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ON CARNOT-CARATHEODORY METRICS

JOHN MITCHELL

1. Introduction

Consider a smooth Riemannian ^-manifold (M, g) equipped with a smooth

distribution of /c-planes. Such a distribution Δ assigns to each point m e M a

/^-dimensional subspace of the tangent space TmM. An absolutely continuous

curve a in M is said to be horizontal if it is a.e. tangent to the distribution Δ.

One may define a metric on M as follows.

Definition. The Carnot-Caratheodory distance between two points p,q e

M is dc{p, q) = infω e C {length(ω)}, where Cpq is the set of all horizontal

curves which join p to q. The metric dc is finite provided that the distribution Δ

satisfies Hόrmander's condition (assuming that M is connected). To describe

this condition, let Xl9 X2, —,Xk be a local basis of vector fields for the

distribution near m e M. If these vector fields, along with all their commuta-

tors, span TmM, then the vector fields are said to satisfy Hόrmander's

condition at m. Denote by Vt{m) the subspace of TmM spanned by all

commutators of the Λ̂  's of order < i (including, of course, the X/s). It is easy

to see that Vt{m) does not depend upon the choice of local basis {Xj}, so it

makes sense to say that the distribution satisfies Hόrmander's condition at m if

dimJ^(m) = dim(M) for some i. This infinitesimal transitivity implies local

transitivity:

Theorem {Chow). If a smooth distribution satisfies H'όrmander 's condition at

m G M, then any point p e M which is sufficiently close to m may be joined to m

by a horizontal curve.

Thus, if M is connected, the metric dc is finite.

We will prove below the following two local theorems concerning the metric

space (M, dc) associated to a generic distribution Δ on M. (A distribution is

said to be generic if, for each /, dim(P^(m)) is independent of the point
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m e M.)
Theorem 1. For a generic distribution Δ on M, the tangent cone of(M, dc) at

m e M is isometric to (G, dc\ where G is a nilpotent Lie group with a

left-invariant Carnot-Caratheodory metric. {The tangent cone is defined in §2,

Definition 2.2.)

Theorem 2. For a generic distribution Δ the Hausdorff dimension of the

metric space (M, dc) is

See Hurewicz and Wallman [9] for a definition of Hausdorff dimension.
It should be pointed out, that Theorem 1 is a geometric version of the

approximation procedure used by Rothschild-Stein and Goodman in their
studies of hypoelliptic operators. Likewise, Theorem 2 may be viewed as a
geometric analogue of Metivier's analytic results. A very nice discussion of the
Rothschild-Stein approximation result and of the geometry associated to
hypoelliptic operators may be found in Goodman [6]. More information
concerning Carnot-Caratheodory metrics may also be found in Franchi &
Lanconelli [14], Pansu [12].

2. Preliminaries

Carnot-Caratheodory metrics are closely related to nilpotent Lie groups.
Consider, as an example, the Heisenberg group G, a simply connected,
three-dimensional nilpotent Lie group (it is diffeomorphic to R3). Let X, Y
generate the Lie algebra Q, SO that X, 7 and Z = [X, Y] are a vector space
basis for g. There is a family of automorphisms {δ,} of g, whose representa-
tion with respect to the basis X, 7, Z is

/ 0
0 t

0 0

Consider the left-invariant Riemannian metric g on G for which X, 7, Z are

orthonormal. On Q, this metric is represented by the matrix

/I 0 0\
0 1 0 .

\0 0 1/
The metric (l// 2)g is isometric to (l//2)δ*(g) (δ, provides the isometry),
which is easily seen to be represented by the matrix

t
0

0

0

0

0
0

t2

1
0

0

0
1

0

0
0

ί2
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Thus, as / -> + oo, the lengths of vectors transverse to the distribution spanned

by X and Y (thought of as left-invariant vector fields on G) become infinite,

while the lengths of horizontal vectors remain unchanged. In the limit, only

horizontal curves have finite lengths, and the sequence of metric spaces

(G, g/t2) converges to the metric space (G, dc). Thus, the global geometry of

(G, g) is shrunk to the local geometry of (G, dc). This phenomenon occurs for

general nilpotent Lie groups:

Theorem (Pansu). If G is a nilpotent Lie group with left-invariant Rieman-

nίan metric g, then

lim (G,g//)=(G,</C),
t-> +00

where G is a nilpotent Lie group and dc is a Carnot-Caratheodory metric on G. If

G is graded (see Goodman), then G = G; otherwise G is the graded nilpotent Lie

group associated to G (see Pansu [12]).

The limit used in the theorem above is the Hausdorff limit of a sequence of

metric spaces, which we now define (see Gromov [7]).

Definition. The Hausdorff distance between two compact subsets A, B of

metric space C is denoted by HC(A, B) and equals

inf{ ε\B c Nε(A),A ^NE(B)},

where NE denotes the ε-neighborhood.

The Hausdorff distance between two "abstract" compact metric spaces A, B

is denoted H(A, B) and equals inϊcHc(A, B), where the infimum is taken

over all isometric imbeddings of the pair A, B into all possible metric spaces C.

(Note that such metric spaces exist; for example C = A X B.)

A sequence {At} of compact metric spaces is said to converge in the sense of

Hausdorff to a metric space B if \imi^O0H(Ai, B) = 0. Note the following

more practical definition (see Gromov [8]).

Theorem. A sequence {At} of compact metric spaces converges to B if and

only if there is a sequence of positive real numbers ε; —> 0 such that, for each i,

there is an ε^dense net Γ, c At and an ε --dense net Γ/ c B which is ε^quasi-

isometric to Tj.

(An ε-dense net in a space A means a set of points with the property that

each point of A is within distance ε of some point of the set. An ε-quasi-

isometry between two metric spaces is a mapping which preserves distances up

to a factor of 1 4- ε.)

If the spaces At are not compact, convergence will mean that for each R > 0,

the balls of radius R about fixed base points in At converge to the ball of

radius R about a fixed point in B.
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Gromov has provided the following necessary and sufficient condition for

existence of a convergent subsequence of a sequence of compact metric spaces.

Definition 2.1. The sequence { Aι} is uniformly compact if

(i) the diameters, diam(v4y), are uniformly bounded.

(ii) For any ε > 0, the minimum number of ε-balls needed to cover At is

bounded (uniformly in i).

One may use the notion of Hausdorff convergence to define the tangent

cone of a metric space.

Definition 2.2. The tangent cone of a metric space (M, d) at a point m e M

is TmM = l i m ^ ^ M , λ d) if the limit exists. Of course, m is chosen as base

point for all the spaces (M, λ d).

Returning to the example of the Heisenberg group, it is easy to see that, in

canonical coordinates,

rfc((0,0,0),(0,0,z))«i£\

for example. Thus dc is, in general, not smooth so it is interesting to ask what

its Hausdorff dimension (see Hurewicz & Wallman [9]) is. In this case, the

answer is four. Theorem 2 answers this question in a more general setting.

3. Proofs of the theorems

Theorems 1 and 2 are based directly on the work of Rothschild-Stein,

Goodman and Metivier, involving hypoelliptic operators. The theorem we need

is stated below. It is due to Metivier and is based on techniques introduced by

Goodman (see Goodman [6]).

Theorem {see Metivier [10]). Let ω be a neighborhood of p e M. Suppose

that v- = dim(^(x)) is constant for each i (x e ω) and that άim(Vr(x)) = n =

dim(M) for some r. (Assume r is minimal.) Then for any x0 e ω, there exist

neighborhoods ωx c c ω0 c c ω of JC0, a neighborhood Uo of the origin 0 in R",

and a C°° mapping θ: ωλ X ω0 -> R" such that:

(i) For each x e ωx the map θx: y =» θ(x, y) is a C°° diffeomorphism from ω0

toθx(ω0)= U0,andθx(x) = Q.

(ii) For each x e ω l 5 the vector fields Xix = (θx)^Xi9 i = 1, ,A:, are of

degree < 1 at 0.

(iii) If Xj x denotes the homogeneous part of degree one of Xi x, then the vector

fields Xt x generate a nilpotent Lie algebra of dimension n. Furthermore, let

V,(t) = V,(ξ, XUx, • -,XkJ. Then dim^.(ξ) = υ, for allξ e R", / = 1, ,r.

(iv) The vector fields Xi x and Xt x depend smoothly on x G ωv

It should be noted that Metivier's theorem is based directly on the work of

Goodman (see [6]).
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To prove Theorems 1 and 2 we will define a one-parameter group of

dilations of M (locally). Let us denote by Xf the m-fold commutator

[Xiχ, ,[Ar,.|M_i, Xim] ] for a multi-index / = {/l5 ,zm}. We may choose

from among the X/s a subset {Y,}, j = 1, ,«, of vector fields such that

{Yj}i9 is a basis of TXM for all x e ω. Thus, any point JC in ω (or in a smaller

neighborhood, again denoted by ω) may be uniquely written in the form

x = exp
/ = l

for some real numbers ar The at are the normal coordinates of x. Define the

dilation yr in terms of normal coordinates as follows:

(γrjc)f. = r[/1fl,., where [i] = k if d i m i ^ ) < / < d i m ( F j .

The Λ :̂x are homogeneous with respect to yr.

One may choose, for each k, 1 < k < r, a subset {Λ^ ^1,7 = 1,2, , of

the commutators of the Xix's which yields a basis for Vk(x)/Vk_1(x). A

vector field Y on R" may be written

If we expand the aJk

9s in their Taylor series about zero in normal coordinates,

Y will be exhibited as a formal sum of homogeneous differential operators. Y is

of degree < λ if each term in this formal sum is homogeneous of degree < λ.

For the definition of this last term, see Goodman [6].

Let Δ r be the distribution spanned by (γ r+(A r

/)}, and let dr denote the

associated Carnot-Caratheodory metric. Δ^ will denote the distribution

spanned by { Xt) and d^ is its associated metric. Br{k) and Sr(k) denote the

ball and sphere of radius k in the metric dr, 1 < r < oo.

The proof of Theorem 1 is based on the following two lemmas.

Lemma 3.1. dr converges, in the sense ofHausdorff, to d^asr -> oo.

Lemma 3.2. The quasi-isometric distance between (M, rdλ) and (M, dr)

tends to zero as r -> oo.

The quasi-isometric distance between two metric spaces (X, dx) and (7, dγ)

is denoted (X,Y) and is defined as the logarithm of the infimum of the metric

distortion of all homeomorphisms /: X -> Y. If X and Y are not homeomor-

phic, then(X, Y) = oo.

The following lemma allows one to use Lemma 3.2 to obtain a bound on the

Hausdorff distance i/((M, r dλ), (M, dr)). Together with Lemma 3.1, this

will show that (M, r dλ) is Hausdorff close to (Λf, d^) for large r.
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Lemma 3.3. // X and Y are two metric spaces with finite diameters, then

Theorem 2 may be obtained from an estimate of vol^^ε)) (vol =
Riemannian volume):

for some C > 1 and all small ε, where Q is as in Theorem 2.
This in turn follows from the fact that, for large r, yr multiplies volumes of

regions contained in γ 1 / r(5 1(l)) by rQ, up to a bounded factor, together with
the following estimate.

Lemma 3.4. Bλ{\/cr) c γ1/r(JB1(l)) c Bλ(c/r)for some c > 1 and all large
r.

Lemmas 3.2 and 3.4 are similar in content and will be proved simultaneously
later.

Proof of Lemma 3.1. In order to demonstrate that the Hausdorff distance
H((M, dr\ (M, d^)) tends to zero as r -> oo we must, for any compact "ball"
B c M, produce a metric space C and a family of isometric imbeddings Fr:
(2?, dr) -> C such that for all sufficiently large r the images Fr(B, dr) and
F^B, d^) are close as subsets of C. The space C may be taken to be the space
of continuous functions on B with metric 8 induced by the supreme norm. The
imbeddings are defined as follows.

For m e B define Fr(m) = dr(m, -)\B; that is, a point m e 2? is sent to the
distance function based at m, restricted to B. The images Fr(B) and F^iB) will
be close in C provided that δ(Fr(ra), F^m)) is small for each m e B. Thus we
wish to show that

δ(dr(m, •)> ^ ( m , •)) = sup \dr{m, x) - d^m, x)\ < E(r)

for all m e B, where £ ( r ) - > 0 a s r - » oo. This is done as follows. For any rλ

and r2 and for each piecewise-smooth curve joining m to x which is tangent to
Δ r a.e. we produce a curve of the same length which is tangent to Δr a.e. and
which joins m to a point x'. If rx and r2 are large, JC' will be close to x with
respect to dl9 and so, by Lemma 3.5 below, x' will also be close to x with
respect to the metric dr for any large r.

Lemma 3.5. There is a function F(p) > 0 defined for p > 0 such that

F(p) -> 0 as p -> 0 tfm/ ̂ i(/>, q) < p implies dr(p, q) < F(p)for all r ^ R and

for any p,q e B. This R may depend on p but not on p and q.

Proof. We recall the main idea in the proof of Chow's theorem (see, Chow
[1], Pansu [12]). First, one chooses a linearly independent set from among the
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X/s which spans TmM. Let us denote the multi-index subscripts appearing in
this set by / l 5 /2, ,/M. To each multi-index / we associate a flow φ on Λf as
follows: If / = i, set φ,(0 = exp^Xra), and if / = (i, / ) , set φ7(ί) =
Φy(~ V^)°Φ/(- y/t)oΦJ(}ίt)oΦi(}ίt). (Here (/, /) denotes the multi-index ob-
tained by appending an i to the beginning of the multi-index /.) Now define a
map φ: Rn -* M as

Note that φ(0) = m. It is easy to check that φ is as C1 mapping and that
Φ*(9/3*/)lr-ό = %L f°τJ = 1> ' #>w The inverse function theorem implies that
φ is a C1 diffeomorphism near the origin. Moreover, by the construction of φ,
φ(ΐ) is the endpoint of a horizontal curve, so any point near m e M may be
reached by a horizontal curve.

If we apply this construction to a local basis of vector fields for Δ^, we see
that some Riemannian ball Bm(ε) about m e M is contained in the image
under φ of some ball B(δ) in R". Now it is clear that we may choose a local
orthonormal basis { Xf} for Δr which depends continuously on r for 1 < r < oo.
We may then construct a map φr\ R" -* M associated to each basis { Xf}, and
it is clear that φr\B depends continuously on the vector fields used to define it,
so φr\B depends continuously on r. Thus, for large r, φ\B) contains B(ε/2, m),
for example. With p = ε/2 and F(p) = δ we see that

d(q, m) < p => dr(q, m) < F(p)

for large r. Clearly, we may take δ -» 0 as ε -> 0 and the estimate is obviously
uniform on compact sets in M, so Lemma 1.5 is proved.

To return to the proof of Lemma 3.1 we associate to any piecewise-smooth
curve cγ joining m to x which is tangent a.e. to Δ a curve c2 of the same length
which joins m to a point x' and which is tangent a.e. to Δr2. If rx and r2 are
large, xf will be close to x. The procedure is as follows.

The curve cx satisfies
n

Cι(t) = Σ 0,(>)*/ r i(ci(O), q(0) = m, cx(T) = x,

for a.e. t, 0 < / < T. Define c2 by the conditions

n

i - l

for 0 < t < T. Since we may assume that { Xf} is an orthonormal set for all r,
we have ||e1(r)|| = ||c2(OII a n d therefore length(cL) = length(c2). An elemen-
tary estimate based on the Gronwall lemma (see [11]) shows that x' is
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Riemannian close to x if rλ and r2 are sufficiently large. There is thus, by the

previous lemma, a dr2-short path from i t o i ' , and so

dr2(m,x) < drι(m, x) + ε(R) forr1? r2 > R,

where ε(R) -^> 0 as R -+ oo. Similarly we see that

drι(m,x) < dri(m,x) + ε(R).

Again, the estimates are clearly uniform for all m, x e B if B is compact, so

H((B, drχ), (B, dr2)) -» 0 as rx and r2 -> oo. In particular, letting r1 = oo we

have

KmH((B,dr),(B,dJ) = O.

This completes the proof of Lemma 3.1.

Proof of Lemma 3.4. We may identify a neighborhood in M with a

neighborhood of 0 e Rw via 0. Let /^(l) denote the Carnot-Caratheodory ball

centered at 0. The estimate in Lemma 3.4 may be paraphrased as follows: Up

to bounded distortion, γr, applied to curves or vectors in y1/r(B1(l)) which are

tangent to Δ, multiplies length by r. For the proof, let x0 e Sλ(l). To estimate

the Carnot-Caratheodory distance of γ 1 / r ( x 0 ) ^ r o m 0, we need to estimate how

γ r acts on vectors in Δ whose base points lie in yι/r(B(l)). Let y G 5(1) and let

K e Δ ( γ 1 / r ( > O ) . T h e n

V = Σ "ΛJγi A (J) + Σ ^.Λjγ^ί^), v, e R,
1 /

where Λ, = Λ̂  ̂  — Xix is a vector field of degree < 0. Thus

since yrm(XitX) = r * ̂ x . Now the definition of local degree (see Goodman,

Rothschild & Stein) implies that if Rj has degree < 0, then the length of

yrm(Ri(Ύι/r(y))) remains bounded as r -> oo.

{Proof. The homogeneous terms in the formal expansion of Λ( as a sum of

homogeneous operators (with respect to γ r) look like ajklXjkx if ajk has the

formal expansion ajk = Σ™=oajkh where ajkι is a function homogeneous of

degree /. Since

yι/Ay)) %kAy) a n d
 ^ ( ^ , * ( Y I Λ ( ^ ) ) = '%,*'>

we have

yr.{aJkJXjk,x(yι/r(y))) = rk-ιaJkJXJk(y).

"Rt is of local degree < 0" means k — 1 < 0, so such a term remains bounded

as r -> oc. This implies the result.)
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Also, ||^/(Yi/r(>;))|| -> 0 as r -> oo ("|| ||" denotes Riemannian length) since
#,(0) = 0. Therefore

1 WrΣ^X^ + Σ,p,γ r .(*,(γ 1 / r (jQ)) | |

r W\\ r \%iOiXUx\ix

as r -> oo, and so this expression is bounded above and below by \/c and c
respectively for some c > 1, for all sufficiently large r.

From this estimate on vectors we get the estimate on curves. If/?: [0,1] -> R"
is a path joining 0 to γ1 / r(*o) which is tangent to the distribution Δ a.e. (recall
that M is identified with Rw locally, via θ) and which lies in y1/r(B(l)% then
yr(p) is a path joining 0 to x0. Its length is therefore bounded below by a
positive constant, and with the inequality on vectors proved above, we see that

const < length(γΓ(/?)) < Hength(/?),

which gives the left side of the inequality in Lemma 3.4.
Lemma 3.1 implies that B^(k) c Br(k + 8) for all large r and some 8. Also,

it is clear that B^l) c B^p) for some k, so B(l) c Br(k + δ) for all large r.
This shows that we may choose a piecewise-smooth path p tangent to Δr and
joining 0 to JC0, of length < k + 8 = constant. Then^ = γ1/r(/?) is tangent to
Δ, joins 0 to Ύι/r(x0) and satisfies

, , / \ const .
length( p) < for some constant.

This gives the right side of the inequality in Lemma 3.4. Note that we have
proven that

length(γr(j>))
l i m \ +uί \ = 1 ?

r-̂ oo rlength(/>)
which is precisely the meaning of Lemma 3.2.

Proof of Lemma 3.3. Suppose that (X, dλ) and (Y, d2) are two metric
spaces with finite diameters. If (X, Y) < oo, then there is a homeomorphism/:
X -* Y whose distortion is arbitrarily close to e{X'γ\ Identify Y with X via/,
to obtain a single X with two metrics dλ and d2. We may imbed each of these
metric spaces isometrically into a third metric space; namely, C°(X) =
continuous functions on X with metric induced by the sup norm. A point
j c E l i s sent to the point Ft{x) = d^x, •) e C°(X), / = 1,2. For any xl9 x2

l o g ί ^ ^ -
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and

max{d1(x1,x2), d2(xι, x2)} < diam(X) + diam(7).

It follows that

\dx(xl9 x2) - d2(xl9 x2)\ < (1 - e^x-γ>)(diam(X) + diam(y)).

Thus H(X, Y) < (diam(*) + diam(Y))( X, Y). q.e.d.
Theorem 1 now follows from Lemmas 3.1, 3.2 and 3.3.
Theorem 2 follows easily from the volume estimate (*) appearing below

Lemma 3.3: choose a maximal set of disjoint balls (in the Carnot-Caratheodory
metric) of radius ε which cover the unit ball Bx(l). The number Nε of such balls
does not exceed vo\(Bι(l))/C~1εQ. The set of concentric balls of radius 2ε
cover B^l). Each of these balls has diameter < 4ε, so the Hausdorff δ-measure
of B^l) is at most

Thus dim < Q. Conversely, given any covering of Bx(l) by sets of diameter
< ε, there is an associated covering by balls of radius ε, so the number NE of
sets in the covering satisfies

K
Nε'C-ε^>Σ vol(ith ball) > v o l ^ l ) ) .

ι = l

Thus

vol(^(l))

C εQ

coveπng ^ c

Taking the infimum over all coverings by sets of diameter < ε, then taking the
limit as ε -> 0, gives Hausdorff δ-measure of 2?i(l) = oo if 8 < Q. Thus
dim ^ Q. This proves Theorem 2.

Remark. These estimates show that, in fact, μQ = Hausdorff g-dimen-
sional measure is commensurate with Lebesgue measure (on 2?χ(l)):

where μ = Lebesgue measure and VQ = volume of unit ball in RQ.
Acknowledgement. I wish to expresss my most sincere thanks to Professor
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