ON THE TOPOLOGY OF POSITIVELY CURVED 4-MANIFOLDS WITH SYMMETRY

WU-YI HSIANG \& BRUCE KLEINER

1. Introduction

A positively curved manifold is, by definition, a complete Riemannian manifold M with everywhere positive sectional curvature. The work of Gromoll and Meyer [6] gives a thorough understanding of noncompact positively curved manifolds, so we consider only compact positively curved manifolds, henceforth denoted CPCM's. Synge's theorem [10] asserts that an even dimensional, orientable CPCM is simply connected. This theorem together with the topological classification of compact surfaces implies that a 2 -dimensional, orientable CPCM is homeomorphic to S^{2}. Three dimensional CPCM's have been determined by Hamilton [7]; they are diffeomorphic to space forms. However, very little is known about the topology of 4-dimensional CPCM's. The known examples are homeomorphic to $S^{4}, \mathbf{R} P^{4}$, and $\mathbf{C} P^{2}$, while the wellknown problem of Hopf remains unsolved:

Does $S^{2} \times S^{2}$ admit a positively curved Riemannian metric?
The three known examples of compact 4 -manifolds which admit positively curved metrics all admit homogeneous positively curved metrics, i.e. metrics with a lot of symmetry. Therefore it is natural to ask the following question: Which compact 4-manifolds admit positively curved Riemannian metrics with at least one infinitesimal isometry, in other words, a nontrivial Killing field? The main result of this paper answers this question.

Theorem 1. Let M be a 4-dimensional orientable CPCM. If M has a nontrivial Killing vector field, then M is homeomorphic to S^{4} or $\mathbf{C} P^{2}$.

Corollary 1. Let M be a 4-dimensional nonorientable CPCM. If M has a nontrivial Killing vector field, then M is two-fold covered by S^{4}.

Corollary 2. $S^{2} \times S^{2}$ does not admit a positively curved Riemannian metric with a nontrivial Killing field.

Technically speaking, the existence of a nontrivial Killing vector field on a compact Riemannian manifold M is equivalent to the existence of a nontrivial S^{1}-action on M. Let $F\left(S^{1}, M\right)$ be the fixed point set of such an S^{1}-action on
M. Then it is easy to prove that the Euler characteristic of $F\left(S^{1}, M\right)$ is equal to that of M, i.e. $\chi\left(F\left(S^{1}, M\right)\right)=\chi(M)$, and each connected component of $F\left(S^{1}, M\right)$ is automatically a totally geodesic submanifold. In the special case where M is a 4 -dimensional orientable CPCM, we will prove in Lemma 2 that

$$
F\left(S^{\mathbf{1}}, M\right)=\left\{\begin{array}{l}
\chi(M) \text { isolated points } \\
\text { or } S^{2} \cup(\chi(M)-2 \text { isolated points })
\end{array}\right.
$$

The major task in the proof of Theorem 1 is proving that $\chi\left(F\left(S^{1}, M\right)\right)$ can be at most 3 .

Actually, most of the techniques of this paper are equally applicable to the nonnegatively curved case. We believe that the following results are within reach:

Conjecture 1. A 4-dimensional CPCM with a nontrival Killing vector field should be diffeomorphic to $S^{4}, \mathbf{R} P^{4}$, or $\mathbf{C} P^{2}$.

Conjecture 2. A compact, simply connected, nonnegatively curved 4manifold with a nontrivial Killing vector field should be diffeomorphic to either $S^{4}, \mathrm{C} P^{2}, \mathrm{C} P^{2} \# \pm \mathbf{C} P^{2}$, or $S^{2} \times S^{2}$.

Of course, it is possible that these theorems would remain true without the assumption on infinitesimal symmetry, but then their proofs would require completely new ideas and techniques.

2. The orbital geometry of S^{1}-Riemannian manifolds

An S^{1}-Riemannian manifold is, by definition, a Riemannian manifold with a given isometric S^{1}-action. In this section we will establish some properties of the orbital geometry of a given S^{1}-Riemannian manifold (S^{1}, M), especially in the case that M is a 4 -dimensional orientable CPCM.

Lemma 1. Let $\left(S^{1}, M\right)$ be a compact S^{1}-Riemannian manifold and let F be its fixed point set. Then:
(i) The Euler characteristic of F is equal to the Euler characteristic of M.
(ii) Each connected component of F is a totally geodesic submanifold of even codimension.

Sketch of proof. (For more details, see [8, Theorems 5.3 and 5.6].) (i) Let \mathbf{Z}_{p} be the unique cyclic subgroup of S^{1} of prime order p and let $F\left(\mathbf{Z}_{p}, M\right)$ be the set of fixed points of \mathbf{Z}_{p} in M. It follows from the long exact sequence of the pair $\left(M, F\left(\mathbf{Z}_{p}, M\right)\right)$ and the additivity of the Euler characteristic that

$$
\begin{aligned}
\chi & =\chi\left(F\left(\mathbf{Z}_{p}, M\right)\right)+\chi\left(M, F\left(\mathbf{Z}_{p}, M\right)\right) \\
& \equiv \chi\left(F\left(\mathbf{Z}_{p}, M\right)\right) \quad(\bmod p)
\end{aligned}
$$

It is easy to see that $F\left(\mathbf{Z}_{p}, M\right)=F$ for all sufficiently large primes. Hence $\chi(F) \equiv \chi(M)(\bmod p)$ for all sufficiently large primes p, so $\chi(F)=\chi(M)$.
(ii) Let Y be a connected component of F and let $v \in T_{y} Y$ be an arbitrary tangent vector of Y at $y \in Y$. Then v is fixed under the induced S^{1}-action on $T M$. Hence from the existence of a unique geodesic with initial velocity v it follows that such a geodesic is pointwise fixed under the S^{1}-action, and hence belongs to Y. This proves that Y is a totally geodesic submanifold in M. Since all nontrivial irreducible orthogonal representations of S^{1} are two-dimensional, the codimension of Y is necessarily even. q.e.d.

From now on we will always assume, without further specification, that $\left(S^{1}, M^{4}, g\right)$ is a 4-dimensional, orientable CPCM with a given effective S^{1} action and metric tensor g.

Lemma 2. Let $\left(S^{1}, M, g\right)$ be as above and let F be its fixed point set. Then F is nonempty and

$$
F=\left\{\begin{array}{l}
\chi(M) \text { isolated points, } \\
\text { or } S^{2} \cup(\chi(M)-2 \text { isolated points }) .
\end{array}\right.
$$

Proof. Synge's theorem [10] asserts that such an even dimensional manifold is always simply connected. Therefore,

$$
\begin{gathered}
H_{1}(M)=0 \text { and by duality } H_{3}(M)=0 \\
\chi(M)=2+\operatorname{dim} H_{2}(M) \geq 2
\end{gathered}
$$

Hence by Lemma $1, \chi(F) \geq 2$ so F is nonempty. Moreover, Frankel's theorem [4] implies that F can have at most one 2-dimensional connected component.

Suppose F contains a 2-dimensional component Y. The normal bundle of Y is oriented by the S^{1}-action, so Y is orientable. Being totally geodesic as well, Y is positively curved and must therefore be homeomorphic to S^{2}. q.e.d.

Next let us consider the geometry of the orbit space $\bar{M}=M / S^{1}$. We will equip \bar{M} with the orbital distance metric: the distance between two elements of \bar{M} is the distance between the corresponding orbits in M. Let M_{0} be the union of all the principal S^{1}-orbits in M and let $\bar{M}_{0}=\pi\left(M_{0}\right)$ where $\pi: M \rightarrow$ \bar{M} is the canonical surjection. We give \bar{M}_{0} the unique smooth structure which makes $\pi: M_{0} \rightarrow \bar{M}_{0}$ a submersion, and the unique smooth Riemannian metric \bar{g} for which $\pi:\left(M_{0}, g\right) \rightarrow\left(\bar{M}_{0}, \bar{g}\right)$ is a Riemannian submersion.

Lemma 3. Suppose $F=S^{2} \cup\{$ isolated points $\}$. Let $\overline{S^{2}}=\pi\left(S^{2}\right) \subset \bar{M}$. Then the Riemannian structure $\left(\bar{M}_{0}, \bar{g}\right)$ extends to a Riemannian structure on $N=\bar{M}_{0} \cup \overline{S^{2}}$ with totally geodesic boundary $\overline{S^{2}}$. The distance function on N induced by this Riemannian structure coincides with the restriction of the orbital distance metric on \bar{M} to $N \subseteq \bar{M}$.

Proof. The local geometry of \bar{M} near a point $\pi(y) \in \overline{S^{2}}$ is determined by the geometry of the local representation at $y \in S^{2}$. This representation is equivalent to

$$
\phi: S^{1} \times \mathbf{C}^{2} \rightarrow \mathbf{C}^{2} ; \quad e^{i \theta}\left(z_{1}, z_{2}\right)=\left(z_{1}, e^{i \theta} z_{2}\right)
$$

where $z_{1}, z_{2} \in \mathbf{C}$, so the local structure of \bar{M} at $\pi(y)$ is of the type

$$
\mathbf{C}^{2} / S^{1} \approx \mathbf{C} \times\left(\mathbf{C} / S^{1}\right) \simeq \mathbf{R}^{2} \times \mathbf{R}_{+}=\text {a half space }
$$

i.e., $N=\bar{M}_{0} \cup \overline{S^{2}}$ has a boundary structure near \bar{S}^{2}.

Geodesics in $N=\bar{M}_{0} \cup \overline{S^{2}}$ are the projections of geodesics in M which are perpendicular to the S^{1} orbits, so it follows that \bar{S}_{2} is totally geodesic in \bar{M}.

The distance function induced on N by the Riemannian structure coincides with the orbital distance metric on the dense subset \bar{M}_{0}, so it coincides with the orbital distance metric on all of N. q.e.d.

Let $y \in M$ be an isolated fixed point. The slice representation at y is orthogonally equivalent to

$$
\phi_{k, l}: S^{1} \times \mathbf{C}^{2} \rightarrow \mathbf{C}^{2} ; \quad e^{i \theta}\left(z_{1}, z_{2}\right)=\left(e^{i k \theta} z_{1}, e^{i l \theta} z_{2}\right)
$$

where $z_{1}, z_{2} \in \mathbf{C}$ and $k, l \in \mathbf{Z}$ with g.d.c $(k, l)=1$. Let $S^{3}(1) \subseteq \mathbf{C}^{2}$ be the unit sphere and let $d: S^{3}(1) \times S^{3}(1) \rightarrow \mathbf{R}$ be given by $d(v, w)=\angle(v, w)=$ the angle between v and w. Let ($X_{k l}, d_{k l}$) be the orbit space of ($\left.\phi_{k, l}, S^{3}(1), d\right)$ with orbital distance metric $d_{k, l}$.

Lemma 4. If x_{1}, x_{2}, x_{3} are arbitrary points in $X_{k, l}$, then

$$
d_{k, l}\left(x_{1}, x_{2}\right)+d_{k, l}\left(x_{2}, x_{3}\right)+d_{k, l}\left(x_{3}, x_{1}\right) \leq \pi .
$$

Proof. The two great circles in $S^{3}(1)$ given by $z_{1}=0$ and $z_{2}=0$ are orbits of $\phi_{k, l}$ for all k, l with g.c.d. $(k, l)=1$. Let $\tilde{X}_{k, l}=K_{k, l} \backslash\{$ these two orbits $\}$. $\tilde{X}_{k, l}$ consists of principal orbits, so we give it the Riemannian submersion metric coming from the canonical Riemannian metric on $S^{3}(1)$. We will be using the fact that this Riemannian submersion metric induces the distance function $d_{k, l}$ on $\tilde{X}_{k, l}$.

In the special case where $k=l=1$, the projection $\pi: S^{3}(1) \rightarrow X_{1,1}$ is the Hopf fibration and it is easily checked that $X_{1,1}$ is isometric to a $\mathbf{C} P^{1}$ with diameter $\pi / 2$, i.e., $X_{1,1}$ is isometric to $S^{2}(1 / 2) \subseteq \mathrm{E}^{3}$. Hence the inequality $d_{1,1}\left(x_{1}, x_{2}\right)+d_{1,1}\left(x_{2}, x_{3}\right)+d_{1,1}\left(x_{3}, x_{1}\right) \leq \pi$ is obvious.

We now fix $(k, l) \neq(1,1)$. The isometric T^{2}-action

$$
T^{2} \times S^{3}(1) \rightarrow S^{3}(1) ; \quad\left(e^{i \theta_{1}}, e^{i \theta_{2}}\right) \cdot\left(z_{1}, z_{2}\right)=\left(e^{i \theta_{1}} z_{1}, e^{i \theta_{2}} z_{2}\right)
$$

induces an isometric S^{1}-action on the Riemannian manifold $\tilde{X}_{k, l} . \tilde{X}_{k, l}$ is a connected noncomplete surface of revolution with diameter $\pi / 2$, so it admits
a coordinate system $(r, \theta): \tilde{X}_{k, l} \rightarrow(0, \pi / 2) \times S^{1}$ such that the metric in these coordinates is $d s^{2}=d r^{2}+(f(r))^{2} d \theta^{2}$ where $d \theta$ is the standard 1-form on S^{1}. By replacing r with $\pi / 2-r$ if necessary, we can arrange that the latitude circle $r=c$ corresponds to the orbit space of the torus $\left.T^{2}(c)=T^{2}(\cos c, \sin c)\right) \subseteq$ $S^{3}(1)$. All the $\phi_{k, l}$ orbits in $T^{2}(c)$ have the same length and the function $f(r)$ is determined by

$$
2 \pi f(c)\left(\text { the length of a } \phi_{k, l} \text { orbit in } T^{2}(c)\right)=4 \pi^{2} \cos c \sin c .
$$

The orbits of $\phi_{k, l}$ all have length $\geq 2 \pi$, so $f(c) \leq \cos c \sin c=\frac{1}{2} \sin 2 c$. Hence there is a length nonincreasing bijection of $\tilde{X}_{1,1}$ onto $\tilde{X}_{k, l}$ which assigns points in $\tilde{X}_{1,1}$ to points in $\tilde{X}_{k, l}$ with the same coordinates in $(0, \pi / 2) \times S^{1}$. The inequality

$$
d_{k, l}\left(x_{1}, x_{2}\right)+d_{k, l}\left(x_{2}, x_{3}\right)+d_{k, l}\left(x_{3}, x_{1}\right) \leq \pi
$$

for $x_{1}, x_{2}, x_{3} \in \tilde{X}_{k, l}$ now follows from the corresponding inequality already proved for $(k, l)=(1,1)$. Since $\tilde{X}_{k, l}$ is dense in $X_{k, l}$, Lemma 4 follows.

Lemma 5. If $\operatorname{dim} F=2$, then the local representation of S^{1} at every isolated fixed point must be equivalent to $\phi_{1,1}$.

Proof. Let Y be the 2-dimensional component of F. Then from the local representation of S^{1} on $T_{y} M, y \in Y$, it follows that there exists a tubular neighborhood of Y, say U, such that the isotropy group is trivial for all $x \in U \backslash Y$.

Suppose there exists an isolated fixed point $p \in F$ such that the local representation of S^{1} on $T_{p} M$ is equivalent to $\phi_{k, l}$, g.c.d. $(k, l)=1$ and $k>1$. Then $F\left(\mathbf{Z}_{k}, M\right)$ contains at least two connected components of dimension 2. This contradicts the theorem of Frankel [4] which asserts that two such totally geodesic surfaces in M cannot be disjoint.

3. The proof of Theorem 1

Let M be a 4-dimensional orientable CPCM. Then by Synge's theorem [10] M is simply connected. We will exploit the orbital geometry of the given S^{1} action to prove that $\chi(M)$ is at most 3 . It then follows directly from the work of Freedman [5] that M is homeomorphic to either S^{4} or $\mathbf{C} P^{2}$. By Lemmas 1 and $2, \chi(M)=\chi(F)$ and

$$
F(M)=\left\{\begin{array}{l}
\chi(M) \text { isolated points } \\
\text { or } S^{2}+(\chi(M)-2) \text { isolated points. }
\end{array}\right.
$$

Therefore the proof of the theorem reduces to proving that F consists of at most three isolated points or S^{2} plus at most one more isolated point. We
will divide the proof into two cases according to $\operatorname{dim} F=0$ or 2 and we will prove each case by contradiction.

Case 1, $\operatorname{dim} F=2$. Suppose $F=S^{2}$ plus at least two isolated fixed points. Let p, q be two isolated fixed points and let γ be a minimizing geodesic segment in M joining p to q. Let η be a minimizing geodesic segment from S^{2} to $S^{1}(\gamma)=$ the S^{1} orbit of $\gamma ;$ hence length $(\eta)=\operatorname{dist}\left(S^{2}, S^{1}(\gamma)\right)$, and η has endpoints $A \in S^{2}$ and $B \in S^{1}(\gamma)$. The isotropy group of the S^{1}-action does not vary along the interior of the minimizing segments γ and η, since otherwise they could be replaced with broken geodesic segments of the same length. Hence it follows from Lemma 5 that the interiors of γ and η lie in $M_{0}=$ union of principal orbits in M.

Suppose $B=p$. By Lemma 5 the local representation of S^{1} at p is equivalent to $\phi_{1,1}$. Hence $e^{i \theta} \cdot \gamma$ is perpendicular to η at p for all $e^{i \theta} \in S^{1}$. The second variation formula can now be applied to the geodesic segment η as in the proof of Frankel's theorem [4] to show that length $(\eta)>\operatorname{dist}\left(S^{2}, S^{1}(\gamma)\right)$. This contradicts the assumption that length $(\eta)=\operatorname{dist}\left(S^{2}, S^{1}(\gamma)\right)$. The same argument rules out $B=q$.

Now suppose B lies in the interior of γ. Then the isotropy group of B is trivial, forcing $\eta \subseteq M_{0} \cup S^{2}$. Let $\bar{\gamma}=\pi(\gamma \backslash\{p, q\}) \subseteq \bar{M}_{0}$, and $\bar{\eta}=\pi(\eta) \subseteq$ $\bar{M}_{0} \cup \overline{S^{2}}=N$. By Lemma $3, N$ is a smooth Riemannian manifold with totally geodesic boundary, and since Riemannian submersions are always curvature nondecreasing (see [4]), N has sectional curvature everywhere $\geq \delta$ for some $\delta>0$. An application of the second variation formula to the geodesic segment $\bar{\eta} \subset N$ shows once again that length $(\eta)>\operatorname{dist}\left(S^{2}, S^{1}(\gamma)\right)$, contradicting length $(\eta)=\operatorname{dist}\left(S^{2}, S^{1}(\gamma)\right)$. Hence F can contain at most one isolated fixed point in addition to the S^{2}.

Case 2, $\operatorname{dim} F=0$. Suppose F contains at least four isolated points, p_{i}, $1 \leq i \leq 4$. Let $l_{i j}=\operatorname{dist}\left(p_{i}, p_{j}\right)$ and let $C_{i j}=\left\{\gamma:\left[0, l_{i j}\right] \rightarrow M \mid \gamma\right.$ is a minimizing geodesic segment from p_{i} to $\left.p_{j}\right\}, 1 \leq i, j \leq 4$. For each triple $1 \leq i, j, k \leq 4$ set

$$
\alpha_{i j k}=\min \left\{\angle\left(\gamma_{j}^{\prime}(0), \gamma_{k}^{\prime}(0)\right) \mid \gamma_{j} \in C_{i j}, \gamma_{k} \in C_{i k}\right\}
$$

Note that the minimum exists because M is compact.
Lemma 6. For each triple of distinct integers $1 \leq i, j, k \leq 4$,

$$
\alpha_{i j k}+\alpha_{k i j}+\alpha_{j k i}>\pi
$$

Proof. Let us assume, for notational simplicity, that $(i, j, k)=(1,2,3)$. Set $1 / R^{2}=\delta=$ minimum of sectional curvature of M. Choose x_{1}, x_{2}, x_{3} on $S^{2}(R)$ such that the spherical triangle $\Delta\left(x_{1}, x_{2}, x_{3}\right)$ has l_{12}, l_{23}, l_{31} as its three lengths. Applying Toponogov's theorem [11] to an arbitrary triangle
with $\gamma_{12} \in C_{12}, \gamma_{23} \in C_{23}, \gamma_{13} \in C_{13}$ as its three sides, one gets

$$
\angle\left(\gamma_{12}^{\prime}(0), \gamma_{13}^{\prime}(0)\right) \geq \angle\left(\overline{x_{1} x_{2}}, \overline{x_{1} x_{3}}\right)
$$

and hence, by the definition of α_{123}, that $\alpha_{123} \geq \angle\left(\overline{x_{1} x_{3}}, \overline{x_{1} x_{3}}\right)$. Therefore $\alpha_{123}+\alpha_{312}+\alpha_{231} \geq$ the sum of interior angles of $\Delta\left(x_{1}, x_{2}, x_{3}\right)>\pi$. q.e.d.

From the above lemma it follows easily that

$$
\sum_{1 \leq i \leq 4} \sum_{\substack{1 \leq j<k \leq 4 \\ j, k \neq i}} \alpha_{i j k}>4 \pi
$$

But, on the other hand, from Lemma 4 it is easily seen that

$$
\sum_{\substack{1 \leq j<k \leq 4 \\ j, k \neq i}} \alpha_{i j k} \leq \pi \quad \text { for each } 1 \leq i \leq 4,
$$

which gives a contradiction. Therefore F can have at most three isolated points when $\operatorname{dim} F=0$. This completes the proof of the theorem.

References

[1] J. Cheeger, Some examples of manifolds of nonnegative curvature, J. Differential Geometry 8 (1973), 623-628.
[2] J. Cheeger \& D. Ebin, Comparison theorems in Riemannian geometry, North-Holland, Amsterdam, 1975.
[3] S. S. Chern, Differential geometry, its past and future, International Congress of Mathematicians, Nice, 1970.
[4] T. Frankel, Manifolds with positive curvature, Pacific J. Math. 11 (1961), 165-174.
[5] M. H. Freedman, The topology of four-dimensional.manifolds, J. Differential Geometry 17 (1982) no. 3, 357-453.
[6] D. Gromoll \& W. Meyer, On complete open manifolds of positive curvature, Ann. of Math. (2) 90 (1969) 45-90.
[7] R. Hamilton, Three-manifolds with positive Ricci curvature, J. Differential Geometry 17 (1982) no. 2, 255-306.
[8] S. Kobayashi, Transformation groups in differential geometry, Springer, New York, 1972.
[9] B. O'Neill, The fundamental equations of a submersion, Michigan J. Math. 13 (1966), 459-469.
[10] J. L. Synge, On the connectivity of spaces of positive curvature, Quart. J. Math. Oxford Ser. 7 (1936), 316-320.
[11] V. A. Toponogov, Riemannian spaces with curvature bounded below, Uspehi Mat. Nauk. 14 (1959) no. 1, pp. 87-130.

