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THE UNIFORMIZATION THEOREM
FOR COMPACT KAHLER MANIFOLDS
OF NONNEGATIVE HOLOMORPHIC

BISECTIONAL CURVATURE

NGAIMING MOK

Regarding the uniformization problem on compact Kahler manifolds of
arbitrary dimensions, a very fundamental contribution was made by Mori [20]
and Siu-Yau [24] when they affirmed the Frankel conjecture. They proved

Theorem {special case of Mori [20] and Siu-Yau [24]). Let X be a compact
Kahler manifold of positive holomorphic bisectional curvature. Then X is biholo-
morphic to the complex projective space P n.

The theorem of Mori is stronger since he only assumed, in case the ground
field is C, that X is a compact complex manifold with ample tangent bundle
and since his theorem applies equally to any algebraically closed field of
arbitrary characteristic. Returning to the situation of compact Kahler mani-
fold, it was natural to conjecture

(Ww) Weak form of the uniformization conjecture for manifolds of nonnegative
curvature. Let X be an ̂ -dimensional compact Kahler manifold of nonnega-
tive holomorphic bisectional curvature and let X be its universal covering
space. Then X is biholomorphic to Ck X M for some nonnegative integer
k < n and some compact Hermitian symmetric manifold M.

In fact, (Wn) was in essence conjectured by Siu-Yau [24] prior to the
solutions of the Frankel conjecture as part of a program to study the uniformi-
zation problem in higher dimensions. The purpose of the present article is to
give a proof of the following stronger form of the uniformization conjecture for
manifolds of nonnegative curvature, to be denoted by (Sw).

Main Theorem. Let (X,h) be an n-dimensional compact Kahler manifold of
nonnegative holomorphic bisectional curvature and let (X,h) be its universal
covering space. Then there exist nonnegative integers k, Nv • • •, Nt and irredu-
cible compact Hermitian symmetric spaces Mv— -,Mk of rank ^ 2, such that
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(X,h) is isometrically biholomorphic to

( C \ g o ) x ( p ^ , f l 1 ) x •'• x ( P ^ , t f / ) x ( M 1 , g l ) x ... x ( M p 9 g p ) ,

where g0 denotes the Euclidean metric on C *, gl9 • • •, gp are canonical metrics on
Ml,- • •, Mp, and 0,-, 1 < i < /, is a Kdhler metric on PNi carrying nonnegative
holomorphic bisectional curvature.

In the years 1980-1985 there has been a lot of work related to (WJ and (SJ.
In 1980, Siu [22] obtained a curvature characterization for hyperquadrics.
Using Siu's result and the evolution equation of Hamilton [8], Bando [1] solved
(W3) in 1983, the case of (W2) being known to Howard-Smyth [11] much
earlier. On the other hand, Mok-Zhong [18], [19] studied (SJ with the
additional assumption that (X, h) is Einstein and showed in 1984 that (X, h) is
isometrically a Hermitian locally symmetric manifold. Furthermore, Mok [17]
showed very recently that (WJ implies (Sw), while Cao-Chow [5] showed that
(S,,) holds under the stronger assumption that the curvature operator is
semipositive in the dual Nakano sense.

It is well known, using the splitting theorem of Howard-Smyth-Wu [12], that
one can reduce (S,,) to the proof of the following special case.

Theorem 1. Let (X,h) be a compact Kdhler manifold of nonnegative holo-
morphic bisectional curvature such that the Ricci curvature is positive at one point.
Suppose the second Betti number of X is equal to one. Then either X is
biholomorphic to the complex projective space or (X,h) is isometrically biholo-
morphic to an irreducible compact Hermitian symmetric manifold of rank > 2.

Our proof of Theorem 1 depends in essential ways on Mori's solution to the
Frankel conjecture [20], the evolution equation of Hamilton [8], the methods of
Mok-Zhong [19] for the Einstein case, and the characterization of locally
symmetric spaces by their holonomy groups of Berger [4]. Because we will need
Mori's theory of rational curves, our proof is not completely transcendental in
nature. If fact, it was essential in Mori [20] to use algebraic geometry over
fields of characteristic > 0. At present, completely within the realm of tran-
scendental methods, one can adapt the methods of Siu-Yau [24] and Siu [22]
using stable harmonic maps to give a proof of Theorem 1 only with an
additional nondegeneracy condition on the curvature tensor, namely, condition
(C) of Siu [23], a condition satisfied by all irreducible compact Hermitian
symmetric manifolds. Eventually, it would be desirable to remove this condi-
tion to give a complete proof of Theorem 1 using transcendental methods.

In order to explain our approach, it is helpful to discuss the geometry of
compact Hermitian symmetric manifolds and particularly the role played by
certain special rational curves (cf. Mok [16]). Let (M, g) be an irreducible
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compact Hermitian symmetric manifold and let a: (M, g) <-+ (PN, Fubini-
Study) be the first canonical (isometric) protective embedding of M. Let 2 be
the collection of projective lines in P N that are already contained in M (which
we identify with o(M)); they are totally geodesic in (M, g). Moreover, a unit
vector a e TX(M) realizes the global maximum of holomorphic sectional
curvature if and only if a is tangent to some projective line passing through x.
Let SfM <z PTM be given by the set of all possible tangent directions to such S.
Then S?M is a complex analytic submanifold of PTM fibered over M. It is
invariant under parallel transport on (M,g) because holomorphic sectional
curvatures are invariant under parallel transport on a symmetric space. Let
S G 2 and TX(S) = Ca; then, according to Mok-Zhong [19] there is an
orthogonal decomposition TX(M) = Ca + J$?a + J^a into eigenspaces of the
Hermitian form ^ ( x ^ ) = ^a«x^ suc^ l ^ a t ^ « corresponds to the eigen-
value 2^aaaa while Jfa corresponds to the eigenvalue zero. On S we have the
decomposition 7 ^ = 0(2) © 0(l)dim^« e 0dimjr«. The dimensions of 3^a and
J/*a are independent of the choice of S e 2 and x G M. Moreover, 1 + dim Jfa

is equal to the degree of (strong) nondegeneracy of bisectional curvatures of
(M, g) as defined in Siu [23]. We note that 5fM is independent of the choice of
the special canonical metric g (for any 0 e Aut(M), O*g is a canonical
metric on M) since biholomorphic transformations of M are restrictions of
projective linear transformations of P N, which preserve the space 2 of projec-
tive lines.

Our idea is to recapture the variety S?M c PTM. Zf is on the one hand an
analytic object which can be constructed by deforming a rational curve in M
of minimal degree; on the other hand a differential-geometric object invariant
under parallel transport. Now, given a compact Kahler manifold (X,h) of
nonnegative bisectional curvature and positive Ricci curvature, Mori's theory
of rational curves [20] will allow us to construct an object S^cz PTX similar to
the 5fM described above. However, in order to prove Theorem 1 we have to
consider (X, h) of nonnegative bisectional curvature everywhere and positive
Ricci curvature at one point. To start with we are going to use the evolution
equation of Hamilton [8] to deform h.

In 1982, Hamilton [8] studied compact three-manifolds with positive Ricci
curvature by using the equation ^g / y = -Rtj (respectively the metric and Ricci
tensors) in a suitably normalized form and showed that such metrics can be
deformed to one of constant sectional curvature. In 1984 Bando [1] applied the
strong maximum principle of Hamilton [8] to the situation of (complex)
three-dimensional compact Kahler manifolds X of nonnegative bisectional
curvature. He proved that the nonnegativity is preserved in the evolution. In
higher dimensions it has been an open problem if the nonnegativity of
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curvatures (in some sense) is preserved by the evolution equation of Hamilton
[8]. Very recently, Hamilton [8] affirmed this in the case of compact
Riemannian manifolds with nonnegative curvature operator and used it to
classify such manifolds in case of dimension 4. His method was used by
Cao-Chow [5] to affirm (Sw) under the stronger assumption of nonnegativity of
the curvature operator. In this article, we show somewhat surprisingly that the
class of Kahler metrics of nonnegative bisectional curvature on compact
manifolds is preserved under the evolution equation. Furthermore, if the initial
metric is of positive Ricci curvature at one point, then the evolved metric is of
positive Ricci curvature and positive holomorphic sectional curvature. Essen-
tially, by Hamilton [8] this reduces to proving that some tensor Fa^ quadratic
in the curvature R verifies Fa^ ^ 0 whenever Raapp = 0 for an evolved
metric. Such an inequality in the Einstein case was obtained by Mok-Zhong
[19] for certain zeros of bisectional curvature. The theoretical relationship
between algebraic problems in the Einstein case, as tackled by Mok-Zhong [19]
and similar algebraic problems in the general case will be explained in detail in

§1-
From now on we consider exclusively evolved metrics h. Since (X, h) carries

positive Ricci curvature, by the results of Mori [20] we obtain a rational curve
/ : P 1 -> X such that f*{K~x

l) = O(q) with 0 < q < n + 1. We consider the
minimal such integer q. Let #0 be the Chow variety of all cycles C such that
Kx

l • C = q and let # be the irreducible component of ^ 0 containing [/(P1)].
Suppose q<n + \. Then, generically f*(Tx) = 0(ax) 0 • • • ®0(ak) 0 &l

with a! > ••• > ak > 0 and / > 0. This implies that, for a smooth point P of
f(Px) with Tp(f(P

1)) = Ca, Ra^ = 0 for )8 in a C-linear subspace of Tp(X)
of at least / dimensions. We define ^c V>TX to be the closure of the set of all
tangent directions at smooth points to cycles C e # . In case q = n + 1, by the
criterion of Mori either X is biholomorphic to Pn or there exists for every
P e X some rational curve / : P 1 -> X such that f*(Tx) has some trivial
components. Let <€' c # be the subspace consisting of such rational curves
and consider Sf obtained from <£' in a similar way. (Every cycle C G ^ is an
irreducible rational cycle by the minimality of q.) By studying the evolution
equation for bisectional curvatures we showed that Sf is invariant under
parallel transport. Essentially this is obtained by studying the two decomposi-
tions of TX(X) coming from (i) the splitting of f*(Tx) into line bundles, (ii)
the splitting of TX(X) into eigenspaces of the Hermitian form ^ ( x > * ) =
RaaXv(h)' After proving the invariance of S? under parallel transport it
remains to apply Berger's characterization of locally symmetric spaces by the
holonomy group [4] to conclude the proof of Theorem 1 and hence our
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uniformization theorem for compact Kahler manifolds of nonnegative bisec-
tional curvature.

A preliminary version of the present article with an outline of proof has
appeared in Mok [17].

We would like to thank H.-D. Cao, S. Mori, Y.-T. Siu, and S.-T. Yau for
conversations related to the present research. Finally J.-Q. Zhong, my co-
worker in [19], has inspired me to look more deeply into the general situation.
His influence, both mathematical and moral, has been very important for the
completion of this work.
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1. The evolution equation of Hamilton—
preservation of the nonnegativity of bisectional curvature

(1.1) Background and statement of results. In [8] Hamilton studied the
evolution equation Ytgtj = -RtJ (respectively the metric and the Ricci tensors)
on compact three-manifolds of positive Ricci curvature and showed that such
metrics can be deformed to one of constant sectional curvature after suitably
rescaling the evolved metrics. The starting point of his analysis was his strong
maximum principle on tensors. Thus, he proved short time solvability of the
equation in arbitrary dimensions and showed that in three real dimensions the
evolution of metrics preserves nonnegativity of Ricci curvature. In the Kahler
case, the evolved metrics g,;(0 remain Kahler, as remarked in Bando [1].
Using the strong maximum principle of Hamilton [18], we prove

Proposition (1.1). Let (X, gtj) be a compact Kahler manifold of nonnegative
holomorphic bisectional curvature. Then, the evolved metrics gij(t), t > 0, also
carry nonnegative holomorphic bisectional curvature. Moreover, if (JC, g/y) is of
positive Ricci curvature at one point, then the evolved metrics are of positive
holomorphic sectional curvature and positive Ricci curvature everywhere.

The special case of Proposition (1.1) for three-dimensional compact Kahler
manifolds was proved by Bando [1]. The positivity of holomorphic sectional
curvatures was not stated there but follows easily from the proof. To explain
our method we recall first of all the strong maximum principle of Hamilton [8]
for tensors, formulated here for Kahler manifolds as was done in Bando [1].
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Proposition (Bando [1, §4, Proposition 1]). Let (X, g.j) be an n-dimensional
compact Kahler manifold. Let u denote a tensor field which has the same type and
symmetric properties as the curvature tensor. Let (X, gjj(t)), 0 < t < e, denote
the evolved metric given by Hamilton's equation -jfigjj = -Rtj. Denote by A the
tensor Laplacian {depending on the Kahler metric), and suppose the tensor u
evolves according to the equation

where F satisfies the null-vector condition

If u > 0 and there exist two nonzero vectors a, f £ TXX such

that u(a,a;tfXx) = 0, then F(u)(a,a,^,^(x) > 0.

/ / the initial u is nonnegative, then it remains so. Moreover, if the initial u is
positive somewhere, then the solution u is positive everywhere for t > 0.

Remark. Here we write u ^ 0 to mean w(x?X? V^l) ^ 0 f° r a ^ X> V e

rv(*-)andall J C G * .

Thus, by computing the evolution equation satisfied by holomorphic bisec-
tional curvatures, the proof of Proposition (1.1) is reduced to an algebraic
problem. In fact, we have

where F is an expression quadratic in the curvature tensor R. By applying the
strong maximum principle to u = R, we are going to verify the null-vector
condition for F(R). In case of n = 3, condition ( # ) was verified in Bando [1]
by using special coordinates. Our manipulation of the more complicated
expression in arbitrary dimensions is motivated by similar considerations in
the Einstein case as done in Mok-Zhong [19, Proposition (2.2.2)]. There, given
a compact Kahler-Einstein manifold (X, g) of nonnegative bisectional curva-
ture, we needed to show A/?ag^ = 0 for certain zeros (a, f) of bisectional
curvature. From standard commutation formulas we have

where the left-hand side denotes covariant derivatives of the Ricci tensor. Since
(X,g)\s Einstein, Raa^ = 0 and we end up with

Thus to show A/*ag^ = 0 it suffices to show F0(R)aS^ > 0, just as in condi-
tion (# ) . In fact, in the general case (not necessarily Einstein) the evolution
equation ^g / 7 = -R^ essentially transforms the second order covariant deriva-
tives Raantf to time derivatives of bisectional curvatures, given by the formula
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(with { e^} an orthonormal basis)

Obviously, the zero order term vanishes whenever Raatf = 0 by the nonnega-
tivity of bisectional curvatures. Thus the null-vector condition ( # ) for the two
tensor expressions F0(R) and F(R) are essentially the same. In Mok-Zhong
[19], condition ( # ) for F0(R) was proved only for zeros (a,f) of bisectional
curvatures such that a realizes the global maximum of holomorphic sectional
curvature. For such zeros the special eigenspace decomposition of TX(X) =
Ca ®J4?a © JVa (cf. [19, Proposition 2.1]) significantly simplifies the linear
algebra. As it turns out, we can generalize the method of [19] to arbitrary zeros
of holomorphic bisectional curvatures.

(1.2) Proof of the null-vector condition (# ) . We fix x e X and choose an
orthonormal basis {et} of TX(X). Then

0) &Raatf = 2 I L Raatfj'i
^ i

where indices after a comma will always denote covariant differentiation. (The
Laplacian is normalized so that A corresponds to ^A in Mok-Zhong [19].) On
the other hand

From standard commutation formulas we obtain

^Raatt ~Raa,tf

= T i n _ | 2 _ V D _ _ y I D

+1E Ra?R,*s - i E Wan
On the other hand, from the evolution equation

h8*=-R'j
and the equation for the curvature tensor

A? - 92g-v | y ^-M-J&vj

in terms of local holomorphic coordinates, it is readily verified using complex
geodesic coordinates (i.e. g/y = 8/y, dgtj = 0 at a fixed point X G I ) that we
have

(4) ^ R ^ R R
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so that

( 5 ) j-tRa-^ = M l K

where

Suppose now (A", g,7) is a compact Kahler manifold of nonnegative bisectional
curvature and Ra«tf = 0 for a pair of nonzero vectors (a,f)- To prove the
null-vector condition ( # ) it suffices to show that

since the last term of F(R)a^ vanishes by the inequality of Cauchy-Schwarz.
Consider the Hermitian form i/a(/x, v) = RaiifJLl} attached to a and let {e^} be
an orthonormal basis of eigenvalues of Ha. In the basis we have

From now on we will always use such an orthonormal basis and show

As in Mok-Zhong [19, second proof of Proposition (2.2.2)] we consider the
function

(8) G (e) = R [a + ex, a + ex , £ + ^Ce f + e ^ C/ •

We have Gx(e) > 0 so that 82Gx(0)/8e2 > 0, while

( 9 ) 9e2 xxf f , ^ ^ C ,

Consider the quadratic form
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The variational inequality 32Gx(0)/3e2 > 0 implies that Q is nonnegative for
z0 real. In fact, by a suitable scaling a -> ei0a, f -> e''*f, it follows easily that
Q defines a positive semidefinite Hermitian symmetric form. We will only
consider z0 = x0 real. For 0 = (0V • • •, 0n) consider the real symmetric bilinear
form defined by

(11)

Since £0 is positive semidefinite, the matrix

+ I

xxtt
R aall

0 R,

is positive semidefinite. Arrange the
>RaSmm>QandRaSll = OtoTl>m.

with Sp = Re(e ^^Ra^^^-e^^R
basis {^} so that /^ f i / / ^ i^ag22 >
By considering the submatrix obtained by replacing n by m and by computing
the determinant we obtain the inequality

(12)
aamm
.2

R.

where the symbol A denotes omission. Thus

\13) Kxx$l^ L
Raw

We assert that in the inequality in (13) ISJ2 can be replaced by the quantity
\Ra^\2 + \Ra^ji\2' To prove this we write A^ = Ra^, B^ = * a X ^ . Then by
(13) we have, for any 0 = (0V • • •, 0m) real,

(14)

By choosing 0 such that ei0*(A + 5' ) is real we have

(15) £ F



188 NGAIMING MOK

Moreover, the inequality remains valid when a is replaced by elda. In this case
An= Ra&xis r e P l a c e d by e^Aiiand \ = Rax&is r e P l a c e d b v e~i4>B^> s °
we have the general inequality

(16) Rx^> £ Y—

In order to establish the inequality

(17)

it suffices therefore to show the following
Lemma. For any two complex numbers o and r

\e% = \o\2 + |r |2 .

of Lemma. Clearly the integral equals

j ^ j 1 " (\e'+

But now

Thus,

= |a|2

= |a|2 + | T | 2 -

W* + e-'*T|2rf* = ^ / ^ 2(|

Having proved (17), we rewrite it in the form

(I8) R«<*XX

| 2 )

R

Now we take x = ev'' m>em a n d add to (18) the inequality obtained by
interchanging the roles of x and /x, obtaining by summation

I R - - R
(19) 2 I Ra^R,Hl> E h ^ + ^

But, for any two positive real numbers a and b we have

ab
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so that \(a/b + b/a) ^ 1, thus giving

Moreover, for JU > m we have Raiiflji = 0 and i ^ t e = 0. In fact, for any 0
such that Raaeo = 0 (we write 6 e ^ ) we have # a ^ = 0 by the Cauchy-
Schwarz inequality, so that by polarization Ra^^ = 0 for f e jVa, /x > m.
From this we obtain finally the inequality

for an eigenbasis {e^} of the Jt?a and thus the inequality

for any orthonormal basis {^} , proving ( # ) and hence the fact that evolved
metrics g / y (0 carry nonnegative holomorphic bisectional curvature. By consid-
ering the evolution of Ricci curvatures it follows easily that (X, g / y(0) carries
positive Ricci curvature if (X, gtj) is of positive Ricci curvature at one point
(cf. Bando [1]). Moreover, if Raaa^ = 0 for an evolved metric, then we have

(21) ~^~Raaaa = 0» ^ R aaaa = ^ X R ) aaaa = 0•

From the proof of Proposition (1.2) we know that, for an evolved metric,
^ « ^ = 0 whenever Ra^ = 0. (We proved that F(R)a&g > £ ^ | # a ^ | 2 . )
Thus, # a f i a S = 0 implies RaiifXV = 0 and in particular Radl = 0, contradicting
the positivity of the Ricci tensor. With this remark we have finished the proof
of Proposition (1.1).

2. Rational curves of minimal degree and the variety

(2.1) In order to prove Theorem 1 and hence our Main Theorem, we can
consider without loss of generality simply-connected compact Kahler mani-
folds (X, h) with b2(X) = 1 and h = gal(t) for some / > 0 as in §1. Thus by
Proposition (1.2) we may assume that (X, h) carries nonnegative holomorphic
bisectional curvature, positive Ricci curvature, and positive holomorphic sec-
tional curvature. Our purpose is to show that either X is biholomorphic to P ",
or the holonomy group a t ? e l does not act transitively on the unit sphere of
TP(X). In the latter case by Berger's characterization of locally symmetric
spaces we have either (i) (X, h) is an irreducible compact Hermitian symmetric
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space of rank > 2 or (ii) (X, h) is globally reducible as a Kahler manifold.
Observing that the second possibility contradicts the condition b2(X) = 1, we
obtain then a proof of Theorem 1 and hence the Main Theorem.

We will need the following theorem of Mori.
Theorem (Mori [20]). Let X be an n-dimensionalprojective algebraic mani-

fold with ample anticanonical line bundle Kx
l. Then there exists a rational curve

f0: P 1 -> X such that fo*(Kx
l) = 0(q) for some q satisfying 0 < q < n + 1.

Let ^ be a connected component of the Chow variety of rational cycles [/(IP1)]
such that f*(Kx

l) = ®(q) with minimal q. Denote by Tx the holomorphic
tangent bundle of X. Suppose q = n + 1, and there is a point x e X, such that
f*(Tx) is ample for all [/(P1)] e <g, / (P 1 ) passing through x. Then X is
biregular to the projective space P n.

Mori's theorem is valid over any algebraically closed field k. In case k = C
the last statement implies that X is biholomorphic to P". Our statement of
Mori's theorem is a slight variation of the original. It can be deduced
immediately from his proof.

Since our Kahler manifold (X,h) carries positive Ricci curvature, Kx
l is

ample by the Kodaira vanishing theorem. In particular X is projective alge-
braic. Hence, Mori's result applies and we obtain a nontrivial /0: P 1 -> X. We
will assume fo*(Kx

l) = 0(q) with q minimal and we call such an /0 a rational
curve of minimal degree. We are going to define a complex-analytic subvariety
5^c PTX by deforming some rational curve of minimal degree. The construc-
tion of Sf in the two cases (i) q < n + 1 and (ii) q = n + 1 but X £ P" will
be different.

We first fix some notations and state a number of well-known preparatory
theorems. For any compact complex manifold W and any two complex
analytic subspaces Y,Zo W of complementary dimensions intersecting prop-
erly, we will denote by Y • Z the intersection multiplicity of Y and Z. This
definition extends to rational combination of irreducible subspaces in an
obvious way. Let L be a positive line bundle over W and C be a 1-dimensional
cycle of W, i.e., a positive integral combination of irreducible curves. For some
positive integer m the line bundle Lm admits a nontrivial section s which does
not vanish on any irreducible component of C. Writing Z(s) for the zero-
divisor of s, we define L • C to be -^Z(s) • C, which is clearly independent of
the choice of s. If C is an irreducible rational curve and / : P 1 •-> C is a
normalization of C, then clearly L • C = p if f*L = ®(p) over P1 .

We consider a holomorphic map /0: P 1 -> X, where X carries a Kahler
metric h as described above and / 0 is of minimal degree. It follows that /0 :
P 1 •-» /o(P1) is injective generically so that it is nothing but a normalization of
the image curve /0(P1) . By the Kodaira Vanishing Theorem X is projective
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algebraic. Let Chow( A^1; q) be the Chow variety of the 1-dimensional cycle C
such that Kxl • C = q. As is well known (Chow-van der Waerden [6]), it is a
projective variety. Let # c Chow(JC^1; q) be the connected component of
Chow(A^^1; q) containing the reduced irreducible curve [fo(P

1)]. Here we
denote by [Y] the cycle defined by a pure-dimensional complex subspace Y
(possibly not reduced) of X. On the other hand consider the nonsingular
projective variety Pl X X and the nonsingular projective curve Graph(/0) c
P1 X X. Write Chow(Kplxx; q + 2) for the Chow variety of 1-dimensional
cycles D such that KplxX- D = q + 2. Consider any holomorphic map / :
P1 -» * such that f*(Kx

l) = 0($). Then, [Graph(/)] e Chow^pi1^; 9 + 2)
since 7pi s 6(2). Let JTc ChowtApi1^; 4 + 2) be the Zariski open subset
consisting of graphs of holomorphic maps / : P1 -> X such that [/(P1)] e #.
Write J^= Jf\ U • • • u # w for the decomposition of J? into irreducible
components. The projection map P1 X X •-» X induces a natural holomorphic
map 0: JP-> C h o w ^ 1 ; 4).

The automorphism group Aut(Px) of P1 acts on 2? on the right by
composition. Writing [/] for [Graph(/)] whenever [Graph(/)] e 3/f, the
Aut(P^-action on tf is given by cp([/]) = [/ ° <p]. Since / = P1 -> /(P1) is a
normalization of /(P1) c X, it follows readily that the action is free. Re-
garding free actions of complex Lie groups on complex manifolds, we have

Theorem A (Holmann [10], Kaup [13]). Let W be a complex manifold and
G be a complex Lie group acting freely on W (i.e. without fixed points). Write
W/G for the set of equivalence classes of W modulo the equivalence relation
identifying points in the same G-orbit. Then, one can equip W/G with a (unique)
natural structure of a normal complex space such that the natural map W —> W/G
is holomorphic.

More precisely, one endows W/G with the structure of a local ringed space
by equipping it with the structure sheaf ®W/G arising from G-invariant
holomorphic functions defined on certain subsets of W, and show that the
ringed space (W/G,®w/G) is isomorphic as a ringed space to a normal
complex space. (From now on W/G will be understood to carry this complex
structure.) This is done by using holomorphic "Quasischnitte" (quasi-sections)
of W modulo G in Kaup [13]. Theorem A as it stands will be sufficient for us.
However, in order to streamline the presentation, we will use the following
criterion on the nonsingularity of W/G. We use the same notations and
hypothesis as in Theorem A.

Theorem X. Suppose for each w e W there exists a local complex submani-
fold Sw such that w e S, dimc Sw = dimc W - dimc G, Sw is transverse to the
G-orbit Gw at w, and the natural map o: Sw •-> W/G is infective. Then the
unique natural normal complex structure on W/G is nonsingular. Moreover, the
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natural map W •-> W/G is holomorphic and realizes W as a principal holomor-
phic G-bundle over W/G.

The proof of Theorem A' is in fact very elementary (independent of
Theorem A). In terms of the terminology of Kaup [13] it means that the
(holomorphic) quasi-sections of W modulo G are actually local (holomorphic)
sections. In this case, the sets a(Sw) c W/G can be used as a covering of
W/G by open submanifolds in an obvious way to yield the nonsingular
complex structure on W/G. The second statement is then an immediate
consequence.

We are interested in the deformation of [Graph(/0)] in P1 X X Regarding
the deformation theory of nonsingular subvarieties we have

Theorem B (Kodaira [14, Theorem 2]). Let Z be a complex manifold and
Y c Z a connected compact complex submanifold. Let NY\Z denote the normal
bundle of Y in Z. Suppose Hl(Y, NY^Z) = 0. Then there exists an open set
£2 c C m for some m, 0 e Q, and a parametrized family IT: y> •-> S2 of submani-
folds Yt = ir'\t) c { l } X Z , j ^ c S l x Z , with Yo = {0} X 7, such that the
corresponding germ of deformation spaces of compact complex submanifolds of Z
is a versalfamily at 0. Moreover m = dim H°(Y, NY\Z).

If one considers deformation families of compact complex submanifolds
centered at Yo = {0} X Y such that every fiber corresponds to a submanifold
of Z containing a distinguished submanifold S of Y, one obtains an obvious
relative version of the above theorem of Kodaira, namely, one replaces
H°(Y, NY]Z) by H°(Y, NY]Z ® Js) and requires the vanishing of
Hl(Y, NY\Z ® Js), where Js stands for the ideal sheaf of S in Y. In general,
one does not need the vanishing of H\Y, NY{Z <S>̂ 5) for the existence of
versal families of deformations of submanifolds. (The absolute case corre-
sponds to S = 0.) The stated versions will however be sufficient for us.

We will need to analyze families of rational curves in X. For this we need
the following classical result of Enriques-Noether.

Theorem C (Enriques-Noether; cf., e.g., Barth-Peters-Van de Ven [2] or
Beauville [3]). Let S be a nonsingular compact complex manifold and <p:
S *-> C be a nontrivial holomorphic map of S onto a compact Riemann surface C
such that for some c e C, ^(c) is a nonsingular rational curve. Then, there
exists a minimal model So of S such that S is obtained from So by a finite number
of quadratic transforms (Hopf blow-ups) and such that cp: S •-> C induces
naturally a map <p0: So •-> C realizing So as a ruled surface over C.

We also record the following well-known criterion for blowing down nonsin-
gular curves F in a surface 2, due to Mumford [15] and Grauert [7].

Theorem D. Let 2 be a complex surface, not necessarily compact, and let
F c 2 be a nonsingular compact complex curve. Then, there exists a proper
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holomorphic map x- V -> C2 of maximal rank of some open neighborhood V of
F in 2 such that x(T) = 0 // and only if the normal bundle Nr^ of T in 2 is
negative.

Concerning families of vector bundles we need the following special case of
the Direct Image Theorem and the Semi-Continuity Theorem of Grauert.

Theorem E (special case of Grauert [7]). Let Z be a compact complex space,

Q, c C N an open set, and V •-> £2 X Z a holomorphic vector bundle. Consider the

proper projection map TT\ £2 X Z -> fl. Then, the zeroth direct image ir*(ir) (of

the locally free sheaf y over Q x Z defined by V) is a coherent sheaf on £2.
Moreover, if 7T*(i/°) is locally free and of rank r at a generic point w e fi, then

dim H°({ w} X Z, V) > r for all w e £2 and strict inequality holds if and only if

w belongs to some analytic subvariety E of S2.

(2.2) Deformation of rational curves of minimal degree. We use the nota-
tions as given in (2.1). Recall that /0: P1 »-> X is a given rational curve of
minimal degree, # c Chov/(K~l, q) is a connected projective variety contain-
ing [/oOP1)], and J^a Chovj(Kp\xx,q + 2) is a quasi-projective variety con-
sisting of cycles in Chow(ArpJx x, q + 2) representing graphs of / : P1 •-> X. We
assert

Proposition (2.2.1). Jtf is a nonsingular (q + n)-dimensional quasi-projective
variety.

Proof. Let [/] e JP and G be its graph ([/] = [Graph(/)J for short). Since
G is by definition nonsingular the tangent space of JP at [/] can be identified
with the space of infinitesimal deformations of G in P 1 XZas a complex
submanifold. Let Nqpixx denote the normal bundle of G in P1 X X. Then

H\G, NG]plxX) = Hl(G,TpixX/ TG) = Hl{P\(Tpl 0 f*Tx)/o>Tpi)9

where a: Tpi >-+ Tpi ® f *TX is the bundle map over P1 induced by the
identity map in the first component and df: Tp\ •-> Tx in the second
component. Obviously o*Tpi is a line subbundle of Tpi@f*Tx and
(Tpi e / * ^ ) / ^ ^ ! =f*Tx naturally. Thus,

Since (X, h) carries nonnegative holomorphic bisectional curvature, in the
splitting f*Tx = 0(ax) 0 • • • ®0(an), ax> • • • > an, into holomorphic line
bundles we must have an > 0. It follows therefore that H\G, NGlPixX) = 0 so
that by Theorem B of Grauert 3tf is smooth at [/]. Moreover,

= dim H°(P\f*Tx) =

The proof of Proposition (2.2.1) is complete.
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Recall that Aut(Px) acts on 3tf by composition on the right. Recall that
J^ , - • •, 3^fm are the connected components of 3^ that are mapped into ^ . A
priori JfJ/Au^P1), 1 < / < m, may be noncompact. We are going to prove
that m = 1, that $: H -> C is surjective, and that ^AutCP 1 ) can be
identified with a normalization # of V. Let 77: <?--> # be the family of cycles
parametrized by #. Namely £ c # X X is the subspace defined by <f =
{([C], x ) e ^ x l : J C G C } . Since each irreducible component of # contains
the reduced irreducible rational curve [/(^P1)] it is clear that the generic fiber
of 77: «?-» # is a (possibly singular) reduced irreducible rational curve.
Moreover, by passing to the normalization S, <& and $:$*-**% and comput-
ing the arithmetic genus, it is well known that every fiber of ft: $^> %? (or of
77: $ •-> # ) is a finite union of rational curves. By the minimality of q one sees
easily that each fiber must be irreducible and reduced. Write «2f- = J^t/Aut(Pl),
1 < / < m. Then, the natural map 0: Jf»-> Chow(A'pi1

0X; # + 2) induces
maps pf.: Qt -> ^ . Since each fiber of 77: £^> *% is a reduced irreducible
rational curve, it follows from the definition of J^, 1 < / < w, that
Ui < 1 < m

 Vi(^i) = *• W e a s s e r t that the action of Aut(Px) on ^ satisfies the
criterion in Theorem A' so that J , is a complex manifold. Namely, we have

Lemma. Let 1 < i < m and [f] e ^ . . r/z^« //iere ejcwto a ^moor/z (9 + /1
— 3)"dimensional holomorphic family S of rational curves [g] e ^ , »S containing
[/], 5-wcA /Aa/ fifwy /we? [g j , [g2] e S represent distinct cycles [gi(Pl)l [g2(P

>1)]
c X

Proof of Lemma. Recall that ^ is smooth at [/] and that dimc ^ = # +
n. Consider the graph G of / , G c P 1 X X We have the identification
r m ( ^ . ) = H°(G,NG]plxx). As above we identify ^°(G, iVG|PiXAr) with
H°(P\f*Tx). The map /*: Tpi -> 7^ induced by / is nontrivial and injective
except at possibly a finite number of points. It induces an injection rf\
C 3 = H°(P\Tpi) -> H°(P\f*Tx). Now let ^ , - • - , ^ + w _ 3 be q + w - 3 ho-
lomorphic sections of / * r ^ over P1 which are C -linearly independent in
/ /°(P 1 , /*rA . ) /T /( / /°(P 1 , r p i ) ) . Let 5 b e a local (q + n - 3)-dimensional
nonsingular holomorphic family of rational curves [g] e J^x such that [/] G S
and T[f](S) = L ^ " " ^ ^ . We assert that for S sufficiently small the natural
mapping a: S -> J^/Au^P 1 ) is injective. For any [g] e S let T :̂ (P1, T P I )
(= C3) -> / / ^ P 1 , g*7^) = r [ g ](Jfi) be induced by g. The action of Aut(Px)
on Jff; defines a holomorphic foliation of ^ by 3-dimensional closed
submanifolds L[g] = {[g°<p]: 9 e Aut(Px)} which are integral submanifolds
of the distribution g -» Tg(//°(P1, Tpi)). Parametrize 51 by an open neighbor-
hood U of 0 in C«+"- 3 and write S = {[/,]: t<EU}. There exists an open
neighborhood ^ of [/] in J^t such that for some open neighborhood W in



UNIFORMIZATION THEOREM FOR COMPACT KAHLER MANIFOLDS 195

Aut(P1) of the identity element we have

<p]' t e U,cpe W).
Clearly we may assume that Woe Aut(Px) and that the mapping K: U X W
-> °U defined by (/, <p) -> [/, <> <p] is a biholomorphic transformation (replacing
U by some [ / ' c c U if necessary). Suppose a: £ >-> ̂ /AuU^P1) is not
injective for any choice of S. Then there exists sequences tj •-> 0 and tj •-> 0
such that o(fr) = a(/ f /) and tj # fj. In other words

Since ry' ¥= /y- and K: U X W -+ <% is a. biholomorphism we know that cpy e
AutfP1') - W. We assert
( *) The set {<p7} is relatively compact in Aut(Px).

First, assuming (*) we are going to derive the lemma. Passing to a subsequence
we may assume that cpj -> \p for some \p e Aut(Px) - W. Then we have
/ = / o xp (where / = /0), contradicting the fact that Aut(Px) acts freely on JPt.
Finally we prove (*). Without loss of generality we may assume that /(0) is a
smooth point of /(P1). Fix a coordinate open neighborhood F o c c Fof /(0)
in X such that /(A) c F and /(A) n Fo is a closed subvariety of Vo, i.e.
3/( A) n Ko = 0 . Here A denotes a fixed disc in C c P1 centered at the origin.
Consider the set Eo c Aut(Px) defined by

Eo= { ( P GAut (P 1 ) : ( / o ( p) (A)cFand9[ ( /o ( p) (A) ]nF 0 = 0 } .

Then clearly £0 is a compact subset of Aut(Px). Recall that / is injective and
/(0) is a smooth point of /(P1). For t e t/ sufficiently close to 0, we still have
/,(A) c V and 3[/,(A)] n F 0 = 0 . Defining £, similarly we have Et c c
Aut(P!) and that moreover, shrinking U if necessary

U £ , c c Aut(Px).

Clearly, this implies (*) and proves the lemma.
This proves that J, =^ /Aut (P 1 ) is a complex manifold for 1 < / < m.

Using this we can prove
Proposition (2.2.2). Let o: $'^> V be the normalization of <g. Then $ is a

connected nonsingular (q 4- n — 3)-dimensional projective variety. Moreover,
m — \ and the holomorphic map <f>: ^ | -> $> obtained by passing to normali-
zations (of $ : ^—» ^ ) is a submersion and realizes Jf? as an Auu^P1yprincipal
bundle over %>'.

Proof. By the preceding discussion it suffices to show that # is irreducible
and that m = 1. In this case vx\ 2,x*-* <€ can be identified with the normali-
zation a: <£7-> <£. Then the mapping $: jf-> ^ is the natural map Jf= 3tfx »->
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= £l = #. Suppose # is irreducible. We are going to derive a
contradiction. First, we assert that the lifting property (L) below from cycles to
maps / : P1 -> X contradicts the reducibility of ^ (i.e., the disconnectedness,
of <£).

(L) Let F c ^ be a connected protective curve, and let ar: f •-> F be the
normalization of F. Fix J E F and let / : P1 •-> X be a rational curve such that
[/(P*1)] = b e F. Suppose y0 e f is any point such that oT(%) is distinct
from b. Then there exists a holomorphic map 6: f — {y0} <-> Jf? such that
$(0(7)) = ar(Y) f°r every Y e f - {%} and such that 0(b) = / for some
ftef satisfying ar(fc) = b.

Assuming (L) for the time being, we are going to contradict the reducibility
of #. If # is reducible, there exists two points bv b2 on connected compo-
nents #!, ^2 respectively such that #\ =£ ^ and such that both points
correspond to the same cycle [C] e cg. Let / : P1 ^ I be a holomorphic
rational curve such that /(P1) = C. By the lifting property (L) every cycle [CJ,
#,-, z = 1,2, can be lifted to the connected component ^ \ of Jf containing
[/]. Thus 4>(JT1) D ^ U #2 but $ ( ^ i ) £ % * = ^2, . which is clearly a
contradiction to the irreducibility of J^v

We assert that the irreducibility of ^ implies immediately m = 1 and thus
Proposition (2.2.2). In fact, since g: P1 •-> X is injective generically for every
[g] e j ^ 7 we see by passing to normalizations that [g(Px)] = [g'^1)] if and
only if g' = g o (p for some cp e Aut(Px), so that O ( ^ ) n O ( ^ ) = 0 for
1 < i < j: < m. On the other hand, the lifting property (L) implies readily that
$ ( ^ ) = # for 1 < i < m. It follows immediately that m = \. The preceding
argument implies that the natural map i^: 2.x •-> ^ is injective. It is also
surjective since U 1 < / < m ^(0 ; ) = ^ and m = 1. Thus, J^ is a bijective holo-
morphic map between normal complex spaces, hence necessarily a biholomor-
phism. The proof of Proposition (2.2.2) is finished by replacing Slx by %\

We proceed finally to prove the lifting property (L) from cycles [C] e # to
maps / : P1 -> X. Let SY be the part of S sitting above F. Let I be a
normalization of $ and <nT: ST *-* f be obtained from 7rT: Sv •-> F by passing
to normalizations. Let /x: 2 -^ ^ r be a desingularization of Sv. By the
theorem of Enriques-Noether (Theorem C) on ruled surfaces, 2 admits a
minimal model 2 0 such that the mapping 7rr<>/x: S?*-* t induces a ruling
2() -> f. Thus, 2 0 is obtained from 2 by successively blowing down excep-
tional curves of self-intersection (-1) that lie above a single point of f. Since
iT has only isolated singularities it is clear that there is a homeomorphism of
iv onto 2 0 which is a biholomorphism outside a finite number of points. Since
iT and 2() are both normal this implies by the Riemann Extension Theorem
that Sv and 2 0 are biholomorphic, i.e. irr: $T -> f already realizes Sv as a
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holomorphic P^bundle over f. For any % e f, T' = f - {y0} is an affine
algebraic curve and the P^bundle ^ ( T ' ) over T' is analytically (even
algebraically) trivial. Thus, we have a biholomorphism £f \T') = T X P1 as
P^bundles. The natural mapping #f Hr7) -> iv -> ST c #X X -> X can be
regarded as a family of holomorphic maps gy,: Pl -> X parametrized by
y' e T'. Certainly, for any f» G T', 1> # y0 sitting above b we have [g^P1)] =
[/(P1)]. Fix one such ft and consider g r : Pl ^> X defined by gy, = gy, o <p for
<p e Aut(P!) such that g'h°<P = f- Then the family of maps {gy,: y' G T }
yields the lifting property (L) as asserted.

(2.3) Construction of Sf\ Part I. As above let (X, h) be a compact Kahler
manifold satisfying b2(X) = 1 carrying nonnegative holomorphic bisectional
curvature, positive Ricci curvature, and positive holomorphic sectional curva-
ture. Let /0: P1 •-> X be a given rational curve of minimal degree and ^ , <%,
TT: <#-> # be constructed as above using /0. Suppose f£(Kx

l) = 0(#) with
0 < q < /i 4- 1. Then it follows readily from the Semi-Continuity Theorem of
Grauert (part of Theorem E) that there exists an Aut(P ̂ -invariant sub variety
E c $f such that for all [/] e Jf- E, we have the splitting f*(Tx) = Oia^
e • • • 0 0(£iw), flj ^ • • • ^ an, with fl^ fixed, 1 < / : < « , independent of / .
Since the natural map Tpi *-+ f*(Tx) induced by df: Tpi •-> Tx is nontrivial
and Tpi = 0(2) it follows immediately that ax > 2. We are going to define

differently for the two cases (i) 2 < q < n + 1 and (ii) # = n + 1,

and X £ P". In the former case we have an = 0. Let ^ 0 c PTX be the
collection of all tangent directions [a] e PTJC(Ar), x G I , to rational cycles
[C] e ^ of minimal degree at regular points x of C. (Here we denote by
[a] G P7Y( Jf) the canonical image of a e Tx(X) - {0}.) Let Sf be the closure
of y o in P7^. Because f*(Tx) has trivial components in the splitting as direct
sums of holomorphic line bundles over P1 for any [/] e Jf7, we can show that
y c P r x is a proper sub variety. In the case q = « + 1 we know by Mori [20]
that X = P" as long as there exists some point x e X such that we have
f*(Tx) s ©(2) 0 (P(l)11"1 for all rational curves [/] e JT passing through x.
In the event X £ P", we know that for every x ^ X there exists [/] e jf7 such
that f*(Tx) has trivial components. If f*(Tx) has trivial components for all
[/] G / w e construct & as previously. Otherwise f*(Tx) s (?(2) © ^( l ) w - 1

generically. We call curves [/] e ^f, for which f*(Tx) has trivial components,
special rational curves. Then, we define ^ just as in the case 2 < q < n + 1
by restricting our construction to special rational cycles [C] e ^. This way we
are going to show that y c Pr^ is a sub variety of codimension 1. We remark
that eventually it will follow from Theorem 1 that the assumption q = n + 1
implies automatically X = P", so that the a priori possibility (ii) q = n + 1,
I ^ P " does not happen.
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In the notations adopted above we are going to prove
Proposition (2.3). Suppose 2 < 4 < « + 1 and f*(Tx) = 0{ax)

0 • • • ®(9(an_,) 0 0l for a generic [/] e ^ with ax > • • • > an_l > 1 and
/ > 1. Then ^<zPTx is a closed subvariety of PTX of codimension I. Suppose
q = /i + 1, X £ P", wirf /*(7V) = 0(2) 0 ^(l)""1 /or a generic [/] e jfTv

Then, for a generic special rational curve [g] e Jtfx of minimal degree, g*(Tx)
= &(2)2 0 0(1)"~3 0 0. Moreover, y c P7V w a {possibly singular) hyper-
surface in P Tx.

Proof: Part I. In this section we will only prove the first part of Proposi-
tion (2.3), i.e., we assume that for any [/] e Jtf, f*(Tx) has trivial compo-
nents. We assert first of all that in general the normalization it: £*-» $> of 77:
<?—> ^ realizes d as a holomorphic P ̂ bundle over the compact complex
manifold # = J = J^AuttiP1), Jf= f̂x. To see this consider the free right
action of AuuiP1) on ^ X P1 given by cp([/]; z)) = ([/<> cpj^-^z)). Then
^ = J^X PVAu^P1) can be given the structure of a (q 4- « - l)-dimensional
compact complex manifold. In fact, ^ l = ^XAut (pi ) P1 is the P^bundle
induced by the principal Aut(P ̂ -bundle ^f. On the other hand the mapping
Jfx P1 ^ <? defined by the assignment ([/],z) ^ ([/(P1 )],/(*)) e <?c # x *
is clearly invariant under the Aut(P^-action on ^fx P1. This yields a surjec-
tive holomorphic map & *-> $ with finite fibers which is generically injective.
Then, passing to normalizations we see that S is biholomorphic to the complex
manifold & and that 77: $>-* $ realizes i as a holomorphic P^bundle.

Let now ££^> S be the holomorphic line bundle $ whose restriction to every
P^fiber of TT: £^> $> is the tangent bundle along the fiber. Let ^ c i be the
subvariety consisting of all v e £ such that JS | # =0 . The mapping rf^ | ^:
J^-^ T^ induces a map 0: P(o^|^_^-) ^ PTX. Clearly ^ is nothing but the
closure of ®(P(J£?\(z_r-) in PTX. To see that ^ is a closed subvariety it
suffices to observe by using local coordinates that 0 can be regarded as a
meromorphic map on P(JSP). Thus Graph(0) c P ( ^ ) X P ^ is a subvariety
and Sf is the projection of Graph(0) into PTx.

We are going to determine the codimension of S? in PTX. Let J^-^ £ be the
holomorphic vector bundle on £ such that for each P^fiber 7r"1(Z>) of £
representing [C] e ^, J*" | #-i(/>) = /* r^ for any / : P1 -^ X realizing [C]. It is
obvious how the f*Tx can be pieced together to form a holomorphic vector
bundle. By Theorem C on a Zariski open subset Z of ^ we have & \ %-i{h) =
®{ax) 0 • • • ®<S(an_i) 0 0l with ax ^ • • • > «„_, > 0 fixed independent of
b G ^ . We write y = U v e A ^^ with ^ = ^ n P7;( Jf). Consider %(x), the
subvariety of Chow(A^^!; q) consisting of cycles passing through x, and write
^(x) = #()(*) n ^. Consider now an arbitrary point x o n l and an arbitrary
cycle [C()] e ^(x) such that [Co] corresponds to an element of Z. Assume also
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that x is a smooth point of Co and that a0 = [TX(CO)] G. </> is a smooth point
of Sf such that the projection map x: ^?l"~> X is a submersion at JC. We are
going to show that Sfx is of codimension / in PTX( X) at a0.

Let $f{x) c Jf consist of all [/] e Jf such that /(0) = JC. Write Ĵ o for the
ideal sheaf of {0} in IP1. Then, by deformation theory (Theorem B, relative
version) [/] is a smooth point of Jt?(x) as soon as Hx(Pl,f*Tx ® JQ) = 0. In
this case one can identify the tangent space of Jt?(x) at [/] by T[f]JP(x) =
H°(P\f*Tx®f0). Clearly Jo = 0(-l) on P1. Since /*(7V) = O(ax)
0 ••• ®0(an_,)®Ot with all ak > 0, and since i /^P1 , ^(-1)) = 0 and
H°(P\ &(y)) = y + 1 for y > 0, we obtain that J^(x) is smooth of dimen-
sion EJJlî A- = ? < w + 1. Consider now the variation of a = [TX(C)] as [C]
varies in a neighborhood of [Co] in #(x). Suppose Co = /oCP1). It is equivalent
to consider the variation of df(£) for a nonzero holomorphic vector £ at
O E P 1 , as / varies in a neighborhood of /0. Given any section s of
H°(P\f*Tx (8) </0) = T^jJf (x) there is a one-parameter family {/,} of maps
in J$?(x) such that f0 is as given and ftft(

z) I t=o = 5(z)- Write a0 =
The tangent to [/̂ (IP1)] at x is given by

We can identify TaJPTx(X)) with C-linear subspaces of TX(X) containing
Ca0 and thus with Tx(X)/Ca0. With this identification it is then clear that

Recall that f*Tx = 0(ax) © • • • e^(aw_,) 0 ff7 with ^ > • • • ^ ^w_7 > 0.
Let vk be a basis of the complex line at 0 corresponding to the A:th component
line bundle ®(ak). (We write an_/+1 = •• = an = 0.) Then observing that

we obtain

= E C/»(

In fact there exists a section s e i/0(P1,/*rA^ ® J^o) with s(0) = ŷ  if and
only if flA > 0. Thus r a o ( ^ ) is of codimension / in TaQ(PTx(X)) so that S? is
of codimension / in PTX. The assertions of the first part of the proposition are
thus completed.



200 NGAIMING MOK

(2.4) Construction of ^\ Part II. In this section we are going to prove
Proposition (2.3) for the case q = n + 1, X£ Pn, and f*(Tx) = 0(2) e
^(l)""1 for a generic [/] e jf. As in (2.3) consider the holomorphic P^bundle
#: S+-* % given by £ = 3f?X Aui(pi) P1. Let 2 c # correspond to the set of
special rational curves. Consider the meromorphic mapping ©: $*-> PTas in
(2.3). Our main question is to study the map 0|^2 , where d2 = ir~l(2,). We
are going to prove that 2 is of codimension one in # and that 01 ̂  is of
maximal rank = 2n — 2. By Mori [20] we may assume without loss of general-
ity that for each x e X there exists some rational curve [/] e Jf (x) such that
f*(Tx)£ 0(2) 0 (P(l)11"1. Let ^ 2 c d s consist of points where 0 is not
holomorphic. Given 0|^v is of rank 2 n - 2 we conclude then that for Sf

P7; is generically of codimension one in PTx, as
Sf projects to all of X.

We proceed to prove
Lemma (2.4.1). 2 c $ is of codimension one.
Proof. Equivalently we need to prove i^ c ^ is of codimension one. The

set ^*c i where 0 is not holomorphic consists precisely of points correspond-
ing to singular points of rational cycles [/(P1)] e #, excluding self-
intersections of smooth pieces. We are going to show that, on $ — Y*, <#2 can
be identified with the branching locus of 0. Since f*Tx = 0(2) 0 0(l)"~l for
a generic rational curve [/] e ^ , the argument of (2.3) shows that 0 is of
rank In - 1, 0(<#- "T) = PTX. But dimc<#= 1 + d i m c ^ = 1 + (n + 1) +
/ i - 3 = 2 w - l , 0 i s a local biholomorphism at generic points. Thus # 2 - ^
is of codimension one in i. Since clearly <l2 = S^ — ̂ (every rational cycle
contains at least one smooth point!), we can thus conclude the proof of the
lemma. We identify S with ^ = ̂ 7XAut(Pi) P

1 = JfX Pl/R for the equiva-
lence relation ([/], z) - ([g],w>) if and only if g = f ° <p and w = <p-1(z) for

some (peAuttP1). Then, at {[/],*} =f([/],z) modi^ we can identify

{[/U} w i t h a quotient space of T[f](Jf) + ^(P1). More precisely, letting
T7: H°(P\Tpl) ^ H°(P\f*Tx) = T[f](JtT) be induced by / and rf(-s) =
(rf(s),-s(z)), then

T{[flz}(£) ^ H°(p\f*Tx) + ^ ( P ^ / r ^ i / ^ P , ^ ) ) .

We are going to compute Ker</©({[/], z}). On some open neighborhood £/of
x = /(z) identify PT^ with f/ X P""1, in terms of local holomorphic coordi-
nates. Then, we can write 0 = (a,0 r) where a({[g],w}) = g(w) is the com-
position of 0 with the natural projection PTa^> P"~l. For (s9 v) E:
H{\P\f*Tx)+Tz(P

l) write [s9v] for (s,v) modrUH°(P\Tpi). Clearly
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[s, u] = [j',0] for some s' e H°(P\f*Tx). We compute first Kerda({[f]9 z}).
It is easy to verify that we have the formula

so that do([s, 0]) = 0 if and only if s(z) = 0. Thus, we have

KerJ0{[ / ] , z} c {[s,0]: s e / / ^ P 1 , / * ^ ) vanishes at z}

= H°(p\f*Tx

where Jz = ideal sheaf of ( z ) on P 1 and [/'] e J? (JC) is the element of
defined by / , sending the distinguished point z to x. (In (2.3) we used 0 to
denote the distinguished point.) Now, d®\f[y]z^([s,0]) = 0 if and only if
s(z) = 0 and </0'([j,O]) = 0. For any s e H\P\/*TX 0 J^z), there exists a
complex one-parameter family {/,: t e A(e)}, A(e) denoting the disc of radius
e centered at 0, such that f0 = / , ft(z) = x, and 9/y3r = 5 on P1 . (Recall that
Hl(P\f*Tx <8> >,) = 0.) Let w be a local parameter of P 1 at z with w(z) = 0
and suppose (3//3w)(z) = TJ ̂= 0. We have assumed that / is unramified at z.
Choose local holomorphic coordinates (f1?- •-,?„) at JC such that ff.(jc) = 0,
1 < / < ft, and TJ = c8/8f1? c ^ 0. Then we can write

X =

Thus

giving

In particular for j e H°(P\f*Tx <E> J^), [5,0] e Ker J 0 r | { [ / ] z} if and only if
(8x/3w>)(z) = 0. This happens if and only if s vanishes to an order > 2 at z.
Hence, Ker d&{[/1] z] # 0 if and only if

For a generic [/]^^f, f*Tx = 0(2) 0 0(l)n~l, so that all holomorphic
sections s of f*Tx vanishing to an order > 2 must come from i/°(P1, rpi),
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while for a special rational curve [/] e 2 (and z a point where / is unrami-
fied), H°(Pl,f*Tx $ J2) has at least two linearly independent holomorphic
sections, so that we have

H°(P\f*Tx®J?z
2)/Tf(H°(P\Tpi ®J?Z

2)) # 0,

if and only if [/] e 2. This proves the assertion that on <#- ^ , ^ identifies
with the branching locus of 0. The proof of the lemma is complete.

The main point of the second part of Proposition (2.3) is the assertion that S?
is of (pure) codimension 1 in PTX. Given Lemma (2.4.1), we have to show that
®\&-r ls °f maximal rank equal to In - 2. We offer here a plausible
argument and explain why it is insufficient. Suppose ®\^_r- is not of
maximal rank. Then for a generic [a] G y , there will be a positive-dimensional
sub variety of S^ — "V being mapped to [a] by 0. Since X is projective
algebraic, so is <l2. It is then easy to find a one-parameter family of special
rational cycles [C] and a corresponding P1-bundle E over a nonsingular
algebraic curve F such that some distinguished holomorphic section Fo of E is
mapped to [a] e Sfx under 0. Suppose each C is nonsingular except for
self-intersections. Consider the natural map a: E -> X. Then the normal
bundle of F in E is holomorphically trivial because da(NT^E) = Ca while F is
blown down by the map a to a point. This would contradict the criterion of
Mumford-Grauert (Theorem D) on blowing down curves. It is possible to
prove a priori that almost all special rational curves are unramified. However,
one cannot conclude the existence of E because the mapping 0 is only
meromorphic on <?s. It may well happen that every family F of such rational
cycles thus obtained carries a rational curve singular at x even though most
special rational curves are unramified. (Here and from now on a singular
rational curve [/] means an / : P1 -> X which is degenerate somewhere.) To
overcome the problem arising from the indeterminacies of 0, we are going to
construct instead a one-parameter family of special rational cycles [C] over a
nonsingular algebraic curve F such that the corresponding P ̂ bundle E admits
two distinguished holomorphic sections Fo and F^ blown down by the natural
map a': E *-> X. As was shown in Mori [20], this would also contradict the
criterion of Mumford-Grauert. In the simple form that we need, it can be seen
simply from

Lemma (2.4.2). Let tnf: E >-> T be a holomorphic P1-bundle over a nonsingu-
lar algebraic curve F. Suppose there exist two nonintersecting holomorphic
sections Fo and F^ of E over F. Then

Consequently NT^E and Nr^E cannot be simultaneously negative.
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Proof. FT | F_T\ E - F, •-> F (/ = 0, oo) can be regarded as a holomorphic
line bundle with F^, Fo resp. representing the zero section. The lemma then
follows immediately by observing that the system of transition functions are
inverses of each other.

In order to construct IT: £ ^ F w e first prove a criterion for its existence.
Then we will deduce this criterion from the hypothesis that 01 £^-y is not of
maximal rank.

Lemma (2.4.3). Suppose for a generic special rational curve / : P1 •-> X and
for any two points zv z2 e P1 there exists s e H°(Pl,f*Tx) verifying s(zx) =
s(z2) = 0, s £ Tf(H°(P\Tpi))9 such that, after identifying 7}(pi}(#) with
H°(P\f*Tx)/rf(H

0(P\Tpi))9 s modrf(H
0(P\Tpi)) belongs to r[ / (Pi}](2).

Then there exists a one-parameter family of special rational cycles [C] parame-
trized by a nonsingular algebraic curve F such that for the corresponding
holomorphic P]-bundle IT: E •-> F, there exist two nonintersecting holomorphic
sections Fo and F^ of E over F with negative normal bundles, contradicting with
Lemma (2.4.2).

Remark. In terms of the P1-bundle TT: #*-*<&, m'\ E ̂  T is obtained by
taking some possibly singular Fr c ^ , and normalizing the P1-bundle #|^r#:

ir -> rr, i=^-1(F/).
Proof of Lemma (2.4.3). We construct first of all some local one-parameter

family of special rational cycles containing two distinct points x, y e X.
Consider the complex manifold #"c J?x X2 defined by

ar= {([ / ] , / (0) , /(oo)): [/] is a special rational curve}.

At w G r , let 8(w) be the dimension of

T[f{P>)](2)nH°{P\f*Tx®S0®^)modT^

By the hypothesis, 8(w) > 1 for a generic w. There is an open subset (in the
complex topology) fl of iT such that fi is nonsingular and 8(w) is a constant.
Write w = ([/], /(0), /(oo)). Shrinking fi if necessary, one can define a holo-
morphic mapping /x: £2 •-> r(2) such that

/ i(n;)e 7-^^ , (2) n i ? ° ( P \ / * ^ ® > b ® y J i i K ^

and /x(w) # 0 for all w e fi. Consider i f as a graph over 2. For w e i2
there is a bijection between r[ /(Pi}](2) and rw(7F). In this bijection
(s mod rf(H°(P\ Tpi)) e r[/(pi}](2) corresponds to

(jmodT /(i /0(P1 , rp.)) , 5(0), 5(00)) e Tw(iT) c
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Since /x(w) is represented by some s vanishing at 0, it follows that (^(w), 0,0)
G TA^)- T h e assignment w -> (/z(w),0,0) can then be regarded as a non-
vanishing holomorphic vector field on ft. Fix some /0 such that w0 =
([/oL/o(0)>/o(°°)) belongs to £2. Choose furthermore / 0 so that / ^ ( / o ^ ) ) =
(0) and /o'H/oC00)) = °°- L e t {wr \*\ < e} be a holomorphic integral curve of
the holomorphic vector field w -» (/x( u>), 0,0). In other words,

^ - (/iK),0,0) f wo = ([/0],/o(0),/o(oo)).

In particular, writing wt = (/„ /,(0), /,(oo)) we have

/ , ( 0 ) = / 0 ( 0 ) , /,(«>) =/ 0(oo) f o r a U | / | < e .

Thus, we have constructed a local family of special rational curves containing
the distinct points /0(0) and f0(oo). Consider now the subset F c S consisting
of all special rational cycles passing through x =/0(0) and y = /0(oo). Our
construction implies that the analytic subvariety F c 2 is of positive dimen-
sion. Clearly, there exists a complete algebraic curve T' c 2 , possibly singular,
such that [f(P1)] E F . (Recall that <& is algebraic since V is.) Let v: T -> V
be the normalization of I". T is nonsingular. Write ST, = TT~1(T'). Then ft \ #r,:
^ r , ^ Tr is a holomorphic P^bundle. Write E = v*(£r). Then IT: E -> T
thus defined is a holomorphic P ̂ bundle over a complete nonsingular algebraic
curve. Furthermore since [foiP1)] e T', /o"1^) = {°}?

 a n d /
over a generic point y E f there must exist unique points ay,by e ir l(y) such
that fy(ay) = x, fy(by) = y for the natural mapping a': E •-> X induced by
the mapping a: <#-> X. Thus for {o')~l{x} = Fo and (o')~l{y] = F^, fl"'|r0

:

Fo -> F and TT' | r : F^ -> F must be one-to-one and hence a biholomorphism
(by the Riemann extension theorem for bounded holomorphic functions,
applied to inverse functions). Thus, Fo and F^ are nonsingular. They must be
nonintersecting by definition. The proof of Lemma (2.4.3) is complete.

Now we are going to verify the hypothesis of Lemma (2.4.3), assuming that
01 s%-r is n o t °f maximal rank, i.e. 2n - 2, hence proving Proposition (2.3)
by contradiction.

Proof of Proposition (2.3). We use the notations of Lemma (2.4.1). Recall
that one can identify T^^i^^) with

H°{P\f*Tx) + Tz(P')/r;{H°(P\Tpl)).

With this identification we know from Lemma (2.4.1) that

Ker d% | {{fU) = H°(P\f*Tx 9 ^)/rf{H°(P\ rP. 9 J2
2))

-» H°{P\fTx) + Tz(P
l)/
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Suppose now that 01 ̂ v _ y is not of maximal rank. This would mean that at
each point {[/],z} e <#2 - r, KerJG| { [ A z } n T{[fu)(S^) * {0}. Let

[/(P1)] G 2 be a smooth point. For every point z e P1 where / is unramified,
let [sz,0] e H°(P\f*Tx ® J2) + {0}) mod r}(H\P\ Tpi)) belong to
ker J01 {[A _} n r { [ / ] ^ } (4 ) . Let TT*: r([Az}(<#2) -> T^pi^S) be induced by
TT: «?̂ > «\ Then, #•([$„ 0]) = sz modrf(H°(P\T^)) e 7^1^(2) . The cru-
cial observation is that all C-linear combination of such sz will also lie in
T[f{pl)]C2). We will use them to generate holomorphic sections tangent to 2
and vanishing at two distinct points.

First we assert that if f*Tx has at least two trivial components in the
decomposition into holomorphic line bundles, then the criterion of Lemma
(2.4.3) is automatically satisfied. In fact, in that case H°(Pl,f*Tx ® JQ <8> J2^)
is of dimension at least three, while rfH°(Pl, Tpi ® JQ ® J^) is of dimension
1 so that there are at least two sections sl9 s2 which vanish at 0 and oo and
which are C-linear independent modrfH°(Pl, Tpi ^JQ^J^). This means
that there must exist at least one such s such that s mod i/°(P1, Tpi 0 Jo ® ̂ r

00)
is tangent to 2, as 2 is of codimension 1 in ^, if nonempty. Thus, the criterion
in Lemma (2.4.3) is automatic.

Thus, for a generic special rational curve, we have either f*Tx = 0(3) ©
(9(\)"-2 © 0 or f*Tx s 0(2) © 0(2) © 0(\)nZ © 0. In either case one can
show that if ©|^_^ is not of maximal rank, then the criterion of Lemma
(2.4.3) is satisfied. However, we are going to prove the complete statement of
Proposition (2.3) by ruling out the former possibility. If f*Tx= 0(3) ®
0(\)"~2 © 0 then / : P1 -> X must be ramified since any nontrivial bundle
homomorphism v\ 0(2) = Tpi ^>f*Tx= 0(3) © 0(l)n~2 © 0 is degenerate
at a unique point. Now let / be ramified at 0, say (the point being unique).
Suppose without loss of generality that n > 3. (If n <.2 Proposition (2.3) is
valid because of Howard-Smyth [11].) For n > 3, by counting dimensions one
knows that there exists some [/(P1)] e l , a 1-dimensional family J*"r = {[/,]
= r e r c j f } o f rational curves / ' P ^ I ^ E T , such that /,(0) = /(0) =
x, /o=.A [ / / (P 1 ) ]^^ and J^r intersects the Aut(P;0)-orbit {/°cp: e e
Aut(P; 0)} in Jf transversally. Let 0 be a tangent vector of T at 0. Identify 0
as an element of H°(P\f*Tx ® </0). Recall that / is ramified precisely at 0. If
the vanishing order of 0 at 0 is precisely one then one sees by expanding in
local coordinates that fy is unramified for y e T sufficiently close to 0,
contradicting the fact that every generic special rational curve is ramified. So,
0 <= H°(P\f*Tx 0 y0

2). However, since f*Tx = 0(3) © 0n~2(l) © 0, every
such 0 comes from rfH°(Pl, Tp\ ® JQ), f being ramified at 0. This contradicts
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the transversality between J^r and {/ ° <p = <p e Aut(P; 0)} and rules out the
possibility /*Tx s 0(3) © 0(l)"~3 © © for generic rational curve.

We are now left with the situation where for a generic special rational curve
/ : P1 -> X, f*Tx = 0(2)2 0 0(l)"~3 0 0. In this case all generic special
rational curves / : P1 -> ^ are unramified, and Tp\ can be regarded as a
holomorphic direct summand of f*Tx. Then T^pi^G) = H°(P\Q(2) Q
0(\)"~3 © 0). Suppose ®\^> _-r is not of maximal rank. Let sz be a section in
H°(P\ 0(2) © 0(1)"~3 © 0) vanishing at z to the second order. sz is unique
up to a scalar multiple. Suppose [/(P1)] is a smooth point of 2. Then sz

modrf(H°(Pl, Tpi)) G 7^1^(2) . By taking C-linear combinations of sz we
conclude that H°(P\0(2)) modrfH°(P\Tpl) c T^pi^S), where 0(2) de-
notes a component of f*Tx = 0(2) © 0(1)"~3 © 0. In particular, for any
zv z2, zx * z2, there exist 0 * s modrf(H

0(P, Tpi)) G ^ ^ 1 ^ ( 2 ) such that 5
vanishes at zx and z2, proving the criterion of Lemma (2.4.3). Since this
criterion leads to a contradiction to the criterion of Mumford-Grauert on
blowing down curves, we have proved that ©|^2_^ is of maximal rank,
completing the proof of Proposition (2.3).

3. Invariance of ^ under holonomy

(3.1). Let (X, h) be as in §2, XmPn, and y c PTX be constructed from
deforming rational curves of minimal degree, as in Proposition (2.3). Sf<zPTx

is an irreducible complex-analytic subvariety by construction. For x e X, let
HX(X) denote the holonomy group of (X, h) at x. All HX(X) are isomorphic
as Lie groups. Every simply-connected complete Riemannian manifold admits
a de Rham decomposition into irreducible factors. If there is no flat factor, the
decomposition is unique up to permutation. Furthermore, if the Riemannian
manifold admits no flat factors and is Kahler, then the de Rham factors are
also Kahler. Since our Kahler manifold X is simply-connected, compact,
verifying b2(X) = 1, it follows immediately that (X, h) is irreducible as a
Riemannian manifold. In fact, if (X, h) s (Xx, hx) X (X2, h2) with Xl9 X2

compact Kahler, then the Kahler forms of (Xi9 /*,), / = 1,2, would give rise to
two R-linearly independent classes of H2(X,R). For simply-connected irre-
ducible complete Riemannian manifolds, we have

Theorem (Berger [4], Simons [21]). Let (M, g) be an irreducible, simply-
connected, complete Riemannian manifold. Then, either (i) for all x e M,
HX(M) acts transitively on the unit sphere of the tangent space at x; or (ii)
(M, g) is an irreducible Riemannian symmetric space of rank > 2.

Clearly, for a compact Kahler manifold (X, h), the second alternative would
mean that (X, h) is a compact Hermitian symmetric space of rank > 2. Thus,
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to prove Theorem 1 and hence the Main Theorem, it suffices to show

Proposition (3.1). Suppose X is not biholomorphic to Pn and SfcPTx is
constructed as above. Then Sf is invariant under parallel transport.

Let y: (-8, 8) *-> X be a curve on X with y(0) = x, y(t) * 0 for -8 < t < 8.
Let v be a real tangent vector at 0. Then the parallel transport of v along y is
the unit vector field v(t) on y such that VW)v{t) = 0 and v(0) = v. Clearly
the notion of parallel transport extends to complexified tangent vectors. On a
Kahler manifold, tangent vectors a of type (1,0) will be transformed to
tangent vectors a(t) of the same type under parallel transport. Clearly, for any
complex number c, the parallel transport of ca along y is given by ca(t), so
that we can talk about parallel transport of the complex line Ca along y.
Equivalently, the holonomy group HX(X) acts naturally on PTX. Proposition
(3.1) asserts then that Sfx c PTX is invariant under HX(X) under the induced
action. We remark here that Proposition (3.1) implies that the second case of
our construction of Sf does not correspond to a real situation. In fact, for an
irreducible compact Hermitian symmetric space X, q = n + 1 if and only if
X = P'\ in which case there certainly exists no subset of PTX invariant under
holonomy. However, I do not know of any a priori method of ruling this case
out.

In order to prove Proposition (3.1) we state first a lemma which says that Sf
is invariant under parallel transport if and only if it is true infinitesimally. To
start with we need some definitions. Recall the notion of generic rational
curves and generic special rational curves [/] in Part I and II respectively of
Proposition (2.3). In the former case write f*Tx = 0(ax) 0 • • • O(an_t) 0 0l

with ax> • • • > an_t > 0, / ¥= 0. In the latter case we have f*Tx = &(2)2 0
0(1)"~3 0 6. We will say that [a] 6 ^ is a generic point of ¥ if there exists
a generic rational curve (respectively a generic special rational curve) / :
Pl >-> X such that /(0) = X, f is unramified at 0, and df(&) = a for a local
holomorphic parameter z at 0. In this case we have T[a](Sfx) = Vx/C c
T[a](PTx), where Vx c TX(X) corresponds to the direct sum of positive compo-
nents in the line bundle decomposition of f*Tx. The proof we gave in Part I of
Proposition (2.3) extends in an obvious way to the case of generic special
rational curves of Part II, given, in the terminology of (2.4), 0\^_ir is of
maximal rank. Clearly, T[a](S?x) c Vx/Ca. One has in fact T[a](Sfx) = Vx/Ca
by counting dimensions since dimc T[a](Sfx) — dimFx /Ca = n - 2. It is clear
that for a generic [a] of Sf, [a] e 5^, [a] is a smooth point of both S?x and S?.
We now state

Definition. Let [ a ] ^ y v be a generic point of y. We say that Sf is
infinitesimally invariant under parallel transport at [a] if for any smooth curve
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y: (-8,8) -> X verifying y(0) = x and y(0) = TJ # 0, and for any smooth
mapping a: (-8,8) -> 7^ verifying [a(0] G ^(o> w e ^ a v e V,,a(0) G Ĵ .. We
will say that S? is infinitesimally invariant under parallel transport if it is so at
every generic point fa] of S?.

We can now state our lemma
Lemma (3.1). Suppose 9* is infinitesimally invariant under parallel transport.

Then it is invariant under holonomy in the sense that Sfx is invariant under the
induced action of HX(X) for all x G X.

Proof of Lemma (3.1). Let [a] E ^ be a generic point of Sf. Let y:
(-8,8) -> X be a smooth curve verifying y(0) = 0, y(t) = TJ, # 0, -8 < / < 8.
Let a,: (-8,8) •-> 7^ be obtained from a0 = a by parallel transport along y,
i.e. <xt G ry ( 0( A') and Vy(0«, = 0 on y. We assert that [at] G 5^(/). This will
prove the lemma. In fact, let X: [0,1] be any smooth function (up to end
points) on X such that X(0) = X(l) = j ; e l a n d let [/J] e ^y. If [/?] is a
generic point of Sf and X is real-analytic up to end points, then since our
assertion implies [/?,] GSfX(i) for / sufficiently small it follows immediately
that for all f, 0 < t < 1, [j8J G y X ( 0 from the identity theorem of real analytic
functions. Since any smooth curve can be approximated by real-analytic curves
it follows that the same is true for smooth loops X, whenever [/?] e £fy is a
generic point of 5P. Since the set of generic points [/?] of ^ is dense in 5^, it
follows immediately that Sf is invariant under holonomy (and as a conse-
quence that & is nonsingular). To prove the assertion [at] G ̂ ^ let, without
loss of generality, ||a|| = 1. Write S c Tx for the set of all unit vectors /? such
that [ j8]G^. Define r: (-8,8) -* R by r(t) = d(at; S?) where rf is the
Euclidean distance in terms of some local Euclidean coordinates of S? at a.
Shrinking 8 if necessary, we may assume that r is well defined and that r2 is
smooth on (-8,8). It is immediate from the definition of infinitesimal invari-
ance under parallel transport to deduce that at is tangent to Sf at a. Suppose
Ptesry{t) is a point of Sfy{t) such that d(an Sfy{t)) = d(anfit). Then, to
transport at in a parallel way along y starting at y(t) it is equivalent to take
the sum of the parallel transports of /?, and at - /?,. For t sufficiently small,
[/?,] is also a generic point of Sf (the set of generic points being open). We see
immediately that there exists a positive constant C such that

jtr(t)<Cr(t) f o r r ( 0 * 0 , r ( 0 ) = 0,

Thus, for any t0 > 0 sufficiently small,

l o g r 2 ( 0 < log r2(to) + 2C(t - to) for t o ^ t < fi.
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Letting t0 »-> 0 we see immediately that r = 0 (similarly for -8 < t < 0). This
proves the lemma.

(3.2) The infinitesimal invariance under parallel transport. To prove Pro-
position (3.1) it remains to show

Proposition (3.1)'. 6^(Z PTX is infinitesimally invariant under parallel trans-
port.

Proof. Let [a0] e Sfx be a generic point of &>. Let y: (-8,8) ^ I b e a
smooth curve on X such that y(0) = x and y(0) = TJ =£ 0. In this section we
write /}(/), -8 < t < 8, /}(/) e Ty(t)9 for the parallel transport of a along y (in
place of the notation a,). Thus 0(0) = a0 and VY(Oj8 = 0. Let a ( 0 e rY(0 be
such that a(0) = a0, [a(0] e ^(/>> a n d a : (~8>8) *+ Tx i s smooth. At each
y(/), let Ny(t) be the null-space of the Hermitian bilinear form i/a(,} defined by
Ha(t)(^ V) = Raitwjjtrf L e t ̂ y(o b e t h e orthogonal complement of Jfy{t) + Ca
in Ty(0( A"). We are going to prove

Proof of (I). Write

(l) j8(0 = «(0+ ^(0 + ̂ (0, «(0 6 f l y ( O , i : (0^ y ( O .
We have by the definition of /?

(2) 0 = v,jB(O) = V,«(0) + i + f, * = £(0), f = £(0).

To prove (I) it suffices therefore to show that f = 0. Consider the vector field
X(t) along y obtained by parallel transport of f, i.e. x(0) = f and V7( r )x = 0.
Write

(3) x(') = r(0 + tf(0. r ( ( ) ^ Y ( 0

Consider now the expansion

Using results from §1, we have

(5) ^ = (Ra&B9

= 5 + R

Consider the expansion

R(a + tf, a T l f , f + /S,
then ^ is the coefficient of t2 in the expansion. Since R ^ 0 and # a g ^ = 0, it
follows that B > 0. Thus,

(6) A>Raa+2ReR&a.

We assert that Rgg = 0. For this we are going to make use of structural
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equations on the curvature tensor arising from evolution equations. Recall that

(7) 0 < A*aStf = YtR«*X - ^ W

Here we are considering some evolved metric htj = gjj(to\ tQ > 0, and A is
taken with respect to h. Since we know that {X,gtj{t)) carries nonnegative
holomorphic bisectional curvature for 0 < t < some e, taking 0 < t0 < e, we
see that i,Ra^ = 0 at t = t0. (Recall Ra^(t0) = 0.) Moreover by §1, (1.2)
we know that at t = t0.

(8)

Combined with (7) this forces

(9)

(10)

We are going to derive R^ = 0 for £ e jVy^t) and f G J^y(t) by using (10).
As in §1, equation (12), let {e^} be an orthonormal basis of T(X) consisting of
eigenvectors of Ha so that RaSll > Raii22 > • • • > Raamm > ° a n d ^««// = °
for / > m. Recall the inequality (13) of §1 for x = ^ for 5 ^ = RaHv

Namely

(») ^

However, since F(R)aS^> LaJRa?of\
2 and F(R)a&a = 0 by (9), we have

R*t,* = 0 a n d t h u s

Recall the inequality ^(/iJag^ > 0 was obtained by adding the inequalities
(13) of §1 (reduced to (12) here using (10)) with x = *V Equation (10), i.e.

^ = 0, then forces (12) to be an equality for all /A, 1 < /x < m, i.e.

R L

Now inequality (11) is valid for any x in place of the basis vector e^ Moreover
Sfv^ is replaced by Sf x = Ra-S- + Ra£x-V = Rax^. Consider now the special
case of x = ^ + <& Then ^ x = R^. +eRa& = RafLSf = S?^ and we have
the inequality

(14)
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for any real e. From (14) we obtain the variation equality

(15) £*(*, + ££, vF^;J\?)| =0,

since the function under consideration attains its minimum at e = 0. Expand-
ing (15) we obtain

(16) 2 R e / ^ - = 0.

Clearly one can replace e^ by e^e^ for any real 0 without changing the
preceding argument. As a consequence, we obtain

Rtftf = ° f o r l ^ P ̂  m>

and thus
m

(17) *tftf = 0 fo r | e^ ) = I CV

Now equation (17) implies by (6)

(18) A > Rm.

Recall by (3) that A = (d/dt2)R(/l(t), W); x(0, xT^T), /8(0) = a, X(0) = f,
and Vt(/)j8(/) s vdt(Ox(O s «• Thus, for T, = 7(0)

(19) Vs
2r?/?a5?f- = A > Rim.

On the other hand, equation (9), i.e., hRaSfi = 0, and Vu
2/?a5?f > 0 for all real

tangent vector v at y(f) imply

(20) V^j-O,

so that (19) forces

(21) %tf = 0.

However, as was proved in §1, Proposition (1.1), (X,h) carries positive
holomorphic sectional curvature. It follows immediately from (21) that

(22) £ = 0,

and thus

(23) v^(0) = - $ - £ = ̂ e C « + %(0) = Jr^y

The proof of (I) is complete.
Proof of (II). We are going to show JTy^ c ^ ( 0 ) , where KY(0) c ry(0)

corresponds to the positive components of the line bundle decomposition
f*Tx = Oia^ e • • • e(P(a,) e 0 " - / , « ! > • • • > a, > 0, for a generic (re-
spectively generic special rational curve) rational curve / : P 1 •-> X verifying



212 NGAIMING MOK

/(0) = y(0), and df(T0(P
1)) = Ca. (In the latter case ax = a2 = 2; a3 = • • •

an-\ = 1.) We are going to relate holomorphic bisectional curvature and the
line bundle decomposition of f*Tx. Let 0 denote the curvature tensor of the
dual cotangent bundle T£ in terms of the metric induced by h. We assert
(*) For any JU* e Ty*0) such that M*(Fy(0)) = 0, we have 6 M V a a = 0.
To prove (*), consider first of all the direct sum decomposition

f*(T*) = ^(-flj) e • • • G0(-at) © On-1.

Write f*Tx= V © W for the decomposition into the positive and the trivial
parts, i.e. V = L | = 1 0{a t \ W = On~l. Write H^# for the annihilator of W, etc.,
i.e.

W* = {/i*G ( / • ( 7 * ) ) j p * ( w ) = }

Then the decomposition of f*(T£) corresponds to f*(T£) = W* 0 F # , with
W* = Ui-xQi-at) and V* s (?w"7. Let 0 K # denote the curvature of the
holomorphic vector subbundle F # c / * ( r / ) . Identifying (f*T£)0 with
Ty*0)(X), and writing Fy*0) c Ty^0)(X) for the C-subspace corresponding to
Fo

#, etc., we have

However, since V* = Gn~~l and 0^* a f i < 0 because (X, h) carries nonnega-
tive holomorphic bisectional curvature, the preceding inequality forces

®^V«« = %*V*aa = 0 for M* G FYTO)*

This proves assertion (*).
Recall that if \x e. Ty(0)(X) is such that JU and /A* correspond to each other

under the contraction by the Kahler metric, i.e., in local holomorphic coordi-
nates

M*=

then we have 0 M V a S = -

or

However, under the correspondence by contraction, /**(Fy(0)) = 0 if and
only if

, 3

i.e.,

' = 0 for all v= L ^

tj /i.
7 *;' = 0 for all such v,
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i.e. (y, ju> = 0 for all such v. Thus ft*(Ky(0)) = 0 if and only if \i ± Vy(Oy Hence
we have obtained

Ra«m = ° whenever /i ± Vy(Oy

It follows that JTy{0) D ryfc)9 i.e., ^ ( ^ c ^ ( 0 ) , proving (II). The proof of
Proposition (3.1) and hence of the Main Theorem is complete.

Added in proof. In both Mok-Zhong [17] and the present article the proofs
rely on the remarkable vanishing of many curvature terms Rjjki in terms of a
basis consisting of eigenvectors of the Hermitian form # a (£ , y) = Raa^ asso-
ciated to some vector a of type (1.0). We are led to guess the vanishing of such
terms from a very special property of the curvature tensors of Hermitian
symmetric spaces X: Let a be any tangent vector of type (1,0) at x e X and
let {e t} be a basis of T}*°(X) consisting of eigenvectors of the Hermitian form
Ha. Then RiJkl = 0 unless Rasn + Ra-ak-k = RaSjJ + RaSLl. This property of
Hermitian symmetric spaces follows from vR = 0 and from computing the

commutation 0 = Rijk^adi - ^/;*!,«« = Rijki(R«an + Raakk ~RCL«J] ~ *aal ) -
As an example see equation (17) in the proof of Proposition (3.1)' of the
present article.
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