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PERIODIC GEODESICS ON COMPACT
RIEMANNIAN MANIFOLDS

DETLEF GROMOLL & WOLFGANG MEYER

The interest in periodic geodesies arose at a very early stage of differential
geometry, and has grown rapidly since then. It is a basic general problem to
estimate the number of distinct periodic geodesies c: R —• Λί, c(t + 1) = c(t)9

on a complete riemannian manifold M in terms of topological invariants. Here
periodic geodesies are always understood to be non-constant, and two such
curves cl9 c2 will be said to be distinct if they are geometrically different, cx(R)
Φ c£R).

If M is non-compact, then it is even difficult to find reasonable conditions
for the existence of at least one periodic geodesic, see § 4 . However, in the
compact case many results are available. It is classical and rather elementary
that any non-trivial conjugacy class of the fundamental group nx{M) gives rise
to periodic geodesies, and very often the existence of a larger number of
distinct periodic geodesies can be deduced from further properties of πx(M)
compare [4, p. 240], [7], and also § 4 . When M is simply connected* the
problem is getting much more delicate. Here the first result was obtained in
1905 by Poincare, who proved that there exists a periodic geodesic on every
surface analytically equivalent to the euclidean sphere S2. Yet rather late, in
1952, Fet and Lusternik established the theorem that on any compact
riemannian manifold M at least one geodesic is periodic. Several authors have
proved the existence of certain finite numbers of distinct periodic geodesies for
special topological types of manifolds, partly under restrictive metric
conditions. We mention the work of Lusternik, Schnirelmann, Morse, Fet,
Alber, and Klingenberg; for references see [11].

In § 4 of this paper we shall prove: There always exist infinitely many
distinct periodic geodesies on an arbitrary compact manifold, provided some
weak topological condition holds. In fact, it seems that our condition will be
satisfied except in comparatively few cases. Until now it was not even possible
to decide whether there is some compact simply connected differentiable
manifold M with infinitely many distinct periodic geodesies for all riemannian
structures on M.

As yet the mast natural ami successful way of dealing with periodic geodesies
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is to apply calculus of variations in the large, which was already developed by
Morse in [17] to a very large extent. Let us agree with the standard terminology
and call a geodesic c: [0,1] —* M closed if it is differentiably closed, c(0) =
c(l), c(0) = c(l). Of course, a nonconstant closed geodesic determines a
periodic geodesic and vice versa; we will often use both terms interchangeably.
Now closed geodesies are precisely the critical points of the energy functional
E on the free loop space Ω of M, and Morse theory provides information
about the existence and the number of critical points of £ in terms of the
topology of Ω. For the simpler corresponding variational problem on the path
space Ωvq of curves [0,1] —• M with fixed end points p,qeM, Serre proved
in [19] that Ωpq contains infinitely many geodesies if M is compact.
Unfortunately, one cannot use the same procedure for our poblem since, in a
trivial way, any nonconstant closed geodesic c gives rise to infinitely many
distinct critical points of E in Ω by taking the iterates of c, which however,
do not lead to distinct periodic geodesies in the above geometric sense. Besides
this, the structure of the homology H+Ω is not so well-known as H+Ωpq. Yet
basically, our approach is more related to Serre's arguments and rather
opposite to all the previous work on periodic geodesies. From the assumption
that there exist only finitely many distinct periodic geodesies on M, we will
derive a strong condition for the sequence of Betti numbers of Ω. We construct
a uniform bound for the homology arising from the tower of iterates generated
by every closed geodesic. This has been made possible by results of Bott [2]
on index and nullity of iterated closed geodesies and by some quantitative
extension of non-degenerate Morse theory to the degenerate situation, given
by the authors in [5]. In the following, difϊerentiable will always mean
sufficiently smooth, and one may think of C°° for convenience.

We appreciate some conversations with Ralph Abraham, Peter Klein, and
Wilhelm Klingenberg, and are also indebted to James Eells for pointing out a
technical mistake in our manuscript.

1. Index and nullity of periodic geodesies

Let M be a riemannian manifold of dimension n + 1 > 2. Consider a closed
non-constant geodesic c: [0,1] —» M, and denote by i^\ the vector space of
closed absolutely continuous vector fields with square summable first
derivatives along c which are orthogonal to the tangent field c. The index form
/: f J X rT* -> R of c is defined by

, Y) = f\<X\ I"> - <*(*, i)i, Y»dt .

Here Xf = VDX = VX denotes the covariant derivative of X, and R the
curvature tensor of M. / is clearly symmetric and bilinear. If the vector field
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X is difϊerentiable and differentiably closed, then (1) can be written as

Ϊ(X, Y) = - §\x" + R(X, c)c, Y}dt .

The index and nullity of / are called the index and nullity of c, and will be
denoted by λ(c) and v(c). Now let ω be the positive definite scalar product
on Y*\ defined by

ω{Xy Y) = C(X, Y>dt .
0

There is a unique selfadjoint operator A given by

ω(AX, Y) = /(Z, Y) .

A is an elliptic differential operator, and the following classical result is
well-known.

Theorem 1. For μ$R and Xff^ the following two conditions are
equivalent:

(a) AX = -μX,
(b) X is differentiate and differentiably closed, and X" + R(X9 c)c = μX.

Moreover:
(c) The spectrum of A is a discrete subset of R which is bounded from

below.
(d) The dimension θ(μ) of the kernel of A — μ id is bounded by 2n.

Clearly θ(μ) is the number of linearly independent solutions of the differ-
ential equation X" + R(X, c)c = μX subject to the boundary condition
X(t + 1) = X(t). As a consequence of (c) and (d) we obtain that λ(c) and v(c)
are finite numbers, more precisely,

λ(c) = Σ θ(μ) , *C) = θ(0) .

Due to the first statement of Theorem 1, we may restrict ourselves to differ-
entiable vector fields along c in order to study the index and nullity of c. i^e

will denote the vector space of (not necessarily closed) differentiable vector
fields along c which are orthogonal to c.

If c: R —• M is a periodic geodesic, c(t + 1) = c(ί), the m-th iterate cm of
c is defined by

cm(t) = c(mt) , / € i?, m > 0 ,

and we set

Kcm) = λ{cm I [0,1]) , v(cm) = v(cm I [0,1]) .
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S£: o^c —• ^ c will be the second order differential operator with — J£?X =
X" + R(X, c)c. For any positive integer m the restriction of & to the vector
fields of period m is self adjoint with respect to the scalar product ωm defined

by ωm(X, Y) = f\x(mt), Y(mt)}dt. Now if Θm(μ) denotes the number of the
0

linearly independent solutions of the differential equation

S£X = μX

subject to the boundary condition X(t + m) — X(t) for / € R, we have the
formulas for the index and nullity:

λicj = Σ θm(μ) , v(cm) = Θm(0) .

In [2], Bott has studied the sequences A(cm) and v(cm), and some of his
results will be important for our investigation. One of the basic ideas for the
study of the above sequences is to consider equivalently a hermitian operator
L instead of Sϊ. Let Vc — ir

c®C be the complexification of f c . Then
L: F c-> Vc is the C-linear extension of <£, i.e., L(X + ιK) = Sf(X) + /J?(y).
For a complex number z 6 51 c C, a real number μ and a positive integer m
we consider the differential equation

LY = μY

subject to the boundary condition

( 2 ) Y(f + m) = z7(ί) , ί 6 Λ .

Set

Θzm(μ) = complex dimension of the subspace of vector fields Y
in Vc satisfying LY = μY and (2),

A(z) = Σ θ&μ) > N(z) = θί(O) .

One can check that θz

m(μ) = Σ θf(μ); see [2, § 1.7]. Therefore we have the

formulas for the index and nullity of c m :

( 3 ) λ(cm) = 2 θj,^) = Σ A(z) , p(cm) = Σ N(z) .
<0 m l 1̂ 1

It follows that the sequences k(cm) and r^(cm) are completely determined by the
nonnegative integer valued functions A and N on the unit circle.

We list some important properties of A and N:

( 4 )
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( 5 ) N(z) = 0, except for at most In points, the so-called

Poincare points,

( 6) A is locally constant except possibly at Poincare points,

( 7 )

In fact, Bott proves some more properties in his paper, but we will only use
these quite elementary facts, which are contained in Proposition 1.3 of [2, p.
178], (4) is clear since L is a C-linear extension of a real operator. To check
(5), Bott introduces an endomorphism P of a 2w-dimensional vector space, the
so-called Poincare map. Then the Poincare points are the eigenvalues of P
with absolute value 1. Let E denote the complexification of the orthogonal
complement of c(0) in the tangent space Mc(0). Then P: E 0 E —• E 0 E is
obtained as follows: For u 0 v e E 0 E, let Y be the unique complex Jacobi
field (i.e., a solution of LY = 0) satisfying Y(0) = u, Y'(0) = v; then
P(u 0 v) = Y(l) 0 Y'(l). Now we have N(z) = dimcker (P - z id) so that
(5) is settled. (6) is a consequence of the following "continuity theorem", which
is contained in Theorem 3.2 of Morse [7, p. 91].

Theorem 2. Let J be a bounded interval such that the end points are not
in the spectrum of L subject to the boundary condition (2). Then there is a
neighborhood U of z in Sι such that the end points of J are not in the spectrum
of L subject to the boundary condition Y(t + m) = wY{t) for weU and

The relation (7) will also follow from this theorem, since for z close to z0

and ε > 0 small we have

Σ W = Σ θl(μ) + Σ ΘKμ) = Σ ΘHμ) + £ θ\(μ) .
μ<0 μ<~t £<0 < £<0

We draw some consequences for λ(cm) and v(cm) using the properties of A
and N. Let zl9 , zr be the Poincare points, Zj = e2pjxi. The numbers 0 <
PJ < 1 are called Poincare exponents, and we assume 0 < ρx < < pr < 1.

Lemma 1. Either λ(cm) = 0 for all m or there are numbers ε > 0 and
a > 0 such that

*(cm+s) — λ(cm) > sε — a for all m, s .

Proof. Set pQ = 0, pr+ι = 1, and let as = A(z) for z € (pj.l9 pj) and 1 < /
< r + 1, and ar+ι = 0 if pr = 1 compare (6). By (3) we obtain
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Λ(cm+S) - λ(cj = Σ Λ(z) - Σ A(z) > Σ Km + sXpj - pj-Jtei
zm+s=ι ztn^i j = l

r + 1 r + 1

- Σ Imipj - Pj-i)]aj - Λ7 > Σ k(pj - pj-ι)Ίaj - a'

Here [a] is the greatest integer < or, and, for example, the constant a! may be
chosen > 3(r + 1) max A. Now if Λ(cm) Φ 0 for some m, then we find /0 such
Λ a t Pi -i < i°jo a n d αjo > 0 by using (3), (6), (7). Hence

Z(cm+8) - λ(cm) > [s(pjo - ^ o . , ) ] ^ o - a'

Lemma 2.
(a) ι>(cm) = 0 for all m iff all Poincarέ exponents are irrational.
(b) There are positive integers ki9 ,ks and sequences m) eZ+, i > 0,

/ = 1, -,s9 such that the numbers m^kj are mutually distinct, m) = 1,
{m)kj} = Z + , and

The Poincare points contained in {z\zm)kJ =1} are exactly the Poincare
points contained in {z\zkj' = 1}.

Proof, (a) follows from (3) and (5). If all Poincare exponents are irrational,
(b) follows from (a). If there are rational Poincare exponents, let Q denote
the set of denominators of the rational exponents (we assume that all exponents
are of the form p/q with p, q relatively prime). For A c Q let k(A) denote
the least common multiple of all elements in A. Choose distinct numbers
kl9 . . . , M u c h that {*t, ••-,*,} = {k(A)\AaQ}{J{l}. Keeping ye {1, . .,5}
fixed, we select from the sequence mkp m > 0, the greatest subsequence
rnftj, i > 0, satisfying q\mi

ikj^ whenever q e Q and qjkj. Then the claim is
obvious.

2. Equivariant Morse theory on the free loop space ΩM

From now on, M is a compact riemannian manifold without boundary, and
dim M = n + 1 > 2. Morse theory on ordinary path spaces Ωpq of M can be
treated quite easily by means of suitable finite dimensional subspaces of broken
geodesies in ΩPQ. Since Morse a similar, though more complicated, procedure
has also been used successfully for the free loop space Ω of M. However, in
our investigation the introduction of a Hubert manifold structure on Ω seems
to be the natural approach. For a discussion of the basic facts about Hubert
manifolds which we will need here, compare [18] and [11].

We consider ΩM = Ω as the complete riemannian Hubert manifold of
absolutely continuous maps Sι —> M with square summable first derivatives.
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Here S1 will also be viewed as the identification space [0, l]/{0,1}. Note that
the tangent functor T commutes with β, i.e., T(ΩM) = β(ΓΛf). Furthermore,
the tangent space TCΩ of ΩM at a curve c consists of the absolutely continuous
vectors fields along c with square summable first derivatives. A curve
X e Ω(JM) belongs to TC(ΩM) iff πoX = c, where π: TM -» M is the bundle
projection. The riemannian structure is given by

ax, γ» = J ι«*, y> + <^, r»dί,
0

where X, YeTcΩ, and ceΩ. On β we have the energy, a differ entiable
function E: Ω —+ R defined by

= l f\\c(t)ψdt

One can check that E satisfies condition (C) of Palais and Smale [18]. It is
well known that c is a critical point of E iff c is a closed geodesic. There is an
equivariant and also isometric operation of the orthogonal group 0(2) on Ω via
the operation of 0(2) on the parameter circle S1. This action is continuous, but
not differentiable. However, if c e Ω is a Cr-curve, then the orbit 0(2)c is a
Cr"1-submanifold, r > 1. A critical point c of E in Ω lies always on a critical
submanifold of Ω9 the orbit 0(2)c, which in turn consists of two disjoint copies
of Sι when c is not constant. Note that in this case the isotropy group Γ at c
is finite cyclic. In the following we consider only critical points which are non-
constant geodesies.

The hessian Hc of E at a critical point c is given by

HC(X, Y) = J\<:X\ r> - <*(*, c)c, Y»dt .

Now the restriction of Hc to a fiber of the normal bundle Jί of the critical
orbit 0(2)c has same index and nullity as the index form of c. For this observe
that the fiber Jί\ of Jί over c is iT\ φ &*e9 where ^ is the vector space
introduced in § 1 , and J\ is the subspace of vector fields at in TCΩ with

J α(ί)dί = 0. Furthermore, Hc is positive definite on fe9 the sum TTJ Θ &\
0

is orthogonal with respect to f/c, and Hc \ ^ φ T^J is just the index form. So
if the critical orbit 0(2)c is isolated, then the index and nullity of 0(2)c as
a critical submanifold of ΩM are well defined and equal to the index and
nullity of the geodesic c. We should mention that the normal bundle Jί of
0(2)c is differentiably trivial, since the orthogonal group of Hubert space is
connected. However, in the equivariant Morse theory we have to consider Jί
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also as a continuous bundle with the natural structure group Γ with respect
to which Jί is not trivial in general. The 0(2)-operation extends canonically
to Ω(TM), and the bundle map 0(2) x Jίc -* Jί with (a, X) -> aX induces
locally a continuous trivialization. In fact, this map is a covering, and JΓ acts
on the trivial bundle 0(2) x Jί\ by covering transformations.

In [5], we have discussed Morse theory of differentiable functions on Hubert
manifolds which have only isolated but possibly degenerate critical points. We
will use these results here to get information about homological invariants of
isolated critical orbits of the energy E on Ω. In fact, our treatment of this
special example contains the main ideas how to handle the general case of
isolated critical orbits of a function with respect to an equivariant continuous
action of a compact Lie group G, at least when critical orbits are smooth and
G acts by isometries.

We have to study the energy E in a neighborhood of an isolated critical
orbit 0(2)c. Consider a tubular neighborhood 9 of 0(2)c which is a normal
disc bundle such that the action of 0(2) on Ω transforms fibers equivariantly
into each other. So the normal space Jίc of 0(2)c is the tangent space of
the fiber 9)c at c, and <x2>c = 3>aC for a € 0(2). Clearly, the bundle 9 has the
structure group Γ viewed as a continuous bundle. The existence of such
tubes 9 can be proved in various ways. Since 0(2) acts by isometries, one
may take for 9 the diffeomorphic image of a sufficiently small tubular
neighborhood of the zero section in the normal bundle Jί of 0(2)c under the
exponential map Exp of Ω\ compare also [13]. The exponential map exp of
M may be used as well. Observe that the map Jί —> Ω with Y —> exp o Y is a
local difϊeomorphism along the zero section of Jί.

From the viewpoint of Morse theory it is now sufficient to study the energy
function in just one fiber of a tube 9 as above, since we will see that the local
invariants of the critical orbit 0(2)c are completely determined by the orbit,
the restriction Ec of E to the fiber 9e9 and the action of the isotropy group Γ
on 9e. All constructions involving the energy, which are carried out in some
fiber, can be extended equivariantly to the whole bundle. For the hessian He

of Ec at c we obtain immediately Hc = Hc \ Jίc φ Jίc. Our next lemma makes
sure that the results of [5] may be applied to the function Ec.

Lemma 3. Let c$Ω be a closed geodesic. Then the operator A : TCΩ —*
TeΩ defined by

({AX, Y» = HC(X, Y)

admits a decomposition A = id + k with a compact operator k.
Clearly, the corresponding operator A for Hc is also of the form A = id

+ ky where k compact.
Proof. Imbed M isometrically in Rv. Then TCΩ may be considered as a

closed linear subspace of ΩRP. One can show that the inner product on TCΩ
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induced from the product of ΩRP is equivalent to our product ((, )). Now let
H°(S\ Rp) denote the Hubert space of square summable measurable functions

S1 —• Rp with the usual inner product <, >0 given by <y>, φ\ = Γ <y>, φ} dt,
0

where <, > is the ordinary scalar product in Rp. We use the fact that the
inclusion ΩRP C H%S\RP) is completely continuous, i.e., the unit sphere S
in ΩRP is relatively compact in the topology of H°(Sι, Rp), a consequence of
a theorem of Rellich. Note the identity ((AX, Y)) = ((X, Y» - <X +
R(X, c)c, Y>0, and define an operator k: TCΩ-> TCΩ by ((kX, Y» = -<X +
R(X, c)c, Y>0. For k we have an estimate ((kX, Y»2 <K\\X||;|| Y|g, since the
curvature along c is bounded. Hence ((kX,kX)) < K\\X\\l Observe || Y|g <
((Y,Y))^ Then the relative compactness of S in H\S\RP) and the last
inequality imply that k(S) is relatively compact, so k is compact.

As a consequence, condition (C) holds for Ee in some neighborhood of c in
2C\ this can be seen, for example, by means of the splitting Lemma 1 in [5].
Now by restricting attention to sufficiently small bundles 9 we may also
assume that c is the only critical point of Ec in 2ιe. Our argument depends on
an orbit version of the splitting lemma. First observe that the normal bundle
splits into an orthogonal sum Jί — F@N with smooth subbundles F, N
which are invariant under 0(2). Let A denote the smooth section in the bundle
of self adjoint operators over 0(2)c associated with N such that <(/4cjt,y> =
Hc(x,y), and consider the characteristic function χ of an intervall (—e, e) on
R such that the non-zero part of the spectrum of A lies outside (~ε, ε). Then
Q = χ(A) is a smooth section of projection operators; compare [15]. Set
N = QJίy and F = (/ — β)^Γ, and let expβC be the exponential map of the
fiber ®aC of ® at c. If ® is chosen sufficiently small, there is a tubular
neighborhood Jt of the zero section in Jί such that the map Ψ: Jf —• 9 with
Ψ\jfaC — txpaC\JίaC is a difϊeomorphism onto 9. Clearly Ψ(a+x) = αϊΓ(jc),
since 0(2) acts by isometries. The induced 0(2)-operation on Jf is equivariant
with respect to the function E = Eoψ, and the null space of the hessian of
&\Jίc at 0 is the fiber Nc of N. The construction leading to the splitting
lemma applied fiberwise now yields the result: There are a fiber preserving
bundle diffeomorphism φ: JΓ —• Jf, a fiber preserving differentiate map
h: N Π Jf' —* F, and an orthogonal bundle projection P: F —• F such that

£ oφ(χ 0 y) = ||p*|p - j|(/ - P)xf + £(h{y) Θ y),

where / = F φ N , and 9 is small. Moreover, Φ commutes with the 0(2)-
action, i.e., a+ o Φ = Φ o a^ which depends on the fact that α* is an isometry
and £{x) = £(a+x). All the critical points of £oφ\ Jfc lie on Ne. Since the
points of Nc are precisely the periodic Jacobi fields along c, their 0(2)-orbits
in Jf are differentiate submanifolds. Hence, the orbits of critical points of
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Ec in 3 are always smooth. The last statement also follows from the classical
theorem of Bochner and Montgomery implying that the 0(2)-action on the
finite dimensional smooth submanifold N of Jί is differentiate. If 3 is small
enough, then VE will be non-zero and perpendicular to 3C at any critical point
c0 of Ec if cQ Φ C. SO the level surface E~\a) is tangent to @c at c0, where
a = £(c0). On the other hand, the orbit 0(2)c0 intersects 3e and hence E~\a)
transversally, which is impossible since 0(2)c0 c E~ι(a). This completes the
argument.

Now we will define a local homological invariant Jtf (£, 0(2)c) of the energy
E at the isolated critical orbit 0(2)c by using the constructions and the nota-
tions of [5]. Choose a disc bundle 3 as above and an admissible region Wc

for the function Ec on the fiber Sfc at the isolated critical point c, and recall
that the local invariant Jf (Ec, c) is well defined, i.e., Jf (£c, c) = H+(WC, W;),
here we may use singular homology with arbitrary coefficients. Set W =
0(2)WCi W- = 0(2)JF-, and

It remains to check that the definition (8) does not depend upon the choice of
the bundle 3 and the admissible region Wc. Let Wc c Θc be another admis-
sible region for Ec. Then we have H*(W, W~) = H*(W, W~) by a canonical
equivariant version of the proof of the proposition in [5], where all construc-
tions have to be done fiberwise. To prove now that the definition (8) is inde-
pendent of 3, consider a tubular neighborhood U of the zero section in Jί,
which is mapped difϊeomorphically onto some neighborhood V of 0(2)c in Ω
under the exponential map Exp of Ω. Define an equivariant smooth function
g on V by g(p) = ||(Exp| U)-ι(p)\\2 If 3 is a bundle as above, then g\9c and
g 13C are cut functions at c, which may be used to define admissible regions
WC,WC such that (W, W~) = (W,W~). A modification of Lemma 4 below
will provide another argument.

Lemm 4. Let M be compact, and b the only critical value of the energy
E in [b — e, b -f ε] for some ε > 0. Assume that the critical set in f~ι(b)
consists of finitely many critical orbits 0(2)cι, , 0(2)cr. Then

r

Proof. Ω is complete and condition (C) holds for the energy E by the
compactness of M. It is sufficient to consider the case where r = 1, and c1 =
c. We define W with the smooth function g as above and apply exactly the
same technique used for the proof of Lemma 3 in [5] to obtain H+(Ωb+',Ωb~')

From now on, for convenience all homological invariants are taken with
respect to coefficients in a field of characteristic zero. We may write (W, W~)
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= (0(2) X Wc, 0(2) x W;)/Γ, where the isotropy group Γ acts on the trivial
bundle 0(2) x We by covering transformations as described before. Hence,
H+(W, W) is isomorphic to the subspace #*(0(2) X Wcy 0(2) x W~)Γ of all
elements in #*(0(2) x Wc, 0(2) x W;), which are kept fixed under the
induced operation of Γ on the homology. Observing that Γ acts trivially on
#*(0(2)) we obtain

(10) j f (E, 0(2)c) = tf *(0(2)) ® H*(WC9 W Y c β#(0(2)) ® JP(Ee, c) .

The invariant «^(E,0(2)c) is of finite type as jf(E c, c), i.e., JfA. is finite
dimensional and 3tfk = 0 for almost all k. In [5], there was also introduced
the characteristic invariant « °̂, which together with the index λ of c determines
jf completely by the shifting theorem, so that Jf fc+i(Ec,c) = jf°k(Ecyc). The
last equality and (10) yield

(11) jTk{E, 0(2)c) C Vk Θ Vk , Vk = Jf _a(Ee, c) Θ *V a .,(E e, c) .

Define the type numbers Bk(c) of an isolated critical orbit 0(2)c of the energy
E to be the dimension of the vector space Jf Λ(E, 0(2)c), and further B°k(c) =
dim Jfk(EC9 c). In terms of these numerical invariants, (11) reads as

(12) Bk(c) < 2[Bk_λ(c) + Bί.

Let a<b be regular values of the energy E such that the critical set in
E~ι[a9 b] consists of finitely many critical orbits 0(2)c1, , 0(2)cr. Then we
have the Morse inequalities

where bk(Ωb, Ωa) = dim Hk{Ω\ Ω«). If E{c') = E(cι) for 1 < / < r, equality
holds in (13) by the definition of Bk(cl) and (9). To prove (13) in general, let
Gι < a2 < < as be the critical values of £ in [a, b]. Set a0 = a, and a8+ι

= b, and choose ε > 0 such that e < α* — β,.,, i = 1, , s + 1. We have
an increasing sequence Ωa° C βα i + β c C £?α*+ί c Ωa*+ι of subspaces in
fl. Clearly Hk(Ωaι+t

9Ω
a°) = Hk(Ωa^% β* 1"'), Hk(Ωai+%Ωai-*+t) = Hk(Ωai+%

Ωai-') for ί = 1, - , J, and Hk(Ωa*+\ Ωa*+t) = 0. All these vector spaces are
of finite dimension by (9). Since 6A. is a subadditive function, (13) follows;
compare [16, §5].

3. The type numbers of a periodic geodesic

For any positive integer m we will introduce the iteration map m: Ω -+ Ω,
which plays an important role in the Morse theory on Ω. A point c in Ω may
be considered as the restriction of the periodic curve d: R—> M with
d(k + i) = c(i) for k € Z and / € [0,1]. The iterates dm of c, cm(ί) = c(mt)9
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determine points cm = cm | [0,1] in Ω. We also refer to cm as the m-th iterate
of c. Now the iteration map m is defined by m(c) = cm. Obviously, m is
equivariant up to the constant factor m2,

E(cJ = m2E(c) .

Furthermore, m is an imbedding of Hubert manifolds. As a main step we
study the sequences Bk(cm) of type numbers for the iterates cm of c, provided
that all 0(2)cm are isolated critical orbits. The numbers Bk(cm) may also be
called type numbers of the corresponding periodic geodesic. Since the sequence
λ(cm) has been treated in §1, it remains to handle the sequences B\(cm) in
order to estimate Bk(cn).

For technical reasons we are interested in the following slightly different
riemannian structure on ΩM:

(14) pr, y». = f\a<x, y> + <*
0

with a real number a > 0. Clearly, all these metrics are equivalent, so that

Lemma 5. // a = m2, ίΛew the gradient VE with respect to (14) is tangent
along the image mΩ C Ω under the iteration map m,

FE\Cm = m + Γ £ | c /or allctΩ .

Note that m: (β, (( , ))) —> (β, (( , ))β) is an isometric imbedding up to the
constant factor m2.

Proof. It suflSces to consider the gradient VE only at the iterates cm of C2-
a

curves c in Ω. Then using calculus of variations, X = ΓE|Cm is given as the
unique periodic solution of the equation

(15) X" - m2X = Vcm .

Now let Y = FE\C9 so Y" -Y = Fc, and the iterate Ym of Y satisfies (15).
Hence, m^Y = y m = Λ̂  is tangent to mβ.

Theorem 3. Let cbea closed geodesic in Ω such that 0(2)cm is an isolated
critical orbit and v(c) = v(cm) for some m. Then B°k(c) = Bo

k(cm) for all k.
Proof. Choose a sufficiently small normal disc bundle Q = 0(2)^c as in

the preceding section, and let Jί be the normal bundle of m^ in Ω with
respect to the metric (( , )>., a = m2. The exponential map Exp of Ω with
respect to (( , ))β maps a neighborhood of the zero section in Jf diffeomor-
phically onto a neighborhood of m@ in Ω. The image under Exp of a suitable
neighborhood of the zero section in Jί \ m2c will be a disc 9>Cvι containing



PERIODIC GEODESICS 505

)c as a submanifold. For this observe also that m:(Ω, (( , ))) -* (β, (( , ))J
is a conformal map. If 2Cm has been chosen small, ^ m = 0(2)^C n ι is a smooth
normal disc bundle over 0(2)cTO with respect to the metric (( , ))β and with
respect to (( , )) as well, and moreover m2) c 3)m. According to Lemma 4,
a a

VE is tangent to mQ> thus FECm is tangent to m@c by the choice of 3>Cvι where

It is clear that m^ maps the null space of the hessian Hc of Ec injectively
and hence, by our assumption on the nullities, isomorphically onto the null
space of the hessian HCm of ECm. Moreover, c m is an isolated critical point of
ECm I m@c, for 0(2)c is with 0(2)cm an isolated critical orbit. Now the energy
ECm on ®Cm and the submanifold m3)e of @Cm satisfy the hypotheses of
Lemma 7 in [5], so we obtain Jf°(£ C m ,c m ) = Ji?XECm\m&C9cm). On the
other hand, J^\E | m@c, cm) = ^f \E \ 9e, c), since m: @c -» m^ c is a diffeo-
moφhism and E(cm) = m2E(c) for all c. This completes the proof.

Combining Lemma 2 and Theorem 3 we obtain

Corollary 1. Let c be a closed geodesic in Ω, and assume that all the
critical orbits 0(2)cm are isolated. Then B°k(cm) is uniformly bounded; more
precisely,

B°k(cm) < B for all k, m

with some constant B. Furthermore, there is a number k0 such that

B°k(cm) = 0 for k> kQ and all m.

From (3), (5), (6) in § 1 it is clear that the sequence λ(cm) is determined by
finitely many constants, the different values of the function A on SK The corol-
lary shows that B°k(cm) takes on only finitely many values. We should mention
that all type numbers Bk(cm) are determined by finitely many constants via
(10), though explicit computations are difficult.

Corollary 2. Under the hypotheses of Corollary 1, for the resulting con-
stants B and k0 the type numbers Bk(cm) are uniformly bounded by 4B. More-
over, given k > k0 + 1, the number of orbits 0(2)cm such that Bk(cm) Φ 0 is
bounded by a constant C which does not depend on k.

Proof. We use (12), Lemma 1, and Corollary 1. Observe that Bk(cm) = 0
for k > k0 + 1 if λ(cm) = 0 for all m. If the index of some iterate of c is not
zero, then we have to estimate the number of orbits 0(2)cm with B°k_HCm)(cm)
+ Bk-Hcm) -i(cm) Φ 0. Now B\(cm) = 0 whenever k > k0 or k < 0. Therefore
we need an estimate for the number of the orbits satisfying k — 1 — kQ < λ(cm)
< k. Let e and a be the constants in Lemma 1, and s > a/e an integer. Then

C = s (———- + 1) will serve as a uniform upper bound.
\ sε — a I
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4. Existence of closed geodesies

Let M be a compact simply connected riemannian manifold without boundary,
and dim M > 2. Then the free loop space Ω = ΩM is connected. It is known
that the homotopy type of ΩM depends only on the homotopy type of M. In
fact, the inclusion of Ω into the space of all continuous maps Sι—>M with the
compact open topology is a homotopy equivalence. The Betti numbers bk(Ω)
= dimiϊ fc(β) are finite; this follows, for example, from [19, p. 465] by using
the fibration Ω* —> Ω —> M, where Ω+ is the ordinary loop space with fixed
base point.

Theorem 4. // the sequence bk(Ω) is not bounded, then there exist infinitely
many geometrically distinct periodic geodesies in M.

Proof. Suppose that there are only finitely many such geodesies. Then we
find simply closed geodesies c1, •, cr such that any non-constant closed geo-
desic in Ω lies on some orbit 0(2)c4. So all critical orbits 0(2)c4 are isolated,
and Ωb contains only â  finite number of them for any given b. By Corollary 2
we find the constant B = max/^ίc^). Choose k\ and O for the geodesic cι

according to Corollaries 1 and 2, and set ίcQ = max k\, and C = 2 CK Now

given any k > k0 + 1, the constant C is an upper bound for the number of
orbits 0(2)c4 with B*(<4) Φ 0. So we obtain, from the Morse inequalities (13),

bk(Ωb,Ωa)< CB foτk> ko+ 1

and for all regular values 0 < a < b. Let 0 < a < min £(cθ Then Ω° = M

is a strong deformation retract of β α , and therefore bk(Ωb,Ωa) = bk(Ωb,M).
Since M is of finite dimension, an exact sequence argument shows that bk(Ωb,M)
= bk(Ωb) for almost all k. Choose b large such that all geodesies c^ with
#*(<4) Φ 0 and £*+i(<4) Φ 0 are contained in Ωb. Then bk(Ωd, Ωb) = 0 and
bk+1(Ωd, Ωb) = 0 for all regular values d > b, and therefore bk(Ω, Ωb) = 0 and
bk+ι(Ω, Ωb) = 0. Thus bk(Ω) = bk(Ωb). Combining the last conclusions we get

A A

bk(Ω) < CB for almost all k ,

which contradicts the hypothesis of the theorem.
In the following we discuss the topological conditions in Theorem 4 and add

some further remarks. Recall that we are working with a coefficient field of
characteristic zero. Clearly, the property of the sequence bk(Ω), to be bounded
or not, is a homotopy invariant of M. Let us start with examples.

( i ) If G is a compact simply connected Lie group, then Ω = G X Ω+,
hence H*(Ω) = H*(G)<g>H*(ΩJ. Since H*(ΩJ is a polynomial algebra
with rank(G) generators, bk(Ω) is unbounded iff rank(G) > 2, i.e., iff G Φ
Sp(l) = S3. So when M has the homotopy type of such a group G, the theorem
applies.
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(ii) For the sphere Sn the cohomology of Ω is given by

if n is odd. The ring H*(Ω+) is well known: dim#*(β*) = 1 for k = 0 mod
n — 1, and Hk(Ω+) = 0 otherwise. In the case of even dimensional spheres one
has bo(Ω) = ί> ( 2 i-υ ( n_υ(β) = * ( 2 <-1 ) ( n_1 ) + 1(ί2) = 1 for i > l , and bk(Ω) = 0
otherwise. This implies that i>λ.(β(Sm x Sn)) = bk(ΩSm x ί2Sn) is always un-
bounded whenever m, n > 2. Of course, bk(ΩSn) < 1. Compare [21] and [8]
for the cohomology structure of ΩSn.

(iii) More generally, our condition on the Betti numbers bk(Ω) is satisfied
for all manifolds Λί having one of the following properties see [8]:

1) The smallest positive integer k0 with bko(M) φ 0 is odd, and bko(M) > 2.
2) H*(M) is a tensor product of at least two truncated polynomial algebras

and possibly exterior algebras.
Special cases of 1) and 2) are manifolds with the cohomology of a product

of spheres or projective spaces.
Recently Klein has obtained new results on the cohomology of ΩM with

characteristic zero coefficients; see [9]. His results imply that bk(Ω) is not
bounded under weak conditions on the cohomology ring H*(M), when Λί is
simply connected. Without any further assumptions on the compact simply
connected manifold Λί, Klein shows for example: There is an arithmetic
progression kt with bk.(Ω) Φ 0 for all i. So in particular, bk(Ω) is unbounded
if M is homotopically a product of two compact simply connected manifolds.
In fact, the only examples of compact simply connected manifolds Λί known
to us, where the sequence bk(Ω) is bounded and hence Theorem 4 does not
apply, have the homotopy type of a symmetric space of rank 1. This is the
more surprising, since the latter spaces always carry a metric for which even
all geodesies are periodic. As yet it is not known whether for arbitrary metrics
on such spaces there are infinitely many distinct periodic geodesies, even when
restricting attention to perturbations of the standard symmetric structure.

Now let us drop the assumption that M is simply connected. In case the
fundamental group πx(M) is finite, we may pass to the compact universal
riemannian covering M. If bk(ΩM) is unbounded, then Theorem 4 applies to
Λ/, and infinitely many distinct periodic geodesies of M project down to in-
finitely many distinct periodic geodesies of M. The problem is more delicate
when πλ(M) has infinite order; compare [7] for a further discussion.

Without the compactness of Λί our methods break down in general, since
the energy E on ΩM will not satisfy condition (C) any more. The funnel surface
(x2 + y2)z2 = 1, z < 0, in euclidean space R3 is complete and not simply con-
nected, yet there is no periodic geodesic at all. For complete open riemannian
manifolds Λί we know only of some existence and non-existence theorems under
the additional hypothesis that the sectional curvature K does not change sign



508 DETLEF GROMOLL & WOLFGANG MEYER

on M. If K<0 and M is simply connected, then by the theorem of Hadamard-
Cartan, any regular geodesic R —• M is an imbedding and hence not periodic.
In the case K < 0 and πx{M) Φ 1, it follows from a theorem of Preissmann
that the connected component of ΩM determined by any conjugacy class of
πx(M) contains at most one closed geodesic up to parametrization see also
[4, pp. 210-212]. So for example, if πλ(M) = Z, there exists at most one
periodic geodesic on M. The authors have shown that all closed geodesies are
constant when K > 0; compare [6], Lemma 3 and Theorem 4, but there may
be lots of closed geodesies with a corner. Now let K > 0. From the structure
theory for complete open manifolds of nonnegative curvature (see [3]), one can
deduce that there exist infinitely many distinct periodic geodesies in M when
πγ(M) is infinite, otherwise the same conclusion holds, provided bk(ΩM) is not
bounded for the finite universal covering M of Λf. To see this, one may use
Theorem 4 and the fact that there is a strong deformation retract of M onto a
compact totally geodesic submanifold S ot M. One can also derive a result
quite similar to Theorem 4 for compact riemannian manifolds with locally con-
vex boundary; see [7].

Let us look again at the proof of Theorem 4. Assume that all the critical
orbits of the energy E on ΩM are non-degenerate then the metric of M is said
to be bumpy. In that case our arguments can be simplified by combining more
directly Lemma 1 and the Morse inequalities for non-degenerate critical mani-
folds; see also [15], [22], Now Abraham has shown that the set of bumpy
metrics is dense in the space of all metrics with the C°°-topology compare [1].
However, this fact does not seem to be of any help in the proof of Theorem 4
for arbitrary metrics. Periodic geodesies of bumpy metrics may fade away
when taking limits. We should point out that a bumpy manifold always carries
arbitrarily long simply closed geodesies as soon as there are infinitely many
distinct periodic geodesies. Of course, this need no longer be true in general,
say when M is the euclidean sphere. We did not emphasize the best possible
order of differentiability in all our procedures, as Theorem 4 is already inter-
esting for Cr-metrics, r > 2. It cannot be deduced from the C°°-case by an
approximation method in an obvious way, since in most cases periodic geodesies
are unstable under deformations of the metric. However, all techniques involved
work without any change at least for r > 6.

Another question in this context is whether there are closed geodesies
without self-intersections on M, which are called simple closed geodesies.
Results dealing with this problem were obtained by Lusternik-Schnirelmann
[14] and Klingenberg [12], [10]. In dimensions > 3 there is a procedure of
resolving intersections of geodesies by arbitrarily small approximations of the
underlying metric. This yields the following: There exists a dense subset of
bumpy metrics in the space of all metrics on M for which all simply closed
geodesies are simple and mutually disjoint. So, if 0 < £ < oo is a lower bound
for the number of distinct periodic geodesies on M with respect to all metrics,
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almost any metric will carry at least k mutually disjoint simple closed geodesies
see [7].

Looking for distinct periodic geodesies in M is equivalent to asking for closed
orbits of the geodesic flow on the tangent sphere bundle over M. This flow is
known to be a hamiltonian dynamical system. In the general theory of such
systems there are some strong, but very special existence theorems for closed
orbits. The strongest result is essentially due to Anosov, implying that periodic
orbits of the geodesic flow are dense if the sectional curvature of Λί is negative
compare [20]. For arbitrary metrics there is no structural stability, and the
theory of dynamical systems does not provide any existence theorem as yet.
After the preparation of this paper, A. Weinstein gave a simple construction
of metrics on any manifold for which periodic orbits of the geodesic flow are
not dense; see [23].
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