ON CARNOT-CARATHÉODORY METRICS

JOHN MITCHELL

1. Introduction

Consider a smooth Riemannian n-manifold (M, g) equipped with a smooth distribution of k-planes. Such a distribution Δ assigns to each point $m \in M$ a k-dimensional subspace of the tangent space $T_{m} M$. An absolutely continuous curve α in M is said to be horizontal if it is a.e. tangent to the distribution Δ. One may define a metric on M as follows.

Definition. The Carnot-Carathéodory distance between two points $p, q \in$ M is $d_{c}(p, q)=\inf _{\omega \in C_{p, q}}\{$ length $(\omega)\}$, where $C_{p, q}$ is the set of all horizontal curves which join p to q. The metric d_{c} is finite provided that the distribution Δ satisfies Hörmander's condition (assuming that M is connected). To describe this condition, let $X_{1}, X_{2}, \cdots, X_{k}$ be a local basis of vector fields for the distribution near $m \in M$. If these vector fields, along with all their commutators, span $T_{m} M$, then the vector fields are said to satisfy Hörmander's condition at m. Denote by $V_{i}(m)$ the subspace of $T_{m} M$ spanned by all commutators of the X_{j} 's of order $\leqslant i$ (including, of course, the X_{j} 's). It is easy to see that $V_{i}(m)$ does not depend upon the choice of local basis $\left\{X_{j}\right\}$, so it makes sense to say that the distribution satisfies Hörmander's condition at m if $\operatorname{dim} V_{i}(m)=\operatorname{dim}(M)$ for some i. This infinitesimal transitivity implies local transitivity:

Theorem (Chow). If a smooth distribution satisfies Hörmander's condition at $m \in M$, then any point $p \in M$ which is sufficiently close to m may be joined to m by a horizontal curve.

Thus, if M is connected, the metric d_{c} is finite.
We will prove below the following two local theorems concerning the metric space (M, d_{c}) associated to a generic distribution Δ on M. (A distribution is said to be generic if, for each $i, \operatorname{dim}\left(V_{i}(m)\right)$ is independent of the point
$m \in M$.)
Theorem 1. For a generic distribution Δ on M, the tangent cone of $\left(M, d_{c}\right)$ at $m \in M$ is isometric to $\left(G, d_{c}\right)$, where G is a nilpotent Lie group with a left-invariant Carnot-Carathéodory metric. (The tangent cone is defined in §2, Definition 2.2.)

Theorem 2. For a generic distribution Δ the Hausdorff dimension of the metric space $\left(M, d_{c}\right)$ is

$$
Q=\sum_{i} i\left(\operatorname{dim}\left(V_{i}\right)-\operatorname{dim}\left(V_{i-1}\right)\right) .
$$

See Hurewicz and Wallman [9] for a definition of Hausdorff dimension.
It should be pointed out, that Theorem 1 is a geometric version of the approximation procedure used by Rothschild-Stein and Goodman in their studies of hypoelliptic operators. Likewise, Theorem 2 may be viewed as a geometric analogue of Metivier's analytic results. A very nice discussion of the Rothschild-Stein approximation result and of the geometry associated to hypoelliptic operators may be found in Goodman [6]. More information concerning Carnot-Carathéodory metrics may also be found in Franchi \& Lanconelli [14], Pansu [12].

2. Preliminaries

Carnot-Carathéodory metrics are closely related to nilpotent Lie groups. Consider, as an example, the Heisenberg group G, a simply connected, three-dimensional nilpotent Lie group (it is diffeomorphic to \mathbf{R}^{3}). Let X, Y generate the Lie algebra g , so that X, Y and $Z=[X, Y]$ are a vector space basis for \mathfrak{g}. There is a family of automorphisms $\left\{\delta_{t}\right\}$ of \mathfrak{g}, whose representation with respect to the basis X, Y, Z is

$$
\left(\begin{array}{ccc}
t & 0 & 0 \\
0 & t & 0 \\
0 & 0 & t^{2}
\end{array}\right) .
$$

Consider the left-invariant Riemannian metric g on G for which X, Y, Z are orthonormal. On \mathfrak{g}, this metric is represented by the matrix

$$
\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) .
$$

The metric $\left(1 / t^{2}\right) g$ is isometric to $\left(1 / t^{2}\right) \delta_{t}^{*}(g)$ (δ_{t} provides the isometry), which is easily seen to be represented by the matrix

$$
\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & t^{2}
\end{array}\right) .
$$

Thus, as $t \rightarrow+\infty$, the lengths of vectors transverse to the distribution spanned by X and Y (thought of as left-invariant vector fields on G) become infinite, while the lengths of horizontal vectors remain unchanged. In the limit, only horizontal curves have finite lengths, and the sequence of metric spaces $\left(G, g / t^{2}\right)$ converges to the metric space (G, d_{c}). Thus, the global geometry of (G, g) is shrunk to the local geometry of $\left(G, d_{c}\right)$. This phenomenon occurs for general nilpotent Lie groups:

Theorem (Pansu). If G is a nilpotent Lie group with left-invariant Riemannian metric g, then

$$
\lim _{t \rightarrow+\infty}(G, g / t)=\left(\bar{G}, d_{c}\right)
$$

where \bar{G} is a nilpotent Lie group and d_{c} is a Carnot-Carathéodory metric on \bar{G}. If G is graded (see Goodman), then $\bar{G}=G$; otherwise \bar{G} is the graded nilpotent Lie group associated to G (see Pansu [12]).

The limit used in the theorem above is the Hausdorff limit of a sequence of metric spaces, which we now define (see Gromov [7]).

Definition. The Hausdorff distance between two compact subsets A, B of metric space C is denoted by $H_{C}(A, B)$ and equals

$$
\inf \left\{\varepsilon \mid B \subset N_{\varepsilon}(A), A \subset N_{\varepsilon}(B)\right\}
$$

where N_{ε} denotes the ε-neighborhood.
The Hausdorff distance between two "abstract" compact metric spaces A, B is denoted $H(A, B)$ and equals $\inf _{C} H_{C}(A, B)$, where the infimum is taken over all isometric imbeddings of the pair A, B into all possible metric spaces C. (Note that such metric spaces exist; for example $C=A \times B$.)

A sequence $\left\{A_{i}\right\}$ of compact metric spaces is said to converge in the sense of Hausdorff to a metric space B if $\lim _{i \rightarrow \infty} H\left(A_{i}, B\right)=0$. Note the following more practical definition (see Gromov [8]).

Theorem. A sequence $\left\{A_{i}\right\}$ of compact metric spaces converges to B if and only if there is a sequence of positive real numbers $\varepsilon_{i} \rightarrow 0$ such that, for each i, there is an ε_{i}-dense net $\Gamma_{i} \subset A_{i}$ and an ε_{i}-dense net $\Gamma_{i}^{\prime} \subset B$ which is ε_{i}-quasiisometric to Γ_{i}.
(An ε-dense net in a space A means a set of points with the property that each point of A is within distance ε of some point of the set. An ε-quasiisometry between two metric spaces is a mapping which preserves distances up to a factor of $1+\varepsilon$.)

If the spaces A_{i} are not compact, convergence will mean that for each $R>0$, the balls of radius R about fixed base points in A_{i} converge to the ball of radius R about a fixed point in B.

Gromov has provided the following necessary and sufficient condition for existence of a convergent subsequence of a sequence of compact metric spaces.

Definition 2.1. The sequence $\left\{A_{i}\right\}$ is uniformly compact if
(i) the diameters, $\operatorname{diam}\left(A_{i}\right)$, are uniformly bounded.
(ii) For any $\varepsilon>0$, the minimum number of ε-balls needed to cover A_{i} is bounded (uniformly in i).

One may use the notion of Hausdorff convergence to define the tangent cone of a metric space.

Definition 2.2. The tangent cone of a metric space (M, d) at a point $m \in M$ is $T_{m} M=\lim _{\lambda \rightarrow \infty}(M, \lambda \cdot d)$ if the limit exists. Of course, m is chosen as base point for all the spaces $(M, \lambda \cdot d)$.

Returning to the example of the Heisenberg group, it is easy to see that, in canonical coordinates,

$$
d_{c}((0,0,0),(0,0, z)) \approx \sqrt{z}
$$

for example. Thus d_{c} is, in general, not smooth so it is interesting to ask what its Hausdorff dimension (see Hurewicz \& Wallman [9]) is. In this case, the answer is four. Theorem 2 answers this question in a more general setting.

3. Proofs of the theorems

Theorems 1 and 2 are based directly on the work of Rothschild-Stein, Goodman and Metivier, involving hypoelliptic operators. The theorem we need is stated below. It is due to Metivier and is based on techniques introduced by Goodman (see Goodman [6]).

Theorem (see Metivier [10]). Let ω be a neighborhood of $\rho \in M$. Suppose that $v_{i}=\operatorname{dim}\left(V_{i}(x)\right)$ is constant for each $i(x \in \omega)$ and that $\operatorname{dim}\left(V_{r}(x)\right)=n=$ $\operatorname{dim}(M)$ for some r. (Assume r is minimal.) Then for any $x_{0} \in \omega$, there exist neighborhoods $\omega_{1} \subset \subset \omega_{0} \subset \subset \omega$ of x_{0}, a neighborhood U_{0} of the origin 0 in \mathbf{R}^{n}, and a C^{∞} mapping $\theta: \bar{\omega}_{1} \times \omega_{0} \rightarrow \mathbf{R}^{n}$ such that:
(i) For each $x \in \bar{\omega}_{1}$ the map $\theta_{x}: y \Rightarrow \theta(x, y)$ is a C^{∞} diffeomorphism from ω_{0} to $\theta_{x}\left(\omega_{0}\right)=U_{0}$, and $\theta_{x}(x)=0$.
(ii) For each $x \in \bar{\omega}_{1}$, the vector fields $X_{i, x}=\left(\theta_{x}\right)_{*} X_{i}, i=1, \cdots, k$, are of degree $\leqslant 1$ at 0 .
(iii) If $\hat{X}_{i, x}$ denotes the homogeneous part of degree one of $X_{i, x}$, then the vector fields $\hat{X}_{i, x}$ generate a nilpotent Lie algebra of dimension n. Furthermore, let $\hat{V}_{i}(\xi)=V_{i}\left(\xi, \hat{X}_{1, x}, \cdots, \hat{X}_{k, x}\right)$. Then $\operatorname{dim} \hat{V}_{i}(\xi)=v_{i}$ for all $\xi \in \mathbf{R}^{n}, i=1, \cdots, r$.
(iv) The vector fields $\hat{X}_{i, x}$ and $X_{i, x}$ depend smoothly on $x \in \omega_{1}$.

It should be noted that Metivier's theorem is based directly on the work of Goodman (see [6]).

To prove Theorems 1 and 2 we will define a one-parameter group of dilations of M (locally). Let us denote by X_{I} the m-fold commutator $\left[X_{i_{1}}, \cdots,\left[X_{i_{m-1}}, X_{i_{m}}\right] \cdots\right]$ for a multi-index $I=\left\{i_{1}, \cdots, i_{m}\right\}$. We may choose from among the X_{I} 's a subset $\left\{Y_{j}\right\}, j=1, \cdots, n$, of vector fields such that $\left\{Y_{i}\right\}_{i}$, is a basis of $T_{x} M$ for all $x \in \omega$. Thus, any point x in ω (or in a smaller neighborhood, again denoted by ω) may be uniquely written in the form

$$
x=\exp \left(\sum_{i=1}^{n} a_{i} Y_{i}\right)
$$

for some real numbers a_{i}. The a_{i} are the normal coordinates of x. Define the dilation γ_{r} in terms of normal coordinates as follows:

$$
\left(\gamma_{r} x\right)_{i}=r^{[i]} a_{i}, \quad \text { where }[i]=k \text { if } \operatorname{dim}\left(V_{k-1}\right)<i \leqslant \operatorname{dim}\left(V_{k}\right) .
$$

The $\hat{X}_{i, x}$ are homogeneous with respect to γ_{r}.
One may choose, for each $k, 1 \leqslant k \leqslant r$, a subset $\left\{\hat{X}_{j k, x}\right\}, j=1,2, \cdots$, of the commutators of the $\hat{X}_{i, x}$'s which yields a basis for $V_{k}(x) / V_{k-1}(x)$. A vector field Y on \mathbf{R}^{n} may be written

$$
Y=\sum_{j, k} a_{j k} \hat{X}_{j k, x}, \quad a_{j k} \in C^{\infty}(M)
$$

If we expand the $a_{j k}$'s in their Taylor series about zero in normal coordinates, Y will be exhibited as a formal sum of homogeneous differential operators. Y is of degree $\leqslant \lambda$ if each term in this formal sum is homogeneous of degree $\leqslant \lambda$. For the definition of this last term, see Goodman [6].

Let Δ_{r} be the distribution spanned by $\left\{\gamma_{r_{*}}\left(X_{i}\right)\right\}$, and let d_{r} denote the associated Carnot-Carathéodory metric. Δ_{∞} will denote the distribution spanned by $\left\{\hat{X}_{i}\right\}$ and d_{∞} is its associated metric. $B_{r}(k)$ and $S_{r}(k)$ denote the ball and sphere of radius k in the metric $d_{r}, 1 \leqslant r \leqslant \infty$.

The proof of Theorem 1 is based on the following two lemmas.
Lemma 3.1. d_{r} converges, in the sense of Hausdorff, to d_{∞} as $r \rightarrow \infty$.
Lemma 3.2. The quasi-isometric distance between $\left(M, r d_{1}\right)$ and $\left(M, d_{r}\right)$ tends to zero as $r \rightarrow \infty$.

The quasi-isometric distance between two metric spaces (X, d_{X}) and (Y, d_{Y}) is denoted (X, Y) and is defined as the logarithm of the infimum of the metric distortion of all homeomorphisms $f: X \rightarrow Y$. If X and Y are not homeomorphic, then $(X, Y)=\infty$.

The following lemma allows one to use Lemma 3.2 to obtain a bound on the Hausdorff distance $H\left(\left(M, r \cdot d_{1}\right),\left(M, d_{r}\right)\right)$. Together with Lemma 3.1, this will show that ($M, r \cdot d_{1}$) is Hausdorff close to $\left(M, d_{\infty}\right)$ for large r.

Lemma 3.3. If X and Y are two metric spaces with finite diameters, then

$$
\frac{H(X, Y)}{\operatorname{diam}(X)+\operatorname{diam}(Y)} \leqslant(X, Y) .
$$

Theorem 2 may be obtained from an estimate of $\operatorname{vol}\left(B_{1}(\varepsilon)\right)(\mathrm{vol}=$ Riemannian volume):

$$
\begin{equation*}
C^{-1} \varepsilon^{Q} \leqslant \operatorname{vol}\left(B_{1}(\varepsilon)\right) \leqslant C \varepsilon^{Q} \tag{*}
\end{equation*}
$$

for some $C>1$ and all small ε, where Q is as in Theorem 2.
This in turn follows from the fact that, for large r, γ_{r} multiplies volumes of regions contained in $\gamma_{1 / r}\left(B_{1}(1)\right)$ by r^{Q}, up to a bounded factor, together with the following estimate.

Lemma 3.4. $\quad B_{1}(1 / c r) \subset \gamma_{1 / r}\left(B_{1}(1)\right) \subset B_{1}(c / r)$ for some $c>1$ and all large r.

Lemmas 3.2 and 3.4 are similar in content and will be proved simultaneously later.

Proof of Lemma 3.1. In order to demonstrate that the Hausdorff distance $H\left(\left(M, d_{r}\right),\left(M, d_{\infty}\right)\right)$ tends to zero as $r \rightarrow \infty$ we must, for any compact "ball" $B \subset M$, produce a metric space C and a family of isometric imbeddings F_{r} : $\left(B, d_{r}\right) \rightarrow C$ such that for all sufficiently large r the images $F_{r}\left(B, d_{r}\right)$ and $F_{\infty}\left(B, d_{\infty}\right)$ are close as subsets of C. The space C may be taken to be the space of continuous functions on B with metric δ induced by the supreme norm. The imbeddings are defined as follows.

For $m \in B$ define $F_{r}(m)=\left.d_{r}(m, \cdot)\right|_{B}$; that is, a point $m \in B$ is sent to the distance function based at m, restricted to B. The images $F_{r}(B)$ and $F_{\infty}(B)$ will be close in C provided that $\delta\left(F_{r}(m), F_{\infty}(m)\right)$ is small for each $m \in B$. Thus we wish to show that

$$
\delta\left(d_{r}(m, \cdot), d_{\infty}(m, \cdot)\right)=\sup _{x \in B}\left|d_{r}(m, x)-d_{\infty}(m, x)\right| \leqslant E(r)
$$

for all $m \in B$, where $E(r) \rightarrow 0$ as $r \rightarrow \infty$. This is done as follows. For any r_{1} and r_{2} and for each piecewise-smooth curve joining m to x which is tangent to $\Delta_{r_{1}}$ a.e. we produce a curve of the same length which is tangent to $\Delta_{r_{2}}$ a.e. and which joins m to a point x^{\prime}. If r_{1} and r_{2} are large, x^{\prime} will be close to x with respect to d_{1}, and so, by Lemma 3.5 below, x^{\prime} will also be close to x with respect to the metric d_{r} for any large r.

Lemma 3.5. There is a function $F(\rho)>0$ defined for $\rho>0$ such that $F(\rho) \rightarrow 0$ as $\rho \rightarrow 0$ and $d_{1}(p, q)<\rho$ implies $d_{r}(p, q)<F(\rho)$ for all $r \geqslant R$ and for any $p, q \in B$. This R may depend on ρ but not on p and q.

Proof. We recall the main idea in the proof of Chow's theorem (see, Chow [1], Pansu [12]). First, one chooses a linearly independent set from among the
X_{I} 's which spans $T_{m} M$. Let us denote the multi-index subscripts appearing in this set by $I_{1}, I_{2}, \cdots, I_{n}$. To each multi-index I we associate a flow ϕ on M as follows: If $I=i$, set $\phi_{I}(t)=\exp \left(t X_{i}\right)(m)$, and if $I=(i, J)$, set $\phi_{I}(t)=$ $\phi_{J}(-\sqrt{t}) \circ \phi_{i}(-\sqrt{t}) \circ \phi_{J}(\sqrt{t}) \circ \phi_{i}(\sqrt{t})$. (Here (i, J) denotes the multi-index obtained by appending an i to the beginning of the multi-index J.) Now define a map $\phi: \mathbf{R}^{n} \rightarrow M$ as

$$
\phi\left(t_{1}, \cdots, t_{n}\right)=\phi_{I_{n}}\left(t_{n}\right) \circ \phi_{I_{n-1}}\left(t_{n-1}\right) \circ \cdots \circ \phi_{I_{1}}\left(t_{1}\right) .
$$

Note that $\phi(\overrightarrow{0})=m$. It is easy to check that ϕ is as C^{1} mapping and that $\left.\phi_{*}\left(\partial / \partial t_{j}\right)\right|_{\vec{t}=\overrightarrow{0}}=X_{I_{j}}$ for $j=1, \cdots, n$. The inverse function theorem implies that ϕ is a C^{1} diffeomorphism near the origin. Moreover, by the construction of ϕ, $\phi(\vec{t})$ is the endpoint of a horizontal curve, so any point near $m \in M$ may be reached by a horizontal curve.

If we apply this construction to a local basis of vector fields for Δ_{∞}, we see that some Riemannian ball $B_{m}(\varepsilon)$ about $m \in M$ is contained in the image under ϕ of some ball $\mathbf{B}(\delta)$ in \mathbf{R}^{n}. Now it is clear that we may choose a local orthonormal basis $\left\{X_{i}^{r}\right\}$ for Δ_{r} which depends continuously on r for $1 \leqslant r \leqslant \infty$. We may then construct a map $\phi^{r}: \mathbf{R}^{n} \rightarrow M$ associated to each basis $\left\{X_{i}^{r}\right\}$, and it is clear that $\left.\phi^{r}\right|_{B}$ depends continuously on the vector fields used to define it, so $\left.\phi^{r}\right|_{B}$ depends continuously on r. Thus, for large $r, \phi^{r}(B)$ contains $\mathbf{B}(\varepsilon / 2, m)$, for example. With $\rho=\varepsilon / 2$ and $F(\rho)=\delta$ we see that

$$
d(q, m)<\rho \Rightarrow d_{r}(q, m)<F(\rho)
$$

for large r. Clearly, we may take $\delta \rightarrow 0$ as $\varepsilon \rightarrow 0$ and the estimate is obviously uniform on compact sets in M, so Lemma 1.5 is proved.

To return to the proof of Lemma 3.1 we associate to any piecewise-smooth curve c_{1} joining m to x which is tangent a.e. to $\Delta_{r_{1}}$ a curve c_{2} of the same length which joins m to a point x^{\prime} and which is tangent a.e. to $\Delta_{r_{2}}$. If r_{1} and r_{2} are large, x^{\prime} will be close to x. The procedure is as follows.

The curve c_{1} satisfies

$$
\dot{c}_{1}(t)=\sum_{i=1}^{n} a_{i}(t) X_{i}^{r_{1}}\left(c_{1}(t)\right), \quad c_{1}(0)=m, c_{1}(T)=x
$$

for a.e. $t, 0 \leqslant t \leqslant T$. Define c_{2} by the conditions

$$
\dot{c}_{2}(t)=\sum_{i=1}^{n} a_{i}(t) X_{i}^{r_{2}}\left(c_{2}(t)\right), \quad c_{2}(0)=m
$$

for $0 \leqslant t \leqslant T$. Since we may assume that $\left\{X_{i}^{r}\right\}$ is an orthonormal set for all r, we have $\left\|\dot{c}_{1}(t)\right\|=\left\|\dot{c}_{2}(t)\right\|$ and therefore length $\left(c_{1}\right)=$ length $\left(c_{2}\right)$. An elementary estimate based on the Gronwall lemma (see [11]) shows that x^{\prime} is

Riemannian close to x if r_{1} and r_{2} are sufficiently large. There is thus, by the previous lemma, a $d_{r_{2}}$-short path from x to x^{\prime}, and so

$$
d_{r_{2}}(m, x) \leqslant d_{r_{1}}(m, x)+\varepsilon(R) \quad \text { for } r_{1}, r_{2} \geqslant R,
$$

where $\varepsilon(R) \rightarrow 0$ as $R \rightarrow \infty$. Similarly we see that

$$
d_{r_{1}}(m, x) \leqslant d_{r_{2}}(m, x)+\varepsilon(R) .
$$

Again, the estimates are clearly uniform for all $m, x \in B$ if B is compact, so $H\left(\left(B, d_{r_{1}}\right),\left(B, d_{r_{2}}\right)\right) \rightarrow 0$ as r_{1} and $r_{2} \rightarrow \infty$. In particular, letting $r_{1}=\infty$ we have

$$
\lim _{r \rightarrow \infty} H\left(\left(B, d_{r}\right),\left(B, d_{\infty}\right)\right)=0
$$

This completes the proof of Lemma 3.1.
Proof of Lemma 3.4. We may identify a neighborhood in M with a neighborhood of $0 \in \mathbf{R}^{n}$ via θ. Let $B_{1}(1)$ denote the Carnot-Carathéodory ball centered at 0 . The estimate in Lemma 3.4 may be paraphrased as follows: Up to bounded distortion, γ_{r}, applied to curves or vectors in $\gamma_{1 / r}\left(B_{1}(1)\right)$ which are tangent to Δ, multiplies length by r. For the proof, let $x_{0} \in S_{1}(1)$. To estimate the Carnot-Carathéodory distance of $\gamma_{1 / r}\left(x_{0}\right)$ from 0 , we need to estimate how γ_{r} acts on vectors in Δ whose base points lie in $\gamma_{1 / r}(B(1))$. Let $y \in B(1)$ and let $V \in \Delta\left(\gamma_{1 / r}(y)\right)$. Then

$$
V=\sum_{1} v_{i} \hat{X}_{i, x}\left|\gamma_{1 / r}(y)+\sum_{i} v_{i} R_{i}\right| \gamma_{1 / r}(y), \quad v_{i} \in \mathbf{R},
$$

where $R_{i}=X_{i, x}-\hat{X}_{i, x}$ is a vector field of degree $\leqslant 0$. Thus

$$
\gamma_{r_{*}}(v)=r \sum_{i} v_{i} \hat{X}_{i, x}+\sum_{i} v_{i} \gamma_{r_{*}}\left(R_{i}\left(\gamma_{1 / r}(y)\right)\right)
$$

since $\gamma_{r_{*}}\left(\hat{X}_{i, x}\right)=r \cdot \hat{X}_{i, x}$. Now the definition of local degree (see Goodman, Rothschild \& Stein) implies that if R_{i} has degree $\leqslant 0$, then the length of $\gamma_{r_{*}}\left(R_{i}\left(\gamma_{1 / r}(y)\right)\right)$ remains bounded as $r \rightarrow \infty$.
(Proof. The homogeneous terms in the formal expansion of R_{i} as a sum of homogeneous operators (with respect to γ_{r}) look like $a_{j k, l} \hat{X}_{j k, x}$ if $a_{j k}$ has the formal expansion $a_{j k}=\sum_{1=0}^{\infty} a_{j k, l}$, where $a_{j k, l}$ is a function homogeneous of degree l. Since

$$
a_{j k, l}\left(\gamma_{1 / r}(y)\right)=r^{-1} a_{j k, l}(y) \quad \text { and } \quad \gamma_{r_{*}}\left(\hat{X}_{j k, x}\left(\gamma_{1 / r}(y)\right)\right)=r^{k} \hat{X}_{j k, x^{\prime}},
$$

we have

$$
\gamma_{r_{*}}\left(a_{j k, l} \hat{X}_{j k, x}\left(\gamma_{1 / r}(y)\right)\right)=r^{k-1} a_{j k, l} \hat{X}_{j k}(y)
$$

" R_{i} is of local degree $\leqslant 0$ " means $k-1 \leqslant 0$, so such a term remains bounded as $r \rightarrow \infty$. This implies the result.)

Also, $\left\|R_{i}\left(\gamma_{1 / r}(y)\right)\right\| \rightarrow 0$ as $r \rightarrow \infty$ ("\|\|\|" denotes Riemannian length) since $R_{i}(0)=0$. Therefore

$$
\frac{1}{r} \frac{\left\|\gamma_{r_{*}}(V)\right\|}{\|V\|}=\frac{1}{r} \frac{\left\|r \sum_{i} v_{i} \hat{X}_{i, x \mid y}+\sum_{i} v_{i} \gamma_{r_{*}}\left(R_{i}\left(\gamma_{1 / r}(y)\right)\right)\right\|}{\left\|\sum_{i} v_{i} \hat{X}_{i, x} \mid \gamma_{1 / r}(y)+\sum_{i} v_{i} R_{i}\left(\gamma_{1 / r}(y)\right)\right\|} \rightarrow 1
$$

as $r \rightarrow \infty$, and so this expression is bounded above and below by $1 / c$ and c respectively for some $c>1$, for all sufficiently large r.

From this estimate on vectors we get the estimate on curves. If $p:[0,1] \rightarrow \mathbf{R}^{n}$ is a path joining 0 to $\gamma_{1 / r}\left(x_{0}\right)$ which is tangent to the distribution Δ a.e. (recall that M is identified with \mathbf{R}^{n} locally, via θ) and which lies in $\gamma_{1 / r}(B(1))$, then $\gamma_{r}(p)$ is a path joining 0 to x_{0}. Its length is therefore bounded below by a positive constant, and with the inequality on vectors proved above, we see that

$$
\text { const } \leqslant \operatorname{length}\left(\gamma_{r}(p)\right) \leqslant r \text { length }(p)
$$

which gives the left side of the inequality in Lemma 3.4.
Lemma 3.1 implies that $B_{\infty}(k) \subset B_{r}(k+\delta)$ for all large r and some δ. Also, it is clear that $B_{1}(1) \subset B_{\infty}(p)$ for some k, so $B(1) \subset B_{r}(k+\delta)$ for all large r. This shows that we may choose a piecewise-smooth path \tilde{p} tangent to Δ_{r} and joining 0 to x_{0}, of length $\leqslant k+\delta=$ constant. Then $\tilde{p}=\gamma_{1 / r}(p)$ is tangent to Δ, joins 0 to $\gamma_{1 / r}\left(x_{0}\right)$ and satisfies

$$
\text { length }(p) \leqslant \frac{\text { const }}{r} \quad \text { for some constant. }
$$

This gives the right side of the inequality in Lemma 3.4. Note that we have proven that

$$
\lim _{r \rightarrow \infty} \frac{\operatorname{length}\left(\gamma_{r}(p)\right)}{r \operatorname{length}(p)}=1
$$

which is precisely the meaning of Lemma 3.2.
Proof of Lemma 3.3. Suppose that $\left(X, d_{1}\right)$ and $\left(Y, d_{2}\right)$ are two metric spaces with finite diameters. If $(X, Y)<\infty$, then there is a homeomorphism f : $X \rightarrow Y$ whose distortion is arbitrarily close to $e^{(X, Y)}$. Identify Y with X via f, to obtain a single X with two metrics d_{1} and d_{2}. We may imbed each of these metric spaces isometrically into a third metric space; namely, $C^{0}(X)=$ continuous functions on X with metric induced by the sup norm. A point $x \in X$ is sent to the point $F_{i}(x)=d_{i}(x, \cdot) \in C^{0}(X), i=1,2$. For any x_{1}, x_{2} $\in X$,

$$
\left|\log \left(\frac{d_{1}\left(x_{1}, x_{2}\right)}{d_{2}\left(x_{1}, x_{2}\right)}\right)\right| \leqslant(X, Y)
$$

and

$$
\max \left\{d_{1}\left(x_{1}, x_{2}\right), d_{2}\left(x_{1}, x_{2}\right)\right\} \leqslant \operatorname{diam}(X)+\operatorname{diam}(Y)
$$

It follows that

$$
\left|d_{1}\left(x_{1}, x_{2}\right)-d_{2}\left(x_{1}, x_{2}\right)\right| \leqslant\left(1-e^{-(X, Y)}\right)(\operatorname{diam}(X)+\operatorname{diam}(Y)) .
$$

Thus $H(X, Y) \leqslant(\operatorname{diam}(X)+\operatorname{diam}(Y))(X, Y)$. q.e.d.
Theorem 1 now follows from Lemmas 3.1, 3.2 and 3.3.
Theorem 2 follows easily from the volume estimate (*) appearing below Lemma 3.3: choose a maximal set of disjoint balls (in the Carnot-Carathéodory metric) of radius ε which cover the unit ball $B_{1}(1)$. The number N_{ε} of such balls does not exceed $\operatorname{vol}\left(B_{1}(1)\right) / C^{-1} \varepsilon^{\ell}$. The set of concentric balls of radius 2ε cover $B_{1}(1)$. Each of these balls has diameter $\leqslant 4 \varepsilon$, so the Hausdorff δ-measure of $B_{1}(1)$ is at most

$$
\lim _{\varepsilon \rightarrow 0}\left[\frac{\operatorname{vol}\left(B_{1}(1)\right)}{C^{-1} \varepsilon^{Q}} \cdot \varepsilon^{\delta}\right]=0 \quad \text { if } \delta>Q .
$$

Thus $\operatorname{dim} \leqslant Q$. Conversely, given any covering of $B_{1}(1)$ by sets of diameter $\leqslant \varepsilon$, there is an associated covering by balls of radius ε, so the number N_{ε} of sets in the covering satisfies

$$
N_{\varepsilon} \cdot C \cdot \varepsilon^{Q} \geqslant \sum_{i=1}^{N_{\varepsilon}} \operatorname{vol}(i \text { th ball }) \geqslant \operatorname{vol}\left(B_{1}(1)\right) .
$$

Thus

$$
\sum_{\text {covering }} \varepsilon^{\delta} \geqslant \frac{\operatorname{vol}\left(B_{1}(1)\right)}{C \cdot \varepsilon^{Q}} \varepsilon^{\delta} .
$$

Taking the infimum over all coverings by sets of diameter $\leqslant \varepsilon$, then taking the limit as $\varepsilon \rightarrow 0$, gives Hausdorff δ-measure of $B_{1}(1)=\infty$ if $\delta<Q$. Thus $\operatorname{dim} \geqslant Q$. This proves Theorem 2.

Remark. These estimates show that, in fact, $\mu^{Q}=$ Hausdorff Q-dimensional measure is commensurate with Lebesgue measure (on $B_{1}(1)$):

$$
\left(\frac{V_{Q}}{C \cdot 2^{Q}}\right) \mu \leqslant \mu^{Q} \leqslant\left(C \cdot V_{Q}\right) \mu
$$

where $\mu=$ Lebesgue measure and $V_{Q}=$ volume of unit ball in \mathbf{R}^{Q}.
Acknowledgement. I wish to expresss my most sincere thanks to Professor M. Gromov for his very generous help.

References

[1] W. L. Chow, Systeme von linearen partiellen differential gleichungen erster ordnug, Math. Ann. 117 (1939) 98-105.
[2] J. Dyer, A nilpotent Lie algebra with nilpotent automorphism group, Bull. Amer. Math. Soc. 76 (1970) 52-56.
[3] A. F. Filippov, On certain questions in the theory of optimal control, SIAM J. Control Optimization 1 (1962) 76-84.
[4] G. B. Folland, Applications of analysis on nilpotent groups to partial differential equations, Bull. Amer. Math. Soc. 83 (1977) 912-930.
[5] B. Gaveau, Principle de moindre action, propoagation de la chaleur et estimates sous-elliptiques sur certains groupes nilpotents, Acta Math. 139 (1977) 95-153.
[6] Roe Goodman, Nilpotent Lie groups: structure and applications to analysis, Lecture Notes in Math. Vol. 562, Springer, Berlin, 1970.
[7] M. Gromov, Groups of polynomial growth and expanding maps, Inst. Hautes Études Sci. Publ. Math. No. 53, 1981.
[8] ._Structures metriques pour les varietes Riemanniennes, CEDIC, Paris, 1981.
[9] W. Hurewicz \& H. Wallman, Dimension theory, Princeton University Press, Princeton, 1948.
[10] G. Metivier, Comm. Partial Differential Equations 1 (1976) 467-519.
[11] V. V. Nemytskii \& V. V. Stepanov, Qualitative theory of ordinary differential equations, Princeton University Press, Princeton, 1960.
[12] Pierre Pansu, Géometrie du groupe d'Heisenberg, Thesis, Universite Paris VII, 1982.
[13] L. P. Rothschild \& E. M. Stein, Hypoelliptic differential operators and nilpotent groups, Acta Math. 137 (1976) 247-320.
[14] Bruno Franchi \& E. Lanconelli, Une metrique associe a une classe d operateurs elliptiques degeneres, Proceedings of the Meeting: Linear, Partial, and Pseudo-Differential Operators, Rend. Sem. Mat. Univ. E. Polytech., Torino, 1982.

University of California, Los Angeles

