(z(s))|s=0 = 0. This last equality is equiv-

alent to writing the Hessian of hx,y as a matrix in some smooth local
coordinates, applying it as a quadratic form to z′(0) expressed in these
coordinates, and getting zero. This equivalence, as well as the fact that
whether the result is zero or not depends only on z′(0), follows from the
fact that z0 is a critical point of hx,y.

The point of the next theorem is that conjugacy in the direction λ′(0)
is equivalent to degeneracy in the direction z′(0). Thus the Hessian of
hx,y encodes information about the conjugacy of γ, and it is a more
geometric object than it might seem at first.

Theorem 24. Let M be a complete sub-Riemannian manifold in the
sense of Section 2 or Appendix A, and let x and y be distinct points
such that every minimal geodesic from x to y is strongly normal. Define
Γ, z0 ∈ Γ, hx,y and the curves λ(s), z(s) as above. Then

(i) γ is conjugate if and only if the Hessian of hx,y at z0 is degenerate.
(ii) In particular, γ is conjugate in the direction λ′(0) if and only if the

Hessian of hx,y at z0 is degenerate in the corresponding direction
z′(0).

(iii) The dimension of the space of perturbations for which γ is conju-
gate is equal to the dimension of the kernel of the Hessian of hx,y
at z0.

Proof. We know that there is a unique shortest geodesic from y to
z(s) for all s ∈ (−ε, ε), assuming ε small enough. Let η(s) be the cor-
responding smooth curve of covectors in T ∗

yM (that is, Ey(tη(s)) for

t ∈ [0, 1] parametrizes the minimal geodesic from y to z(s)). Let λ̃(s)
and η̃(s) be the images of λ and η, respectively, under the corresponding

Hamiltonian flow on the cotangent bundle. We see that λ̃(0)+ η̃(0) = 0.

Observe that d(E(x, ·))|z(s) = λ̃(s) and d(E(y, ·))|z(s) = η̃(s). (Here d
stands for the differential.) It follows that

dhx,y|z(s) = λ̃(s) + η̃(s)
(
∈ T ∗

z(s)M
)
.

Next note that γ is conjugate in the direction λ′(0) if and only if λ̃(s)+
η̃(s) = O(s2), as follows directly from consideration of the exponential
map. Thus γ is conjugate in the direction λ′(0) if and only if dhx,y|z(s) =
O(s2).

We claim that dhx,y|z(s) is O(s2) if and only if hx,y(z(s)) is O(s3).
Equivalently, the derivative of dhx,y (as a one-form) in the z′(0) direction
is zero if and only if its pairing with z′(0) is zero. This relationship is
most easily expressed in local coordinates. Let H be the n × n matrix
for the Hessian of hx,y at z0 in some local coordinates, and let v be
z′(0) expressed in these coordinates. Then the derivative of dhx,y in the
z′(0) direction is Hv, which we think of as an operator on vectors u by
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〈Hv, u〉 where 〈·, ·〉 is the standard Euclidean inner product for these
coordinates, or equivalently by uTHv, where u and v are written as
column-vectors.

The claim now follows from the following simple fact from linear
algebra: for any symmetric and positive semi-definite n× n real matrix
A, we have that, for any x ∈ R

n, 〈Ax, x〉 = 0 if and only if Ax = 0 ∈
R
n, where 〈·, ·〉 is the standard Euclidean inner product. Because A is

symmetric, we can find an orthonormal basis vi, i = 1, . . . , n for Rn

consisting of eigenvectors of A with corresponding eigenvalues λi ≥ 0.
Then, writing x =

∑n
i=1 xivi, the above fact follows from the identities

Ax =
∑n

i=1 λixi and 〈Ax, x〉 =∑n
i=1 λix

2
i .

Since the Hessian of hx,y at z0 is symmetric and positive semi-definite,
the claim follows. Thus we have proven statement (ii) in the theorem
(and (i) a fortiori), namely that γ is conjugate in the direction λ′(0) if
and only if the Hessian of hx,y at z0 is degenerate in the direction z′(0).

Statement (iii) is an immediate consequence of (ii) plus the fact that
the correspondence between λ′(0) and z′(0) gives an isomorphism of
vector spaces between Tλ (T

∗
xM) and Tz0M , as discussed just before the

theorem. q.e.d.

We now briefly discuss the situation of higher-order derivatives of the
exponential map and higher-order derivatives if hx,y. This situation is
more complicated than what we just saw for lower-order derivatives.

Recall that Ex(2λ) = y. Further, consider

dm

dsm
Ex(2λ(s))|s=0.

For m = 1, this is zero if and only if y is conjugate to x along the
geodesic through z0 in the direction of λ′(0). If this first derivative is
zero, then the number of higher-order derivatives which vanish describes,
in a sense, how conjugate y is to x with respect to the perturbation
2λ(s). (Of course, it’s possible for all derivatives to vanish; for example,
if 2λ(s) describes a one-parameter family of minimal geodesics from x
to y, as occurs for the Heisenberg group.) We can compare the vanishing

of these derivatives to the vanishing of the derivatives dk

dsk
hx,y(z(s)).

Suppose that, for some positive integer m, we have that Ex(2λ(s)) =
wsm +O(sm+1) for some non-zero w ∈ R

n in some (smooth) system of
coordinates around y (so that y is at the origin of these coordinates).
If this holds in one such system, it holds in any other such system with
w re-expressed in the new coordinates. Because the exponential map
is a diffeomorphism from a neighborhood of each η̃(s) ∈ T ∗

z(s)M to a

neighborhood of y, we see that this expansion for Ex(2λ(s)) is equivalent
to having

λ̃(s) + η̃(s) = dhx,y|z(s) = vsm +O(sm+1) ∈ T ∗
z(s)M
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for some non-zero one-form v written with respect to some (smooth)
system of coordinates around z0. Again, if this holds for one such system,
it holds for any other such system with v re-expressed relative to the
new coordinates.

Thus, the one-form dhx,y|z(s) vanishes to the same order as the deriva-
tives of Ex(2λ(s)). However, when we look at hx,y(z(s)), we see that

hx,y(z(s)) − hx,y(z0) =

∫ s

0
dhx,y|z(t)(z′(t)) dt

=

∫ s

0

(
v(z′(t))tm +O(tm+1)

)
dt =

1

m+ 1
v(z′(0))sm+1 +O(sm+2).

So we have that hx,y(z(s)) − hx,y(z0) = csm+1 + O(sm+2) for non-zero
c if and only if v(z′(0)) 6= 0. For m = 1, it is always the case that
v(z′(0)) 6= 0, as we saw in the previous theorem. However, for m >
1, this need not be true. In such a case we can only conclude that
hx,y(z(s))−hx,y(z0) = O(sm+2), and the exact order of vanishing of the
derivatives of hx,y is unclear in general.

Remark 25. In the special case when M is two-dimensional and z0
is an isolated minimum such that hx,y vanishes to finite order at z0, the
relationship is simpler. Namely, because the Hessian of hx,y is clearly
non-degenerate along the direction of γ, we can apply Lemma 23 to write
hx,y = u21 + g(u2) for some coordinates ui around z0 and some smooth
function g. Then if z(s) corresponds to the curve (u1, u2) = (0, s), we
see by direct computation that v(z′(0)) 6= 0. In this way, the degree
of degeneracy of the Hessian and the degree of conjugacy correspond
precisely in this case.

We also note that, at the opposite extreme, there is again a nice
correspondence between the behavior of the exponential map and of
hx,y. Namely, Ex(2λ(s)) = y for all s ∈ (−ε, ε) if and only if hx,y(z(s)) =
hx,y(z0) for all s ∈ (−ε, ε), as follows directly from Lemma 21.

All of this seems to indicate that, loosely speaking, the more con-
jugate the geodesic through z0 is, the more degenerate hx,y is at z0.
However, it also seems that looking at curves through z0 corresponding
to one-parameter perturbations of the geodesic is too naive in general,
and that a more sophisticated approach is needed to describe the ex-
act relationship between the higher-order derivatives of the exponential
map and higher-order terms in the Taylor series of hx,y. As we do not
need anything beyond the results of Theorem 24 in what follows (except
perhaps to give geometric intuition to hx,y), we do not pursue this direc-
tion any further. (In light of the above, it seems that the claims about
higher-order derivatives in Lemma 3.1 of [47] are over-simplified. Fortu-
nately, in that paper, as in the present, only the content of Theorem 24
is used in subsequent arguments. The higher-order relationship serves
only to provide a more geometric meaning to the behavior of hx,y.)
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5. General consequences of Laplace asymptotics

We are now in a position to see what the theory of Laplace asymp-
totics summarized in the previous section gives when applied to the
integral in Theorem 22. The ideas expand upon those of Section 5.3 of
[34], where inequality (20) of Theorem 27 is given in the Riemannian
case. We note that the results we give in this section, most interestingly
those which depend on whether or not x and y are conjugate along a
given geodesic, are also valid in the Riemannian case.

We begin with a basic lemma. For this lemma, we say that the ui are
“coordinates around z0” if they are coordinates on some neighborhood
of z0 such that ui(z0) = 0 for all i. Inequalities for such coordinates are
understood to hold on some such neighborhood.

Lemma 26. Under the assumptions of Theorem 24, let z0 be any
point of Γ. Then there exist smooth coordinates u1, . . . , un around z0
such that

hx,y(u1, . . . , un) ≥
1

4
d2(x, y) + u21.(18)

Also, there exist smooth coordinates v1, . . . , vn around z0 such that

hx,y(v1, . . . , vn) ≤
1

4
d2(x, y) + v21 + · · ·+ v2n.

Finally, if the geodesic from x to y passing through z0 is conjugate, then
the vi can be chosen so that

hx,y(v1, . . . , vn) ≤
1

4
d2(x, y) + v21 + · · ·+ v2n−1 + v4n.

Proof. For z in some neighborhood of z0, let u1(z) = u1 = d(x, z) −
(d(x, y)/2). If the neighborhood is small enough, this is a smooth func-
tion with non-vanishing derivative (since d(x, z) has these properties as
a function of z) and u1(z0) = 0. Thus it is a valid coordinate, and we
can complete this to a full set of coordinates around z0. Further, the
triangle inequality gives

d(y, z) ≥ d(x, y)− d(x, z) =
1

2
d(x, y) − u1.

Thus we compute

hx,y(z) =
1

2

[
d(x, z)2 + d(y, z)2

]

≥ 1

2

[(
u1 +

1

2
d(x, y)

)2

+

(
1

2
d(x, y) − u1

)2
]
= u21 +

1

4
d(x, y)2,

which gives the estimate (18).
For the second estimate, recall that hx,y is smooth and assumes its

minimum at z0, and thus the derivative of hx,y vanishes at z0. It follows
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that for any system of coordinates wi around z0, there is a small enough
neighborhood of z0 and positive constant C such that

hx,y(v1, . . . , vn) ≤
1

2
E(x, y) + C

(
w2
1 + · · · + w2

n

)

on this neighborhood. Thus, we can simply rescale the wi to get coor-
dinates vi as required.

The proof of the final inequality is based on Lemma 23.
Because the geodesic through z0 is conjugate, the Hessian of hx,y at z0

cannot have full rank, as we see from Theorem 24. First assume that the
rank is exactly n− 1. Then Lemma 23 shows that there are coordinates
vi around z0 such that

hx,y(v1, . . . , vn) =
1

2
E(x, y) + v21 + · · · + v2n−1 +O(v4n).

Then, after possibly rescaling vn, we see that the desired inequality
holds.

Next assume the Hessian of hx,y has rank less than n−1. Then let ϕ be
a smooth function on a neighborhood of z0 which is non-negative, zero
at z0 (hence with vanishing derivative at z0), and such that hx,y + ϕ
has Hessian of rank n − 1 at z0 (ϕ looks like a sum of squares of an
appropriate number of coordinates, for example). Applying the previous
result to hx,y + ϕ shows that there are coordinates vi around z0 such
that

(hx,y + ϕ) (v1, . . . , vn) ≤
1

2
E(x, y) + v21 + · · ·+ v2n−1 + v4n.

Since ϕ is non-negative, the desired estimate for hx,y follows. q.e.d.

These estimates allow us to say more about the integral appearing in
Theorem 22.

Theorem 27. With the same assumptions and notation as Theorem
22, we have that for any sufficiently small neighborhood N(Γ),

(19) pt(x, y) =

∫

N(Γ)

(
2

t

)n

e−hx,y(z)/t (c0(x, z)c0(z, y) +O(t)) µ(dz).

Again, the “O(t)” term in the integral is uniform over N(Γ). Also, there
exist positive constants Ci, and t0 (depending on M , x, and y) such that

(20)
C1

tn/2
e−d2(x,y)/4t ≤ pt(x, y) ≤

C2

tn−(1/2)
e−d2(x,y)/4t

for 0 < t < t0. Further, if x and y are conjugate along any minimal
geodesic connecting them, then (perhaps after changing t0), we have

pt(x, y) ≥
C3

t(n/2)+(1/4)
e−d2(x,y)/4t(21)
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for 0 < t < t0. Finally, if x and y are not conjugate along any minimal
geodesic joining them, then

pt(x, y) =
C4 +O(t)

tn/2
e−d2(x,y)/4t.(22)

Remark 28. Notice that Corollary 1 in the Introduction is a direct
consequence of formulas (19) and (17). Corollary 3 contains the esti-
mates (20), (21), and (22).

Proof. We begin with the general bounds on pt(x, y). Choose any
z0 ∈ Γ and let V ⊂ N(Γ) be some neighborhood on which there are
coordinates v = (v1, . . . , vn) as in the previous lemma (that is, hx,y
is estimated by the sum of squares of the vi). Since the integrand in
Theorem 22 is positive for sufficiently small t, we have that
∫

N(Γ)

(
2

t

)n

e−hx,y(z)/t (c0(x, z)c0(z, y) +O(t)) µ(dz)

≥
(
2

t

)n

e−E(x,y)/2t

∫

V
e−(v

2
1+···+v2n)/t (c0(x, v)c0(v, y) +O(t)) µ(dv)

for all sufficiently small, positive t.
Because µ is a smooth volume and v a smooth coordinate system,

we know that there is a smooth, positive function F such that µ(dv) =
F (v)dv1 · · · dvn. Then the results of the previous section, namely Equa-
tion (17), show that
∫

V
e−(v

2
1+···+v2n)/t (c0(x, v)c0(v, y) +O(t))F (v) dv1 · · · dvn

= tn/2
[
F (0) (c0(x, z0)c0(z0, y) +O(t)) πn/2 +O(t)

]

(where we’ve used that Γ(1/2) =
√
π). Note that there’s no difficulty

handling theO(t) in the integrand since we simply estimate it by |O(t)| ≤
Ct for some positive C and factor the t out of the integral. Putting this
together with the fact that F (0)c0(x, z0)c0(z0, y) is positive, we see that
there exist positive C1 and t0 such that
∫

N(Γ)

(
2

t

)n

e−hx,y(z)/t (c0(x, z)c0(z, y) +O(t)) µ(dz) ≥ C1

tn/2
e−E(x,y)/2t

for 0 < t < t0. Comparing this to Theorem 22, we note that the

o
(
exp

[
−E(x,y)/2−δ

t

])
term is dominated by the right-hand side of the

above inequality. Thus, after possibly adjusting C1 and t0, we see that
the relevant inequality in the theorem holds.

For the other side of the first inequality, note that we can find coor-
dinates ui as in the previous lemma around every point of Γ, and each
of these systems of coordinates is defined on some open neighborhood.
Because Γ is compact, there is a finite set of such neighborhoods which
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cover Γ; denote them by U1, . . . , Um and the corresponding systems of
coordinates by uj = (uj,1, . . . , uj,n) for j = 1, . . . ,m. Now choose N(Γ)
small enough so that N(Γ) ⊂ ∪m

j=1Uj. Then we have

∫

N(Γ)

(
2

t

)n

e−hx,y(z)/t (c0(x, z)c0(z, y) +O(t)) µ(dz)

≤
m∑

j=1

(
2

t

)n

e−E(x,y)/2t

∫

Uj

e−u2
j,1/t (c0(x, uj)c0(uj , y) +O(t)) µ(duj)

for all sufficiently small, positive t. As above, µ is a smooth volume, and
Equation (17) gives that, for each j, there is a positive constant Kj such
that

∫

Uj

e−u2
j,1/t (c0(x, uj)c0(uj , y) +O(t)) µ(duj) =

√
t (Kj +O(t)) .

Summing j from 1 to m allows us to conclude that there exists positive
C2 such that, after possibly making t0 smaller,
∫

N(Γ)

(
2

t

)n

e−hx,y(z)/t (c0(x, z)c0(z, y) +O(t)) µ(dz) ≤ C2

tn−(1/2)
e−E(x,y)/2t

for 0 < t < t0. Again, comparing this to Theorem 22, we see that the
other side of the first inequality in the theorem holds, after possibly
adjusting C2 and t0.

The two-sided inequality we’ve just proved now shows that the term

o
(
exp

[
−E(x,y)/2−δ

t

])
in Theorem 22 is unnecessary; it can be “included”

in the O(t) term in the integral (as we’ve already taken advantage of
above). This establishes the first claim in the theorem.

Now we consider the case when x and y are conjugate along some
minimal geodesic. Suppose that z0 is the midpoint of this geodesic. Then
we can find coordinates vi around z0, defined on some neighborhood
V ⊂ N(Γ), such that

hx,y(v1, . . . , vn) ≤
1

2
E(x, y) + v21 + · · ·+ v2n−1 + v4n.

Analogous to the previous lower bound, we have that

∫

N(Γ)

(
2

t

)n

e−hx,y(z)/t (c0(x, z)c0(z, y) +O(t)) µ(dz)

≥
(
2

t

)n

e−
E(x,y)

2t

∫

V
e−(v

2
1+···+v2n−1+v4n)/t (c0(x, v)c0(v, y) +O(t)) µ(dv),

for all sufficiently small, positive t. Equation (17) (along with smooth-
ness of µ and positivity of the c0) then shows that, for some positive
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constants C3 and t0 (possibly different from before),
∫

V
e−(v

2
1+···+v2n−1+v4n)/t (c0(x, v)c0(v, y) +O(t)) µ(dv)

≥ t(n/2)−(1/4)
(
C3 +O

(√
t
))

,

for 0 < t < t0. Combining these estimates and the first claim in the
theorem, we see that, after possibly adjusting C3 and t0,

pt(x, y) ≥
C3

t(n/2)+(1/4)
e−E(x,y)/2t,

for 0 < t < t0.
Finally, we suppose that x and y are not conjugate along any minimal

geodesic joining them. Then for any z0 ∈ Γ, Theorem 24 and the Morse
lemma imply that z0 is isolated. Since Γ is compact, we see that in fact Γ
consists of finitely many points, say z1, . . . , zm (so there are only finitely
many minimal geodesics from x to y). Further, we can find coordinates
uj,1, . . . , uj,n around each zj , on some neighborhood Uj , such that

hx,y(uj,1, . . . , uj,n) =
1

2
E(x, y) + u2j,1 + · · · + u2j,n on Uj,

and N(Γ) is the disjoint union of the Uj (for small enough Uj). Thus,
using the first claim in the theorem,

pt(x, y) =

(
2

t

)n

e−E(x,y)/2t
m∑

j=1

∫

Uj

e−(u2
j,1+···+u2

j,n)/t

× c0(x, uj)c0(uj , y) +O(t)µ(duj).

We have that µ(duj) = Fj(uj)duj,1 · · · duj,n for smooth, positive Fj . As
above, we compute
∫

Uj

e−(u
2
j,1+···+u2

j,n)/t (c0(x, uj)c0(uj , y) +O(t))Fj(uj) duj,1 · · · duj,n

= tn/2
[
Fj(0) (c0(x, zj)c0(zj , y) +O(t)) πn/2 +O(t)

]
.

Summing over j, we have

pt(x, y) =
C4 +O(t)

tn/2
e−E(x,y)/2t,

where C4 = (4π)n/2
∑m

j=1 Fj(0)c0(x, zj)c0(zj , y), which is clearly posi-
tive. q.e.d.

One consequence of this result is that the exponent of 1/t in the small-
time expansion of pt(x, y) “sees” whether or not x and y are conjugate
along any minimal geodesic. Said differently, the exponent of t detects
the part of the cut locus of x which comes from conjugacy (assuming
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that the necessary geodesics are strictly normal, of course). That natu-
rally leads to the question of what happens at cut points which are not
conjugate.

We first note that, if y is not in the cut locus of x, then the results of
this analysis fit nicely with the expansion of Ben Arous, which applies
in a neighborhood of y. In this case, there is a single minimal geodesic
from x to y and it is not conjugate. Let z1 be the midpoint. Then the
same analysis as in the last part of the previous proof (just with m = 1)
shows that

pt(x, y) = (F (z1)c0(x, z1)c0(z1, y) +O(t))
(4π)n/2

tn/2
e−E(x,y)/2t,

where F (z1) is the density of µ with respect to coordinates which make
the Hessian of hx,y at z1 the identity matrix. Since the Ben Arous ex-
pansion applies to pt(x, y), we also have

pt(x, y) = (c0(x, y) +O(t))
1

tn/2
e−E(x,y)/2t.

So in this case, Theorem 27 provides a relationship between c0(x, y) on
the one hand, and c0(x, z1), c0(z1, y), and second-order behavior of hx,y
at z1 (which is encoded by F (z1)) on the other.

Now suppose that y is in the cut locus of x, but that none of the min-
imal geodesics from x to y are conjugate (and the assumptions of The-
orem 27 hold, of course). Let γ1(s) be one such geodesic, parametrized
by arc-length so that γ1(0) = x and γ1(d(x, y)) = y. Then we claim that
limsրd(x,y) c0(x, γ1(s)) exists and is positive, and we denote it α1. This
follows from the relationship between c0(x, γ1(s)) and c0(x, γ1(s/2)),
c0(γ1(s/2), y), and F (γ1(s/2) just discussed, and the fact that these last
three quantities are continuous in s and remain positive. (Indeed, we’ve

already seen in the proof of Theorem 27 that α1 = (4π)n/2 F (z1)c0(x, z1)
× c0(z1, y) where z1 = γ1(d(x, y)/2).) Alternatively, one can think of
lifting a neighborhood of γ1([0, s]) to a “local” universal cover and then
applying the Ben Arous expansion.

Continuing, we let γ2, . . . , γm be the other minimal geodesics from x
to y, where we know that there can only be finitely many and that m
must be at least 2. We let α2, . . . , αm be the associated limits of c0(x, ·)
along these geodesics, analogous to α1. Then the final part of the proof
of Theorem 27 shows that

pt(x, y) =




m∑

j=1

αj +O(t)


 1

tn/2
e−E(x,y)/2t.

The point of relating the coefficient of t−n/2e−d2(x,y)/4t in the above
to the c0 along the γj is that we see that this coefficient is discontinuous
at y. That is, for any γj, we know that c0(x, γj(s)) is continuous in
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a neighborhood of γj(s) as long as 0 < s < d(x, y). However, when
s increases to d(x, y), the value of this coefficient “jumps up” to the
sum of the αj . Thus, points which are not in the cut locus of x and
points that are but are not conjugate to x along any minimal geodesics
both have small-time heat kernel expansions that look like a constant

times t−n/2e−d2(x,y)/4t. These two types of points can be distinguished
by whether or not the coefficient (the constant) is continuous at the
point in question. However, if one has that much information about
the small-time heat kernel asymptotics in a neighborhood of a point y,
then presumably one already understands d(x, ·) near y, from which one
should be able to understand the local structure of the cut locus. Thus
looking at this coefficient, from the perspective of locating the cut locus,
seems unlikely to be of much help.

This potentially stands in contrast to the case when y is conjugate to
x along a minimal geodesic, in which case only the power of t appearing
in the expansion at the point y needs to be determined (in order to
conclude that y is conjugate to x along a minimal geodesic).

6. Examples

In this section we discuss our results in some examples of 2-step sub-
Riemannian structures. In these cases, an integral expression of the heat
kernel (which can be explicitly written in some cases) has been found
in [18].

In the first example, namely the Heisenberg group, we briefly compute
the Hessian of the hinged energy function hx,y when x is the origin and
y is a point on the cut locus. In this case, given that both the optimal
synthesis and the heat kernel are known explicitly, we verify the results
of Theorem 27.

The second example is the free nilpotent sub-Riemannian structure
with growth vector (3,6). Here we use a “reverse” argument, starting
from the formula for the heat kernel to find the asymptotics for points
belonging to the vertical subspace, where all points are both cut and
conjugate. This asymptotic agrees with the fact that there exists a one-
parameter family of optimal geodesics that reach this point (for a de-
tailed discussion about the optimal synthesis, see [46]).

In this section the heat kernel is meant for the intrinsic sub-Laplacian,
i.e. it is computed with respect to the Popp volume. For the cases treated
in this section, this volume is proportional to the left Haar measure
and is proportional to the Lebesgue measure in the standard system of
coordinates we are using.

6.1. Formula for the heat kernel in the 2-step case. In this section
we recall the expression of the heat kernel of the intrinsic sub-Laplacian
associated with a 2-step nilpotent structure, which has been found in
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[18]. Then we rewrite it to have a convenient expression on the “vertical
subspace.”

Consider on R
n a 2-step nilpotent structure of rank k < n, where

X1, . . . ,Xk is an orthonormal frame. Once a smooth complement V for
the distribution is chosen (i.e. TqR

n = Dq ⊕ Vq, for all q ∈ Rn), we can
complete an orthonormal frame to a global one X1, . . . ,Xk, Y1, . . . , Ym,
where m = n − k and Vq = spanq{Y1, . . . , Ym}. Since the structure is
nilpotent, we can assume that the only nontrivial commutation relations
are

[Xi,Xj ] =

m∑

h=1

bhijYh,(23)

where B1, . . . , Bm defined by Bh = (bhij) are skew-symmetric matrices

(see [15] for the role of these matrices in the exponential map).
Due to the group structure, the intrinsic sub-Laplacian takes the form

of a sum of squares ∆ =
∑k

i=1X
2
i (see Remark 16). The group structure

also implies that the heat kernel is invariant with respect to the group
operation; hence it is enough to consider the heat kernel pt(0, q) starting
from the identity of the group, which we also denote pt(q). The heat
kernel is written as follows (see again [18, 22]):

pt(q) =
2

(4πt)Q/2

∫

Rm

V (B(τ)) exp

(
−W (B(τ))x · x

4t

)
cos
(z · τ

t

)
dτ,

where q = (x, z), x ∈ Rk, z ∈ Rm, and B(τ) :=
∑m

i=1 τiBi. Moreover,
V : Rn×n → C and W : Rn×n → R

n×n are the matrix functions defined
by

V (A) =

√
det

(
A

sinA

)
, W (A) =

A

tanA
.

Here Q is the Hausdorff dimension of the sub-Riemannian structure.
Notice that (24) differs by some constant factors from the formu-

las contained in [18], since there the heat kernel is the solution of the
equation ∂t =

1
2∆.

Remark 29. Assume that the real skew-symmetric matrix B(τ) is
diagonalizable and denote by ±iλj(τ), for j = 1, . . . ℓ, its non-zero eigen-
values. Then we have the formula for the expansion on the “vertical
subspace” (i.e. where x = 0)

pt((0, z)) =
2

(4πt)Q/2

∫

Rm

ℓ∏

j=1

λj(τ)

sinhλj(τ)
cos
(z · τ

t

)
dτ.(24)
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6.2. The Heisenberg group. The Heisenberg group is the simplest
example of sub-Riemannian manifold. It is defined by the orthonormal
frame D = span{X1,X2} on R

3 (with coordinates (x, y, z)) defined by

X1 = ∂x −
y

2
∂z, X2 = ∂y +

x

2
∂z.

Defining Z = ∂z, we have the commutation relations [X1,X2] = Z and
[X1, Z] = [X2, Z] = 0. Denote by E0 : Λ0 × R

+ → M the exponential
map starting from the origin, where

Λ0 = {p0 = (θ,w) ∈ T ∗
0M | θ ∈ S1, w ∈ R}.

For every p0 = (θ,w) ∈ Λ0 with |w| 6= 0, the arclength geodesic γ(t) =
E0(p0, t) = (x(t), y(t), z(t)) associated with the initial covector p0 is
described by the equations

x(t) =
1

w
(cos(wt+ θ)− cos θ),

y(t) =
1

w
(sin(wt+ θ)− sin θ),(25)

z(t) =
1

2w2
(wt− sinwt),

and is optimal up to its cut time tcut = 2π/w, with γ(tcut) = (0, 0, π/w2).
If w = 0, the geodesic is a straight line contained in the xy-plane and
tcut = +∞.

From these properties it follows that the cut locus starting from the
origin coincides with the z-axis, and for every point ζ = (0, 0, z) in this
set we have d2(0, ζ) = 4π|z|.

Remark 30. The expression of the heat kernel pt(q) for the Heisen-
berg group is well known and was first computed by Gaveau [32] and
Hulanicki [35]. The integral formula for pt can be directly recovered
from (24), since in this case there is a single skew-symmetric matrix B

B =

(
0 1
−1 0

)
, eig(B(τ)) = {± iτ}.

Hence it follows

pt(0, q) =
2

(4πt)2

∫ ∞

−∞

τ

sinh τ
exp

(
−x

2 + y2

4t

τ

tanh τ

)
cos
(zτ
t

)
dτ.

On the vertical axis the integral can be explicitly computed

pt(0, ζ) =
2

(4πt)2

∫ ∞

−∞

τ

sinh τ
cos
(zτ
t

)
dτ =

1

8t2
1

1 + cosh
(
πz
t

) .

Hence, using that d2(0, ζ) = 4πz, we have

pt(0, ζ) =
1

t2
exp

(
−πz
t

)
ψ(t) =

1

t2
exp

(
−d

2(0, ζ)

4t

)
ψ(t),(26)

where ψ(t) is a smooth function of t, nonvanishing at 0. (Here z is fixed.)
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In what follows, we recover the expansion (26) computing the expan-
sion of the hinged energy function and applying Corollary 1. For reasons
of symmetry, it is not restrictive to consider only points ζ̂ = (0, 0, ẑ) such
that ẑ > 0 (the on-diagonal expansion is a different situation).

The set of minimal geodesics joining 0 to ζ̂ = (0, 0, ẑ) is parametrized
by the covectors p0 = (θ, ŵ) where θ ∈ S1, ẑ = π/ŵ2. For each p0, the

associated geodesic γp0 satisfies γp0(0) = 0 and γp0(2π/ŵ) = ζ̂. Further,
we have that the set of midpoints Γ is characterized as follows:

Γ = E0
(
S1, ŵ,

π

ŵ

)
=

{(
x, y,

ẑ

2

)
: x2 + y2 = 2/ŵ

}
.

We introduce cylindrical coordinates (ρ, ϕ, z), where x = ρ cosϕ, y =
ρ sinϕ. We have that (t, θ, w) forms a smooth coordinate system on
N(Γ) (for N(Γ) small), where t represents the distance from the origin.
Because of the invariance with respect to rotation around the z axis, to
compute the Hessian of the hinged energy function h0,ζ̂ , we are left to

study the relationship between (ρ, z) and (t, w) near Γ. We have

ρ(t, w) =
2

w
sin

(
wt

2

)
, and z(t, w) =

1

2w2
(wt− sinwt) .

Recall that

h0,ζ̂(ρ, z) =
1

2

(
d2(0, (ρ, z)) + d2((ρ, z), ζ̂)

)
.

Using that t represents the distance from the origin and exchanging
the role of 0 and ζ̂, one can get with some implicit differentiation for
the matrix element of the Hessian of h0,ζ̂

∂2

∂z2
h0,ζ̂(ρ, z)

∣∣∣∣
Γ

= 2ŵ2,
∂2

∂ρ2
h0,ζ̂(ρ, z)

∣∣∣∣
Γ

=
π2

2
,

∂2

∂ρ∂z
h0,ζ̂(ρ, z)

∣∣∣∣
Γ

= 0.

It follows that there exists a smooth change of coordinates (ρ, z) 7→
(u, v) on a small disk perpendicular to Γ (with respect to the usual R3

metric) with the following three properties. First, Γ corresponds to the

set where u and v are both zero. Second, h0,ζ̂(u, v) =
π2

ŵ2 + u2 + v2 on

N(Γ). Third, du = π
2dρ on Γ and dv = ŵdz on Γ. Applying Theorem

27 and keeping track of all the constants, one gets

pt(0, ζ̂) =
1

t2
exp

(
−π

2/ŵ2

t

)(
48π (c0(0,Γ))

2

ŵ2
+O(t)

)
,

where c0(0,Γ) is the constant appearing in the Ben Arous expansion.
Taking into account that ẑ = π/ŵ2, the heat kernel decays like a con-
stant times t−2 exp(−4πẑ/4t), which agrees with what one obtains from
Equation (26).
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6.3. (3,6) case. The free nilpotent Lie group (3, 6) is the sub-Rieman-
nian structure on R6 (with coordinates (x1, x2, x3, z1, z2, z3)) defined by
the distribution D = span{X1,X2,X3}, where the vector fields

X1 = ∂x1 −
1

2
x2∂z3 +

1

2
x3∂z2 ,

X2 = ∂x2 +
1

2
x1∂z3 −

1

2
x3∂z1 ,

X3 = ∂x3 +
1

2
x2∂z1 −

1

2
x1∂z2 ,

define an orthonormal frame. If we set Zi = ∂zi for i = 1, 2, 3 we have
[X1,X2] = Z3, [X2,X3] = Z1, and [X3,X1] = Z2.

In this case the matrices Bk = (bkij) defined by the identities [Xi,Xj ] =

bkijYk are

B1 =



0 0 0
0 0 1
0 −1 0


 , B2 =




0 0 1
0 0 0
−1 0 0


 , B3 =




0 1 0
−1 0 0
0 0 0


 ,

and for their linear combination B(τ) =
∑3

j=1 τjBj we have eig(B(τ)) =

{0,± i|τ |} , where we denote by | · | the standard norm on R
3.

Using (24), the explicit expression on the “vertical” subspace, i.e. at
a point ζ = (0, 0, 0, z1, z2, z3), is written as follows:

pt(ζ) =
2

(4πt)9/2

∫

R3

|τ |
sinh |τ | cos

(τ · z
t

)
dτ,(27)

To compute the expansion of the heat kernel for t → 0, we use the
fact that (27) is the Fourier transform of the radial function f(τ) =
|τ |/ sinh |τ |.

Recall that, if F (x) = f(|x|) is a radial function defined on Rm, its

Fourier transform F̂ (ξ) is itself a radial function, i.e. it is defined by

F̂ (ξ) = g(|ξ|), where g is the function of one variable that satisfies

g(ρ) =
(2π)m/2

ρ
m−2

2

∫ ∞

0
Jm−2

2
(τρ)τm/2f(τ)dτ, ρ = |ξ|,

and J denotes the Bessel function. In our case m = 3, we have J1/2(s) =√
2
πs sin s and

g(ρ) = 4π

∫ ∞

0

sin ρτ

ρτ
f(τ)τ2dτ.

Then we can rewrite our heat kernel as the 1-dimensional integral

pt(ζ) =
8π

(4πt)9/2

∫ ∞

0

τ2 sin ρτ

ρ sinh τ
dτ, where ρ =

|z|
t
.
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Using that
∫ ∞

0

τ2 sin ρτ

ρ sinh τ
dτ =

2π3 sinh4
(πρ

2

)

ρ sinh3(πρ)
, ρ ∈ R,

we can explicitly write the expression of the heat kernel for ζ such that
|z| = 1:

pt(ζ) =
sinh4

(
π
2t

)

32
√
πt7/2sinh3

(
π
t

) .(28)

From (28) one can immediately show that for such ζ

lim
t→0

t7/2e
π
t pt(ζ) = C > 0.(29)

The following lemma is a direct consequence of Theorem 19:

Lemma 31. Assume that there exist α,K > 0, t0 > 0 and constants
C1, C2 > 0 such that

C1

tα
e−

K
4t ≤ pt(x, y) ≤

C2

tα
e−

K
4t , ∀ 0 ≤ t ≤ t0.(30)

Then K = d2(x, y).

Proof. Since log is a monotone function, we can apply 4t log to both
inequalities in (30), and letting t → 0+ (which is allowed since the
estimate is uniform for small t), we have limt→0+ 4t log pt(x, y) = −K,
and the statement follows from Theorem 19. q.e.d.

Proposition 32. Let ζ = (0, 0, 0, z1 , z2, z3) with |z| = 1. Then d2(0, ζ) =
4π and the following asymptotic expansion holds:

pt(ζ) =
1

t7/2
exp

(
−d

2(0, ζ)

4t

)
ϕ(t),

where ϕ(t) is a smooth function nonvanishing at t = 0. Moreover, ζ is
a conjugate point.

Proof. This follows directly from (29), Lemma 31, and Corollary 3.
q.e.d.

Remark 33. From this analysis of the heat kernel and the homo-
geneity of the distance, one gets the following information:

(i) d2(0, ζ) = 4π|z| for every ζ = (0, 0, 0, z1, z2, z3).
(ii) The point ζ is reached from the origin by an optimal geodesic that

at time t =
√

4π|z| is also conjugate.

These facts were proved in [46] with a detailed analysis of the expo-
nential map. (Notice that by symmetry it is not difficult to prove that
the point is conjugate to the origin along the geodesic. On the contrary,
the difficulty is in proving that the geodesic does not lose optimality
before the conjugate locus.) Our method via the analysis of the heat
kernel provides a shorter proof.
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7. Grushin plane

The Grushin plane is the generalized sub-Riemannian structure on
R2 for which an orthonormal frame of vector fields is given by

X = ∂x, Y = x∂y.(31)

Since Y vanishes on the y-axis, this is a rank-varying sub-Riemannian
structure and in particular is a 2-dimensional almost-Riemannian struc-
ture (see Appendix). One immediately verifies that the Lie bracket gen-
erating condition is satisfied since [X,Y ] = ∂y.

In this section we compute the expansion of the heat kernel in the
Grushin plane at a conjugate point, starting from a Riemannian point.

The interesting feature of this structure is that it provides an example
of almost Riemannian geometry in which the geodesic flow is completely
integrable by means of trigonometric functions and, at the same time,
the conjugate locus has the same structure as the conjugate locus of a
generic 2-dimensional Riemannian metric.

The sub-Riemannian Hamiltonian associated with the orthonormal
frame (31) (in standard coordinates λ = (px, py, x, y) in T ∗

R
2) is the

smooth function

H : T ∗
R
2 → R, H(px, py, x, y) =

1

2
(p2x + x2p2y).(32)

Since in this case there are no abnormal minimizers (see [10]), the arc-
length geodesic flow starting from the Riemannian point q0 = (−1,−π/4)
is computed as the solution of the Hamiltonian system associated with
H, with initial condition (x0, y0) = (−1,−π/4) and (px(0), py(0)) =
(cos θ, sin θ), where θ ∈ S1. The exponential map E : R+ × S1 → R2

starting from q0 is computed as follows (we omit the base point q0 in
the notation):

E(t, θ) = (x(t, θ), y(t, θ)),

x(t, θ) = −sin(θ − t sin θ)

sin θ
,(33)

y(t, θ) = −π
4
+

1

4 sin θ

(
2t− 2 cos θ +

sin(2θ − 2t sin θ)

sin θ

)
,

with the understanding E(t, 0) = limθ→0 E(t, θ) = (t− 1,−π/4).
Let us consider the point q1 = (1, π/4), the symmetric of q0 with

respect to the origin. The point q1 is both a cut and a conjugate point
from q0. Indeed, from the results of [10] immediately follows that the
cut locus from q0 is the set Cut(q0) = {(1, π/4 + s), s ≥ 0}. Moreover,

E(π, π/2) = q1,
d

dθ

∣∣∣∣
θ=π/2

E(π, θ) = (0, 0),(34)
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Figure 1. Geodesics starting from q0

shows that q1 is also conjugate to q0. Figure 1 shows some geodesics
starting from the point q0 and the endpoints of all geodesics starting
from q0 at time T = 4.8.

Remark 34. Notice that the geodesic with initial covector θ = π/2
is the only one that reaches q1 optimally in time T = π. The midpoint
of the geodesic is the origin E(π/2, π/2) = (0, 0). (See also Figure 2.)

We are interested in the small-time asymptotic expansion of pt(q0, q1),
where pt denotes the heat kernel of the sub-Riemannian heat equation

∂tϕ = ∆ϕ, ∆ = X2 + Y 2 = ∂2x + x2∂2y .

Here the sub-Laplacian is not the intrinsic one but is computed with
respect to the standard Lebesgue measure of R

2. Indeed in this case
the intrinsic volume µ = 1

|x|dxdy is diverging along the singular set

Z = {x = 0}; hence our results do not apply since µ is not smooth.
(See [23] for a discussion of the intrinsic heat equation in the Grushin
plane.)

An integral representation for the heat kernel for the operator ∂2x +
x2∂2y can be easily obtained by computing the Fourier transform with
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Figure 2. The conjugate geodesic

respect to the y variable and then using the Mehler kernel for the quan-
tum harmonic oscillator. Its expression, given q = (x, y), q′ = (x′, y′), is

pt(q, q
′) =

1

(2πt)3/2

∫ ∞

−∞
exp

(
xx′

t

τ

sinh(2τ)
−
(
x2 + x′2

)

2t

τ

tanh(2τ)

)
×

×
√

τ

sinh(2τ)
exp

(
i (y − y′) τ

t

)
dτ.

However, from this formula it seems hard to find an asymptotic expan-
sion for t small except on the diagonal at the origin.

Thanks to Corollary 1, to compute the asymptotic expansion of the
heat kernel pt(q0, q1) we are reduced to study the expansion of the hinged
energy function hq0,q1 near the origin (we omit the points in the notation
in what follows):

h(x, y) =
1

2

(
d2(q0, (x, y)) + d2(q1, (x, y))

)

=
1

2

(
d2(q0, (x, y)) + d2(q0, (−x,−y))

)
,

where the last identity follows from the symmetries of the structure and
implies that the expansion of h at the origin contains only even-order
terms in (x, y), and we are reduced to compute the even terms of the
expansion of the function (x, y) 7→ d2(q0, (x, y)).
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Remark 35. By (34) and the proof of Theorem 24, it follows that
the Hessian of the hinged energy function h is degenerate along the
direction (−1, 1) since

d

dθ

∣∣∣∣
θ=π/2

E(π/2, θ) = (−1, 1).

For this reason we consider the new coordinate system (x̄, ȳ) around 0
defined by x̄ = x+y

2 , ȳ = x−y
2 . The Hessian of h is diagonal in these

coordinates.

Using the fact that the geodesics defined by (33) are parametrized by
arclength, we can compute the derivatives of the distance with respect
to (x̄, ȳ) by computing derivatives of t from (33) with implicit differ-
entiation (as in Section 6.2). After some computations one finds the
following expansion for h (we omit the bar in x̄, ȳ for the new system of
coordinates)

h(x, y) = 4x2 +
α− 32

24
x4 − α

6
x3y +

α− 16

4
x2y2(35)

− α

6
xy3 +

α

24
y4 +O(‖(x, y)‖5),

where α = 3
2π

2.
Concerning our hinged energy function (35), one can also show that

the following explicit change of coordinates

ϕ(u, v) =

(
u+

32 − α

192
u3 +

α

48
v3 +

α

48
u2v +

16− α

32
uv2, v

)

diagonalizes h up to order 5. Namely,

h(ϕ(u, v)) = 4u2 +
α

24
v4 +O(‖(u, v)‖5).

A direct application of Corollary 1 (recall also Lemma 23), together
with d(q0, q1) = π, gives

Theorem 36. The heat kernel pt(q0, q1) satisfies the following as-
ymptotic expansion:

pt(q0, q1) =
1

t5/4
e−

π2

4t (C +O(t)).(36)

Remark 37. Notice that the same expansion as in (36) holds for the
symmetric point q2 = (1,−3π/4). If q /∈ {q1, q2},

pt(q0, q) ∼
1

t
e−

d2(q0,q)
4t (C +O(t)).

Remark 38. Corollary 3 can be applied to compute the heat kernel
asymptotics starting from the origin. In this case the cut locus is the y
axes and these points are not conjugate. On the diagonal, applying the
Leandre–Ben Arous result (1) with Q = 3 (or using the explicit formula
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for the heat kernel given above), one gets pt((0, 0), (0, 0)) ∼ C/t3/2 with
C > 0. Off diagonal, applying Corollary 3, one gets pt((0, 0), (x, y)) ∼
C(x, y)/t for some C(x, y) > 0.

The expansion of the heat kernel for the Grushin plane is summarized
in the following table:

pt(q, q
′) pt(q, q

′)
q Riemannian point q degenerate point

diagonal

(Leandre) ∼ C
t ∼ C

t3/2

(Ben Arous)
off diagonal

off cut locus ∼ C
t e

−d2(q,q′)/(4t) ∼ C
t e

−d2(q,q′)/(4t)

(Ben Arous)
off diagonal

cut (non-conjugate) ∼ C
t e

−d2(q,q′)/(4t) ∼ C
t e

−d2(q,q′)/(4t)

(Corollary 1)
off diagonal

cut conjugate ∼ C
t5/4

e−d2(q,q′)/(4t) —

(Corollary 2)

Appendix A. Extension to rank-varying sub-Riemannian
structures

In this section we give a more general definition of sub-Riemannian
manifold (that we call rank-varying sub-Riemannian manifold). This
definition includes also as a particular case Riemannian manifolds. For
a more complete presentation, one can see [7]. All the results of the
paper hold for this more general structure.

Let M be an n-dimensional smooth manifold. Given a vector bundle
U over M , the C∞(M)-module of smooth sections of U is denoted by
Γ(U). For the particular case U = TM , the set of smooth vector fields
on M is denoted by Vec(M).

Definition 39. An (n, k)-rank-varying distribution on an n-dimensio-
nal manifold M is a pair (U, f) where U is a vector bundle of rank k
over M and f : U → TM is a morphism of vector bundles, i.e. (i) the
diagram

U
f

//

πU
""D

D

D

D

D

D

D

D

TM

π
��

M

commutes, where π : TM →M and πU : U →M denote the canonical
projections and (ii) f is linear on fibers. Moreover, we require the map
σ 7→ f ◦ σ from Γ(U) to Vec(M) to be injective.
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Let (U, f) be an (n, k)-rank-varying distribution, ∆ = {f ◦ σ | σ ∈
Γ(U)} be its associated submodule, and denote by ∆q the linear sub-
space {V (q) | V ∈ ∆} = f(Uq) ⊆ TqM . Let Lie(∆) be the smallest Lie
subalgebra of Vec(M) containing ∆ and, for every q ∈M , let Lieq(∆) be
the linear subspace of TqM whose elements are the evaluation at q of el-
ements belonging to Lie(∆). We say that (U, f) satisfies the Hörmander
condition if Lieq(∆) = TqM for every q ∈M .

Definition 40. An (n, k)-rank-varying sub-Riemannian structure is
a triple (U, f, 〈·, ·〉) where (U, f) is a Lie bracket generating (n, k)-rank-
varying distribution on a manifold M and 〈·, ·〉q is a scalar product on
Uq smoothly depending on q.

Several classical structures can be seen as particular cases of rank-
varying sub-Riemannian structures, e.g., Riemannian structures (when
U = TM and f = id) and constant-rank sub-Riemannian structures (as
defined in Section 2). An (n, n)-rank-varying sub-Riemannian structure
is called an n-dimensional almost-Riemannian structure. An example of
2-almost Riemannian structure is provided by the Grushin plane; see
[10, 5].

If σ1, . . . , σk is an orthonormal frame for 〈·, ·〉 on an open subset Ω
of M , an orthonormal frame in Ω for the rank-varying sub-Riemannian
structure is given byX1, . . . ,Xk, whereXi := f◦σi. Orthonormal frames
are systems of local generators of ∆. For every q ∈M and every v ∈ ∆q,
define

Gq(v) = inf{〈u, u〉q | u ∈ Uq, f(u) = v}.
Notice that if X1, . . . ,Xk is an orthonormal frame for the rank-varying
sub-Riemannian structure in Ω, then it may happen that there exists a
q ∈ Ω such that dim span{X1(q), . . . ,Xk(q)} < k and that Gq(Xi(q)) <
1 for some i.

A Lipschitz continuous curve γ : [0, T ] → M is said to be horizontal
(or admissible) if there exists a measurable essentially bounded function

[0, T ] ∋ t 7→ u(t) ∈ Uγ(t),

called control function, such that γ̇(t) = f(u(t)) for almost every t ∈
[0, T ]. Given an admissible curve γ : [0, T ] →M , the length of γ is

ℓ(γ) =

∫ T

0

√
Gγ(t)(γ̇(t)) dt.

The Carnot-Caratheodory distance is defined as

d(q0, q1) = inf{ℓ(γ) | γ(0) = q0, γ(T ) = q1, γ admissible}.
As in the classical sub-Riemannian case, the hypothesis of connected-

ness of M and the Hörmander condition guarantees the finiteness and
the continuity of d(·, ·) with respect to the topology of M .
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For rank-varying sub-Riemannian structures, the definitions of mini-
mizers, geodesics, normal and abnormal extremals, and the formulation
of the Pontryagin Maximum Principle are the same as in the constant
rank case. Also the definition of cut and conjugate loci are the same.
Thanks to the injectivity assumption, the definition of the horizontal

gradient is still ∇ϕ =
∑k

i=1Xi(ϕ)Xi. The definition of the Popp’s
volume is instead more delicate, since the volume diverges while ap-
proaching a point in which there is a drop of rank of the distribution.
However, for a smooth volume µ, the sub-Laplacian still has the form

∆ =
∑k

i=1X
2
i + (divXi)Xi, and all the results of the paper hold in this

case.
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