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THE YAMABE PROBLEM ON CR MANIFOLDS

DAVID JERISON & JOHN M. LEE

1. Introduction

The geometry of CR manifolds, the abstract models of real hypersurfaces in
complex manifolds, has recently attracted much attention. This geometry is
richest when the CR manifold is "strictly pseudoconvex," in which case there
are many parallels with Riemannian geometry. (See the recent survey article by
M. Beals, C. Fefferman, and R. Grossman [2] for a nice overview of these
parallels.)

There are two complementary approaches to the study of CR geometry. The
first is via the Levi form, & hermitian metric on complex tangent vectors; the
second is via the Fefferman metric, a Lorentz metric on a natural circle bundle
over the manifold.

Both of these geometric structures are determined only up to a conformal
multiple by the CR structure. A choice of multiple of the Levi form is called a
pseudohermitian structure on the manifold; such a choice also determines the
multiple of the Fefferman metric.

The state of affairs suggests that, in order to find CR-invariant information,
we proceed by analogy with conformal Riemannian geometry, in which a
Riemannian metric is given only up to a conformal factor. A common strategy
in conformal geometry is to choose a particular conformal representative for
the metric which is normalized so as to simplify some aspect of the geometry.
For example, the Yamabe problem on a conformal Riemannian manifold is to
find a conformal representative for the metric that has constant scalar curva-
ture. It is this problem that we generalize to CR manifolds in this paper.

An obvious analogue of the Yamabe problem for a CR manifold would be
to find a pseudohermitian structure for which the associated Fefferman metric
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has constant scalar curvature. Alternatively, S. Webster [26] has defined a
scalar curvature associated with a pseudohermitian structure, and it is shown
in [16] that these two notions of scalar curvature coincide.

Thus we are led to the following CR Yamabeproblem: On a compact, strictly
pseudoconvex CR manifold, find a choice of pseudohermitian structure with
constant (Webster or Fefferman) scalar curvature.

Our main result is Theorem 3.4, which can be summarized as follows: There
is a numerical CR invariant λ(N) associated with every compact, orientable,
strictly pseudoconvex 2n + 1 dimensional CR manifold TV, which is always
less than or equal to the value corresponding to the sphere S2n+1 in Cn+ι. If
λ(N) is strictly less than λ(S 2 " + 1 ), then N admits a pseudohermitian struc-
ture with constant scalar curvature.

This result was announced in [14]. S. S. Chern and R. Hamilton [5], studying
contact structures on 3-manifolds, have independently obtained a result which
is equivalent to our existence assertion in the case λ(N) < 0 and n = 1.

The proof of the main theorem in many respects parallels that of the
analogous theorem for conformal Riemannian manifolds, due to H. Yamabe
[27], N. Trudinger [24], and T. Aubin [1]. In §2 we describe the Riemannian
theorem and sketch its proof, as a way of charting our course. At the end of
the section, we explain a technical difficulty in the CR case, which makes our
proof longer.

§3 contains the definitions and facts about CR and pseudohermitian struc-
tures we will need, and the proof of the CR invariance of λ(N).

In §4, we describe normal coordinates due to G. Folland and E. Stein [9]
which closely approximate the given pseudohermitian structure of N near a
point with that of the Heisenberg group, and use these to prove that λ(N) <
λ(S2n+ι).

In §5, we summarize some Sobolev-type inequalities and regularity estimates
for CR manifolds due to Folland and Stein, and use these to prove various
regularity theorems for the Yamabe equation (3.2). §6 contains the proof of
existence of solutions under the assumption λ(N) < λ(S2n+ι).

In §7 we describe our progress to date on the question of uniqueness of
solutions to the CR Yamabe problem. In the case of the sphere, this is the
problem of identifying the extremals for the Heisenberg group analogue of the
classical Sobolev lemma.

We would like to thank Karen Uhlenbeck for first introducing us to the
Yamabe problem, and Sigurdur Helgason, who introduced us to the conform-
ally invariant Laplacian on a Lorentz manifold, in connection with his work on
Huygens' phenomenon [10].
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It will become apparent throughout the rest of this paper that there is a

far-reaching analogy between conformal and CR geometries. The following

table summarizes the most important parallels that will be discussed below.

Conformal Geometry CR Geometry

Riemannian manifold (M, g) Pseudohermitian manifold (N, θ)

Euclidean space Rm Heisenberg group H"

m-sphere Sm in Rm + ι In + 1-sphere S2n+ι in C " + 1

Stereographic projection Cayley transform

Riemannian normal coordinates Folland-Stein normal coordinates

Scalar curvature K Webster scalar curvature R

Laplace-Beltrami operator Δ Sublaplacian ΔA(ReDΛ on functions)

Sobolev spaces Lk Folland-Stein spaces Sr

k

Sobolev embedding h\ C Lq

% \ = \ - £ Sobolev embedding Sf c Lp

y ~ = \ - ^~^

Conformal change g = φq~2g Change of contact form θ = up~2θ

Conformal invariant μ (M) CR invariant λ (N)

Yamabe equation: αmΔφ 4- Kφ = μφq~ι CR Yamabe equation: bnΔhu + Ru = λup~ι

2. The Riemannian Yamabe problem

Let (M, g) be a Riemannian manifold of dimension m > 3. If g = φq~2g

(with q = 2m/(m - 2)) is a new metric conformal to g, the scalar curvature K

of g is given by

K = φι~q(amΔφ + Kφ), am = 4(m — l ) / ( m — 2),

in which Δ is the Laplace-Beltrami operator of g and K its scalar curvature

(see, e.g., [1]). Thus the problem of finding a conformal metric with constant

scalar curvature K = μ is equivalent to finding a positive, C 0 0 solution φ to the

Yamabe equation:

This problem has the following nice variational formulation. Consider the

constrained variational problem

(2.2) μ(M) = inf/( {am\dφ\2 + Kφ2)dVg:( \φ\"dVg = l

One computes readily that the Euler-Lagrange equation for (2.2) is the

Yamabe equation, provided φ > 0. Thus one is led to search for extremals for

(2.2).

One of the major milestones in the solution of the Yamabe problem was the

following theorem, due to H. Yamabe [27], N. Trudinger [24], and T. Aubin

[!]•
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Theorem 2.3. Let (M,g) be a compact Riemannian manifold of dimension

m > 3.

(a) μ(M\ defined by (2.2), depends only on the conformal class of g.

(b) μ(M) < μ(Sm), in which the sphere Sm has the standard metric.

(c) If μ(M) < μ(Sm), then the infimum in (2.2) is attained by a positive, C°°

solution to (2.1). Thus the metric g = φq~~2g has constant scalar curvature μ(M).

Aubin also proved that μ(M) < μ ( S w ) in all cases in which M is not locally

conformally flat and m > 6. More recently, R. Schoen [21] has completed the

solution of the Yamabe problem by proving that μ(M) < μ(Sm) unless M is

the sphere.

The proof of Theorem 2.3(a) consists of the fundamental observation that

problem (2.2) is conformally invariant in the following sense. Under the

conformal change of metric g = tq~2g, if we let A and K denote the Laplacian

and scalar curvature of g, then we have the transformation law (cf. [1]):

(2.4) (amA +K)φ = t1-«(amA +K)φ, with φ = rty.

It follows that the integral in (2.2) is unchanged if we replace g by g and φ by

φ, and thus μ(M) is a conformal invariant.

We remark that the transformation law (2.4) can be interpreted as saying

that the operator (# m Δ 4- K) (the "conformally invariant Laplacian") acts

naturally as an operator on certain bundles of densities on M, and that the

functional in (2.2) is really a conformally invariant functional on densities. We

will elaborate on this point of view in the context of CR manifolds in §3.

The analysis of (2.2) begins with a thorough understanding of the special

case of the sphere Sm in R m + 1 . The conformal change of variables given by

stereographic projection coupled with the transformation law (2.4) converts the

variational problem on 5"" to the more familiar problem on Rm

(2.5) μ(Sm) = inf(αm( \df\2dx:( \f\«dx =
\ JRm JRm

This is just the problem of finding the best constant and extremal functions for

Sobolev's inequality on Rw:

\f\«dx) \amj \df\2dx.
I J R m

Aubin proved that the extremals exist and have the form

(a + b\x- xo\
2)

(see also Talenti [23]). On a compact Riemannian manifold M, using Rieman-

nian normal coordinates and the dilation invariance of problem (2.5), one can

transplant an approximate extremal function for (2.5) from Rm to a small

neighborhood on M and deduce that μ(M) < μ(Sm).

m:
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The proof of Theorem 2.3(c) uses the Sobolev lemma for compact Rieman-
nian manifolds. Consider the Sobolev space L\(M) with norm

M

The Sobolev lemma asserts, in part, that for \/s > 1/2 - 1/ra, L\{M) is
continuously embedded in the Lebesgue space LS(M), with compact inclusion
if \/s > 1/2 — \/m. If we choose a minimizing sequence φ, e L\(M) for
problem (2.2), the Sobolev lemma implies that {φi} is uniformly bounded in
L\(M), and so a subsequence converges weakly to φG L\(M). The main
difficulty is that the exponent q is exactly the critical value for which the
inclusion L\(M) c Lq(M) is not compact. Thus we cannot guarantee that the
constraint j M \φ\qdVg = 1 is preserved in the limit. On the other hand, if we
consider the perturbed problem

<>mΔφω + Kφ(s) = μsφ
s

(-\ 2 < s < q,

the compactness of L\(M) c L\M) guarantees that a subsequence converges
strongly in the U norm to φ ( 5 ) e L\(M), so the constraint is preserved.
Iteration of standard Lp estimates for the Laplace-Beltrami operator and the
Lp version of the Sobolev lemma shows that φ(5) is smooth; the strong
maximum principle implies that φ(s) is strictly positive.

The remaining step is to show that, as s tends to q, φ(s) tends to a smooth,
positive function φ. Aubin completed the proof with the help of the observa-
tion that the best constant in the Sobolev inequality is the same for all compact
manifolds in the following sense: iί μ = μ(Sm)is defined by (2.5), then for any
M and any ε > 0, there exists CM ε such that

(2.6) (μ-e)^f\f\"dVή < amjjdff dVg + C^fjff dV
g

for all / e L\(M). Inequality (2.6) is proved by transferring the inequality
from Euclidean space to the manifold via Riemannian normal coordinates and
a partition of unity.

Applying (2.6) to φ ( j ), with ε chosen so that μ — ε > μs for s sufficiently
close to q, one can show that ||Φ(J)||2 is bounded away from zero as s -> q,
thus completing the proof.

The main technical difficulty in the CR case is that we have been unable to
prove the analogue of (2.6). The problem is that in normal coordinates, the CR
analogue of the gradient on the manifold is not comparable to that on the flat
model.
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An alternative proof of Theorem 2.3(c) has been given by K. Uhlenbeck [25],

which does not require the result that the Sobolev constant is independent of

M. Instead, assuming φ(s) does not converge, she used Riemannian normal

coordinates to transplant φ(s) to R" in such a way that the transplanted

functions converge in Cι(Rn). The limit function φ then is shown to contradict

Sobolev's inequality o n R " if μ(M) < μ(Sm). It is this method that we shall

adapt to the CR case in §6. The technical difficulty is overcome by obtaining

uniform estimates for a family of nonequivalent "gradients".

3. CR manifolds

Let N be an orientable, real, (2n + l)-dimensional manifold. A CR structure

on N is given by a complex /?-dimensional subbundle Tl0 of the complexified

tangent bundle C7W of N, satisfying Tl0 Π Toι = {0}, where Toι = fl0. We

will assume throughout that the CR structure is integrable; that is, it satisfies

the formal Frobenius condition [Tl0,Tl0] c Tl0. We set G = Re(7\ 0 + Γo α),

so that G is a real 2π-dimensional subbundle of TN. G carries a natural

complex structure map J:G -* G given by J(V + V) = i(V - V) for V e Tl0.

Let E c T *M denote the real line bundle G ± . Because we assume Λf is

orientable, and G is oriented by its complex structure, E has a global

nonvanishing section. Associated with each such section θ is the real symmet-

ric bilinear form Lθ on G:

L9(V9 W) = 2(dθ9 V A JW), V9WeG9

called the Leυi form of θ. Lθ extends by complex linearity to CG, and induces

a hermitian form on Tl0, which we write

Lθ(V> W) = (-2idθ, V AW), V,W^ Γ l i 0.

If θ is replaced by θ = /0, Lθ changes conformally by L~Q = fLθ. We will

assume that TV is strictly pseudoconυex, that is, that Lθ is positive definite for a

suitable choice of θ. In this case, θ defines a contact structure on M, and we

call θ a contact form. We denote by E+ the R+-bundle of positive multiples of

such a contact form.

The most important example of an integrable CR structure is of course that

induced by an embedding of iV in a complex manifold Ω, in which case

7\ 0 = 7\ 0Ω Π C7W. If p is a defining function for N, then one choice for the

contact form is θ = z(3 — 3)p.

A pseudohermitian structure on N is a CR structure together with a given

contact form θ. With this choice, N is equipped with a natural volume form

θ A dθ" (nonzero because N is strictly pseudoconvex). The inner product Lθ

determines an isomorphism G = G*, which in turn determines a dual form L |



THE YAMABE PROBLEM ON CR MANIFOLDS 173

on G*, which extends naturally to T*N. This defines a norm \ω\θ on real

1-forms ω, which satisfies

whenever Z x , , Zn form an orthonormal basis for Tl0 with respect to the

Levi form (see [16]). (Note that this normalization of \ω\θ differs from that

given in [14] by a factor of 2. The definition we have chosen here, in terms of

the dual metric Lp is the more natural one.)

The subplacian operator Δb is defined on real functions u e CCO(N) (cf. [16])

by

f (Δhu)uθ A dθn = f L$(du,dv)θΛ dθn for all υ e C?(N).

Since evidently \θ\θ = 0, LJ is degenerate on T*N, and so the operator Δh is

subelliptic rather than elliptic. It is shown in [16] that Δ^ = ReD fc, where Πh is

the Kohn-Spencer Laplacian [15] acting on functions.

The Fefferman metric of (iV, θ) is a pseudo-Riemannian metric g of Lorentz

signature, defined on the total space of a certain circle bundle C over N. It was

first introduced by C. Fefferman [8] in the case of an embedded hypersurface

in Cn+ι; various intrinsic characterizations of g on an abstract CR manifold

are known ([4], [7], [16]).

If θ is replaced by θ = rp~2θ, with p = 2 + 2/Λ, then g goes over to

g = rp"2g, so the conformal class of the Fefferman metric is a CR invariant of

N. (The reason for representing the conformal factor in this strange way is that

it simplifies the transformation laws below.) As a consequence of (2.4), if D

denotes the (Laplace-Beltrami) wave operator of g, and K its scalar curvature,

then we have the transformation law

(a2n+2Π + K)φ = rι-P{a2n + 2U + K)φ,

withφ = r~ιφ.

Because the metric g is invariant under the action of Sι on C, the operator D

pushes forward under projection π: C -> N to an operator ττ+D on N. It is easy

to verify (see [16]) that π^D = 2Δ/). Moreover, K is constant on the fibers of C

by Sx-invariance, so it projects to a function π*K on N. It is shown in [16] that

π*K = (2(2« + l)/(n + 1))#, where R is the Webster scalar curvature of the

pseudohermitian structure θ. It follows that the operator (^Δ^ + R) on N,

with fcrt = ((w + 1 ) / 2 ( 2 Λ + 1 ) ) ^ = 2 + 2/Λ, satisfies the transformation law

(3.1) (bnAh + R)~u = rι-t>(bnΔh + R)u,

with w = r~ιu.
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If we substitute r = u in (3.1), we obtain the transformation law for the

Webster scalar curvature R:

R = uι~p(bnΔb + R)u

when θ = up~2θ. Thus if θ is a given contact form and u a positive C0 0

function on N, a necessary and sufficient condition for the contact form

θ = up~2θ to have constant Webster scalar curvature R = λ is that u satisfy

(3.2) b^hu + Ru = λup-\

This is the CR Yamabe equation.

As with the Riemannian Yamabe equation, (3.2) is the Euler-Lagrange

equation for the constrained variational problem

(3.3) λ(N) = M{Aθ(u):Bθ(u) = l]

in which

Λ ( " ) = f (K\du\2θ + # w 2 ) θ Λ dθ\ Bθ(u) = ί \u\pθ A dθn.
JN JN

(If N is compact, Holder's inequality shows that λ(N) > -oo.)

Our main theorem is:

Theorem 3.4. Let N be a compact, orient able, strictly pseudoconvex,

integrable CR manifold of dimension 2n + 1, θ any contact form on N, and

define λ(N) by (3.3).

(a) λ(N) depends only on the CR structure of N, not the choice of θ.

(b) λ(JV) < λ(S 2 w + 1 ) , in which S2n+ι c Cn + ι is the sphere with its standard

CR structure.

(c) // λ(N) < λ(S2n + ι\ then the infimum in (3.3) is attained by a positive

C°° solution to (3.2). Thus the contact form θ = up~2θ has constant Webster

scalar curvature R = λ(N).

Part (a) follows immediately if we observe that with the change of contact

form θ = rp~2θ and the substitution u = r~ιu, θ A dθ" = rpθ A dθn, and so

as a consequence of the transformation law (3.1), B$(ύ) = Bθ{u) and A$(ϊι) =

Aθ(u).

Part (b) will be proved in §4, and part (c) in §6 (Theorem 6.5).

To conclude this section, we would like to observe that the transformation

law (3.1) can be expressed more invariantly in terms of densities. We introduce

density bundles Ea on N9 with fiber £ " at x G iV given by

£ x

α = {μ:EΪ -> R :μ(λθ) = \'aμ(β) for all λ > 0}.

Ea will be called the bundle of densities of CR weight a on N. Observe that if θ

is a contact form (section of £) , then E1 is spanned by μθ, given by
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The correspondence θ •-> μθ gives a natural (CR invariant) isomorphism

Eι = E\ similarly, θ A dθ" ^ μ"θ

+ι is a linear isomorphism between En + ι

and the bundle Ω^ of ordinary densities on N.

Once a contact form θ is chosen on # , a section of f" can be represented as

uμ%, where u transforms by ύ = r~au when θ = rθ and wμ| = wμ#.

As an immediate consequence of (3.1), therefore, we obtain the following

proposition.

Proposition 3.5. The linear operator Δ%: E n/1 -» E n/1 +\ given by

is well defined, independently of the choice of θ.

We call Δc

h the CR invariant Laplacian of N. The CR invariance of λ(N)

can also be seen from the easily verified fact that

λ(N) = inf( f (Δ%φ) ® φ :φ apositive C 0 0 section of En/1 with f φp = l).

4. The Heisenberg group and normal coordinates

The Heisenberg group H" is the Lie group whose underlying manifold is

C x R with coordinates (z, /) = (z1,- , z", t) and whose group law is given

by

(z,t)(z',tr) = (z + z',t + t' + 2 I m z ?),

where z • z' = Σ"=1z
Jzj'. We will also denote elements of H " by x and y and

Lebesgue measure on C" X R by dx or dy. Convolution in H " is given by

defined, for instance, for / e Co°(HΛ) and g locally integrable.

Define a norm on H" by |JC| = |(z, 01 = ( k | 4 + t2f/Λ and dilations by

JC = ( z , / ) - » « * = ( δ z , δ 2 θ , δ > 0 .

The dilations preserve the group law: δ( cy) = (δx)(δ^). With respect to these

dilations the norm is homogeneous of degree 1, i.e. \8x\ = δ|x|. The vector

fields Zj = 3/θz7 4- izJd/dt9 j = 1, , n, are invariant with respect to group

multiplication on the left and homogeneous of degree -1 with respect to the

dilations. Then 7\ 0 = spanlZ^ , Zn} gives a left-invariant CR structure on

H". The real 1-form

= dt + Σ (izjdzj - izJdzj)
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is left invariant and homogeneous of degree 2. Since θ0 annihilates Tλ 0 we may

take it to be the contact form for the CR structure. The Levi form is then given

by

L ^ , Zk) = (-2idθ0, Z, Λ Zk) = 2SJk.

Also, for ueC'(H"),

7 = 1

Therefore,

\du\2

θo=12 = 2

7 =

if u is real-valued.

If we write

the operator Δ^ associated to the contact form θ0 is i?0.

The scalar curvature of H" with pseudohermitian structure θ0 is identically

zero. Hence the extremal problem (3.3) in H" is

(4.1) λ ( H " ) = inίh L t \ZjuA θ0 A dθ0" : f^ \u\'θ0 A dθ0" = l j ,

with p = bn = 2 + 2/n. Note that

θ0 A dθ£ = n\{2i)ndt A dzι Adz1 A -" Adz" A dzn

= n\2lndx, x = ( z , 0

The Cayley transform is a biholomorphism between the unit ball in C" + 1

and the Siegel upper half space 3} = {(z, w) G C" X C: Imw > \z\2 }, given by

/ i _ f"+

(4.2) w = i 2 _

where ζ e Cn+ι, \ζ\ < I. When restricted to the boundary, this transformation

gives a CR equivalence between S2n+1 minus a point and 3^. The Heisenberg

group is identified with θ ^ by (z, /) <-» (z, / + /|z|2) = (z,w). Denote by F:

S 2 w + 1 -^ H" the mapping given by (4.2) followed by this correspondence

3 ^ = H " . Write

n + l

= i Σ
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the standard contact form for the sphere. Then

The conformal factor r of (3.1) is given by r = 2"\i + w\~", and for v(ζ) =
|1 +r+1\-"u°F(ξ),

2 i + ] {bn\dυ\2

βί + Rnv
2) θι Λ dβΐ = / nbn t \ZjU\2θ0 A dθ0",

" H" j ιH"

f Vpθ1 Λdθϊ= f UpθQΛ 0O\
Js2n+l JHn

where u is a nonnegative function on H" and Rn = n(n + l)/2 is the scalar
curvature associated to θv Thus the extremal problems (4.1) for H" and (3.3)
for S2n+1 are the same. In particular, λ(Hw) = λ(S2n+ι).

Folland and Stein constructed normal coordinates which show how closely
the Heisenberg group approximates a general strictly pseudoconvex pseudo-
hermitian structure. If (Wl9- -,Wn) is a frame for T10 over some open set
V a N which is orthonormal with respect to the given pseudohermitian
structure on N, we will call (Wv- , Wn) a pseudohermitian frame. The unique
real vector field T defined by Θ(T) = l^and dθ(T, X) = 0 for all X, is
transverse to G, and (Wv , Wn, Wl9 , »;, T) forms a local frame for CTN.

Theorem 4.3 ([9], 14.1, 14.9, 14.10, 16.1). Let N be a strictly pseudoconvex
pseudohermitian manifold of dimension 2n + I with contact form 0, and let
V c N be an open set on which there is given a pseudohermitian frame
(Wl9'"9Wn). There is a neighborhood of the diagonal Ω c V X V and a C00

mapping Θ : Ω -> H" satisfying:

(a) θ({, η) = -θ(η, 0 = θ(η, I)" 1 . (Inparticular, θ({, 0 = 0.)
(b) Denote Θ^(η) = Θ(ξ, η). Θ̂  w ί/ius α diffeomorphism of a neighborhood

Ω̂  6>/ £ o/i/o <2 neighborhood of the origin in H". Denote by y = (z, /) = Θ(£, 17)
/Ae coordinates of H". Denote by Ok, t = l,2, ,flC°° function f of ξ and y
such that for each compact set K c c K ί/iere w α constant Cκ, with \f(ζ,y)\ <
Ql^l^ (Heisenberg norm) for ξ <Ξ K. Then, writing Θ +̂ = (θf 1)*,

Θ4«ί = ΘQ + Oιdt+ Σ (O2dzJ + O2dzJ),
7 - 1

Θ4,(tf Λ rfβ") = (1 + Oι)θ0 A dθ£.

(c)

+ O V (3,), Θ4.Γ = 8/3, + O^(3Z, 3r),

= JS? O



178 DAVID JERISON & JOHN M. LEE

in which OkS indicates an operator involving linear combinations of the indicated

derivatives with coefficients in Ok, and we have used dz to denote any of the

derivatives 3/3zy, 3/3z7. (The uniformity with respect to £ of bounds on

functions in Ok is not stated explicitly in [9], but follows immediately from the

fact that the coefficients are C°°.)

In what follows, we will use the term frame constants to mean bounds on

finitely many derivatives of the coefficients in the Oki terms in Theorem 4.3.

The function Θ is an approximate group multiplication in the following

sense. In the case N = H", θ = 0O, we can take Θ(£, η) = ξ~ιη and the terms

with coefficients in Ok all vanish. In the general case, these extra terms have a

higher homogeneity with respect to the dilations (z, t) -> (δz, δ2t). Hence they

can be viewed as error terms. More precisely, we can rephrase (b) and (c) as:

Remark 4.4. Let Γδ(z, t) = (δ^z, 8'2t\ K c c V, and let r be fixed. With

the notation of Theorem 4.3 and Br = {y e H":\y\ < r}, Γ δ o 0 ξ ( β ξ ) D Br

for sufficiently small δ and all ξ e K. Moreover, for ξ e K and y e Br,

(τ8oQ^(θ A dθ") = δ2n+2(l + 8Oι)θ0 A

(T8 o

(Here OΛ may depend also on δ, but its derivatives are bounded by multiplies

of the frame constants, uniformly as δ -> 0. Recall that T*Zj = δ~ιZj, and

The simplest illustration of rescaling is the proof of Theorem 3.4(b), which

we will now carry out.

Lemma 4.5. The class of test functions defining λ(H") can be restricted

further to C°° functions with compact support.

Proof. Let Ψ e C0°°(H") satisfy Ψ > 0, jHnΨ(y) dy = 1. Denote %(x) =

δ-(2n + 2)Ψ(δ~ιx). Consider a test function u satisfying fH«\u\pθ0 A dθ£ = 1

and ZjU e L 2 (H W ), j = 1, , n. The left-invariance of Zj implies Zj(tys*u)

= Φδ*(ZjU). It is easy to show that Ψ8*u e C°°(Hn), Ψ8*u -> w in L^ίH"),

and %*ZjU -» Ẑ w in L 2 (H") as δ -» 0. Hence we can restrict the class of test

functions to u e C 0 0 ^ 1 1 ) .

To see that M can be taken to have compact support, consider φ e Co°(HΛ)

such that φ(x) = 1 for |JC| < 1, φ(x) = 0 for |x| > 2, and 0 < φ{x) < 1 for all

x. Denote φδ(x) = φ(δx). Notice that Zjφ8 is supported in the "annulus"

δ ' 1 < \x\ < 2 δ " \ and that there is a constant C such that \Zjφδ\ < Cδ.
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Therefore,

f | z , («A)\ 2 θ 0 A dθ0" = / | ( Z , Φ » ) « + ΦSZJU\2Θ0 A dθo

n

((1 + S-^IZ φψlal2 +(1

for any S > 0, with

10 elsewhere.

Note that IH*χ\x)dx = Cwδ" ( 2 w + 2 ). Hence by Holder's inequality and the
relation {In + 2)(1 - 2//?) = 2,

\2/p

)
\2/p ί r

\u\Pχ8dx) δ2 / χ*(x)dx)

This last integral tends to zero as δ -> 0 since w G Lp(Hn). Choosing 5 and
then δ sufficiently small we see that

ΪΪH / t \Z^8u)\2e0 A dθ0" < / Σ \ZjU\2θ0 A dθ0".

Also, clearly,

lim f \φ8u\pθ0AdθS= ί \u\pθ0AdθS.

Herice we can also restrict the class of test functions to functions of compact
support.

We are now ready to prove that λ(N) < λ(Hw). Choose u e C0°°(H") such
that BΘQ(U) = 1, AΘQ{U) < λ(Hw) + ε. Denote u(8)(x) = 8'nu(8~ιx). Choose
any point ξ e i V and a Folland-Stein coordinate chart Θ̂  as in Theorem 4.3.
Define v(8)(η) = u^8)(θζ(η)). For δ sufficiently small, the support of u{8) is
contained in Θ (̂Ω )̂. Thus υ{8) has compact support in Ω̂  and can be extended
by zero outside Ω̂  to a function in C°°(N). Note that Bθo(u(8)) = BΘQ(U) = 1
and ΛΘQ(U{8)) = AΘQ(U) < λ(Hw) + ε. Also

f \u{8)\
2θoAdθo

n = 82ί \u\2θ0Adθ0«^0 a s δ - 0 .
JH" JH"
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It now follows from Remark 4.4 that l i m δ _ 0 Bθ(υ(8)) = 1 and l i m δ ^ Q Λ Θ ( V ( 8 ) )

= AΘQ(U) < λ (H") + ε. Since ε was an arbitrary positive number, we can

conclude λ(N) < λ ( S 2 π + 1 ) , which is Theorem 3.4(b).

5. Folland-Stein spaces and estimates for Δfe

In this section we will define the function spaces that are best suited to

regularity properties of the operator Δfr. These spaces were introduced by

Folland and Stein [9], [22] and Propositions 5.1, 5.5, 5.7, and 5.9 are due to

them.

We begin by proving the analogue of the classical Sobolev lemma.

Proposition 5.1. Let Xj = ReZ y and XJ+n = ImZj9 j = 1, , n. There

exists a constant Cn such that withp = 2 + 2/n,

JU" y = 1

for every φe ^ ( H " ) .

Proof. The key tool is the fundamental solution

F(z,t) = an\(z,t)\-2",_ a_n = 2 2 - 2 ^ "

to the operator -SP0 = - ^Σ^ZJZJ + ZJZJ) = -Σj^Xj2. For φ e Cf(Hn%

(&oφ)*F = φ [9, Proposition 7.1]. Note that by left invariance of Xp

(Xjh)* F=h* XjF for h e C?(Hn). Hence,

(5.2) Φ = (i?» F = - Σ (Xjφ)*{XjF).
7 = 1

XjF is homogeneous of degree -In — 1. In particular, \XjF(z,t)\^

C\(z,t)\-2"-\

Lemma 5.3 [9, Proposition 8.7]. // 0 < a < In + 2 am/ |/f(z, ί ) | <

C|(z, ί ) | ~ 2 " " 2 + α , ί/ien //ιe mapping g *-> g * // extends to a bounded mapping

U{Hn) -> LS(HM), w/1^5" 1 = r" 1 - α/(2/i + 2) αwJ 1 < r < s < oo.

The lemma (applied with α = l , r = 2, s = p) yields the proposition.

If we consider the inequality of Proposition 5.1 for real-valued functions φ,

in light of Lemma 4.5, finding the smallest possible constant Cn in Proposition

5.1 is equivalent to finding λ(H w ) . In particular, Proposition 5.1 is equivalent

to

Proposition 5.4. λ(HM) > 0.

Now let U be a relatively compact open subset of a normal coordinate

neighborhood Ωξ c N as in Theorem 4.2, with contact form θ and pseudo-

hermitian frame (Wl9 -,Wn). Let X. = ReWj and Xj+n = imWj for j =

1, , Λ . Denote Xa = Xaχ 'XΆk, where α = ( α 1 , , α j t ) , each αy an
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integer 1 < ay^ 2n, and denote I (a) = k. Define the norms

ll/llsm/)= sup \\X*f\\L,iU)9

where

The Folland-Stein space S%(U) is defined as the completion of C™(U) with
respect to the norm || \\sξ(uy

Folland and Stein also defined Holder spaces suited to Δ6. The function
p(£, η) = |Θ(£, η)\ (Heisenberg norm) is the natural distance function on U.
For 0 < β < 1 define

Tβ(U) = {/e C°(t7):|/(

with norm

II/HΓ,(«/)-«ΦI/(*)I+

For any integer k > 1 and k < β < k + \ define

I>(ί/) = {/e C°(U):X°fe Tβ_k(U)ίotl(a) < A:}

with norm

(The definition of Γ̂  for integer values of 8̂ involves second differences (cf.
[9], [19]). We will not need to use the integer case.) Notice that the norms
above depend on the choice of pseudohermitian frame.

Now for a compact strictly pseudoconvex pseudohermitian manifold N,
choose a finite open covering Uv- , ί/w for which each Uj has the properties
of U above. Choose a C°° partition of unity φf. subordinate to this covering,
and define

S£(N) = { / € L\N):<t>jf& St(Uj) for all j],

rβ(N)={f<=C0(N):φJf<=rβ(UJ)foτallj}.

Proposition 5.5. With the notations above, S£(N)<z LS(N) for \/s =
1/r - k/{ln + 2) and 1 < r < s < oo.

Proof. According to a fundamental theorem of Folland and Stein [9,
Theorem 15.5] extending (5.2), there exist operators Ajt j = 0, ,2«, given
by
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with

I C elsewhere on N X N,

such that / = Σ)n

=ιAjXjf + Aof for every / e S{(N). Since / and Xjf belong
to Lr(N), we conclude from the analogue of Lemma 5.3 on N that / e LS(N).
The case k > 1 follows easily by induction.

Proposition 5.6. // N is as above, 1 < r < s < oo, tf«d 1/s > \/r
— l/(2n + 2), then the unit ball in the space S[(N) is compact in LS(N).

The proof of this proposition requires the theory of pseudodifferential
operators associated to the subelliptic structure of Δ^ as developed by Nagel
and Stein [19] and a calculus [11] that permits one to define Folland-Stein
spaces S% for fractional values of k. These ingredients would take us too far
afield so the proof will appear elsewhere [13].

Let U be a relatively compact open set in a normal coordinate neighborhood
as above. We will fix local coordinates to be those given by (z, t) = Θξ for a
fixed point ξ e ί/. The standard Holder space Aβ(U) is defined for 0 < β < 1
by

{/e C°(U):\f(x) -f(y)\ < C\\x-yf)

with norm

I I / I I A , ( « / > « 8 U P | / ( * ) | + sup l / ( x ) y

For k < β < k + I, km integer > 1,

V£/) = {/e C0(t7):(θ/θx)7e V,(ί/) for/(α) < k)

with the obvious norm. Then the following fundamental estimates are due to
Folland and Stein.

Proposition 5.7. For each positive noninteger β, each r, 1 < r < oo, and
each integer k > 1, there exists a constant C such that for every f e Co°(t/),

(a) | |/| |r ί ( t/) < C\\f\\sl(U), wherel/r = (k - β)/(2n + 2),
( b ) / C /

(c) WfWsnu) < CdlΔj/H^y, +
(d) ll/llr ί + 2 ( ϋ) < C(\\AJ\\Γβ{U) + \\f\\Tβ(U)).
The constant C depends only on the frame constants.
Folland and Stein proved Proposition 5.7 with Πh in place of Δ^ (see [9,

Theorems 21.1, 20.1, 16.6, and 15.20]). Their arguments apply verbatim to Δfe,
since it is modelled on the operator J^o, which has a fundamental solution.
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Applying a partition of unity, we conclude:

Proposition 5.8. The estimates in Proposition 5.7 hold with U replaced by a

compact strictly pseudoconυex CR manifold N.

The following regularity result follows from these estimates just as in [9,

Theorem 16.7].

Proposition 5.9. // w, υ e Lι

loc(U), and Δhu = v in the distribution sense on

U, then for any η G C(°°(ί/) the following hold.

(a) // υ G U(U\ n + 1 < r < oo, then ηu G Tβ(U) where β = 2

(b) Ifυ G Sχ(C/), 1 < r < oo, fc = 0,l,2, , then ηu e Sχ + 2 ( ϊ/) .

(c) //i; G 1^(17), j8 a noninteger > 0, ίλέ?/i τy« G rg + 2 ( i/) .

We will also need the following regularity result involving critical exponents,

which will get an iterative regularity proof started.

Proposition 5.10. Let Ube as in Proposition 5.7. Suppose that f G Ln+ι(U),

u e Lp(U) (where p = 2 + 2 / Λ ) , w ^ 0, α r̂f (Δ f t 4- f)u = 0 m the distribu-

tion sense on U. Then, for any η e Co°(ί/), ηw G LS(U) for every s < oo.

This proposition is a variant of results of Yamabe [27], Trudinger [24], and

Brezis and Kato [3]. A pfoof is given in the Appendix.

Proposition 5.11. With the hypotheses of Proposition 5.10 and the additional

assumption f e LS(U) for some s > n + 1, we have that u is Holder continuous

in U, and for some β > 0 and any K c c £/,

constant C depending only on K, | | / | | L * ( t / ) , ||w||L/>((;),

Proof. Consider a nested sequence of cutoff functions ηy e C™(U) such

that η . = 1 on A" and the support of η.+ι is contained in the set on which

i\j•= 1. By Holder's inequality/w e Lq(U) for 1/ςr = 1//? + \/s. Proposition

5.9(b) implies that ηxu G ^(£7), and thus by Proposition 5.5, ηxu G L^(J7)

for 1//?! = \/q - 2/(2n + 2) = 1//? - (l/(/i + 1) - 1/j). Repeating this

argument we can conclude that ηku G LPk(U) for 1//?̂  = 1//? - k(l/(n 4- 1)

— 1/s), and every /c for which 1//7A. > 0. Suppose k is the largest possible.

Then pk > n + 1, and so Proposition 5.9(a) gives Holder regularity ηk+ϊu G

Γg(£/) for yS = 2 - (2/ι 4- 2)/pΛ. The bound on ||w||Γ/ϊ(/o follows from Proposi-

tion 5.7.

Proposition 5.12. With the hypotheses and notation of Proposition 5.11 and

the additional hypothesis f G L°°(U), we have that

max u(x) < C min u(x)
x<£K X<ΞLK
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for a constant C depending on the same bounds as in 5.11 and in addition

The additional hypothesis / G L°°(t/) is not necessary (for the classical
version see Trudinger [24]). However, we only need the case / G L°°(ί/), and in
this case the proof is practically a verbatim transcription of Moser's proof [18]
of the Harnack inequality for uniformly elliptic operators. Instead of consider-
ing balls in the ordinary Euclidean sense one has to use balls with respect to
the distance function p. The appropriate notion of functions of bounded mean
oscillation (BMO) relative to this distance and the analogous John-Nirenberg
inequality are discussed in [6]. There is only one ingredient of Moser's proof
that requires a more detailed discussion, namely the following Poincare-type
inequality.

Proposition 5.13. Let Ube as above. There is a constant C depending only on
the frame constants such that if Br c U is a ball of radius r with respect to the
distance p, then for every f such that \df\θ e Lq{Br), 1 < q < oo,

ί \f-fB\
qθΛdθ"^Cr«[ \df\lθΛdθ\

JBr

 r JBr

in which fA = (fA fθ A dθ")/(fAθ Λ dθn) denotes the average value off.
This inequality was first proved by A. Greenleaf and D. Jerison (unpub-

lished). A different proof will appear in a forthcoming paper [12].
We note in passing that this implies the following interpolation inequality

for the spaces Sf.
Proposition 5.14. If u e L\U) and \du\θ e Lq(U) with 1 < q < oo, then

u G S?(U) and

where C depends only on the frame constants.

Proof. From the definition of Sf, it suffices to estimate ||w|| £?(£/). We note
that

\\\\
 C ( l l ~ U\\ + \ \ \ \ )U\\L«{U) + \\u

\WU\\LHV) = C\WU\\L\U) < C{\\u ~ UU\\L\U) + \W\\L\U))>

< C(\\u- Wί/llL^ + llwll^ί/)).

Proposition 5.13 completes the proof.
Finally, we are ready to prove regularity results for the Yamabe equation.
Theorem 5.15. Let U be a relatively compact open set in a normal coordinate

neighborhood as above. Suppose that /, g G C°°(ί/), u > 0 on U, u G Lr(U)
for some r > p, and Δ̂ w -f gu = fuq~ι in the distribution sense on Ufor some q,
2 < q < p. Then u G C°°([/), u > 0, and if K c c U, | |«||C*(JC) depends only
on K, \\u\\Lr(U)9 \\f\\ck(K)9 ll£llc*(ΛΓ)> and the frame constants, but not on q.
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Proof. Let A = fuq~2 - g G Z/ / («- 2 )(t/). By Holder's inequality, A e

LS(U), where s = r/(/? — 2) > n + 1, and ||A||L,( ί/) depends only on the

stated bounds. Then choosing Kλ with K c c Kλ c c £/, it follows from

Proposition 5.11 that u e Γ^Λ^) for some β > 0, and from Proposition 5.12

that w is bounded away from zero by a constant depending on the same

bounds. The spaces Γ̂  are algebras, and since u is bounded away from zero,

ua G ΓβiKJ for any real a. Thus, replacing Kλ with a smaller set that we still

denote Kv A e Γβ(Λ\) and we conclude from Proposition 5.7(d) that u e

Γ β + 2 ( i^ 1 ) . Repeating this argument by induction we see that u G Ck(K) for

any /c (see Proposition 5.7(b)).

Corollary 5.16. Let U, /, g, αflύf w Z?̂  α^ above, but assume only that r = p

instead of r > p. Then we still have u > 0 on Uandu e C°°(£/).

Proof. Again write A = g — fuq~2. With AΓX as above, we conclude succes-

sively that A e L " + 1 ( # i ) ; w e L5(AΊ) for all j < oo (Proposition 5.10); and u

is positive and C°° (Theorem 5.15).

Finally, we prove the following removable singularities result, which we will

use in §7.

Proposition 5.17. Suppose U is as above, ξ e U, w e U(U) for r > /?/2,

u > 0, / e L" + 1(ί7), β«<i (Δ 6 + /)w = 0 i/i /Ae distribution sense on U - {£}.

ΓAew (Δh + f)u = 0 in the distribution sense on U.

Proof. The hypothesis means that for all φ e C0°°(ί/ - {|}),

(5.18) /* (wΔ^φ + fύφ) θ A dθn = 0.

We need to show this holds for all ψ G CO°°(£/).

Let Θ^ be Folland-Stein normal coordinates centered at £, with respect to

the pseudohermitian frame (W^- -,Wn). We may assume that Θξ(£/) = BR =

{(2,0:1(^,01 < R}. Choose ψ G Co°°(fiΛ) withO < ψ < 1 and ψ = 1 in 5 Λ / 2 ,

and set ψ β ( z , 0 = ψ ί δ - ^ β " 2 / ) . Then (1 - ψ δ)φ G C0°°(J?Λ - {0}) for φ G

C^{BR) and 0 < S < 1, and so from (5.18)

ί (uΔhφ+fuφ)θ Λdθn= ί (uΔh(φψδ)+fuφψδ)θ Λdθ".

We will show the right-hand sides goes to zero as 8 -> 0.

By Holder's inequality, with r~ι 4- s"1 = 1,

Λ dθ"

and since s < n + 1, this expression goes to zero as δ -> 0.
From the definition of Δ6, we have
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The term / uψsΔhφ goes to zero by the same argument as before. Referring to

Remark 4.4, and considering the homogeneity of each term in W} or Δfe, we see

that in Bd,

\Wj*δ\ < C δ \ | Δ ^ | < C δ " 2 ,

where C depends only on ψ and the choice of normal coordinates. Then,

noting that

and integrating over Bδ,

ί (uφΔh\pδ - 2uL%(dφ, d\pa)) θ A dθn

JBδ

I \1/s

<Cδ-2\\u\\ύ(Bδ)^Cδ-2\\u\\Lr{Bδ) / θAdθή
\ Bs I

by Holder's inequality. But observe that

θ A dθn = (1 + O(δ))(θ0 A dθ£) and J θ0 A dθ£ = Cδ2n+2.

Thus the last expression above goes to zero provided (2n + 2)/s > 2, that is,

provided r > n 4- \/n = p/2.

6. Existence of extremals

In this section we will prove Theorem 3.4(c). As we indicated in §2, we will

do so by first considering a perturbed variational problem.

Fix a compact strictly pseudoconvex CR manifold N with contact form 0,

and consider for each qy 2 < q < p9 the extremal problem

(6.1) λq = i

in which Aθ is as in (3.3) and

9q(Φ>= ί \Φ\qθ Λdθ".

Theorem 6.2. For 2 < q < p, there exists a positive C°° solution uq to the

equation

(6.3) bnΔhuq + Ruq = λgu«-Λ

satisfying Aθ(uq) = λ^ andBθq(uq) = 1.
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Proof. Consider a minimizing sequence φj for (6.1), that is, a sequence such

that Aθ(φj) -» λ^ and Bθq(φj) = 1. After replacing φy by \φj\, we can suppose

that φ7 > 0. Since {Aθ(φj)} and {Bθ q(φj)} are bounded, {φj} is bounded in

Sj2, and so there is a subsequence converging weakly in S2 t o φ e Sϊ(N). By

the compactness result, Proposition 5.6, the subsequence converges in Lq

norm, so Bθ q(φ) = 1. By Holder's inequality, / Rφj -> / Rφ2, and so Aθ(φ) <

λ^. But since λ^ is an infimum we necessarily have Aθ(φ) = λq. Moreover,

φ > 0, and by a standard variational argument φ satisfies (6.3) in the distribu-

tion sense. Finally φ e LP(U) by Proposition 5.5, and so φ is strictly positive

and C°° by Corollary 5.16.

Next we examine what happens to uq as q -»p. First we consider the

behavior of λ^.

Lemma 6.4. Suppose θ is chosen so that j N θ Λ dθn = 1. Then

(a) // λ^ < 0 for some q, then λq < 0 /or all q ^ 2 and λq is a nonde-

creasing function of q.

(b) // λ^ > 0 for some {hence all) q^ 2, then λq is a nonincreasing function

of q, and is continuous from the left.

Proof. Suppose λ^ < 0 for some q, and let qf > 2 be arbitrary. Given

ε > 0 sufficiently small, choose a C 0 0 function φ with Bθγ(Φ) = 1 and

< λ^ + ε < 0. With φ' = αφ for a e R, we have Bθ%q($) = aq'Bθq,(φ)

and ^ ( φ ' ) = α2^4^(φ). We set α = ( ^ , ^ ( Φ ) ) ' 1 / < 7 ' so that Bθ q,(φ') = 1 and

^^(Φθ < 0. Thus λ^ < 0. If q' < f̂, then α > 1 by Holder's inequality and

our normalization of θ. Consequently Ae(φ') < λ^ 4- ε, which proves that λ^ is

nondecreasing.

On the other hand, if λ^ ^ 0 the same argument shows \q, < λ^ if qf > q.

Since we can force a to be close to 1 by choosing q' close to q, we also see that

λ^ is continuous on the left.

From now on, replacing θ by a constant multiple of itself, we will assume

that θ has been normalized so that fN θ A dθn = 1.

Theorem 6.5. // λ(N) < λ(S2n+ι), then there exists a sequence q^ tending

to p from below such that uq converges in Ck(N) for any k to a function

u e C°°(N) such that u > 0, fcπΔfciι + Ru = X(N)up~\ Aθ(u) = λ(JV), and

Proof. Case 1. λ(N) < 0. For 2 < q < p and any φ e Sϊ(N), we have

Let φ = uq~ι. Then since λ < 0 by Lemma 6.4,
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Denote wq = uq/2. Then

/ \dwq\] < CJ w2 = Cf u«q = C.
JN JN JN

Also, by Proposition 5.5, jNwξ < CfN(\dwq\
2

θ + w2). Hence fNwf < C. Now

let q0 > 2 and set r = (qo/2)p > p. Then for q > qowe have that HwJI^/v) is

uniformly bounded as q^>p. It follows from Theorem 5.15 that {uq} is

uniformly bounded in Ck(N), and so a subsequence uq converges in Ck for

every k. Hence, the limit u satisfies bnLhu + Ru = λup~ι, Λθ{u) = λ, Bθ p(u)

= 1, w > 0, and w e C°°(A^), where λ = lim/ _>ooλ . By Lemma 6.4, λ <

λ(N), and so by definition of λ(iV) we have λ = λ(N).

Case 2. λ(JV) ^ 0. In this case Lemma 6.4 shows that l i m ^ ^ λ ^ = λ^ =

λ(N).
Case 2a: For some sequence q^ -* p, swpN\duq\θ is uniformly bounded. By

Proposition 5.14, {uq } is uniformly bounded in S?(N) for any q, and hence

in Lr(N) for every r. The theorem is concluded in the same way as in Case 1.

Case 2b: sxx\>N\duq\θ -> oo as q -> p. We will show that this case never

arises.

Choose a point ζq e N such that sup^lJw^l^ = \duq(ξq)\θ. Let Θξ be

normal coordinates as in Theorem 4.3. We can assume there is a fixed

neighborhood U of the origin in H " contained in the image of Θξ for all q,

and for each q we will use Θξ to identify U with a neighborhood of |^, with

coordinates (z, ί) = Θ ξ .

Now consider the change of coordinates (z, /) = Γδ(z, t) = (δ - 1 z, δ" 2/) on

H", as in Remark 4.4, and set
n

θ0 = dt+ Σ (izjdϊj - iίJdzj) = 8~2T%.
y=i

(Here, as in §4, we write T% = ((Γ 5)" 1)*.) On the set δ " 1 ^ with coordinates

(z, ί) define hq(zj) = δ2Aq-2)uq(δz,δ2ΐ) with δ = δ^ > 0 chosen so that

\dhq(0)\θo = 1. Observe that θ = ί0 at 0, and |w|J-2fl = δ2 |w|^ for any 1-form

w, and so

\dhq(o)uo = \τδ*df
In particular, δ -> 0 as q -> /?, and hence δ"xi7 tends to the full space H" as

q -+p.

Now define the contact form θq = δ~2T%θ in coordinates (zj) on the

region δ~ιU, and set o ^ = Δ (^ } = δ 2 Δ ( ^ } . The equation for A^ can then be

written
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in which Rq is the scalar curvature of θ expressed in coordinates (z, t).
Observethat | ig<P| | L oc ( / V ) .

By compactness of N, passing to a subsequence if necessary, we may assume
that ξq converges to ξ e ]V, and if we denote by (WJ7,- * , Wjf) the pseudo-
hermitian frame used to define Θ̂  we may assume that (W^ , W%) con-
verges in Ck for all A: to a frame (Wl9- -,Wn). Now set ZJ = δT%Wβ, so that
(Zf, , Z^) is a pseudohermitian frame for θq. By examining the error terms
in the expression for Wβ in Remark 4.4, it is easy to show that, for any R > 0,
ZJ converges in Ck(BR) to Zj for every k. Similarly, θq and S£q converge
uniformly in Ck(BR) to 0O and JS?0, respectively.

Now fix a radius R > 0. Suppose # is sufficiently close to p that 2?3Λ c δ^ϊΛ
Let η e C^(B2R) be equal to 1 on £ Λ . Then

(6.6)

First, |rf/î U is bounded by 1 in B2R because it attains its maximum value of 1
at the origin. Note that

(6.7) f \hq(z9η\«dzdt = δW«-2>-V"+2>[ \uq(z,t)\«dzdt.
J\(z,t)\<R J\(z,t)\<8qR

For q < p, we have 2q/(q — 2) > (2n + 2), and so the coefficient of the
right-hand integral is bounded by 1 as q -» p. Moreover, the volume element
dzdt is equal to CΛ(1 + δθι)θ Λ dθ" on B2SR by Remark 4.4. Therefore,
hq G Lq(B2R,dzdt) with uniform bounds on the norm. In particular, Λ̂  e
L1(B2R,dzdϊ) uniformly as q-* p. Combined with the uniform bound on
\dhq\θ, this gives hq G S{(B2R,θq) for every r < oo with uniform bounds on
the norm, by Proposition 5.14. Thus by Proposition 5.5, ηhq is uniformly
bounded in Lr(B2R) for every r, and by Theorem 5.15, uniformly bounded in
C*(£Λ) for every λ:.

Now we can take a subsequence qj -> p for which hq converges, say, in
Cι(BR). Define a function u on all of Hw by first choosing a subsequence h
converging in Cι(Bλ)9 and then a subsequence converging in Cι{B2)y etc.
Notice that u > 0, we C\Hn), and w # 0 because |JM(0)|^O = 1. For φ G

C0°°(H") we have, since θq converges to 0O,

(6.8) f

Denote ||w||^ = /H, upθ0 A dθ£. We claim first that

(6.9) \\u\\p<l.
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Since θq A dθq approaches θ0 A dθ£ uniformly on compact sets, the con-

straint jNuq

qθ A dθn = 1 and equation (6.7) imply that JBRUPΘ0 A dθ£ < 1.

Because R is arbitrary, (6.9) is proved.

Next we verify

(6.10) f \du\2

θθ0A dθζ ^ C< oo.

In fact,

/ \du\2

$oθo Λ dθS = lim / \dhqfc0qjΛdθZ
BR j-*co BR

 J

= lim f δ2^-2)\duQ\2

θδ-2θ A(δ-2dθ)n

< lίin f \dua\
2

θθ A dθ\

which is bounded. (Here δ = δq , and we use once again 2q/(q - 2) > 2n + 2.)

We can now conclude the proof. Because of the estimates (6.9) and (6.10) we

can take a sequence φ7 e Q°(RW) approximating u in the norms associated to

(6.9) and (6.10). Hence we conclude from (6.8) that

bnf^\du\jjo A dθ0" = λ(N)\\u\\P.

The function ύ = M/HMH^ satisfies the constraint \\ύ\\p = 1, but using (6.9) and

the fact that / ? ^ 2 w e find that

bJ „ I Λ l ί Λ Λ dβζ = λ(JV)||ιι | |;/| |ιι | |J < λ(N) < λ ( H " ) .

This contradicts the definition of λ(H w ) . Thus Case 2(b) is impossible, and the

proof is concluded.

7. Uniqueness

It would be interesting to know under what circumstances a contact form

with constant scalar curvature is unique. As is the case with the Riemannian

Yamabe problem, the answer depends on the sign of λ(N).

Theorem 7.1. // λ ( N ) < 0, then any two choices of θ with constant scalar

curvature are constant multiples of each other.

Proof. We note first that the sign of any constant scalar curvature is a CR

invariant of N. Suppose θ and θ = up~2θ both have constant scalar curvature

R and R, respectively. Then

b n t ϋ h u + R u = R u p l .
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Integrating this over N and noting that fNΔhu = JNL^(dl, du) = 0, we con-

clude that either R = R = 0 or R/R = / up~ι/j u > 0.

Now suppose λ(N) < 0. By Theorem 6.5, there exists θ with scalar curva-

ture R = λ(N). Suppose θ = up~2θ has constant scalar curvature R. The

preceding observation shows that R < 0, so after multiplying u by a constant

we may assume R = R. Then w satisfies

fenΔj,M + #w = Rupl.

It suffices to show u = 1.

Since Δ^ is degenerate elliptic, it satisfies a weak maximum principle. At a

point JC e N where w is maximum, Δhu(x) > 0, and so w ^ " 1 ^ ) - M(X) < 0,

which implies u < 1. Similarly, at a point j> where u is minimum, we conclude

u(y) > 1. Thus u = 1.

Now suppose λ(Λ^) = 0. By Theorem 6.5, there exists θ with scalar curva-

ture R = 0, and by the remarks at the beginning of the proof any other choice

θ = up~2θ with constant scalar curvature has R = 0. Thus u satisfies bnΔhu =

0, which implies j N \du\j = 0. Therefore, du is a multiple of 0, say rfw = fθ for

some / e C°°(Λ^). Differentiating this, we see that 0 = df A θ + /W0. Restrict-

ing to (/, /d# = 0 which implies / = 0. Thus w is constant.

On the other hand, if λ(N) > 0, the solution to the Yamabe problem may

not be unique. In particular, on the sphere S2n + ι, there are many obvious

solutions: if we start with the standard contact form θλ (cf. §4), and subject

S 2 n + 1 to a CR automorphism Φ:S2n+ι -> S2n+\ then Φ*0X will also have

constant scalar curvature. In general, Φ*θλ Φ θv

It is important to know whether these solutions are extremal for problem

(3.3) on S 2 " + 1. We note first that the extremals exist.

Theorem 7.2. There exists a positive C0 0 contact form θ = up'2θλ on S2n+ι

for which the infimum λ(S2n+1) in (3.3) is attained.

Proof. For 2 < q < p, let uq be the solution to bnΔhuq + Ruq = \qu
q

q~
ι

given by Theorem 6.2. If \duq\
2

θ is uniformly bounded as q -> p, then uq

converges to a solution u0 of bnΔhu0 + Ru0 = X ^ 2 ^ 1 ) ^ " 1 as in the proof

of Theorem 6.5, Case 2(a). On the other hand, if \duq\
2

θ is unbounded, then as

in Theorem 6.5, Case 2(b), we can construct a function ύ on Hn satisfying

11811, = 1 and bj Jdύ\2

oθo A dθ0" = λ < λ(S2"+1).

But since λ(S2n + ι) = λ(H w ) as defined by (4.1), we must have λ = λ(S2n+ι).

Now, setting θ = F*(ύp-2ΘO) on . S 2 ^ 1 (with F\S2n + ι »> H" as in §4), we

have a contact form that can be written θ = up~2θλ, with u ^ Lp(S2n + 1)

satisfying

(7.3) bnΔhu + Ru =
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on S2n + ι minus a point. By Proposition 5.17, this equation holds on all of

S2n + ι. Finally, by Corollary 5.16, u is positive and C 0 0. (This theorem can also

be proved using the method of P.-L. Lions [17].)

With this theorem, it is natural to conjecture the following in view of the

analogous result of Obata [20] in the Riemannian case.

Conjecture 7.4. The contact forms θ = Φ*01? for Φ e Aut(S 2 n + 1 ) , are the

only ones on the sphere which have constant scalar curvature. Thus
2/p

To understand this conjecture, we may use the mapping F:S2n + ι -> H"

given by the Cayley transform as in §4 to transfer the problem to the

Heisenberg group. If θ is any contact form on S2n + ι with constant scalar

curvature R, then θ = F*θ is a contact form on H " with constant scalar

curvature R. For some positive C°° function u we can write θ = up~2θ0. Since

[ u p θ 0 Λ d θ £ = f θ Λ d θ n = f θΛdθ"<oo,

we have u e Lp(Hn). As in the proof of Theorem 7.1, we may multiply u by a

constant to achieve R = n(n + l)/2. Then, o n H " , u satisfies

(7.5) 4Δhu = n2up~ι.

A routine computation shows that for θ = Φ*θλ with Φ a CR automorphism

of S 2 # l + \ U has the form

(7.6) W ( z , 0 = C|ί + /|z | 2 + z μ + λ f

with C > 0, λ e C, Im λ > 0, and μ E C". SO Conjecture 7.4 is implied by

Conjecture 7.7. Ifu e LP(H") is a positive C°° solution to (7.5), then u is of

the form (7.6).

So far, we have only been able to prove the following weak version of

Conjecture 7.7:

Theorem 7.8. // u e Lp(Hn) is a positive C 0 0 solution to (7.5) which is

radial in the z variable, then u is of the form (7.6) (with μ = 0). (The other

solutions are obtained by left translations on the Heisenberg group.)

Proof. Introduce the function w = t + i\z\2 on H", and write y = |z | 2,

x = t. The hypothesis on u means that w(z, /) = v(w),. where v is a smooth

function of the complex variable w = x + iy.

We first examine the behavior of υ near infinity. Consider the CR inversion

J\ (H w - {0}) -> (H" - {0}) given by (z, t) = J(z, t) = (z/w, -t/\w\2). J

satisfes J*ΘQ = \w\~2θ0. Note that J*u(z, t) = v(-\/w). Since

θ = S*(u

p-%) = \w\'2u(z/w, -t/\w\2)p-2θ0
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also has constant scalar curvature n(n + l)/2, we have that ύ(z,ί) =
\w\~"u(z/w,-t/\w\2) also satisfies (7.5) on H" - {0}. By Proposition 5.17,
(7.5) holds on H", so by Corollary 5.16, ύ is positive and C°° near the origin,
and so is u(w) = \w\~nv(-l/w). In particular, this means that, as |w| -> oc,
C~1 |w|~/7<|i>(w)|<C|w|~'7 for some constant C. Differentiating v with
respect to w or w, we find that

Now consider the function φ(w) = (v(w))'2/n = (u(z, t))'2/". Observe that
jU = 2izJdv/dw, and so

ZZ + Z Z J = -4juwiC, - nvy

and thus (7.5) becomes

= n 4- 2 Φ
48'Ψwϊi> 2 φ

A rather long computation using this last equation shows that, with ψ =

Φ - y/X

(7-9) , n + „
^= V O I © ©— "i ———^— I Q) — I I

\ ^ ' /

When integrated over the upper half-plane {(x, y):y > 0) , we claim the

left-hand side vanishes. It suffices to show that

goes to zero sufficiently rapidly as \w\ -> oo. But our estimates on the decay of
v and its derivatives imply

C - > | 2 < |φ| < C|w|2, |φ j , | ψ j < C|w|, |φ w w | , | φ ^ | < C.

Thus μ4(w)| < C|w|"(w+1), and so

/ ^A dx dy = lim / d^A dx dy
> > 0 Λ-»oo ^v>0

jw|<Λ

and since | / M - Λ ϊ V > 0 ^ l < CR"W, the last term goes to zero as R -> oo.
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Since the integrand on the right-hand side of (7.9) is the positive function

"φ-(n + ι) multiplied by a sum of squares, we conclude that

φ ώ_
φ = φ _ _Σ^L = 00

The second equality implies that logφ is harmonic, so φ = | / | 2 for some

function / which is holomorphic in w. But then φww = 0 implies / is a linear

polynomial in w, so φ is of the form φ(w) = C\w + λ| 2 for C ^ R , λ e C

This implies immediately that u is of the form (7.6) (with μ = 0).

Appendix

In this appendix we will prove Proposition 5.10.

Lemma A.I. Let Ux be an open set such that Uι c c U. With the hypotheses

of Proposition 5.10, u e Sl(Ux).

Proof. For / e Co°°(t/), define

Pf(t) = /
Ju

dβ(η)H/n\2 2"

where F is defined in Proposition 5.1 and Θ in Theorem 4.3. The arguments of

[9, Proposition 16.5], show that P is a parametrix for Δ^ in the sense that for

h G Co°(ί/), P(Δhh) = h + Rh in I/, where # is smoothing of order 1 and P

is smoothing of order 2 in the sense of the Folland-Stein spaces Sg(U). In

particular, if Wλ, , Wn is a pseudohermitian frame for [/ and 1 < r̂ < r < oo,

1/r = \/q - 1/(2Λ + 2), then

(A.2) »$P is bounded: L^(£7) -> L r ( ί/) , y = 1, ,«;

(A.3) WjR is bounded: Lq(U) -* Lq(U), y = 1,••-,".

Let ψ G Co°(l/) be a real-valued function such that ψ = 1 in a neighbor-

hood of i/x. Then we have in the distribution sense

Therefore, applying a routine limiting argument and the properties of P, we

have

ψM + Λ(ψw) =

in the distribution sense on L .̂ Consequently, on ί/x,



THE YAMABE PROBLEM ON CR MANIFOLDS 195

Because ψ is constant in a neighborhood of Ul9 dψ and Δh\p vanish there. The
kernel representing the operator P is C 0 0 away from the diagonal η = £ in {/,
and thus

By (A.3), WjR(ψu) e L*([/) c L2(£/) (with /? = 2 + 2/Λ as usual). Finally,
/ e Ln + 1(£/), w e £*(ί/), and Holder's inequality imply/ψw e L*'(ί/), where
1//?' = \/p + 1/(Λ + 1). Consequently, using (A.2) with q = p\ WjP(fψu)
e L2(U). This yields P^(ψw) e L2{U\ or Ŵw e L^ί/j), so Lemma A.I is
proved.

It follows from Lemma A.I that we can use functions in Sl{Uλ) as test
functions: Let φj e CffiUx) tend to φ e Sl(Ux) in the Sf norm. Then

ί uΔhφj=[ Ll{du9d*j)^( L$(du,dφ).

Also, φj -> φ in Lp(Uι), so by Holder's inequality

ί /wφ, -> f /wφ.

Since /^ (uΔhφj + /wφy) = 0 we conclude that

(A.4) ί Lξ(du, dφ) +fuφ = 0 for every φ e SΊ2(£/χ).

(This and all subsequent integrations are with respect to θ Λ dθn.)
Now choose )8 > 1 and N > 0. Define

G ( t ) = (ίβ forO</<JV, F( Λ ί/(/ϊ+i)/2
V ^ [Nfi-ιt foτt>N, K \ N«-Wt for

Notice that for all t > 0 except / = ΛΓ,

(A.5) F'(t)2*βG\t), F(t)2 = tG(t),

(A.6) G ( 0 < ^ ( 0 ^ ( 0
Let ψ G C^ίί/i), ψ > 0. Because ψ has compact support and G(t) is a
Lipschitz function uniformly in t, the function φ = ψ2G(w) belongs to Sl(JJ{).
Hence by (A.4)

(A.7) J i^G'ίtOlΛ/β + 2χpL$(du,dψ)G(u) +/wψ2G(w) = 0.

From (A.6) we have
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Combining this inequality with (A.5) and (A.7) we find that

jpf t2\du\2

θF'{uf < 2βf \dψ\2

θF(u)

Denote w = ψF(u). Then dw = F(u)dψ + ψF'(u) du. The Sobolev inequal-
ity (Proposition 5.5) implies there is a constant C such that

J P
w2

< Cβf \dγ\iF(uf + Cβf \f\w2 + cf w2.

If E denotes the set where ψ Φ 0, then

2/p

For E sufficiently small that (fE \f\»+ιγΛ»+ι) < %Cβ,v/e conclude that

Λ < ICβj \dψ\2

θF(u) + 2CJ w2.

Taking the limit as N -> oo, we have

a/p

Now by choosing a suitable collection of cutoff functions ψ we can show that
if u e Lβ+1(U2) for some ί / 2 c c ί̂ , then w G L ( / m )^ / 2(£/ 3) for all ί / 3 c c
ί/2. Thus, since /?/2 > 1, we conclude by induction that u e LS(U2) for any
U2 c c ί/j and any 5 < 00.

References

[1] T. Aubin, Equations differentielles non lineaires et probleme de Yamabe concernant la courbure
scalaire, J. Math. Pures Appl. 55 (1976) 269-296.

[2] M. Beals, C. Fefferman & R. Grossman, Strictly pseudoconυex domains in C", Bull. Amer.

Math. Soc. (N.S.) 8 (1983) 125-322.

[3] H. Brezis & T. Kato, Remarks on the Schroedinger operator with singular complex potentials,

J. Math. Pures Appl. 58 (1979) 137-151.

[4] D. Burns, K. Diederich & S. Shnider, Distinguished curves in pseudoconυex boundaries, Duke
Math. J. 44 (1977) 407-431.

[5] S. S. Chern & R. Hamilton, On Riemannian metrics adapted to three-dimensional contact
manifolds, preprint.

[6] R. R. Coif man & G. Weiss, Extensions of Hardy spaces and their use in analysis, Bull. Amer.
Math. Soc. 83 (1977) 569-645.

[7] F. Farris, An intrinsic construction of Fefferman1 s CR metric, Pacific J. Math. 123 (1986)
33-45.



THE YAMABE PROBLEM ON CR MANIFOLDS 197

[8] C. Fefferman, Monge-Ampere equations, the Bergman kernel, and geometry of pseudoconυex

domains, Ann. of Math. 103 (1976) 395-416; Correction, 104 (1976) 393-394.

[9] G. B. Folland & E. M. Stein, Estimates for the ^h-complex and analysis on the Heisenberg

group, Comm. Pure Appl. Math. 27 (1974) 429-522

[10] S. Helgason, Solvability questions for invariant differential operators, Fifth Internat. Colloq.

on Group-Theoretical Methods in Physics, Montreal, 1976.

[11] D. Jerison, The Dirichlet problem for the Kohn Laplacian on the Heisenberg group. I, J.

Functional Analysis 43 (1981) 97-142.

[12] , The Poincare inequality for vector fields satisfying H'όrmander's condition, in prepara-

tion.

[13] , Remarks on non-isotropic Sobolev spaces, in preparation.

[14] D. Jerison & J. M. Lee, A subelliptic, nonlinear eigenvalue problem and scalar curvature on

CR manifolds, Contemporary Math. 27 (1984) 57-63.

[15] J. J. Kohn, Boundaries of complex manifolds, Proc. Conf. on Complex Analysis (Minneapolis,

1964), Springer, Berlin, 1965, 81-94.

[16] J. M. Lee, The Fefferman metric andpseudohermitian invariants, Trans. Amer. Math. Soc. 296
(1986) 411-429.

[17] P.-L. Lions, Applications de la methode de concentration-compacite a Γexistence de functions

extremales, C. R. Acad. Sci. Paris Ser. I Math. 296 (1983) 645-648.

[18] J. Moser, On Harnack's theorem for elliptic differential equations, Comm. Pure Appl. Math.

14(1961)577-591.

[19] A. Nagel & E. M. Stein, Lectures on pseudo-differential operators, Princeton University Press,

Princeton, NJ, 1979.

[20] M. Obata, The conjectures on conformal transformations of Riemannian manifolds, J. Differen-

tial Geometry 6 (1971) 247-258.

[21] R. Schoen, Conformal deformation of a Riemannian metric to constant scalar curvature, J.

Differential Geometry 20 (1984) 479-495.

[22] E. M. Stein, Singular integrals and estimates for the Cauchy-Riemann equations, Bull. Amer.

Math. Soc. 79 (1973) 440-445.

[23] G. Talenti, Best constant in Sobolev inequality, Ann. Mat. Pura Appl. 110 (1976) 353-372.

[24] N. Trudinger, Remarks concerning the conformal deformation of Riemannian structures on

compact manifolds, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 22 (1968) 265-274.

[25] K. Uhlenbeck, Elliptic theory and calculus of variations on manifolds, Lectures given at

Harvard University, 1983.

[26] S. M. Webster, Pseudohermitian structures on a real hypersurface, J. Differential Geometry 13

(1978) 25-41.

[27] H. Yamabe, On a deformation of Riemannian structures on compact manifolds, Osaka Math. J.

12 (1960) 21-37.

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

HARVARD UNIVERSITY






