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LIE GROUP AUTOMORPHISMS. II

JOSEPH A. WOLF & ALFRED GRAY

7. Noncompact coset spaces defined
by automorphisms of order 3

We will drop the compactness hypothesis on G in the results of §6, doing
this in such a way that problems can be reduced to the compact case. This
involves the notions of reductive Lie groups and algebras and Cartan
involutions.

Let © be a Lie algebra. A subalgebra S c © is called a reductive subaU
gebra if the representation ad%\® of ίΐ on © is fully reducible. © is called
reductive if it is a reductive subalgebra of itself, i.e. if its adjoint represen-
tation is fully reducible. It is standard ([11, Theorem 12.1.2, p. 371]) that
the following conditions are equivalent:
(7.1a) © is reductive,
(7.1b) © has a faithful fully reducible linear representation, and
(7.1c) © = ©' © 3 , where the derived algebra ©' = [©, ©] is a semisimple
ideal (called the "semisimple part") and the center 3 of © is an abelian ideal.

Let © = ©' Θ 3 be a reductive Lie algebra. An automorphism σ of © is
called a Cartan involution if it has the properties (i) σ2 = 1 and (ii) the fixed
point set ©" of σ\$r is a maximal compactly embedded subalgebra of ©'.
The whole point is the fact ([11, Theorem 12.1.4, p. 372]) that
(7.2) Let S be a subalgebra of a reductive Lie algebra ©. Then S is re-
ductive in © if and only if there is a Cartan involution σ of © such that
σ(ft) = ft.

Let G be a Lie group. We say that G is reductive if its Lie algebra © is
reductive. Let K be a Lie subgroup of G. We say that K is a reductive sub-
group if its Lie algebra ^ is a reductive subalgebra of ©. Let a be an auto-
morphism of G. We say that σ is a Cartan involution of G if a induces a
Cartan involution of ©.

Let G be a reductive Lie group, and K a closed reductive subgroup such
that G acts effectively on X = G/K. Choose a Cartan involution σ of ©
which preserves S, and consider the decomposition into ( ± l)-einspaces of σ:

(7.3a) © = ©* + 9W , 51 = ft' + (ft Π SR).
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That decomposition defines compact real forms of ® c and ftc:

(7.3b) ®u = © + N '3i2Ji 5 ®u = & + N i3 ϊ (ft n aw).

7.4. Lemma. JAere w a unique choice of compact connected Lie group
Gu with Lie algebra ®u which has the properties [Zu denotes the identity
component of the center of Gu]

(i) the analytic subgroup Ku for ftω is a closed subgroup,
(ii) the action of Gu on the coset space Xu = Gu/Ku is effective, and

(iii) X'u = GJZUKU is simply connected, the natural projection Xu-+Xr

u,
is a principal torus bundle with group Z t t, and π^Xy) = tfiCZJ, free abelian
of rank dimZw.

Proof, ft contains no nonzero ideal of © because G is effective on X, so
ftω contains no nonzero ideal of @tt. In particular, for any choice of compact
group Gu with Lie algebra ®u, Ku is closed in Gu and Gu acts on Gu/Ku

with finite kernel.

For the unique choice decompose ©tt = ®£ + $M and let Gu = G'u x Zu

where Gf

u is the compact simply connected group with Lie algebra ©£. Let F
be the (finite) kernel of the action of Gu on Xu = Gu/Ku where Ku is the
analytic subgroup for ®u. Then Gu = Gu/F, Ku = Ku/F, Xu = Gu/Ku give
us condition (ii). For (iii) note that Zu is a torus acting freely on Xu\ so we
need only prove X'u simply connected. But X'a — G'U\L where L is the analytic
subgroup for the projection of S t t to ®'u. This gives existence of the desired
G w ; uniqueness is obvious. q.e.d.

We have constructed a "compact version" Xu of a coset space X of re-
ductive Lie groups. Now we turn the procedure around.

Let X = GjK be a coset space of compact connected Lie groups, G acting
effectively. Let σ be an automorphism of © such that <τ2 = 1 and σ($) = ft.
Then we have (7.3a) and can define real forms of ®c and ftc by

©* = ©*+ N !3ϊ3K , ft* = ft- + ^ = Ί ( f t Π 3K).

Then ©* is reductive, ft* is reductive in ©*, and

7.5. Lemma. There is a unique simply connected coset space X* = G*/K*
such that (i) G* is a connected Lie group with Lie algebra ©*, (ii) ft* is the
Lie algebra of the closed subgroup K*, and (iii) G* acts effectively on X*.

Let F be the torsion subgroup of πλ(X). Then F can be viewed as a finite
central subgroup of G* ( = (G*)M) such that G = G*/F, K = (K*F)/F and
Z = Z*/F.

Proof. For the first statement G* = G*/S and K* = (K*S)/S where G*
is the simply connected group for ©*, K* is the analytic subgroup for ft*,
and S is the kernel of the action of G* on G*/K*. The second statement is
equally transparent. q.e.d.
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Lemmas 7.4 and 7.5 allow us to go back and forth between coset spaces
of compact Lie groups and coset spaces of reductive Lie groups. In our ap-
plications we need only assume G reductive and then K will be a reductive
subgroup. For [2, Proposition 4.1] and an obvious induction on the length
of the derived series of Θ give

7.6. Lemma. Let © be a reductive Lie algebra, and Θ a solvable group
consisting of automorphisms of © which are fully reducible as linear trans-
formations. Then the fixed point set ®θ is a reductive subalgebra of ©.

To make these applications in Theorem 7.10 we need two intermediate
results on invariant almost complex structures.

7.7. Proposition. Let X = G/K where G is a compact connected Lie
group, K is a closed connected subgroup, and G acts effectively on X. Let σ
be an involutive automorphism of G which preserves K, and thus acts on X.
Let AT* = G*/K* be the corresponding simply connected space. Extend σ to
®c by complex linearity, so that σ also acts on X*. © = $ -f 2ft and ®*
= ίϊ* + 2ft* as usual.

(i) The G-invariant σ-invariant almost complex structures on X are in
one to one correspondence with the G*-invariant σ-invariant almost complex
structures on X*, where two structures correspond if they are equal on

mc = m*€.
(ii) Suppose ®* = ©*- where Σ is a compact subgroup of the auto-

morphism group Aut(©*), suppose M* chosen invariant under Σ, and let β
denote the representation of Σ on 2ftc. // Σ induces an invariant almost com-
plex structure on jf *, i.e. if β = β> ®J' with βf and J disjoint, then $* = ®*Γ

for some compact subgroup Γ C Aut(®*) such that Γ induces a G*-invariant
σ-invariant almost complex structure on X*.

Proof. Let τ (resp. r*) denote complex conjugation of Wlc over 2JΪ (resp.
2ft*). An invariant almost complex structure on X (resp. X*) amounts to an
ad(©c)-invariant 9KC = Wl+ + 9W~ where τ (resp. r*) interchanges 9JΪ+ and
SK". As στ = r* = τo, the interchange conditions are equivalent when σ
preserves 2ft+ and 2ft", i.e. when σ preserves the almost complex structure.
That proves (i).

Let A be the centralizer of ίϊ* in Aut(©*), linear algebraic group normal-
ized by σ. Let B be a maximal compact subgroup of A normalized by σ. As
σ\A is a Cartan involution of A, bσ — σb for all beB. Let azA with
aΣa^CLB. Define Γ = aΣa~K Then ®* = ®* Γ and (ii) follows with 2ftc

= 2ft+ + 2ft- where α"1(2ft+) and α"1(2ft") are the representation spaces of β'
and ψ. q.e.d.

7.8. Proposition (cf. [12, Theorem 13.3 (2)]). Let K be a connected sub-
group of maximal rank in a compact connected centerless simple Lie group
G. Let a be an outer automorphism of G which preserves K, thus acts on
X = G/K, and preserves a G-invariant almost complex structure on X. Then
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( i ) G = Sϋ(2n)/Z2n, K = S{U(n) x ϋ(n)}/Z2n and a interchanges the
two factors U(n) of K; or

(i i ) G = SO(2n)/Z2, K = [U{nλ) x . . . x Uins) X SO(2m)}/Z2, «! + •••

+ ns + m = A2, m > 2, ivΛere α is- conjugation by diag{P1? - , Ps; Q} with
Pi € U(nt), Q € O(2m) and det Q = - 1 or

(iii) G = £6/Z3, AT = {5ί/(3) x SϋO) X L,}/{Z3 X Z3}, 1 < i < 3, w/zm?
or interchanges the two SU(3)-factors of K, a{Lt) = L*, aw<i L j C l j C L3

g/vβn by J 2 c S{IΓ(D X ϋ(2)} c SCΓ(3).
Now we need notation for noncompact semisimple Lie groups. Compact

connected simply connected groups were denoted by their Cartan classifica-
tion type in boldface letters:

An = Sϋ(n + 1), Bn .= S/>IJI(2* + 1) , Cn = Sjp(π) ,

2>n = Spin(2ή), G2, F4, £ 6 , £ 7 , £ 8 .

Now the complex simple simply connected groups are denoted in the obvious
manner:

1, C) , C^ = Sp{n, C),

Z>̂  = Spin(2n, C), Gf , Ff , £? , £? , £ f .

Further Tr denotes an r-torus, C* denotes the multiplicative group GX(1, C)
of nonzero complex numbers, and we use the following standard notation on
linear groups.

5( ): subgroup consisting of elements of determinant 1, with exceptions
noted.

Or(n): real orthogonal group of — £ x^ +

r

O(n, C): complex orthogonal group of — 2 x^i +
i l

y-r+1

SOr(n), SO(n, C): respective identity component of Or{n) and O(n, C).
SO*(n): real form of SO(n,C), n = 2m, with maximal compact sub-

group ί/(m).
Spinr(n)y Spin(n, C): respective 2-sheeted (spinor contruction) covering

groups of SOr(n) and SO(n, C).

Ur(n): complex unitary group of — 2 *o>i + Σ
i=l j*r+l

Sp(n, R), Spin, C): respective real and complex linear groups for the
n

nondegenerate alternating form Σ fey*** — y Λ + J on 2«-space.
ΐ = l

r n

Sprin): quaternion unitary group of — Σ χiPi + Σ
i l y +

(7.9) In addition we introduce the notational convention. Centerless simple
real groups are denoted with boldface for their Cartan classification type and
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the Cartan classification type of the maximal compact subgroup as a second
subscript. Thus C n M n _ l T i = Spin, Λ)/{±/}, Bn^n = SO\2n + 1), Dn,An_lT*
= S©*(2/i)/{±/}, C ^ , ^ = S/>p(p + *)/{±/}, etc. The only exception is
that, in expressions such as {E7>Aj X TΎ}IZ2, ί/ie central group being divided
out (here the Z2) projects monomorphically into the torus and isomorphically
onto the center of the simple group. For example Ur(ri) = {An_x A lA _ lΓ*

Now we can describe the irreducible spaces defined by automorphisms of
order 3.

7.10 Theorem. Let X* = G*/K* be a simply connected coset space
where G* is a connected Lie group acting effectively. Suppose ®* = ©**
where θ is an automorphism of order 3 on ©* which does not preserve any
proper ideals. Then G* is reductive, ϋC* is a closed reductive subgroup, there
is some number N > 2 of G*-invariant almost complex structures on X*9

and the following tables give a complete (up to automorphism of G*) list of
the possibilities.

7.11.

G*

SUHn)IZn

SL(n, R)/Z2

SL(J,Q)/Z2

SL(n, O/Zn

S02 s + 2 £(2n+l)

SOi2n + l,C)

Sps+tin)/Z2

Spin, R)/Z2

Spin, O\Z2

SO2s+ti2n)/Zi

SO*(2n)/Z2

SOi2n,C)/Z2

Table. G*: centerless classical simple

K*: centralizer of compact toral subgroup

K*

{Sί (~2> C\xτA/Znιι, π=0(2)

>S{(jL{ri, C)XuL{r2, CjXCrMΓ3, C)} JZn

conditions

n=rι+r2+r3

0 <! T\ <C Γg <^ /*3

1 ̂ / ' 2

! 0^2ί^r
i

C£(r,C)X5«2«-2r+l,O |l^r</i

(TOx5/(»-r)}/Z2

{Us(r)XSpin-r,R)}/Z2

{GLir,OXSp(n-r,C)}iZ2

[Usir)XSOti2n-2r)}/Z2

{Us(r)xSOH2n-2r)}/Z2

{GLir, C)XSO(2n-2r, O}/Z2

l<r<n
0̂ 2̂ /̂*

AT

2 if rj=O

8 if rx>0

2 if r=l

4 if r>l

2 if r=n

4 if r<n

2 if r=l

2 if r=Λ
4 if

ί<r<n
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Gt=G,.Λ

Gξ

Ft

F4..4

F*, C3C1

F?

1

!

EQ,A\AS

6.Z>5Π

7.12. Table. G*: centerless exceptional simple

X*: centralizer of a compact toral

—

K* \

£7(2), UK2)

GL{2, C)

{Spinϋ)xTi}/Z2> {SpO)xT>}/Z2

{5/wV(7)xΓ1}/Z2, {5p1(3)XΓ1}/Z2

{Spinr(J)xTι}/Z2, {Spl0)xTl}/Z2

and {Sp(3,R)XTη/Z2

{Spin(7,C)xC*}/Z2, {SpO,C)Xθι}/Z2

{50(10) X 50(2)}/Z2

{5(l/(5)χC/(l))x5ί/(2)}/Z2,
{[SU{6)/ZZ1XT*}/Z2

{[50(8)X50(2)3 X5O(2)}/Z2

{50*(1O) X 50(2)}/Z2, {504(1O) X 50(2)} /Z2

{S(Ur(5)X U(l))XSUs(2)}/Z2

OSUΊQ/ZύxTVZ*

{[50*(8)X50(2)] X50(2)}/Z2

{[50r(8)x50(2)]x50(2)}/Z2

: {50r(lO)x50(2)}/Z2, {50*(lO)x50(2)}/Z2

{S(Ur{5)xU{l))XSU'{2)}/Z2

iiscrw/zjxr^/z,
{[50*(8)X50(2)]X50(2)}/Z2,

{[50r(8)x50(2)]x50(2)}/Z2

(0

(0,

{SOd0,OxC }/Z, ί

{5(GX(5, C)X C*)X5£(2, Q}/Z2

{B«8,OXC ]χC }/Zi j

subgroup

conditions

—

—

—

—

r=0,l

=2,3; /=0,l

—

—

—

—

—

Cs,r)=(O,O),

1), (0,2), (1,2)

r=0,2, 3

r=2,4

,=0,2

1), (1,1), (0,2)

r=l,2

r=0,2

—

—

N

!

4

4

2

4

8

2

4

8

2

4

8 !

2

4

8
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E7/Z2

E7,A7

EΊ.AIDG

E?/Z2

Es

Eξ.DQ

ES.AIEΊ

Eξ

conditions

{EβXΓ^/Zs -

(5(7(2) X [50(1O)XS0(2)]}/Z2,

{SO(Z)XSO(12)}/Z2, S(Uϋ)XU(l))/Z4

{EetAιA5XTi}/Z2

{SU(2)x [5O*(10)x5O(2)]}/Z2

{SUK2) X [5O4(10) X SO(2)]} /Z2

{SO(2)XSO*(12)}/Z2, {SO(2)XSO*(12)}/Z2,

5(CΛ (7)XC/(1))/Z4

{Eβ,D5τiXTη/Z2f {E^AιAιXΎ^IZ2

{Sϋt(2)x[SOr(l0)χSO(2)]}/Z2

{SU1(2)X[SOHIO)XSO(2)]}/Z2

{SO(2)XSOP(12)}/Z2

S(U°O)XU(1))/Z4

{EβXΓ^/Zs, {Ee,Dsτ^XT1}/Z2

{SUK2)X[SO(10)XSO(2)]}/Z2,

{SU(2)χ [5O*(10)χ5O(2)]}/Z2,

{S0(2)XS0*(12)}/Z2, {5O(2)XS'O2(12)}/Z2

s(iru)χu{i))/z4

{E°XC*)ZZ

{SL{2, αxtsoαo, oχe:t]}/z2,
{C*X5O(12, C)}/Z2f S{GW, C)xC*}/ZA

SO(U)XSO{2), {E7XTη/Z2

SO(14)xSO(2)f SO*(14)X5O(2),

SO*(U)XSO{2),

{E7tAιD,XT'}/Z2t {E7tA7XΓ}/Z2

S0HU)χSO(2), Sa(U)xSO(2)7

SO*(14)XS0(2),

{£7XΓ^}/Z2, {E7,EsTiXTi}/Z2,

{E7lAlD6XT'}/Z2

50(14,0X0% {£fxC*}/Z2

—

r=0,3

—

(r,r)=(O,O),
(0,2), (1,2), (0,4),

P=0,4
5=1,2,3

—

r=l,2

—

—

—

—

—

—

N

2

4

2

4

2

4

2

4

2

4

4
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7.13. Table. G*: centerless simple, rank G*=rank K*

K*: not the centralizer of a torus

{N=2, G* is exceptional, and KSt has center of order 3.}

G*

G2

G2=G2tAlAι

Gξ

F4

F\,BA

F*,C3Cι

F?

Ee/Z3

Eβ,A\As

E6,DsTι

Es, FA

EQ,CA

EξfZ,

E7/Zt

El,Aη

E7,AιDs

K*

SUO)

5C/H3)

5L(3, C)

{SU(3)XSUQ)}/Z3

{5C71(3)x5C/(3)}/Z3

{5ί/(3)x5ί/1(3)}/Z3, {5C/1(3)X5ί71(3)}/Z3

{5£(3,C)x5rL(3,C)}/Z3

{Sl/(3)χSί/(3)χStf(3)}/{Z3XZ3}

{5C/1(3)XSC/(3)χ5C/(3)}/{Z3XZ3}

{5C/1(3)x5t/1(3)X5C/1(3)}/{Z3XZ3}

{5C/H3) X 5C/H3) X SU&)} / {Z3 X Z3}

{5L(3,C)x5ί/(3)}/Z3

{SU3,C)XSIPQ)}/Zi

{5L(3, C)X5L(3, C)X^L(3, C)\/{ZzXZz)

{5£/(3)χ[5ί/(6)/Z2]}/Z3

{SUO) X [SUι{€)/Z*Ά /Z3, {5ί/H3)X [St/a(6)/Z2]} /Z3

{SUlO)XlSU{6)/Z2]}/Z3t {SU(3)X[SU2(6)/Z2Ϊ}/Z3,

{SU1(3)XlSUm/Z2]}/Zz

E7,EβTι • {5^1(3)X[5(71(6)/Z2]}/Z3, {SU(3)X[SUH6)/Z2]}/Z5

E? {SU3, C)X [5£(6, C)/Z2]}/Z3

E6

Ee,D&

E&,AiE7

Eί

{SU(3)XE6}/Z3, SU(9)/Z3

{SW3)x£β.Dβ2 i}/Z8, {5i7 1(3)x£ t

6, 4 M 5}Z 3

SUK9)/ZZ, SU4(9)/Z3

{5ί/1(3)X^6}/Z3, {5l/ι(3)X£β,i>βri}/Z3,

{5l/(3)X£6^us}/Z3, 5U2(9)/Z3, S£7H9)/Z3

{5L(3, C)X£ 6

C}/Z3, 51.(9, C)/Z3
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7.14. Table. Rank G* > rank K*

G*

Spin®)

S

som
>/Λ(8, C)

Spin®), Spin1®)

SpinH$), Spin4®)

Spin®, C)

{L*xL*xL*}/δZ*

{LCχL*}/δZ*

{LcχLcχLC}/δZ

vector group R2

K*

SUQVZz

SUH3)/ZZ

51(3, C)/Z3

c2

GS

Gξ

δl*/δZ*

δL*/δZ*

δLC/δZ

{0}

conditions

—

—

—

—

—

—

note (3)

note (4)

note (3)

—

N

2

note (1)

note (2)

note (1)

note (2)

note (1)

note 1 j one-one correspondence with 2x2 real matrices of square -I

note 2

note 3

one-one correspondence with 2x2 complex matrices of square -I

2 is an arbitrary compact simple Lie algebra.

2* is an arbitrary real form of 2 C .

L* and IS denote the connected simply connected Lie groups with Lie

algebras 2* and 2C; Z* and Z denote their centers.

δ{x) denotes (*, x, x).

1 δ(χ) denotes (π(x), x) where π: L*-+Lc gives the universal covering of the

l?-analytic subgroup of Lc with Lie algebra 2*.

Proof. If ©* is not semisimple then it has radical 9ΐ Φ 0. Let © be the

last nonzero term of the derived series of 9ΐ. Then © is an abelian Lie sub-

algebra stable under θ. Now ©* = © and dim© = 2 because ©* has no

proper ^-invariant ideal. Thus G* is a 2-dimentional vector group, K* = {0}

and X* = R\

If ®* is not semisimple we have just seen that it is abelian. So ®* is reduc-

tive, and now $ * = ©*β [θ = {1, θ, θ2}] is a reductive subalgebra by Lemma

7.6. In particular we have a ^-stable αdCfif*)-stable decomposition ©* = ®*

4- 3ft* and 0|sκ* = cos —— / ± sin -JLj defines two G*-invariant almost com-

plex structures on X*.
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We may now assume ©* semisimple. Extend 6 by linearity to an auto-
morphism of ©* c and let B be a maximal compact subgroup of Aut(©*c)
containing θ. B specifies a compact real form © of ©* c by: exp(W©) is the
identity component Bo. Now 0(®) = ©. Let $ = ©' and let X = G/K be the
simply connected coset space, G connected and acting effectively on X,
defined by (®,®). Let X* = G£/K* as in Lemma 7.4. There is an auto-
morphism a of ®* c sending © to ®*. As or(S) ̂  ® s ftf because the latter
two are compact real forms of (®*c)° there is an automorphism β of @* =
α(@) sending α(Λ) to St*. Now ^αr: © s ®* sending ft to ft*, X to <Y*.
Thus we may view Z* = G*jK* as constructed from X = G/K as in Lemma
7.5, provided that we view ft as ®φ where ^ = βaθa^β"1. In other words,
we are in the duality of Lemmas 7.4 and 7.5, except that ft = @* and ft* =
©** where the only relation between ψ and θ is their conjugacy in Autί©^).
In particular, if σ is the Cartan involution of ©* preserving ft*, hence the
involutive automorphism which defines X* = G*/K* from X = G/K, σ need
not commute with θ nor with φ.

We apply the hypothesis that ©* has no proper ideal preserved by 6, As
θ has order 3 it says that there are just four cases, as follows4.

1. ® c is simple.
2. ©* is simple but ®c is not.

3 ®* = fi* φ fi* 0 2* with Z*c simple.
4. ®* = £* φ S* Θ £* with £* simple, 2*c not simple.

In cases 3 and 4, θ acts by cyclic permutation of the summands 2*.

In case 2, ® c = φ φ φ where φ is a complex simple Lie algebra, ©* is
isomorphic to φ as a real Lie algebra, and ®* is embedded diagonally, θ
extends to ® c as ψ x ψ where φ has order 3. Now ® = S θ £ where 2 is a
compact real form of φ, and ψ = ι> x v where v has order 3 on 2. Thus
X = G/K is given as (L x L)/(S X 5) = (L/S) X (L/5) where L is simple
and L/S is listed in Theorem 6.1, while X* = Lc/Sc.

In case 4, the same arguments show X — G/K to be (A x A)/(B x B) =
(A/B) x 04/B) where A/B is the space listed in Theorem 6.1 with A not
simple, and AT* = G*/K* is Λ<7#c.

In cases 1 and 3, X = G/# is listed in Theorem 6.1. We go on to consider
those cases.

We first consider the case where σ is inner on G. If rank G = rank
K (tables 1 and 2 of Theorem 6.1) then Propositions 6.4 and 7.7 say

σ = ad(k) for some k eK. Note £2 central in G because σ2 = 1. Now we run
through the list.

SU(n)ISiUirj) x {/(r2) X (7(r3)}. We may conjugate in K and assume £
diagonal, k2 is scalar so k has just two eigenvalues. Now G* = SUm(n) and

4 If we had 0 of order k, and m were the number of divisors d > 1 of A', then we would
have 2™ cases in the obvious manner.
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K* = StlΛίrx) x ίΛ(r2) x £Λ(r3)}, m = ^ + s9 + s3, with normalization 2sf

S 0 ( 2 « + l)/£/(r) χ S 0 ( 2 r c - - 2 r + 1). Here A:2 = 7 so A: is of form
diag{-/,,/r-Λ x diag{-72ί,72n_2r_2ί+1}. Now G* = S02^<>(2« + 1) and
K* = ί/»(Γ) x SO2t(2n — 2r + 1) with the normalization 5 < r/2.

Sp(n)/U(r) x £/>(« — r). Here A2 = ± 7 and may be assumed diagonal. If
k2 = - / then G* = Spin, R) and X* = U*ir) x £/>(/* - r, Λ), 5 < r/2. If * 2

= / then G* = 5>s+ί(«) and £ * = U'ir) X S ^ ( Λ - r), 5 < r/2, r < ί(« - r).
SOi2n)/Uir)χSOi2n-2r). Here *2 = ±7. If * 2 = ~7 then5 G* = SO*i2n)

and £ * = O»(r) x SO*i2n - 2r), j < r/2. If *• = 7 then G* = 5(925+2ί(2«)
and K* = ϋ»(r) x S02ti2n - 2r), 5 < r/2, 2ί < n - r.

<?,/J7(2). If A: = 1 then G* = σ2 and /iC* = ί/(2). If ^ ^ 1 but k is central
in K, then G* = Gf (unique noncompact form of G2, equal to G2,AlAl) and
X* = tf(2). If it is not central in K then G* = G2* and K* = ί/1(2).

If G = /^ then either (i) σ = 1, or (ii) G* = JF4,5I with dim©* = 36, or
(iii) G* = / 4,C 3 C l with dim®* = 24.

FJSpinil)-!1. Here G has diagram t - ί α > - o and the semisimple part K!
Φ\ Ψ2 Ψ% Φ*

2 2 1

of K has diagram «ZD-o. Now the vertices modulo vtR of the fundamental
H fz ΨA

simplex of K? are 0, vί = 2v2, v'z = fv3 and vί = 2v4. Thus we may restrict
attention to k = exp(2πNί^T^) where6

Λ:

G*

0

F4 F4.B4

2v2+υi

F4.B4 ^4,C3Ci ^4,C3Cl

VA

F*,C3Cι

V4 + V1

F4.C3C1

B*,B2Ό\Tl

where Z>3 = A3, Bx = Au 7)2 = Ax® Ax and Dx = T1.

F4/Spi3) T1. Kf has diagram f - t p and t?{ = t;x ~ 2v2 = i;2 in K'. Now as

above, we need only note

* o

F*

v4

c,r
F4.B4

v1+vt

F,,c3c:

ίv3+vt

F<.c3c>

C3,A2τ^

If G = £ 6 then either (i) σ = 1, or (ii) G* =
(iii) G* = £6,D5ΓI with dim %a = 46.

with dim ®* = 38, or

δ 5Ό*(2m) is the noncompact form with maximal compact subgroup
6 Determination of X* is obvious, of G* is obtained by counting roots with integer

values on x.
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1 2 3 2 1
E6/SO(l0) SO(2). Here G has diagram °-°-%7°-° and * ' has diagram

20^6

1Q*J2 2 2 1

/ O - o - q . A s ^ 2 — W6 and ^3 — V4 in K', we need only note

X

G*

A:*

0

D5T*

^ 2 i>2+i*>i

w e r e = Z>5,
. K' has diagram o o-ό-ό-ό and vi >

in K'. Now we need only check

G*

Λ:*

G*

V2

AXAJΊ

v6+ivi+v2

>4i,rl/ί4M3ΓlΓl

έV,+V2

AlyTιAAT
ι

^6,^1-45

ίv3+i;2

v6 V6+V2

AιAAtΛzτiΓ

1-^3+^1 + ̂ 2

AltTlAAtAiA2TlTl

E6/ϋ(6). Kf has diagram ό-o-o-ό-ό and r{ —

need only check

t?J — ̂  in K'. Thus we

X

G*

o ve

£β.z,5Γ. E$,DsΓ' £uus

1

JEί/5O(8)-5O(2) 5O(2). «"' has diagram

'.'. Now we need only check.

> - o with W< ~ ^ i n

X

G*

K*

X

G*

K*

O

Eβ Eβ,DsTι EβtDsT1

Kvi+v5)

Eβ,AιAs

V2 + £(i>i+1>5)

Eβ,DsTx

D4,AZTI'T*

Eβ,AiAs

|V3+iVi

Eβ,AιAs

EQ,A\A$ EQ,D$T1

D^AzTiT2

$vz+$vs

Ee,AiAs

fva+Kvi+Vs)

Eβ,AιAs

D^AiAtAiArT2
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If G = E7 then (i) σ = 1 or (ii) G* = E7iAl with dim @* = 63, or (iii) G*
= E7,AID« with dim @* = 69, or (iv) G* = £ 7,Γ β Γi with dim ©* = 79.

1. Here G has diagram g"g74?~g"2~^ a n d K' h a s diagram

s^H-g ^-^-^31"1
in A7, we need only check

X

G*

K*

0

E7 E7,E%Tι

E6Γ

Eγ,AιD6

v2+bv!

E7tE%Tι

Ee.DsTi'T1

ET,A7
E7> A12)6

Eβ.AUs T1

E,/SU(2) 50(10) S»(2). X' has diagram ό-o-δ<
^6 Φs ΦA

~ v's. Thus we need only check

όoδ<°*3 ό,
φ\

~ \v'Ί and

X

G*

K*

X

G*

O

E7

v2

E7,AιDβ

£MiTι

2v4+v2

έvi+v2

IMI.TΊΓ1

2v4+$v1+V2

^ 7 , J 4 7

E7,A,

fVί + Vi

Di,AATiAιTι

1̂ 6 + ̂ 2

E7,AIDB

Db,D,τιAιT
ι

^ 7 , A12)6

fv34-ivi+v2

•^7,412)6

•Dΰ,^47Ί^l,Γl3Γ1

^ 6 + ^ l + V2

^7.^12)6

Ό5.D47Ί>4i,rlΓ1

E,/S<K12) X SΌ(2). Here

So we need only observe

ό o o o < ^ό - o - o - o < ^ with |vf ~ ^ and t̂  ~

X

G*

A:*

o

E7

vβ

E7,A\Dξ

iH>i hvι+vβ

E7,E%Tl

D6,D5τiTι

v2 j α?2+vβ

^7,4l2)6

^6,w4Ui2)47'1

fv3 fv3+v6

^7.^7

v7

^ 7 , 4 7

v 7H-vβ

£,/17(7). Here JP: ό-o-o-ό-o-ό with \v{ ~ W^ W2 - i ^ and

Now we need only check

X

G*

K*

O

E7

v-

E t.Ai

AeT1

E7,EsTι

%Vι + V7

E7tAιD6

Aβ.AsΠ T1

v2

E7,A\DQ

V2 + V7

E7,EsTl

AS.AIAΛTΪT1

¥>ι

E7,Al EΊ.AIDG

Aβ,A2A3Tl T1
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If G = Es then (i) σ = 1, or (ii) G* = Es,Ds with dim®' = 120, or (iii)
* = ̂ s , ^ with dim©' = 136.

E8/SO(U)'SO(2). G has diagram o-6-o-δ-ό-o-o and Kf has diagram

\C~} 9 *> *> O 1

\p-ό~ό-ό-o. As

observe

Q ~ iv'6, v'2~v'b and v'3~v'4 we now need only

X o

ε*

v7

D7.D01V-

to to+v.
E8.AlEl

D7,AlΛιDiT
ι

2v3+v7

E*.D,

D7,A3Din

to
Es.Dβ

ϊvt+v7

E*.ΛiE,

D,,A6TW

2 3 4 3 2 1
. K' has diagram o~o-cp-o-o-o with ̂  ^ t J. Now we need only

check

σ*
K*

0

Eβ

Vι

Es,AiE7

E7 Γ1

1̂ 2

EB.AIEI E$,A\Ei

ET.ESTIT1

2v3

E8,Ds •^8,iiiJs:7

E7,ΛlDe'T>

Eβ,Ds ^8,Z>8

E7,A7'Tl

This completes our run through table 1 of Theorem 6.1 for σ inner. We
go on to table 2.

G2/SU(3). If σ = 1 then G* = G2 and K* = SU{3). If σ =£ 1 then G* = G?
and K* = SUιO), for those are the only possibilities.

FJA2A2. K has diagram i - i o-o where φ'z = —(2^ + 4ώ2 + 3^3 + 2ώ4),
Φ\ Φz Ψ'Λ ΨA

so the vertices of its fundamental simplex are vj = 0, wί = 2^! — 2vz, v2 =
4v2 — 4v3, vj = — v3 and v'A = 2-y4 — 2v3. As Wλ — jrvj and Wz ~ \v\ by an
inner automorphism of G which preserves K, now we need only calculate
dim©*, a = ad(k), k = exp2π4^-ϊxeKy as follows.

X

G*

K*

O

F4

A2A2 Λ2,A\Tι^t AzA2,A\T^

F*,C3Ci

A2,AlT1'A2,AιT1

E6/A2A2A2. K has diagram ό-o o-o ό-o with ώz = — (cfr2 + 2φ2 + 3ώ3
Ψ\ Ψ2 <i>4 ΨS <ί>'z Ψl

+ 2^4 + 9̂5 + 206) its fundamental simplex has vertices v'o = 0, v[ = vτ — v3,
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An automorphism of G preserves K and permutes its summands cyclically,
inducing

v'o-+v'O9 v{ -> v'z —> vί —> vi, vί —> vi -> v\ -> vί.

Another acts by

v'o->v'o, vf

z->vί->vί, vί-*vf

4->vί, v ί - > v ί - > i > ; ,

given by wa, w € W with wαS)0 = 2>o> <̂  given on a maximal torus of K by
t —> r 1 . Now we need only calculate dim ©ff in the cases

X

G

o

A2Ά2Ά2

f(vί+vs)^fwi and

~i(vi + 3v8+2t>6)

i(Vl + V3+ Vβ)^}(Vl + 3V3+ Vδ)

f(i?ί + V3 + V4)^iVi + ̂ 4

i(rί+vi+vέ)~ivi+v 4+v 6

^2,illΓ1 '^2,ΛιTι '^2,AιΓι

E7/A2Ar0. K has diagram ό-o o - o - o ~ ό - δ with $ = — ( ^ + 2ψ2 4- 3^3
<*6 ^ 5 Φl ψ2 ΦZ Ψ4 Φl

+ 4ψ4 + 30 5 + 20 6 4- 2ψ7). Its fundamental simplex has vertices vί = 0, vί
= Vj - t;β, vj = 2t;2 — 2vΛ, v'z = 3v3 — 3v5, v'A = 4v4 - 4vδ, vί = —i;5, vί =
2v6 — 2t?5 and vf

Ί = 2v7 — 2v5. The center is generated by an element con-
jugate to its inverse, and that conjugation gives

Now we need only check the following determinations of ®*.

0

1 1 1 2 3 2 1

X

G*

K*

E7

A2Aa

Er.Aφt

A^MMT,

E7.Λ,Di

EtUMH

E7.Λ,

E7,E*T>

A2Ab,Δ2AtTi

ET.Λ,

Eβ/A2E6. K has diagram o-o g - o - o - o - o with ψ'2 = - ( 2 0 , + 302 +

φ8o2

- 504 4- 605 4- 406 4- 207 4- 308). As above we now need only check
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X

G

K*

o

Es

A2E6

ft*

Ee,AiEi

AZ,AIT1EQ

EQ,DS

A2EQ^ DsT1

1(^3+^2)

E6>AιEi

Λϊ.Ai^Eβ.DsT1

3v'4

Es,AιE7

A2E6,AiAs

3v4+fvi
3V4 + |V2

ES,D%

A2,A\T1EQ,A\AS

E8/A8. K has diagram ό-o-o-o-c-δ-o-ό w i t h Ψo = — (2& + +

= 4t;3 — 4v8, and we need only check the cases

£ *

6>

£ 8

^ 8

^8,2)8

^8,^ 7Γl

w
£8,-41^7

A$,AιAsTι

E$,AlE7

ΛB,A2AST1

| V 3

-^8,43^4Γ1

This completes our run through tables 1 and 2 of Theorem 6.1 for σ inner.
If a is outer there, then Proposition 7.8 says that (a) G = EQ/ZZ and
K =z A2'A2'A2 with σ interchanging the first two factors and preserving the
third, or (b) G = SU(n)/Zn with n = 2r and K = 5{ί7(r) x J7(r)}, σ inter-
changing the two factors of AT, or (c) G = SO(2n)/Z2 and A" = {Z7(r) x
5O(2n - 2r)}/Z2 with 1 < r < n - 1 and σ = α<i(£) where A: = diag{^, k2},
kx € Z7(r), A:2 € O(2π - 2r), det A2 = - 1 .

In case (c), /: € O(2«) has square ± 7 and determinant — 1, so k2 = 7. Thus
*2

i==7. Now G* = SO2s+t(2n)/Z2 where K* = {ϋs(r) x 5O*(2π - 2r)}/Z2

with t odd.
In case (b), σ = v-ad(g) where g € G and y is complex conjugation of

matrices. 1 = <τ2 = ad(g) ad(g) = adi'g-^ adig) = ad('g-ι-g) shows g = ceg
for some complex number c with cn = 1. Now *(*#) = g shows c = ± 1. g

has form ( „ ^J in r x r blocks because σ interchanges the two U(r) factors

of K, so g= with B = cιA. Now G* is SL{n,R)jZ2 if c = 1,

r, β ) / Z 2 if c = - 1 , and K* is the image of {g € <7L(r, C) :|detg| = 1} in
any case.

In case (a), let σ0 be the automorphism of G defined on a Weyl basis by

O
= *o then G* = and X* = {5£(3, C) x 5ί7(3)}/Z3.

As JK is its own normalizer in G, σ = σov with v = αί/te) for some geK fixed
by <70. We note that £*°= {5ί/(3) x SU(3)}/ZZ has diagram o~o 0-0 where

j8x = - ( ^ 1 + ̂ 5) - 2(^2 + 04 + 0β) - 303, ^2 = 06, r i = K^2 + Φύ and r 2 =
^ _j_ ̂ ,5); so the nonzero vertices of its fundamental simplex are uλ = —vz,
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u2 = 2vβ — 2v3, wx = 2(v2 + v4) — 4v3 and w2 = ^ + vΛ — 2v3. Now we need

only consider the cases v = ad(exp27r*J^T;t) for x = £κ£, Jw*, £(«! + wx)
and i(w1 + w2). If * = £w* then K* = {51(3, C) X 5ί/(3)}/Z3, and then G*
= £β,/ 4 because Λ2Λ2 ς£ C4. If JC is -J-M* or £(«* + w,), then K* is {51(3, C)
X 5*71(3)}/Z3 and we run through a list of roots to compute dimensions of
intersections of eigenspaces as dim{(£(σ0,1) ΓΊ ®(y, 1)} = 24 and dim{(S(σ0, — 1)
Π ®(i/, - 1 ) } = 12; thus dim®(σ, 1) = 36 and G* = £ 6 > C 4 .

This completes our analysis of the case where rank G = rank K. We go on
to table 3 of Theorem 6.1.

Let G = L x L x L with L simple and K = {(&, &, &) e G: & = g, = &}•
If or preserves each factor of G then σ(K) = ΛΓ says that σ = v X ^ X v for
some involutive automorphism y of L; then G* = L* x L* x L* and K is
L* embedded diagonally, where L* is the form of L defined by the involution
v. If σ permutes factors of G, then we may take σ(gu gt9 gz) = (v2g2, »&, v3g3),
v\ = 1, from σ2 = 1 and further vλ = v2 = 3̂ as σ(K) = X, so a acts by
(Si,g2,&)->(ι#2,i'gi,ι#3); then G* = Lc x L* and K* = L* is given by
JK"* = {(g,g')e Lc x L*:g = g'}. In all cases X* has linear isotropy repre-
sentation adκ* φ Λ^JS:*, whose commuting algebra is the algebra of 2 x 2 real
matrices; so the invariant almost complex structures on X* are in 1 to 1 cor-
respondence with the 2 x 2 real matrices of square —/.

For the remaining two cases we replace Spin(S) by 50(8) this is permissi-
ble because o2 = 1 says that σ is conjugate in the automorphism group of G
to conjugation by some element s in the full orthogonal group 0(8).

50(8)/G2. σ(K) = K says that s permutes the irreducible summands of the
representation of G2 on Λ8. Thus RB = R1 ® I?7 under G2 and s = ( ± 1) ®s\
s' € 0(7). σ2 = 1, so 52 = ± / , and now s2 = /. σ\Os is necessarily inner, so

σ\Gi = ad(t) for some t € C?2 of square 1. If ί ^ 1, so s' = f r . ] with

1 <: r < 6, then Gf c 50 r (7) and maximal compact subgroups 50(4) c SO(r)

X 50(7 — r). As 50(4) contains a Cartan subgroup of Gξ, and as the repre-

sentation «ΞD of the latter on R7 has O as a weight of multiplicity 1, we

have r > 2 and 7 — r > 2. Now r is 3 or 4. Changing 5 to — s if necessary
4 ) or [ 3

orwe may assume r = 3. Then ^ is ( 4

 7 )

first case and outer in the second, provided σ Φ 1:

, σ being inner in the

s ± / β

SO{%)

*(- j
5OH8)

G2

5O3(8)

<^
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In all cases the isotropy representation of K* has commuting algebra (2 x 2
real matrices), so the G*-invariant almost complex structures on X* are in
1 to 1 correspondence with 2 x 2 real matrices of square —/.

SO(%)/adSU(3). σ\x is inner because σ cannot interchange the irreducible

summands o-o and o-o of the linear isotropy representation. Now σ\κ =
ad(ad(v))\κ for some v e SU(3). If v Φ 73 then v2 scalar allows us to assume

- 1 J, so ad(v)= ί"" 7 '/) € SO(8). In either case Schur's

Lemma and ad(v)2 = 78 say s^-adiv) = ±/ 8 . Now s = ±/ 8 , G* = 50(8),

K* = adSUO); or s = ± ^ A, G* = S04(8), X* = adSlW).

This completes the run through the three tables of Theorem 6.1. There is
no redundancy for the cases rank G > rank K. Now we need the following
lemma, which eliminates redundancy for the cases of equal rank.

7.15. Lemma. Let rank G = rankK, G/K listed in Theorem 6.1. Let σt

be involutive automorphisms of G, which preserve K and invariant almost
complex structures on G/K. Let Gf and Kf be the corresponding real forms
of G and K. Suppose (i) Kf and Kf are of the same type, (ii) Gf and Gf are
of the same type. Then there is an automorphism β of G which preserves K
such that <72 = βσ^"1.

Proof. By (ii) there is an automorphism βf of G such that σ2 = βrσxβ
f'1.

Now we must find β in the form aβ' where a commutes with σ2.
Define σ = σ2 and θ2 = θ. Define θx = β'-χθβ' and Kt = GOi. Now (i) says

that K{ = (G*)*1 and K\ = {Gσ)°2 are of the same type, thus conjugate by an
inner automorphism ad(a) of Gσ. Let a = ad(a) onG fleG" says σ2α = <xσ2\
replace β' by 0 = αβ'; we still have σ2 = jfoiβ"1 but now (G*)'1 = (G*)'3.
Thus 0J02*1 = ad(v) where i; is central in G\ vz = 1. If v Φ 1, then G* is a
hermitian symmetric subgroup of G, so the center of Ga is a circle group;
then 0* = ad(v±τ) and ^ = 02

±x, i.e. ^jS"1 = ί*1, i.e. β(K) = A:. q.e.d.
The final step is to check the global form of each of the entries of the

table of our theorem. There we must check that G*/K* is simply connected
and that G* acts effectively. For the first, πλ(G*IK*) = π^A/B) where B is
a maximal compact subgroup of K* contained in a maximal compact sub-
group A of G*. For the second, using the fact that ©* has no nonzero ideal
contained in $*, we need only check K* Π Z* = {1} where Z* is the center
of G*. These small calculations are left to the reader. q.e.d.

Theorem 7.10 extends Theorem 6.1 to the "noncompact case." To extend
Theorem 6.4 we need an appropriate version of the connectedness of the
isotropy subgroup as mentioned in Proposition 4.1.

7.16. Lemma. Let X = G/H be an effective coset space, where G is a
connected reductive Lie group and H is a closed reductive subgroup of max-
imal rank. Choose maximal compact subgroup Lcz K of H c G and suppose
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rank L = rank K. If X carries a G-invariant almost complex structure, then
H is connected.

Proof, φ contains the center of © because it has maximal rank, so H
contains the identity component of the center of G. Now G is semisimple
because it acts effectively on X. Let © be the centralizer of $ in ©. Define
St' = ® + © and β' = 2 + ©. ft' is a compactly embedded subalgebra of ©
so fi' is a compactly embedded subalgebra of φ. The linear isotropy represen-
tation of Ho is faithful because G is effective on X; thus the analytic subgroup
of H with Lie algebra V is compact; it follows that 2' = £. Now © c 2, so
© C ®, and this shows that 2 and ® are maximal compactly embedded sub-
algebras of φ and ®. In particular K contains the center of G, L contains
the center of H, and Lo contains the center of HQ.

Let © = φ 4- 2JI be the orthogonal decomposition under the Killing form.
Decompose 3Dlc = 3ft+ + 3ft~ into ±(4^T)-eigenspaces of the invariant
almost complex structure. Now let Z denote the center of Ho, so Ho and Lo

are the respective identity components of the centralizer of Z in G and K.
Choose a Cartan involution σ of G which preserves # 0 . Then σ(Z) = Z and
£ is the fixed point set of σ on G. Now St = £ + SΊ where 91 = ft Π SR.
Define 9Ϊ+ = ί F Π SK+ = 9?c Π 2K+ and Sβ- = ^ c Π Wl~ = 3ίc Π 2R-, so
Slc = 5Ϊ+ + 3i- defines a ^-invariant almost complex structure on KjL.
Proposition 4.1 says that L is connected. As L meets every component of H,
now H is connected. q.e.d.

Now we can complete Theorem 7.10 to a structure-classification theorem
which extends Theorem 6.4 to the noncompact case.

7.17. Theorem. The coset spaces X = G/H with the properties (i) G is a
connected reductive Lie group acting effectively, (ii) φ = ®0 where β is an
automorphism of order 3 on ©, and (iii) X carries a GΛnvaήant almost
complex structure, are precisely the spaces (XQ x X1 x x Xr)/Γ =
[(Go x G i X X Gr)/Γ]/H constructed as follows.

Xo is a complex euclidean space, Go is its translation group, and HQ = {1}
CZG0;

r > 0 is an integer. If 1 < i < r, then Xt = GijHt is one of the spaces
listed in Theorem 7.10, and Zι denotes the center of Gt\

Γ is arbitrary discrete subgroup of Go x Zα X x Zr

G = (GoχGλχ x Gr)Γ and H is the image α f f i . x f l j X X Hr

in G.
Remark. Z% is trivial if rank Gt = rank ffi5 i.e. if Xt = GijHt is listed

in Table 7.11, 7.12 or 7.13. If rank Gt > rank Hu i.e. if Xt = G,/#i is
listed in Table 7.14, then Z t is:

Z2 X Z2 if Gt is 5jpήi(8), SjpiVίδ), S/>//ι3(8), S/?iV(8) or 5p//i(8,C);

Z 2if G4 is
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Z* x Z* if Gt = [L* x L* x L*]/δZ*, Z* if G* = [Lc x L*]/SZ*,
ZxZ it Gi = [Lc χLc x Lc]/δZ .

Proof. The proof is identical to the proof of Theorem 6.4, except that
Theorem 7.10 substitutes for Theorem 6.1 and Lemma 7.16 for Proposition
4.1.

7.18. Corollary. The coset spaces X — G/H with the properties (i) G is a
connected reductive Lie group acting effectively, (ϋ) !Q = %β where θ is an
automorphism of order 3 on ®, (iii) X carries a G-invariant almost complex
structure, and (iv) X is locally a product of coset spaces with R-irreducϊble
linear isotropy subgroup, are precisely the spaces (Xoχ Xτχ • x Xr)/Γ
which are listed in Theorem ΊΛΊ and satisfy the additional condition:

If I <i <r then A^ is listed in the tables of Theorem 7.10 with N = 2.
Proof. X is listed in Theorem 7.17 and this is equivalent to conditions

(i), (ii) and (iii). Condition (iv) says, precisely, that 1 < i < r implies, in the
notation of Theorem 7.17, that the linear isotropy representation βt of Ht is
J?-irreducible. If βi is J?-irreducible then of course N = 2. If N = 2 then βt

cannot decompose into summands stable under an almost complex structure,
so βj = 7Γi®7ti with ft* absolutely irreducible; then βt is jR-irreducible, for
reality of πt would imply (cf. Table 7.14) N = oo. q.e.d.

We have been implicitly using the fact that Theorem 4.3 extends without
change to the case where K is a connected reductive subgroup of maximal
rank in a connected reductive Lie group G. At this point we should note, for
purposes of § 8, that Theorem 4.7 extends without change of the case where
K is the identity component of the centralizer of a connected subgroup of a
Cartan subgroup of a connected reductive group G, and that Theorem 4.5
and Corollary 4.6 extend to the reductive case with the restrictions that T
remains compact and we use restricted Weyl groups.

8. Types of homogeneous almost Hermitian manifolds

In this section and the next we give a detailed description of the almost
hermitian geometry of the almost complex manifolds of §§4 through 7. The
general results are given here in § 8 § 9 is concerned with somewhat more
delicate results involving calculations with the root systems of the relevant
Lie algebras.

We first describe several conditions for almost hermitian manifolds which
are weaker than the kaehler condition. We then prove a series of theorems
relating those conditions, for a homogeneous almost hermitian metric on a
reductive coset space G/K, to criteria concerning whether $ is the fixed point
set of an automorphism of order 3 of ©.

Let M be a C~ real differentiate manifold and SCiM) the Lie algebra of
vector fields on M. We assume that M possesses an almost complex structure
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/ and a pseudo-riemannian metric tensor field ( , ) which satisfy (JX, JY) =
(X, Y) for all X, Y € X(M). The kaehler form of / and ( , ) is the 2-form F
defined by F(X, Y) = (JX, Y) for all X,Ye %(M). Let ds2 = ( , ) + Λ^T F.
Then the existence of ds2 on M is equivalent to the existence of compatible
( , ) and J. We say that (M, ds2) is an almost hermitian manifold and that ds2

is an almost hermit ian metric on M.
Assume that (M, ds8) is almost heπnitian and let V denote the riemmanian

connection of the pseudo-riemannian metric ( , ) determined by ds2. If J is
the almost complex structure determined by ds2, we say that (M, ds2) is
kaehlerian if VX(J) = 0 for all X e #*(M), almost kaehlerian if JF = 0, nearly
kaehlerian if VX(J)(X) = 0 for all Z e 3Γ(M), quas'ukaehlerian if

F*W(O + F,*(7)(/y) = 0

for all X, Y e &(M), semukaehlerian if 6F = 0, and hermitian if / is integra-
ble, i.e. if M is a complex manifold relative to /. Let JΓ, j^JΓ, JΓX\ let,
¥X and tf denote the classes of kaehler, almost kaehler, nearly kaehler,
quasi-kaehler, semi-kaehler, and hermitian manifolds, respectively. In [5] it
is shown that the following inclusions hold between the various classes:

£ J / Γ U rftf <£& <2ctr \j {yet n so

< ¥x π # z: ) ^JΓ u ^ <

Here < denotes strict inclusion and s#3/f stands for the class of all almost
hermitian manifolds. Furthermore, X = se Π £ct = « s ^ Π Jf# so that
all possible inclusions are determined.

Now we consider the above conditions on a homogeneous almost hermitian
manifold (M, ds2). We assume that M = G/K is a reductive homogeneous
space, and that the metric ( , ) and almost complex structure of (M, dsί2) are
both G-invariant. In refering to classifications we will assume that G is con-
nected and acts effectively on M, but in general we make no additional
hypotheses on the Lie groups G and K. In particular, we do not assume the
pseudo-riemannian metric ( , ) to be definite. If the isotropy representation of
K has no irreducible summand of multiplicity greater than 1, then homo-
geneity automatically implies the compatibility condition (JX, JX) = (X, Y)
for X, Y € #*(M). Furthermore, we have the following formulas for
X, Y € &{M):

(IX, K],Y) = (X, [K, YD , [K, JX] = J[K, X] .

If V is a real vector space and P: V —• V is a linear transformation without
real eigenvalues, then P determines an almost complex structure / on V in a
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canonical fashion. Let Im λ > 0 and Vλ be the subspace of Vc on which
P — λl is nilpotent. Then / is given on V f] (Vλ + V{) by the reguirement that
P - {(Re λ)I + (ίm ί)/} be nilpotent. / extends t o F = £ F n ( ^ + F3)

Iml>0

by linearity. The linear transformation / of V has square — / and is called
the canonical almost complex structure determined by P.

Thus an automorphism 6 of G of order n for which — 1 is not an eigen-
value determines an invariant almost complex structure on G/K if K is the
fixed point set of θ. For n = 3 or 4 we shall characterize the canonical almost
complex structures of the almost hermitian manifolds so obtained.

8.1. Theorem. Let M= G/K be a (reductive) homogeneous space for which
K is the fixed point set of an automorphism θ of order 4, and assume that
— 1 is not an eigenvalue of the induced action of θ on®. Then the canonical
almost complex structure J determined by θ, together with any compatible
metric ( , ), makes G/K into a hermitian symmetric space. Conversely, if
G/K is hermitian symmetric, then ® is the fixed point set of an automorphism
of © of order n for any n > 1.

Proof. For the necessity let P be the induced action of θ on @. On 9ft we
have P = J so J[X, Y]m = [JX, JY]m for X, Y € SJl. (Here the subscript
denotes the component in 3ft.) Hence

[X, Y)m = [PX, PY]^ = JUX, JY)m = - [ X , Y]m ,

and so [3ft, 3ft] c Λ. Thus G/K is hermitian symmetric.
Conversely, if G/K is irreducible hermitian symmetric, then K has a 1-

dimensional center Z. It is not hard to see that any element in Z of order n
(n > 1) has fixed point set $ . q.e.d.

The characterization of an almost complex structure determined by an
automorphism of order 3 is more complicated.

8.2. Theorem. Let M = G/K be a (reductive) homogeneous space for
which ® is the fixed point set of an automorphism θ of © of order 3. Then
the canonical invariant almost complex structure J determined by θ satisfies

(8.3) [JX, Y]m = -J[X,

(8.4) [X

for all X, Y e 3ft. Conversely, if M = G/K has an invariant almost complex
structure satisfying (8.3) and (8.4), then ® is the fixed point set of an auto-
morphism of © of order 3.

Proof. For the necessity let P denote the induced action of θ on ©. The
canonical almost complex structure on 3ft determined by P is given by

(8.5) Pm=-λi+ί^J.
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Since P[X, K] = [PX, K] ίor X € 2ft and K € ®, it follows that 7 is invariant.
Furthermore,

P[X, Y] - IPX, 2 4 ^
(8.6)

In particular,

(8.7) P[X, JX] - [PZ, P7Z] = - 2 [X, JXJm + ί^-J[X, JX]m .

Since P is an automorphism of © the left hand sides of (8.6) and (8.7)
vanish. From (8.7) it follows that [X, JX]m = 0. Hence (8.6) reduces to

0 = l ax, Y\tt - [/AT, 7 7 k ) + ^-([7Λf, Y] Λ + [X, JY]$)
4 4

(8.8) t_

+ ^ - ( 7 [ Z , Πsm + [JX, Y]m).

Thus we get (8.3). Furthermore, (8.4) is obtained by substituting JY for Y
in (8.8) and subtracting the result from (8.8).

Conversely, suppose (8.3) and (8.4) hold. Define P:@ ->© by (8.5) and
the requirement that P be the identity on ®. From (8.3) we have [JX, Y]m
= [X,JY]m for X,Y <= SK, and (8.3) and (8.4) imply (8.8). Thus (8.6) be-
comes P[X, Y] = [PX, PY] for X, Y e 3ft. Furthermore, since 7 is invariant,
P[X, K] = [PX, K] for ΛΓ e 2R, 7 € ft. Therefore F is an automorphism of ©
with fixed point set S. {Consequently, if G is simply connected, P determines
an automorphism of G of order 3 whose fixed point set is Ko.} q.e.d.

The next theorem shows that it is sometimes possible to determine the
class of a homogeneous almost hermitian manifold (M, ds2) even if the metric
( , ) is not assumed to be obtained by restriction of M and translation over
G/K of a bi-invariant bilinear form on ©.

8.9. Theorem. Let (Λf, ds2) be a reductive homogeneous almost hermitian
manifold, M = G/K.

(i) // 7 satisfies (8.3) then (M, ds2) e £X.
(ii) // the isotropy representation of K has no invariant Udimensional

subspaces, then (Aί, ds2) € SfCtiΓ. This holds, for example, if the isotropy
representation is irreducible or if G and K are reductive Lie groups of equal
rank.

Proof. For (i) we note that the riemannian connection V of M is given by
the formula
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(8.10) 2(Γγy,Z) = -(X, [Y9Z\) - (7, [X,Z]) + (Z,

for X,Y,Zz SK. Because of (8.3) we have

F,γ(F)(y, z) = + (ΛΓ, j[γ, z]) + (y, / [ * , z]) - (z,

Again on account of (8.3) it follows that

FX(F)(Y, Z) + FJX(F)(JY, Z) = 0.

Finally (ii) follows from the fact that dF is invariant under the isotropy
representation of K. q.e.d.

Next we assume that (M, ds2) has a metric ( , ) which is the projection of
a bi-invariant metric on G. This holds, for example, if the isotropy repre-
sentation of K is irreducible. We have then

([X, Y],Z) = (X, [Y, Zl), ([X, YLK) = (X, [Y,K\)

for X9 Y, Z € SDΪ and Kefi . Furthermore, the riemannian connection of M is
given by VXY = \\X, Y\sk for X, Y e 9K.

8.11. Theorem. Let (M, cfo2) fc^ <z reductive homogeneous almost hermitian
manifolds with M = G/K such that the metric ( , ) of M is a projection of a
bi-invariant metric on G. Then the following conditions are equivalent:

(i) (M, ds2) € JfX.
(ii) [X, JX] e ® /or a// Z, Y e 3K.

(iii) $ is the fixed point set of an automorphism of ® of order 3.
Proof. We have FX(J)(X) = £[*, /ΛΓ]2R, and so (i) and (ii) are equivalent.

Furthermore, (ii) is equivalent to equation (8.3). Bi-invariance of ( , ) implies
that (8.4) holds. The rest of the implications follow from these facts.

8.12. Theorem. Let the metric of the homogeneous almost hermitian
manifold (M, ds2), M = G/K reductive, be the projection of a bi-invariant
metric on G. Then

(i) (Af, ds2) <= JίoίT if and only if (M, ds2) e
(ii) (M, ds2) e X if and only if (M, ds2) e
Proof. We have

VX{J){X) + PJAJXJX) = IX, mm = 2FAJ)(X)

If (M, ds2) € IX, the left hand side of the first equation is zero and so
(M, ds2) e JfctΓ. Since we always have JίX c £X\ (i) follows. Further-
more, j^JΓ c £X and cc/JΓ Π C/ΓJΓ = X\ hence (ii) follows. q.e.d.

The possible classes for a homogeneous almost hermitian manifold (Λf, ds2),
whose almost complex structure J is canonically determined by an auto-
morphism of order 3, are summarized by the following theorem.

8.13. Theorem. Suppose M = G/K is a (reductive) homogeneous space
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and $£ is the fixed point set of an automorphism θ of % of order 3. Let ds2 be
a G-invariant almost hermitian metric on M whose associated almost complex
structure is the canonical one determined by θ. Then

(i) (M,ds2)e£jf;
(ii) // the metric ( , ) of M is induced from a bUinvariant metric on G,

then {M,ds2)zJfX\
(iii) under the hypothesis of (ii), the following are equivalent: (a)

(M, ds2) 6 #f (b) (M, ds2) € tf (c) M is hermitian symmetric with respect to J.
Proof, (i) follows from (8.9), and (ii) is a consequence of (8.11). For

(iii) we note that (c) implies (a) and (b), and (a) and (b) are equivalent by
(i). Furthermore, if (M, ds2) e X and the metric of M is induced from a bi-
invariant metric of G, we have J[X, Y]$ι = [JX, Y]m for X, Y € 2ft. That M
is hermitian symmetric now follows from (8.3). q.e.d.

A weak version of Theorem 8.13 can be proved in the general case (where
the almost complex structure is not assumed to be the canonical one):

8.14. Theorem. Let (M, ds2) be a homogeneous almost hermitian manifold
such that M = G/K, where G is a reductive Lie group and ® = ®* for some
automorphism θ of order 3 on ®. Then (M, ds2) € SfCtiΓ.

If M is compact and θ induces an outer automorphism on the semisimple
part of ®, then (M, ds2) i jf, (Λί, ds2) $ X and (M, ds2) $ J / J Γ .

Proof. Without loss of generality we may assume G connected and
effective on M. Then M is one of the spaces M/Γ, M = Λί0 x Afx x
X M r, of Theorem 7.17. We are examining conditions determined by inte-
grability of the almost complex structure / of ds2 and by the differential dF
and the codifferential dF of the kaehler form F of ds2. Those properties are
local so we may replace M by M. After having done this we have Λf = Λf0
X M, x . . x Mr, G^GoXG.x '•' χGr, K = Koχ Kxχ . x Kr

and Mi = Gi/Ki9 where Mo is a complex euclidean space and the other Mi
are listed in the tables of Theorem 7.10. ds2 is the direct sum of Gi-invariant
almost hermitian metrics ds\ on the Λί{; if Ji and F4 denote the almost com-
plex structure and kaehler form of ΛJ, then / is the direct sum of the Jt and
F is the direct sum of the Ft.

δFi is a G£-invariant 1-form on M<. Let 3ft* denote the complement to ®2

in ®i. If 3Fi ψ 0, then adGi\Ki must have a trivial subrepresentation on ϋDί*.
If rank Ki = rank G?;, Theorem 4.3 show that there is no such trivial sub-
representation. If rank Kt < rank Gt but Mt is not a complex euclidean
space, the same fact follows from Theorem 5.10. Now 6Fi = 0 for / > 0.
But ds2

Q is stable under a nonhomogeneous indefinite unitary group on the
complex euclidean space Mo, and the isotropy subgroup, which is an in-
definite unitary group, is irreducible; as before it follows that δF0 = 0. Now
δF = δ(F0 φ F1 φ 0 Fr) = *F0.φ φ δFr = 0. That proves (Λf, ds2)
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Now suppose that M was compact before we replaced it with M, and the
θ induces an outer automorphism of the semisimple part of G. Then Gt is a
compact for i > 0 and we may assume Θ\Gχ to be an outer automorphism.
Note, from Theorem 6.1 or Table. 7.14, that Kλ is semisimple. Kτ cannot be
the semisimple part of the centralizer of a toral subgroup of Gτ because
adGl\Kl has no trivial subrepresentation on Sft^ it follows [10] that J1 is not
integrable; then J is not integrable, so (M, ds2) £ 3f? and (M, ds2) i X.

Retain the assumptions of the preceding paragraph. Suppose dF1 = 0. If
Fx = dβ for some 1-form β on Mτ = G1/Kl9 let β' denote the Haar integral
average of β over Gx. Then β' is a G^invariant 1-form on Mλ and

dβf = dfg*βdμ(g) = Jd(g*β)dμ(g) = fg*dβdμ(g)
G\ Gi G\

= g*Fdμ(g) = Fdμ{g) = F .
J J

Thus we may assume β to be Gj-invariant. But then β = 0 because α d C l | X l

has no trivial subrepresentation on fϋl^ That contradiction shows Ft φ dβ
for any 1-form β. In other words, the closed 2-form Fx represents a nonzero
cohomology class in IP(MX\ R). Duality and the Hurewicz Theorem then
show that the homotopy group π2(Mτ) is infinite. But π^KJ is finite because
Kτ is semisimple, and we have the exact sequence 0 = π^GJ —> π2(M^) —>
TΓJC^). This contradiction shows dF1 φ 0. Now dF φ 0, so (M, ds?) $ X and
(Λί, ds2) i s/$r. q.e.d.

Let M = G//C be a reductive homogeneous space with ^-irreducible linear
isotropy representation. Then every invariant riemannian metric is induced
from a bi-invariant metric on G, under the mild condition that G is the
translation group if M is an euclidean space or a circle. Let ds2 be an in-
variant almost hermitian metric on M. Then the almost complex structure /
is unique up to sign [12], and Theorem 8.11 shows that (M, ds2) e JίX if
and only if S is the fixed point set ®° for some automorphism θ or order 3
on ©. This situation persists under products and under quotient by discrete
central subgroup of G. In summary, we have

8.15. Theorem. // M = G/K is one of the spaces of Corollary 7.18, and
ds2 is any G-invariant almost hermitian metric on M, then (M, ds2) e JίX\

By way of contrast we have
8.16. Theorem. Let M = G/K be a reductive coset space with an invariant

almost hemitian metric ds2. Suppose that ft is not the fixed point set of an
automorphism of order 3 of ®, and that the linear isotropy repeesentation of
ft is irreducible. Then (M, ds2) € SfX and (M, ds2) $ £tf.

Proof. (M, ds2) is semikaehlerian because the linear isotropy representa-
tion of K cannot have δF as a nonzero invariant. If (M, ds2) were quasi-
kaehlerian it would be nearly kaehlerian by Theorem 8.12, and then Theorem
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8.11 would force $ to be the fixed point set of an automorphism of order 3
on ®. q.e.d.

The spaces M — GjK which satisfy the hypotheses of Theorem 8.16 have
been classified [12L§ 13]. The ones for which G is not a complex Lie group
are given by G == G/Z and K = KZ/Z, where Z is an arbitrary subgroup of
the center Z of G, and all possibilities are given by:

G

Spin^-l)

SO2r(n-r)(n2-D

SO2rin-rKn2-l)

simply connected group of type E6fAsAι

Z

Z 2 XZ 2

z2

{1}

z3

z6

SU(n)/Zn

SUr(n)/Zn

SU(n)/Zn

SU(3)/Z3

5ί/H3)/Z3

conditions

n odd, π>3

n odd, Λ>3, 0<2r<H

n even, n>3, 0^2r<n

{Note that n = 3 is excluded from the first two entries of the table by the
condition that $ is not the fixed point set of an automorphism of order 3 of
®.}

The spaces M = G/K satisfying the hypotheses of Theorem 8.16, for
which G is a complex Lie group, are the spaces given by G = Ac/Z and K
= BCZ/Z, where Z is an arbitrary central subgroup of A (i.e. an arbitrary
central subgroup of the complexification Ac), and A/B is either a compact
simply connected nonhermitian symmetric coset space or one of the coset
spaces listed in [12, Theorem 11.1] for which the linear isotropy representa-
tion χ is absolutely irreducible.

9. Invariant almost Hermitian structures on compact
homogeneous spaces of positive characteristic

We conclude by studying the types of positive definite invariant almost
hermitian metrics ds2 on homogenous spaces M = G/K, where G is a com-
pact connected Lie group and K is a subgroup of maximal rank. Note that
(Λί, ds2) 6 y j f by Theorem 8.9, and that Theorem 4.5 gives the criterion for
whether (Aί, ds2) e jf. We find root system criteria for (M, ds2) to be in the
classes Jf~, ,$/Jf, £cf anάJrX', respectively, and we specialize those criteria
with the aid of the various classifications of § 4.

Choose a maximal torus T of G which is contained in K. Let Λκ and A
denote the respective systems of Sc-roots of ®c and ®c

9 and let < , > denote
the Killing form on ®c. For λ e A we denote by hλ the element of 4"--l£
such that </2,, K} = λ(h) for all h e %c. Since G acts effectively on M, G is
semisimple, and so hλ is well-defined. Next we choose root vectors eλ e (&λ for
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λ e A with the following properties: [hλ, ev] = <Λ, v)ev\ \eu e_J = hλ\ [eλ, ev]
= ni,v

eλ+» if λ + ve A; [eλ, ev] = 0 if λ + vi A. If λ + v is not a root we
define n}yv = ei+v = 0; then we still have [eλ9eji = niiVeλ+u. The eλ can be
chosen so that nλ,v is real, and niyv = —n_u_v (see [7, Chapter 3]). Then

because of the anticommutativity of © and the Jacobi identity.

For all λ e A we set J^ = eλ — e_2 = —Λ.^ and yι = J ^ l f e + e . ; ) = y_iβ

If ?Γ is any system of simple roots and /Γ is the corresponding system of
positive roots, then

is a basis of ©. In order to compute in this basis we need the following pre-
liminary calculation, which is left to the reader.

9.2. Lemma. If λ,v£ A then

[χi9 y j = 2Λ^T K, [ J = τ K * J = <^, ^>Λ , [J" 1 7 ! *a, yJ = -<λ, »>χ..

//, further, λ ψ ±v, and we make the convention that ea = xa = ya = 0 /or

We can now describe invariant almost hermitian metrics. For this purpose
decompose © = Sΐ + 2ft, 3KC = 2 © i ? and break Λ — Aκ into a disjoint

union of subsets /\ such that the irreducible representation spaces of K on
3KC are the spaces Hft* = Σ ©Λ. We arrange the Γ* into a sequence

{A, Γ_x; Γ r , Γ . r , Γ r + 1 ; . -. Γ r +.} where A = - Γ . « for 1 < i < r
and Γi = — A for r + 1 < i < r + $. Then the /^-irreducible representation
spaces of X on 3K are the spaces % 1 < i < r + 5 given by

% = (an, + aw.,) n ©, stf = % + sw.<, for i < ί < r,

Slί = 2Ri Π © , 91? = Wli, for r + 1 < / < r + ^ .

Then 9Ji has basis {JC;, yx: A € A Ω A+}9 and the Killing form is nondegenerate
on each 9^.

9.3. Proposition. Let K be a subgroup of maximal rank in a compact con-
nected Lie group G, and retain the notation above.

1. The G-invariant pseudo-riemannian metrics on M = G/K, viewed as
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adG(K)-invariant bilinear forms on 3ft, are just the symmetric bilinear forms

( , ) with the following properties: ( la) {xλ,yx:λe Λ+ — Λκ) is a basis of 2ft
r + s

consisting of mutually orthogonal vectors (so in particular 2ft = Σ 3?* & a n

orthogonal direct sum), and (lb) for each i there is a nonzero real number ct

which defines the bilinear form ( , ) on ^ by the condition \\xλ\\2 = ct = \yλ\
2

for every λe Γi, where || || is the norm of ( , ).
2. View the G-invariant almost complex structures on M = G/K as endo-

morphisms J of square —I onWl which commute with adG(K). Such an endo-
morphism exists if and only if A = — Γ.i for all i, i.e., 5 = 0.// this condi-
tion is satisfied, then J is completely determined by the equations

Jxλ = ε(X)yλ , Jy2 = -ε(λ)xλ

forλzΛ- Λκ. Here ε(λ) = ± 1, ε(-λ) = - ε(X) for allλε Λ- Aκ, and ε is
constant on each Γi.

3. Any G-invariant pseudo-riemannian metric ( , ) is compatible in the
sense of § 8 with any GΛnvariant almost complex structure /, and hence they
determine a G-invariant almost hermitian metric ds2. In the notation of (1)
and (2) above, the kaehler form F of ds2 is the antisymmetric bilinear form
on 3ft with the properties (3a) F(xλ, xv) = F(JC,, yv) = F(yλ, yv) = 0 for all
λ, v € A — Λκ with λ Φ ±v, and (3b) F(xλ, yλ) = ε(λ)\\xλl

2 for λeA — Aκ.
Proof. The 5^ are orthogonal because they are representation spaces for

inequivalent representations of K. On 9^ the invariant bilinear form ( , ) must
be proportional to the Killing form, which is negative definite; hence (, ) is
definite. Choose λ e Γi and define Ci = \\xx\\2; now ct is a nonzero real number
and the first sentence of Lemma 9.2 shows that c£ = ||vj|2. If v € Γi with
vφλ9 then v = λ + σ where σ € Aκ. Using the ^^(^-invariance of ( , ) and
Lemma 9.2, we compute

On the other hand, 0 Φ nλ_c = nVt_o by (9.1) and so \xvγ = | |*2 |2. This
proves (1).

Part (2) follows from Theorem 4.3. Compatibility is clear in (3), as is
property (3a). We compute F(xλyyλ) = (/xa,ya) = ε(X)\\yλ\\2 = εU)I*J2, prov-
ing (3b). q.e.d.

Now we can characterize the classes JΓ, j ^ Jf, and 2tf for invariant almost
hermitian metrics o n M = G/K, rank K = rank G, Furthermore we charac-
terize hodge metrics on M.

9.4. Theorem. Let ds2 be an invariant positive definite almost hermitian
metric onM = G/K, where G is a compact Lie group and K is a subgroup
of maximal rank. Let J and ( , ) be the almost complex structure and the
riemannian metric associated to ds2.
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1. The following conditions are equivalent:
(la) (M, ds2) € ye (i.e. / is integrable).
(lb) X, v, X + v € A — Λκ with ε(X) = ε(ι>) = 1 imp/ίej eU + v) = 1.
(lc) There exists a system of positive roots Λ+ of A such that Λ+ Π Λκ is

a system of positive roots for Aκ and Λ''r Π (Λ — Λκ) = {Xz A — Λκ: ε(X)

= i}
2. The following conditions are equivalent:
(2a) Let Z be the center of K. Then K is the centralizer of the torus

Zo, and there is a linear form ψ on %c such that ζφ, xy = 0 for X € Λκ and
< y ( ) f Λ,λy = ε(λ)\\xΛfoτλsΛΛκ.

(2b) / is integrable, and X, v, λ + v e A — Λκ with ε(λ) = ε(v) = 1 implies

(2c) (
(2d) (

3. y4wMme (M, J^2) € JΓ. ΓΛe« ίΛ^ following conditions are equivalent:
(3a) (M, ώ 2) w α Λoί/ĝ  manifold,
(3b) // ^ denotes the linear form defined in (2a), ί&£« the ((p,X) are

rational multiples of each other for X € Λ.
(3c) // Ψ = {^, , ψi} is a simple system of roots of G such that Ψκ

— {Ψr+i> ' * - 5 Φι) & a simple system of roots of K, then \\xφl\\2, , | |^ r | |
2 are

rational multiples of each other.
Proof. In the notation of Theorem 4.5, / has (\'^~ϊ)-eigenspace on 2RC

given by 2ft+ = 2 ®λ and has — (N'^ΐ)-eigensρace 3K" = £ ®,. Now

£(i)=l ί(i) = -l

S c + SK+ is an algebra if and only if λ,v,X + veΛ — Λκ with ε(X) = ε(v)
= 1 implies ε(X + v) = 1, and Theorem 4.5 says that J is integrable if and
only if lkc -f 3K+ is an algebra. This proves that (la) and (lb) are equivalent.

It is clear that (lc) implies (lb), since the sum of positive roots is positive
if it is a root. To prove the reverse implication we define Λ+ to be the union
of the positive roots Λi of Λκ and {X € Λ — Aκ: ε(X) = 1}. If X, v € A* and
X + v is a root, then it follows from (lb) and αdGCK")-invariance of J that
X + v € Λ+. Theorem 4.5 shows that A+ is a system of positive roots of A.

Next we turn to (2) and prove that (2a) =̂> (2b) =£ (2c) => (2d) =φ (2a). Let
9 be the linear functional of (2a) and X, v, X + v e A — Aκ be such that ε(X)
= ε(v)= 1. Then

Since ( , ) is positive definite, ε(X + ι/) = 1 and | |^+.i2 = I^IΓ + lî JI2. From
the equivalence of (la) and (lb) it follows that J is interable. Hence (2a) im-
plies (2b).

Next assume that (2b) holds. We define a linear form η: ® —• R by η(xλ)
= η{yλ) = 0 for X e A, ηU^K) = 0 for X e Λ*, and ^ ^ A J = - \ε(X) \ \xλ \

2
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for λ € Λ — Λκ. We view η as a left invariant 1-form on G. Then dη(xλ, yλ)
= — ?([*J,yJ) = εQ)|j*J2 = H**,yλ) for λe Λ — Λκ, and 37 vanishes on the
rest of © X ®. Now the kaehler form F determines a 2-form π*F on G,
where π: G —» M is the natural projection. The above calculation shows that
dη = π*F, and so dπ*F = ;r*dF = 0. Since π* is injective dF = 0. We are
assuming that / is integrable and so (M, ds2) € X'. This proves that (2b) im-
plies (2c).

Trivially (2c) implies (2d), and so it remains to show that (2d) implies (2a).
If (M, ds2) e j / j f , then dF = 0, and so π*F is closed, where π: G -> M is
the natural projection. The cohomology £P(®, J?) = 0, and so it follows G
has a left invariant real 1-form η with dη = 7r*F. If λ, v, λ 4- f € Λ — yl^, it
follows, using (3b) of Proposition 9.4, that

ε(λ + lOϋJa-JI1 = (π*F)(xλ+vi yi+v) = - ^ ( [ ^ + ι ; , yλ+v])

As ( , ) is positive definite, ε(λ) = ε(v) = 1 implies εQ 4- v) = 1. Hence by
the equivalence of (la) and (lb) it follows that / is integrable. By Theorem
4.5, K is the centralizer of Zo. Furthermore, the above calculation shows that
φ = ^~^Λη satisfies the conditions of (2a). Thus (2d) implies (2a).

We prove (3). Let (M, ds2) € X. By definition (M, ds2) is a hodge manifold
if and only if some nonzero real multiple of the de Rham cohomology class
[F] 6 /P(M, R) is an integral class. Let φ be the linear form defined in (2a);
then ψ is orthogonal to the roots of ® and (3b) is just the condition that some
nonzero real multiple of ψ exponentiate to a character ζ o n X . So we must
check that a nonzero multiple a[F] is integral if and only if a nonzero multiple
bφ = log ζ for some character ζ on K. If exp bφ is a character on K, then it
induces a projective embedding of the complex manifold M as in [1, § 14.4],
and a certain nonzero multiple b[F] is the pull-back of the Chern class of the
hyperplane section bundle; thus b[F] is integral. If b[F] is integral it is the
Chern class of a positive line bundle L —* M we may assume L homogeneous
and find a G-invariant hermitian metric on it whose curvature form ω is a
multiple of [F], and then ω transgresses to a multiple bφ Φ 0; it follows that
exp (bφ) is a well defined character on K. This proves equivalence of (3a)
and (3b). Equivalence of (3b) and (3c) amounts to equivalence of (2a) and
(2b). q.e.d.

We have the following consequence of Theorem 9.4, new for the class
sόtf and bringing together known results from various authors for the other
classes.
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9 5. Corollary. Let M = G/K where G is a compact Lie group and K is
a subgroup of maximal rank.

(i) // K is the centralizer of a torus then there is a GΛnvaήant almost
hermitian metric ds2 on M such that (M, ds2) is a hodge manifold. In par-

ticular, (M, ds2) € jf , (M, ds2) € stX and (M, ds2) e X.
(ii) / / K is not the centralizer of a torus, and ds2 is any G-invariant almost

hermitian metric on M, then (M, ds2) $ 3f, (M, ds2) $ s/Jf and (M, ds2) $ X.
Proof. If K is not the centralizer of a torus then Theorem 4.5 shows

(M, ds2) t Jf. In particular, (M, ds2) t jf, and then Theorem 9.4 shows that
(M, ds2) i s/X.

Let K be the centralizer of a torus. Theorem 4.5 gives us a system Ψ =
{ψi, * , ψι] of simple roots of © such that Ψκ = {ψr+1, , φt] is a system of
simple roots of $ . We define J by: ε(λ) = + 1 for λεA+ — Λκ, —1 for
—λ € Λ+ — ΛK9 and the metric ( , ) by ||;tj2 = a^ + . . . + arnr for λ=
2 &iφ% £ Λ+ — Λκ, where the nt are arbitrary positive integers. Then the ds2

defined by / and ( , ) is a hodge metric on M by Theorem 9.4. q.e.d.
For the classes &X and JίX we must look at the covariant derivatives

of J. First, however, we need the following lemma. It is a long calculation,
but it is straightforward from Lemma 9.2, and so we leave it to the reader.

9.6. Proposition. Let ( , ) be a pseudo-riemannian metric on a compact
Lie group G which is invariant under left translation by G and right transla-
tion by the maximal torus T of G. Given λ, v 6 A with λΦ ±v, define num-
bers aXv andbλv by

(9.7a) β2., = j 2

(o if X + vtA;

(9.7b) *,., = 2 \ I ^ J * I J'

( 0 if λ-viA.

View © as the algebra of left invariant vector fields on G and let F be the
riemannian connection of (,). Then

(9.8a) F./x,) = Py.jy,) = 0 and Pφ^Py^^X;

(9.8b) PXχ(x>) = fl;,Λ+v - * , . Λ . , ;

(9.8c) PVl(y,) = - a ^ l t » - fe,,Λ-/,

(9.8d) F ^ W = a .Λ^ + fra.Λ_,;

(9.8e) Fy/^) = a a,^+ v - fr2>Λ_..

Now let ds2 be a G-invariant almost hermitian metric on M = GjK. We lift
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its riemannian metric ( , ) to a riemannian metric on G which is left invariant
by G, right invariant by K (thus also by the subgroup T of K), and also
denoted by ( , ) . (This metric is the sum of a bi-invariant metric on K and
τr*(,).) We denote by V and V the respective riemannian connections on M
and G.

We lift the almost complex structure / of ds2 to a tensor field J on G as
follows. If g € G, then the tangent space GtJ can be decomposed as Gy =
Vg@Hg where (Vg,Hg) = 0 and Vg = kernel(π*\Gg). For z€ G^ we may
write uniquely z = z r + zH. If w e Me{g)9 then iv € Gg denotes the horizontal
preimage under π*. We set

(9.9) J(z) = zv + /Gr^Ztf) for z € G , .

Then/ is a (1,1) tensor field on G.
9.10. Lemma. Let ds2, ( , ) , F, and J fce αj above, and use the notation

{9J). Then for λ,vε Λ — Λκ with λΦ ±v we have

VXλ{J){xv) = fla..(β(ι;) - ε(λ

These equations follow from Propositions 9.3 and 9.6, and the
fact that (by definition) Px(J)(y) = Fx(7y) - JVxy for JC, V 6 ©.

9.11. Proposition. Lei ds2 be a G-invariant almost hermitian metric on
G/K, and let λ, v e A — -4* w/f/z ^ ^ ±u. Then at the point of M at which K
is the isotropy subgroup of G, we have

Vxμ){xλ) = Vxμ){yA) = Vyι{J){xλ) = VVι<J)(yλ) = 0 ,

F7Jλ(J)(xv) = {fl;,,(-eW + ε(λ + v))xi+u + fc^(~e(v) - «U - i ; ) ^ . ^ .

Proof. Let π: G —»M be the natural projection with τr(l) = m, where 1
is the identity of G. There exists a coordinate neighborhood U of 1 in G map-
ping onto a coordinate neighborhood π(U) of M such that U and π(U) have
the following property: each vector field X on 7r(ί/) can be lifted to a hori-
zontal vector field X on 17, i.e., πJX) = X and (J?,kernelTΓ*) = 0. ThereX
is not in general left invariant.
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Now let x,y e M m and choose vector fields X and Y on π(U) such that Xm

= x and Ym = y. If x, y <= © are such that jr*(3c) = x and ^ ( y ) = y, then Jfj
= x and fj = y. We have

(9.12) JX = JX, Pj?Ϋ = (FχY).

The first of these formulas easily follows from the definition of J, and the
second is known [6, Theorem 3.2]. Note also that

(9.13) Fx(J)(y) =

because F*(/)(y) and Pχ(J)(Ϋ) are tensorial in X and Γ, and in X and f,
respectively.

An easy computation from (9.12) and (9.13) shows that

(9.14) πJ;(J)(y) = VX{J){Y)

for x, y e Mm. If we apply TΓ* to each of the formulas in Lemma 9.10 and
identify xλ,yλ € 3K with π*(xλ),π*(y2) e Mm, then using (9.14) we obtain all
the formulas in the statement of Proposition 9.11. q.e.d.

In order to facilitate our consideration of the classes &$Γ and Jftf we
define tensor fields Q and N on M by the formulas

Q(χ,y) =

Vv{J)(x) ,

where x and y are tangent vectors on M.
9.15. Theorem. Let ds2 be an invariant almost hermitian metric on M =

G/K, where G is a compact Lie group and K is a subgroup of maximal rank.
Then the following conditions are equivalent:

(i) (M, ds2) <= IJT.

(ii) For allλ,v<ίΛ — Λκ with λΦ±ι>we have Q(xλ, xv) = Q(x2, yv) = 0.
(iii) For all λ,vzΛ — Λκ such that λ + v € A — Λκ and ε(λ) = ε(v) =

eU + v), we have ||x,+v||
2 = |μ ; | |

2 + \x,y.
Proof. It is obvious that (i) implies (ii). Conversely, we always have

β(* a,* a) = Q{χλ,yλ) = Q(yλ,χ>) = Q(y»yx) = 0, Q ( ^ , ^ ) = εU)εωβ(^,^),
and Q(yλ,xv) = εϋ)e(ι/)j2(^, ^,), ίoτλ,vtΛ- Λκ, λ Φ ±v. Hence (ii) implies
(i).

To show the equivalence of (ii) and (iii) we first apply Proposition 9.11 to
write Q(xλy xv) and Q(xi9 yv):

(9 16a)
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(9.16b)
+ fta,,[e(i/) + ett) + ε« - >) +

We first prove that (ii) implies (iii). Let λ9 v € A — Λκ be such that λ 4- v € A
— Λ* and εQ) = ε(v) = εU + y). Then by (ii), β(* a + I I, **) = 0. Since the two
terms on the right hand side of (9.16a) are linearly independent and (λ -f v)
— v = λ € A — yljp, by replacing λ by λ + v in (9.16a) we have

0 = t a + . f JeW + εU + P) + ε(λ) + ε(λ + IMMHX)] = 46 2 + i , .^) .

Therefore fc,+v,v = 0, and so |μ,+ υ | |2 = |μ,||2 + \\xv\\2 by (9.7b).
Conversely, let λ,ι>ε A — Aκ be such that λΦ±ι>. Without loss of

generality we may assume that ε(λ) = e(y) = 1. Then (9.16a) and (9.16b)
reduce to

Qixί9x9) = 2{bltJLε0) + e(i - Λlya-Ja* .

Clearly β(jca, J:V) and β(Xj, yv) vanish if λ — v ̂  yl — Aκ or if λ — v z A — Aκ

and εU — v) = — 1. Suppose λ — v e A — Aκ and e(;> — v) = + 1. Then by
(iii) we have | * a _ y | s + \x.\* = |jca||*. Hence bi%w = 0, and we again obtain
Q(xλ9 xv) = Q(xx, yv) = 0. Thus (iii) implies (ii).

9.17. Theorem. Let ds2 be an invariant almost hermitian metric on M =
G/K, where G is a compact Lie group and K is a subgroup of maximal rank.
Then the following conditions are equivalent:

(i) (M, ds2) 6 JfX.
(ii) For all λ,v€ A — Λκ with λψ ±vwehaveN(xi9xv) = N(xλ,yv) = 0.

(iii) For all λ,ve A — Aκ such that λ + v e A — Λκ and ε(X) = ε(v), we
have \\x^v\\2 = μ a | » + \\xv\\2 if ε(λ) = β(ι;) = εU + v\ and \xλ+v\\2 = μ a | »

Proof, It is obvious that (i) implies (ii). Conversely, we always have
N(xλ, χλ) = N(Λ2, ya) = N(yl9 yλ) = 0 and N(ya, v j = -ε(^)£(v)N(^, xv) for
λ,ve A — Aκ with ^ =£ ± v . Hence (ii) implies (i).

Proposition 9.11 gives us the following expression for N(xχyxv):

(9.18a)

Similarly, Proposition 9.11 gives us the following expression for N(xz, yv):
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(9.18b)

We first prove that (ii) implies (ϋi). Let A, v e Λ — ̂  be such that λ + v e A
- Aκ and ε(X) = e(v). Since (M, ds*) € .&#", we have that e(λ) = e(v) = e(λ + v)
implies ||A:,+,|2 = [JCJ* + [JCJ*. Suppose e(X) = ε(v) = -ε(λ + v). Then by (ii),

M*2»Λ.) = 0 ^ d so from (9.18a) we obtain

0 = «(v) - ««) + k(v) + sU) - 2ε(λ

Hence ||*a||
2 = ||JCJ2. Furthermore ε(λ + v) = e(—v) = -ε(λ). Therefore the

same argument with λ replaced by λ + v9 v replaced by — v, and λ + v re-
placed by λ shows that ||jca+J|2 = |JCJ|2. Thus (ii) implies (iii).

Conversely, let λ, v e A — Aκ be such that λ Φ ±v. Without loss of gen-
erality we may assume that e(λ) = e(v) = 1. Then (9.18a) and (9.18b) reduce
to

/ II Y II 2 || γ

..I.O0 ε(λ + v)] [ !(9 19a) lί

liλ+ \>$A — Λκ, or ft λ + v£ Λ — Λκ and e ( H v ) = 1, it is easily checked
that first terms on the right hand sides of (9.19a) and (9.19b) vanish. If
λ + v € A — Λκ and ε(λ + p) = - 1 , then by (iii) we have j|jca|

a = |jcja.
Hence the first terms on the right hand sides of (9.18a) and (9.18b) always
vanish. Similarly the second terms vanish. Thus N(xi9 xy) = N(xi9 vv) = 0,
and we have proved that (iii) implies (ii). q.e.d.
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To illustrate the Jftf criterion of Theorem 9.17, let M=G/K where G is a
compact connected centerless simple Lie group and K is a connected subgroup
of maximal rank with center of order 3. Thus GjK is one of G2jA2, FJA2A2,
E6/A2A2A2, E7/A2Aδ, ES/AQ and EB/A2E6. Let ds2 be an invariant almost her-

mitian metric on M. Now ® = $ + 3ft as usual, and 9ftc = 3ft+ + 9ft" (eigen-
space decomposition under J) with adG(K) irreducible on each of 3ft*. The
brackets are

[sκ+, m+] = aft-, [3K-, 9ft-] = 9κ + , [9R+, are-] = ®c.

Let ©„ %v c SR* such that λ + * is a root. Now e(Jl) = e(i>) = ± 1 =
—ε(λ + v). Thus the 2ίX criterion is vacuous, and the JίX criterion is
\xxγ = IÎ JI2 == ||Xj+J2, which again is automatic. Thus, just as asserted
earlier in Theorem 8.15, we have (M, ds2) e JίX c £tf.

To other spaces M = G/K, where G is a compact connected centerless
simple Lie group, where K is a connected subgroup of maximal rank but is
not the centralizer of a torus, and where M has N > 0 invariant almost com-
plex structures, are (Theorem 4.11):

G/K

N

G/K

N

E7/A2A2A2T*

16

Es/A2A2AιA2

16

E9/A4AA

4

Et/AtAiAtAtf1

256

Es/AiAsΓ

32

EsA2A2A2T*

8192

We apply the JΓX and £:£ criteria to a few of them.
E%IAιAι. Here K has center of order 5. Let z generate the center of K, and

let 9fti denote the e2*^11'5 eigenspace of ad(z) on ®c. Then the decomposi-
tion of 9ftc into irreducible representation spaces of adG(K) is given by ΊHC

= 9ftα + 9ft_j + 9ft2 + 9ft_2, and we have [Tlu lΰlj] c 9fti+i taking subscripts
modulo 5. If λ is a root with ®2 c 9ft*, then ε(3fti) denotes eϋ) and ||JCi||
denotes \xλ\, relative to an invariant ds2.

First consider the two invariant almost complex structures / with ε(9ftα)
= ε(9ft2). Complete such a / to an invariant ds2, and compute:

bracket

130*1,2^]=2TC2

[3ft2,2K2]=2ft-i

[SRi, 9K2]=2R-2

^jf condition

ll^!?=2||jri]P

none

none

Jίc^Γ condition

ί!^!i2=2!l^ili2 :

Il*i!ί2=ll*2|ί
2

ί|AriP=||^p

Thus (M, ds2) $ .yΓJf, and (M, ώ 2 ) € <2;T if and only if ||JC2||
2 = 21JCJI2; in the

latter case there is one real positive free parameter || JCX |]2 for ds2.
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Now consider the other two invariant almost complex structures /. They
are given by eO^) = —ε(3Jϊ2). Complete such a / to an invariant ds2 and
compute:

bracket

[fflL2,SW-d=SR,

[9fti,2R-2]=2K-i

&X condition

none

l!*iP=2||jnp

none

JΓX condition

ll'iΓMI'ili1

I*iP=2||*,p

li*i PHI*P

Thus (M, ds2) $JfX, and (Λf, ds2) € jgjf if and only if \xxf = 2\xt\*\ in the
latter case again ||JC2||

2 is the free positive real parameter for ds2. Now:
9.20. Proposition. Let M = EJA4AA. Then (M, ds2)$JfX for every in-

variant almost hermitian metric on M. Let J be one of the four invariant
almost complex structures on M. Then J is subordinate to an invariant almost
hermitian metric ds2 on M such that (Λf, ds2) e ^JΓ, and any two such ds2 are
proportional.

ZT1. Label the simple roots *x φ2 φz \ so S c = %c +

where the summation runs over all λ = Σ a^t such that a3 = αδ = 0 modulo
3. Now 3WC = Σ SWO, where SKti is the sum of all ©, with ^ = Σ Λ^j and
(fl3, α5) = (i, /) & (0,0) modulo (3,3); the nonzero 2ft^ are

aw-i.0 = 3^2.3, aR0.-i = 3κ 3 > 2 , aw.,.., = aκ 2 i 2 ; S J L , . . , = m l Λ .

The bracket relations are: [SKfj,2RriJ = 3Ki+r,j+.v if the latter is nonzero,
taking subscripts modulo (3,3).

Given an invariant ds2, suppose that its almost complex structure is
specified by

e(SK t l i Λ) = ε&du.jJ = ε(2K W : l ) = β(SKf4ii4) = ± 1 .

Note [5mltβ,aWitJ = [SKi.o,SKo.J = [STOi.i»SWi.J = ° a n d Λ e i r conjugates;
[2Ri.i, SKi.J =3K-i.-i, and [SK-,.-,,^.,..,] = 2B1#1. Thus the brackets
[3Kir J r, 2Jίir,jr] result in neither an JίX nor a JJΓ condition. Now, looking
for JίX and J^Γ conditions, we need only check that 6 brackets

Let e(aKlf0) = e(9K0.i) = «(3Ki.i) = e(^ 2 . i ) Then we see (
and (M, dsή s J jΓ if and only if | μ n | | 2 = μ l o | ! + | x o l | |

2 and μ 2 1 | | 2 = 21|JC10||
a

Let ,) = tCD^.,) = eίSK-a.-j). Then we see (Λί,
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and (M, ds2) € J2jf if and only if \\xn\\2 = ||JC10||
2 + |μ o i | |

2 and I* 2 1 | 2 = ||*io«2

+ 2|μo l«
2.

Let 6(an lt0) = e(SW0.i) = €(9W-i.~i) = fi(2Rj.i). Then we see (Λf, ds~)$JfX,
and (Λf, <fc2) € £IX if and only if | μ u | | 2 = |μ o l | |

2 + |μ21fl
2 and |μ l o | | 2 = |μo l | |

2

0) = ε(3Ko 1) = β(3W-i,-i) = βίSDL,,.!). Then we see (Λf,

ίand (Λf,ώ 2)eJ2jf if and only if |μ π | | 2 = ίμ l 0 | |2 + |μ2 1 | |
2 and |μ o l | |

2 = |μ l o | |2

Let ε(SK1.o) = £(2Dίio,-.i) = ε(3K1,1) = ε(aK2,1). Then we see (
and (Λf, ds2) $ 2X.

Let «(HRlf0) = €(5K0.-i) = e(Pi ( i) = ε(2K-2f-i). Then we see (Λf,
and (Λf, <fr2') e ^JT if and only if | μ u | | 2 = ||'Λ:01||

2 + 1*21||
2 and |μ i 0 | | 2 = 2|μ o l | |

2

Let ε(2Rlf0) = e(3K0.-i) = fi(SK-i..i) = β(SKj.i) T h e n w e s e e (
and {M,ds2)$2X*.

Let 8(9^! 0) = ε(SK0 _χ) = eίSK-! -x) = ε(9K-2 . J . Then we see (Λf,
and (Λf, df) € J ^ r if and only if | μ u | | 2 = |μ l o | | 2 + |μ 2 1 | 2 and |μ o l | |

2 = 2 | μ l o | | 2

In summary, we have
9.21. Proposition. Let M = E7IA2A2A2T\ Then (Λf, ds2) ίJΓcf for every

invariant almost hermitian metric on M. Of the 16 invariant almost complex
structures on Λf,

(i) 4 have the property: if J is subordinate to an invariant almost hermitian
metric ds2 on M, then (Λf, ds2) $ SLX; and

(ii) 12 have the property: the invariant almost hermitian metrics ds2 to
which J is subordinate, such that (M, ds2) € SIX', form a two-real-parameter
family.

E8/A2A2A2A2. Here K has center Z3 X Z3. Let {zl9z2} generate that center.
Then 2ftc = £ 2Jϊfl,a where ad{zt) is multiplication by exp(2π N I^Ίsi/3) on
Sft.,^,. The nonzero 271,^ are

3W±1,o, 3K0.*i, SR ± l i ± 1 and STC±li!Pl,

and they are the irreducible representation spaces of adG(K) on 2KC. Obvious-
ly [3K, l ί2,3Kr i rJ c SK r i + β l i r a + # 8, viewing ® c as 3W0>0 and taking subscripts
modulo (3,3 ) ; if the bracket is nonzero and not in S c , then the inclusion is
equality by irreducibility of K.

Let L be the identity component of the centralizer of z1 in G. Then
KczLczG forces L to be of type A2Ee. &c = ®c + SKβfi + 3K0,-i is generat-
ed by ®c + SDΪ0Λ and acts irreducibly on 2R1>0 + 2K1(1 + Ttlt^ and on 2K. l t0

+ m.ltl + Stt.ί,.!. Thus BR . ! , ^ ^ ] = are< f i+1for(i ,/) 5έ (O, - I ) . Similarly,
using £5, ZJZJ and z ^ 1 , respectively, in place of z2, we see that 2J?lt0, SKi,_i
and 3ίϊ1(1 bracket surjectively. Now
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(/,/) =έ (-r, - j )mod(3, 3) implies [mij9 SRrJ = 3RUrJ+s .

Let ds2 be an invariant almost hermitian metric. We may alter our original
choice of zτ and z2 so that the almost complex structure of ds2 is given by
ε(Wllt0) = ε(2R0.i) = e(SWi.i) = e(SKi.-i) = 1. The ΆcHΓ condition for three of
the brackets is

(i)

(iii) [SKβ,,,^,.,] = SW1>0: l^.oll2 = |μ0 i l l
2 + ||*i - J 2 .

That gives μ M | | 2 > U ^ . J 2 (by (iii)) > | |*M | | 2 (by (ii)) > \\x,.0||
2 (by (i)), which

is absurd. Thus (M, ds2) $ £jf. In summary, we have
9.22. Proposition. Let M = EB/A2A2A2A2, and ds2 be an invariant almost

hermitian metric on M. Then (M, ds2) $ $Jf. In particular (M, ds2) $ Jftf.
O-o-O-O-O-O-O

ES/A1A5T
1. Label the simple roots * ** **\*< ** *« ̂  so ®c = Zc + Σ ®χ

where the the summation runs over all λ = 2 o-iφi with (a8, a3) = (0,0) modulo
(3,6). Then 2KC = 2 2Jί?j is the decomposition into irreducible representation
spaces, where SDΪO is the sum of all ®λ, λ = 2 aτψr, such that (α8, α5) = (/, /)
•£ (0,0) modulo (3,6). The SK<, are

this is seen from a list of roots of @8. A calculation, which is straightforward
but too long to reproduce here, now shows

9.23. Proposition. Let M = E^jA^T1, and ds2 be an invariant almost
hermitian metric on M. Then (M, ds2) $ JΓX.

We leave it to the reader to decide whether any of the 256 invariant almost
complex structures on E^/AtAtA^T1, or any of the 8192 invariant almost
complex structures on ES/A2A2A2T

2, is subordinate to an invariant ds* which
is nearly kaehlerian.

The existence question for quasi-kaehlerian metrics is easier; there we
will prove

9.24. Theorem. Let M = G/K, where G is a compact connected Lie group
acting effectively, K is a subgroup of maximal rank, and M admits G-invariant
almost complex structures. Decompose

G = G1χ •- χGr, K = K, x x Kr, M = Mx x . . x Mr,

where the d are the simple normal subgroups of G, Kt = K Π Gt and Mt

= Gt/Ki.
1. The following conditions are equivalent:
(la) There is a G-invariant almost hermitian metric ds2 on M such that

(M, ds2) €
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(lb) $ = ®° for some automorphism Q of odd order on ©.
(lc) Gi/Kt Φ E8/A2A2A2A2 for some index i, 1 < / < r.
2. Assume the conditions of (1). Then M carries a G-invariant almost

hermitian metric ds2 such that (M, ds2) e £jf and (M, ds2) $ Jf, if and only if
M = G/K is not a hermitian symmetric coset space.

3. Assume the conditions of (1). Then M carries a G-invariant almost
hermitian metric ds2 such that (M, ds2) e £IX and (M, ds2) $ Jftf', if and only
if there is an index /, 1 < / < r, such that

(i) Mi = Gi/Kj is not a hermitian symmetric space, and
(ii) the center of Kt does not have order 3, i.e. Gi/Kt is not one of G2/A2,

F4/A2A2, E6/A2A2A2, EjjA^A^ Es/As, E8/A2E6.
Proof. The theorem is valid for G/K if and only if it is valid for each of

the Gi/Ki. Now we may assume G simple.
If K is the centralizer of a toral subgroup of G, then both (lb) and (lc)

are immediate. If K is not the centralizer of a torus, then equivalence of (lb)
and (lc) is contained in the statement of Theorem 4.10. Proposition 9.22
shows that (la) implies (lc). The proof of statement 1 is now reduced to the
proof that (lb) implies (la).

Let ίϊ = ®* where θ has odd order k = 2u + 1, u > 1. Then at least one
of the eigenvalues of 6 is a primitive k-ih root η of 1. Let 2RW denote ηn-
eigenspace of θ on ®c. Then

(9.25a) © = ® + 3R where 3RC = Σ(3ft, + 2W-.)

It may happen that some of the Wl±s are 0, but at least SDΐ±1 Φ 0. Now we
define an invariant almost complex structure / on M by

(9.25b) βϋ) = 1 if and only if ©a c S ^ + + SK, .

In other words, Wflλ + + 3KU is the (Nj'̂ TO-eigenspace of / and Wl^ +
• + 2R-w is the ( —N'^T)-eigenspace. Finally we define a G-invariant rie-
mannian metric ( , ) on M by

(9.25c) \\xλ\\2 = \\yλ\\2 = s for ®a c SK, + SJL,, 1 < s < u .

ds2 denotes the G-invariant almost hermitian metric on M defined by the data
(9.25).

Suppose that we have roots λ, v, λ + v e Λ — Λκ with ε(^) = ε(v) = ε(^ + v).
If these signs are + 1 then © ; c SK,, ®v c 3Rt and ® i + v c l s + { where
1 < J < W , I < t < u and 1 < 5 + t < u. Now

If the signs are — 1 we replace λ, v, λ + \> by their negatives and get the same
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result. Now (M,ds2) e J j f by Theorem 9.15. This completes the proof of
statement 1.

(M, ds2) β Jftf if and only if ε(λ) = ε(v) = - ε U + v) implies | |xj |2 = | μ j 2

= \\Xχ+u\Γ% for we already have (M, ύfc2) e &X. It suffices to check the case ε(X)
= 1 and | | J t J 2 < | μ j 2 , i.e. the case where ®x c 3KS and ®, c 9ft, with
1 < s < t < u. If s + t > u, so ©2+w c 2Kλ_5.(, (9.25c) shows that the JίdfΓ
condition is s = t = k — s — ί. In summary, we have

9.26. Proposition. Let ds2 be defined by (9.25). Then (M, cfr2) e ^JΓ, αwd
(M, ίk2) € Jfctr if and only if 1 < s < t < u and [2fts, Wlt] ψ 0 implies that
either s + t < u or 3s = /: = 3t. In particular, if k is not divisible by 3 then
(M, ds2) € JίX if and only if (M, ds2) € j f .

We prove statements 2 and 3 for the case where K is not the centralizer of
a torus. By Propositions 9.20, 9.21, 9.22 and 9.23, it suffices to consider the
cases (i) G/K = E^A^A^Aj:1 and (ii) G/K = EB/A2A2A2T

2; in those cases
we must prove that there exists an invariant quasi-kaehlerian ds2 which is not
nearly kaehlerian. So we assume that every quasi-kaehlerian ds2 is nearly
kaehlerian and find a contradiction.

To do this, note that Theorem 4.10 allows us to assume k = 9 in case (i)
(set nz = n6 = 1) and k = 27 in case (ii) (set /τ3 = 1, n6 = 2, n8 = 5). Then
£ = 3/ with / divisible by 3. Define ψ = θι and 2 = ®9. Then 9 has order 3
and G = E8; so the analytic subgroup L is Λ2£6 or Λ8, and G/L has no in-
variant complex structures. Let 91 be the complement to £ in ©

Then Proposition 9.26 says that 91* are algebras, for Sfti + 3K_Z C 2 C . As
G/L has no invariant complex structure it follows that adG(L) cannot
normalize 3l+, i.e. that [2C, Ώ+] <£ 9l+. As 2C = ®c 4- Σ Ws + SIR.,, this

5=0(3)

says that there exist indices s and t, 1 < t < s < u, s divisible by 3 and t
prime to 3, such that [Wl_g, 2WJ Φ 0. Our contradiction will consist of show-
ing [2Jls, 3DU = 0 for s divisible by 3 and t prime to 3. Replacing θ by a power
0*, v prime to k, it suffices to show [3KS, SKJ = 0 for s divisible by 3.

In case (i), k = 9, / = 3 and w = 4. We apply Proposition 9.26 to the ds2

defined by θ to see [2ft3,2RJ = 0, to the ds2 defined by 04 to see [3ft_3,2RJ
= 0. That gives us our contradiction.

In case (ii), k = 27, / = 9 and w = 13. We apply Proposition 9.26 to the
ίfr2 defined by θ to see [SK,, STCJ = [3K6,2Rα3] = [SK9? SKJ = [2Ki2,3KJ = 0,
to the ώ 2 defined by ^ to see [2ft_3, SWJ = 0, to the ds2 defined by θ7 to see
[2K_6, SKJ = 0, to the ds2 defined by tf8 to see BDL12, SWJ = 0, and to the
ώs 2 defined by θ10 to see [SK_9,2R13] = 0. That gives the contradiction.

Finally we prove statements 2 and 3 for the case where K is the centralizer
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of a torus. We take a simple root system Ψ — Ψκ U {φ19 , φv} of G where
Ψκ is a simple root system of AT. μ = m ^ -f- + ̂ vφv + Λ, Λ: a linear
combination of elements of $*#, is the maximal root. If ^ € yl — ylA- then Sftj
denotes the α£/σ(J£)-irreducible subspace of Wlc which contains ©2. We define
an invariant riemannian metric on M by

IIJCJ* = \a,\ + + lα.1 for λ = afa + + avφv + κ e A - Λκ .

We define in invariant almost complex structure on M by

ε(μ) = - 1 , and ε(λ) = + 1 for λ e A+ - Λκ with 2Kλ =£ SK,
,

Let ds2 denote the resulting invariant almost hermitian metric.
Let λ,v,λ + veA — Aκ with εU) = ε(v) = 1. First suppose 3W, =£

=£ 3Ky, i.e. ^, v € A+ then A + v e A+. If εU + v) = 1 then the J2JΓ and
conditions are \\xλ+v\\2 = | | ^ | | 2 + ||^f, which is automatic. If ε(λ + v) = — 1,
i.e. if 3Kλ+v = fflϊ^, then there is no £X condition, and the JίX condition is
||xj|2 = lljĉ H2 = ||JCJ|2, which is impossible. Next suppose 2K, Φ {3Jl_μ = 9Ktf.
Then λ + υaA- and ί!Rλ+v Φ SJL,, so εU -f v) = — 1 and there is no &X
condition. Finally note that we cannot have 3JZ; =

 (3R_μ = 3KV because
[SK.,,, 2R J = 0. Thus (M, ώ2) € J2Jf, and (M, ίίs2) € JfX if and only if
λ,ve A+ — Aκ with λ + v = μ is impossible, i.e. if and only if v = 1 = ml9

i.e. if and only if M = G/K is hermitian symmetric. q.e.d.
Finally we come to the problem of deciding which M = G/K admit invari-

ant almost hermitian metrics ds2 such that (Λί, ds2) 6 Jίc/f but (M, d s2) $ JΓ.
Here we are assuming G compact, connected and effective, and rank G =
rank K, so the problem comes down to the case where G is simple. If K is
not the centralizer of a torus then (M, ds2) $ X is automatic the problem is
open for E8/ A2Λ2Λ^ΛιT

1 and E8/ A»A2A2T
2, and in the other cases we know

that the following conditions are equivalent:
(i) M admits a G-invariant almost hermitian metric ds2 such that

(M, ds2) € JίX,
(ii) Every G-invariant almost hermitian metric ds* on M satisfies

(M, ds2) 6 JίXm

(iii) The center of K has order 3.
(iv) $ = ®* for an automorphism 0 of order 3.
(v) G/K is G2/Λ2, EJA2A2, E6/A2A2A2, E7/A2Aδ, Es/A6 or E8/A2E6.
Now suppose that /£ is the centralizer of a torus. Choose a simple root

system W =zψκ \J {φu . . -, ̂ y} of G where ^ ^ is a simple root system for K.
We are looking for an invariant almost hermitian metric ds2 on M = G/K
such that (M, ds2) s ^ΓJΓ but (M, ds2) i Jf. As before, μ = m ^ + . . . +
mrφr -f /c, /c a linear combination of elements of Ψκ, is the maximal root.
Note r = dim /^(M; I?) from the homotopy sequence τr2(G) —> π2(M) -* π^K)
—• 7r (G) and the Hurewicz isomorphism π2(M) ̂  Ή2(M Z).
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Let r = 1. Given an integer s9 0 < |J| < ml9 3RS denotes the adG(K)-iττed\xci-
ble subspace of 9KC which is the sum of all ©^ with λ of the form sψ1 -f κ9

\\xs\\2 denotes ||x,||2, and ε(sφx) denotes ε(λ) for λ of that form.
m1 = 1 is the hermitian symmetric case.
m1 = 2. There iμj 2 = ||x>||2, e(^) = — ε(2^), defines two 1-parameter

families of invariant ds2 such that (M, ίfc2) € JίX but (M, ίfa2) $ Cf.
m1>?>. Suppose {M, ώ2) € Λ^^ and let 1 < s < mλ. Our induction hypo-

thesis is ε(02) = e(tφύ for 1 < t < 5; so the . / ^ condition implies ||JCJ2

= ί||*i||2 for 1 < ί < s. Suppose e(sψτ) = — εiψj. If 1 < ^ < U and /2 + u
= 5, then the ,/ίX condition says ||jcίχ||

2 = ||JC.,||2 = ||*/J2. In particular, we
may take tx = 1 and t2 = s — 1 and conclude ί = 2. Now we are reduced to
considering the case εiψ^ = —ε(2ψ^ where the JίX condition says \xΎf =
μ2 | |

2. If εθψ,) = β(Λ) we get \\xxγ = μ 2 f + μ 3 | | 2; if εβφj = - ε ( ^ ) we get
| | * 2 | | 2 = H l̂l2 + ||JC3||

2; both are inconsistent with |μx | |
2 = |μ2||

2. Thus
(M,ds*) 6 JίX implies β(^) = €(2^) = = εim^) and ||jc£||

a = r||jcα||
2

for 1 < ί < m1? which in turn says (M, ds2) e Jf.
Phrasing in terms of automorphisms we summarize as follows:
9.27. Proposition. Suppose r = 1. Then M has an invariant ds2 such that

(M, ds2) € JίX but (M, ds2) $ Jf, // and only if (i) M = G/K is not a her-
mitian symmetric coset space and (ii) S = ®ρ for some automorphism θ of
order 3.

The case r == 2 is considerably more difficult, and we have not been able
to settle it except in the case where K is a maximal torus of G. There one
has only the possibilities (i) A2/T2, (ii) £2/Γ2 and (iii) G2/Γ2 for G/K, and
(i) is the only one for which ® = ®° where θ is an automorphism of order 3.
All this "evidence" adds up to

9.28. Conjecture. Let M = G/K, where G is a compact connected Lie
group acting effectively, K is a subgroup of maximal rank, and M carries a G-
invariant almost complex structure. Suppose that M = G/K is not a hermitian
symmetric coset space. Then there is an invariant almost hermitian metric ds2

such that (M, ds2) 6 Jίtf and (M, ds2) $ X if and only if ® = & for some
automorphism θ of order 3 on ©.
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