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G R = S W : 
C O U N T I N G C U R V E S A N D C O N N E C T I O N S 

CLIFFORD HENRY TAUBES 

The purpose of this article is to present a proof of the assertion 
that a compact, symplectic 4-manifold has its Seiberg-Witten invariants 
equal to its Gromov invariants. In this regard, remark that the original 
Seiberg-Witten invariants are defined for any smooth, compact, oriented 
4-manifold; and they are determined by the underlying differentiable 
structure when the Betti number b2+ is larger than 1. After the choice 
of orientation for the real line d e t + = H° (g> det(Hl) ® d e t ( i ï 2 + ) , the 
Seiberg-Witten invariants constitute a map from the set, 5 , of Spin c 

structures on the 4-manifold to the integers. There is also an extension 
of SW in the case where the Betti number ò1 is positive to a map 
SW: S ^ A*H1{X;Z). Here, 

A ^ p T ; Z) = Z © H1 © A2Hl ®---®khlHl. 

Note that the projection of the image of SW on the summand Z re­
produces the original map as defined from S to Z. In either guise, this 
map, SW, is computed by an algebraic count of solutions to a certain 
non-linear system of differential equations on the manifold. 

As remarked in [25], a symplectic manifold has a natural orientation 
as does the line de t + . Furthermore, there is a canonical identification of 
the set S with H2(X; Z) . Thus, on a symplectic 4-manifold, SW can be 
viewed as a map from H2(X; Z) to Z, or, more generally, from H2(X; Z) 
to A*H1(X;Z). 

Meanwhile, a compact symplectic 4-manifold has a second natural 
map from H2{X\7L) to Z, its Gromov invariant, Gr. The map Gr also 
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extends on a ò1 > 0 symplectic 4-manifold to a map from H2(X;Z) 
into h*Hl(X; Z); the extension is sometimes called the Gromov-Witten 
invariant, but it will be denoted here by Gr as well. In either guise, 
Gr, assigns to a class e a certain weighted count of compact, symplectic 
submanifolds whose fundamental class is Poincaré dual to e. 

The invariant SW was introduced to the mathematical community 
by Wit ten [31] after his ground breaking work with Seiberg in [21], [22]. 
See also [9], [16], [8] and [15]. The Gromov invariant was introduced 
initially by Gromov in [5] and then generalized by Wit ten [32] and Ruan 
[20]. The version of Gr used here comes from [26]. (Note that Gr 
here does not count maps from a fixed complex curve. It differs in 
this fundamental sense from the Gromov-Witten invariant introduced 
in [32].) For the uninitiated, the precise definition of SW and Gr are 
provided in the first section of this paper. 

Here is the main theorem: 

T h e o r e m 1. Let X be a compact, symplectic manifold with 
b2+ > 1. Use the symplectic structure to orient X and the line de t + ; 
and use the symplectic structure to define SW as a map from H2(X; Z) 
to A*H1(X;Z). Also, use the symplectic structure to define 

Gr : H2(X;Z)^ A*Hl(X;'L). 

Then SW = Gr. 

The equivalence between the Gromov invariant and the original SW 
map into Z was announced by the author in [25]. 

The proof of Theorem 1 can be divided into three main parts. The 
first part explains how a non-zero Seiberg-Witten invariant implies the 
existence of symplectic submanifolds. The second part explains how a 
symplectic submanifolds can be used to construct a solution to a version 
of the Seiberg-Witten equations. The third part compares the counting 
procedures for the two invariants. The first and second parts of the proof 
can be found in [27] and [28], respectively. Of necessity, this article will 
draw heavily from constructions in the latter two references. This article 
will also refer to the discussion in [26] which gives a complete definition 
of the Gromov invariant. 

Some of the early applications of Theorem 1 are described in [10]. 
A restricted version of Theorem 1 holds in the case where b2+ = 1. 

Here, a fundamental complication is that the Seiberg-Witten invariant 
depends on more than the differentiable structure. This is to say that 
there is a dependence on a so called choice of chamber. However, the 
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symplectic form selects out a unique chamber, and with this understood, 
one has: 

Theorem 2. Let X be a compact, oriented J^-manifold with 
b2+ = 1 and a symplectic form. Then the symplectic form canonically 
defines a chamber in which the equivalence SW=Gr holds for classes 
e G H2(X;Z) which obey (e,s) > — 1 whenever s G H2(X;Z) is repre­
sented by an embedded, symplectic sphere with self-intersection number 
- 1 . 

Here, (, ) denotes the pairing between cohomology and homology. 
Note that McDuff [12] has suggested a generalization of the definition 
of Gr on b2+ = 1 manifolds to make SW = Gr hold on all classes. 

The remainder of this article is divided up into sections. The first 
section below summarizes the definitions of both the Seiberg-Witten 
invariant and the Gromov-Witten invariant. The second section reduces 
the proofs of Theorems 1 and 2 to several key propositions. Those key 
propositions which are not contained already in [26], [27] or [28] are 
proved in the Sections 3-7. 

1. The Seiberg-Witten and the Gromov-Witten invariants 

The purpose of this first section is to give a precise definition of the 
Seiberg-Witten invariants and also the Gromov invariants for a symplec­
tic 4-manifold. The former is considered in Subsections la-c, and the 
latter in Subsections ld,e. A final subsection returns to the milieu of the 
Seiberg-Witten invariants to consider some of the special circumstances 
which arise when the 4-manifold X has b2+ = 1. 

a) The Seiberg-Witten equations 

The Seiberg-Witten equations were first introduce by Seiberg and 
Witten in [21], and [22], [31]. A purely mathematical approach to these 
equations was first taken in [9]. The book by Morgan [15] is a more 
complete reference (see also [8]). 

In this subsection, X is a compact, connected, oriented, 4-dimensional 
manifold. Let bl = diva(Hl(X)) denote the first Betti number of X and 
let b2+ denote the dimension of a maximal subspace, 

H2+(X;R) CH2(X) 

where the cup product form is positive. 
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Fix a smooth Riemannian metric on X. The metric defines the prin­
cipal SO (4) bundle of orthornormal frames, Fr —> X. Of the various 
associated bundles to this frame bundle, two in particular play central 
roles. These are the bundles A + of self-dual 2-forms and A_ of anti-self 
dual 2-forms. Note that A2TX a A+ © A_. 

By definition, a S p i n c structure on X is an equivalence class of 
lifts of Fr to a principal Spin c (4) bundle F —> X. In this regard, recall 
that the group Spin c (4) is the group (SU(2) x SU(2) x U(l))/{±1}, 
this being a central extension of S0(4) = (SU(2) x SU(2))/{±1} by 
the circle U(l). (The homomorphism S p i n c ->• (SU(2) x SU(2))/{±1} 
simply forgets the factor of U(l).) 

A S p i n c lift F of Fr has two canoncial associated C2 bundles, S± —> 
X which are defined using the two evident homomorphisms of Spin to 
U(2) = (SU(2) x Ï7 ( l ) ) /{±1} . Note that S+ is distinguished by the fact 
that the projective bundle is the unit 2-sphere bundle in A + . (There is, 
of course, an analogous relationship between S- and A_.) 

With the preceding understood, the original version of Seiberg and 
Witten 's equations can now be defined. These are equations for a pair 
(A,ip), where A is a connection on det(<S+), and ip is a section of S+. 
The equations read: 

DAi> = 0, 

(1.1) P+FA = ±T(rl>®rl>*)+»-

In the first line above, DA is the Dirac operator, a first order differen­
tial operator which maps sections of S+ to sections of S-. This DA is 
defined as the composition of Clifford multiplication (a homomorphism 
from S+ (g> T*X to S-) with covariant differentiation using the connec­
tion on S+ which comes from the Levi-Civita connection on Fr and the 
connection A on det(S+). In the second line of (1.1), P+ denotes the or­
thogonal projection from k2T*X to A + , and FA denotes the curvature 
2-form of A. Meanwhile, r is the adjoint of the Clifford multiplication 
endomorphism from A + (g> C into End (S+), and /z is a fixed, imaginary 
valued, anti-self dual 2-form on X. (Any choice for ß will do.) 

There is a natural action of the group of smooth maps from X to 
U(l) on the set of solutions to (1.1). The action sends a map g and a 
pair (A,ip) to (A + 2gdg~1, gip). Use M. to denote the set of orbits under 
this group action. (Typically, notational distinctions will not be made 
between a pair (A,ip) and its orbit in A4.) 
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Topologize Ai as follows: First, introduce the manifold 
Conn (det(<S+)) of Hermitian connections on det(<S+). This is an affine 
Frechet manifold modelled on i-Çl1. (Here, O1 denotes the vector space of 
smooth 1-forms on X.) Wi th Conn (det(S ,

+)) understood, introduce the 
space Conn(det(S+)) x C°°(S+). The group C 0 0 ^ ; , ? 1 ) acts smoothly 
on the latter (as indicated above), and the space of orbits of this group 
action, (Conn(det(5+)) x C 0 0 (5 ' + ) ) /C 0 0 (X ; S1), is given the quotient 
topology. The space Ai sits in this quotient, and the implicit topol­
ogy on Ai is the subspace topology inherited from the orbit space 
(Conn(det(S+)) x C 0 0 ( 5 + ) ) / C 0 0 ( X ; S1). 

Here are some basic properties of Ai (see, [31] or [9], [15], [8]): 

• M. is always compact. 

• If b\ > 0, then there is a Baire set o f W C C°°(X; iA + ) of choices 
for /i in (1.1) whose corresponding Ai has the structure of a 
smooth, manifold of dimension 

2 d = - ì ( 2 X + 3T) + ì c i . c i . 

Here, x 1S the Euler characteristic of X and r is the signature of X. 
Also, "•" signifies the pairing on H2(X;Z) which is cup product 
composed with evaluation in the fundamental class. Furthermore, 
when /i G U, the following hold: 

a) There are no points in Ai where the corresponding ip is zero. 

b) Ai is orientable, and an orientation of de t + canonically ori­
ents M. 

c) The subspace of orbits 

(p, (A,ip)) G(X x Conn(det(,S+)) xC°°(S+))/ 

{<PEC™(X;S1):<P(p) = l}, 

where (A, ip) £ Ai naturally defines a smooth, principal S1 

bundle £ -> X x M. 
(1.2) 

(A Baire set is a countable intersection of open and dense sets and so 
is dense. The Baire set in question is characterized by the condition 
that a certain family of first order, elliptic differential operators that 
is parameterized by the points in Al has, at each point in .M, trivial 
cokernel.) 

Here are some additional comments about (1.2): 
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• The number 2d in (1.2) can be even or odd. Its parity is the same 

as that of \{% + r ) = 1 - b1 + b\. 

• Equation (1.2) implies the following: When d < 0 and ß G U, then 

Ai = 0 , since there are no negative dimensional manifolds. 

• In the case d = 0 and \i G U, M. consists of a finite set of points. In 
this case, an orientation on M. simply assigns either + 1 or —1 to 
each point. (This is because HQ(point; Z) already has a canonical 
generator, which is the point itself. The orientation assigns a 
fundamental class which is either the point, or — the point.) 

• Let ci(£) denote the first Chern class of the principal Sl bun­

dle £ —> X x M.. Then slant product with c\(£) defines a map, 
<P : H*{X;Z) -+ H2~*(M;Z). 

(1.3) 

b) T h e S e i b e r g - W i t t e n invariant 

Let S denote the set of Spin c structures on X. Although S requires 
a choice of Riemannian metric for its definition, there is a natural iden­
tification between such sets defined by any two metrics. (Remember 
that the space of metrics on X is convex.) Thus, one can speak unam­
biguously about S without reference to a particular metric. (Note that 
S is an affine space modelled on H2(X;Z).) Likewise, the definition of 
SW requires a choice of Riemannian metric; and it also requires a choice 
of perturbing form fi in the set U of (1.2). Here is the definition of SW: 

Defini t ion 1.1. Fix the following: an orientation for the line de t + , 
a Riemannian metric on X , a S p i n c structure in 5 , and also / i £ W s o 
that the conclusions of (1.2) and (1.3) are valid. Let d be as defined 
in (1.2). Then, the value of SW G A*H1(X;Z) on the given S p i n c 

structure is defined as follows: 

• If d < 0, then S W = 0. 

• If d = 0, then Al is a finite set of points and the chosen orientation 
for de t + defines a map e : M. —> {±1}- With this understood, then 

(1.4) SW = J2 £ (S ) 
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which is an element in the Z summand of A* H . 

• In general, SW E Z © Hl © • • • © AH1 with non-zero projection 
in ApHl only if p has the same parity 1 — bl + b2+. In this case, 
SW is defined by its values on the set of decomposable elements 
in A P ( # i ( X ; Z ) / Torsion); and 

(1.5) SW( 7 i A • • • A lp) = [ </>(7l) A • • • A 4>(lp) A 4>(*)d~p/2, 
M 

where * is the class of a point generating HQ(X). 

The next proposition asserts that the apparent dependence of SW 
on the choice of metric and \i is spurious: 

Propos i t i on 1.2. Let X be a compact, connected, oriented 4~ 
manifold with b2+ > 1. Then the value of SW is independent of the 
choice of Riemannian metric and form ß. In fact, SW depends only 
on the diffeomorphism type of X. Furthermore, SW pulls back naturally 
under orientation preserving diffeomorphisms. This is to say that if 
ip : X —>• X' is a smooth, orientation preserving diffeomorphism, then 
SWx(tp*i]) = ip*SWx'(n). Finally, S W changes sign when the orienta­
tion of the line d e t + is switched. 

(Note that S p i n c structures pull back because metrics do.) See, e.g. 
[15] or [8] for a proof of this proposition. 

The preceding proposition does not hold in general in the case where 
the 4-manifold X has b2+ = 1. However, the failure of this proposition 
can be readily analyzed, and the results are summarized in Proposition 
1.3, below. To state the proposition precisely, it is convenient to make a 
short digression to consider some special features of b2+ = 1 manifolds. 

To begin the digression, introduce Met (X) to denote the Frechet 
space of smooth, Riemannian metrics on X. Given a metric g on X, let 
u>g denote the unique (up to multiplication by M*), non-trivial, self-dual, 
harmonic 2-form on X. Wi th cüg understood, then each c G H2(X;Z,) 
defines a "wall" in Met (X) xi-Q2+ whose elements consist of pairs (g, /J,) 
where 2-K • [cüg] • c = i • fx tog A ß. The wall divides Met (X) x i • Çl2+ into 
two open sets, each of which is called a "c-chamber". 

Given the preceding, then Proposition 1.2 has the following b2+ = 1 
version: 

Propos i t i on 1.3. Let X be a compact, connected, oriented 4~ 
manifold with b2+ = 1. Let s be a Spin structure on X. Then the value 
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of SW{s) G A*Hl(X;Z) is constant on any c = ci(det(S+)) chamber 
in Met (A") x i • tt2+. 

See, e.g. [15] or [8] for a proof. However, the point is that the argu­
ments for Proposition 1.2 work on an open set in Met (X) xi-Q2+ where 
the corresponding Ai contains no elements where the corresponding tß 
vanishes identically. Indeed, the count for SW can change along a path 
in Met (X) x i • 0 2 + only when the path intersects elements in Ai where 
the corresponding ip vanishes identically. And, such elements occur if 
and only if (g, /z) lies in the wall. (The change in SW as the wall is 
crossed can be computed. See [9], [11], [18].) 

c) T h e S e i b e r g - W i t t e n invariants on symplec t i c manifolds 

As remarked in the introduction, a symplectic 4-manifold has a nat­
ural orientation, a natural orientation for the line d e t + and a natural 
identification between S and H2(X;Z). The introduction also asserted 
that a symplectic manifold with b2+ = 1 also has a natural chamber. 
The purpose of this subsection is to explain these assertions. 

T h e or ientat ion of X. A symplectic 4-manifold is, by definition, 
a pair (X, LO), where X is a smooth 4-manifold, and a; is a closed 2-form 
on X with wAw nowhere zero. (The characteristic number \{X + T) = 
1 — 61 + b2+ must be even for X to admit a symplectic form.) Because 
w A w is nowhere zero, this form orients X, and is the orientation that 
the introduction referred to. It will be assumed throughout. 

T h e or ientat ion of d e t + . The description of the orientation for 
the line d e t + is conveniently divided into five steps. 

S t e p 1. A choice of orientation for de t + is equivalent to a 
choice of orientation for the virtual vector space Hl(X; M) — (H° (X; R)ffi 
H2+(X;M). After a metric on X is chosen, the latter can be viewed 
using Hodge theory as the formal difference between the kernel and the 
cokernel of the operator ô0 = (P+d,d*) : Q,1 -> Q,0 © Q2+. Here, Q1 is 
the space of smooth 1-forms, 0 ° is the space of smooth functions and 
0 2 + is the space of smooth, self dual 2-forms. 

S t e p 2. Every symplectic manifold admits almost complex 
structures, endomorphisms J of TX with square —1. As noted by Gro-
mov [5], one can find almost complex structures with the property that 
the bilinear form 

(1.6) g = u(;J(-)) 
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defines a Riemannian metric on TX. Such a J will be called to-compatible. 
The almost complex structure J decomposes T X © C = T\ß © Tb;i 

into a sum of complex 2-plane bundles such that J has eigenvalue i on 
the former and —i on the latter. The complexified cotangent bundle 
decomposes analogously as T 1 ' 0 © T 0 ' 1 . 

Thus, the endomorphism J acts, by definition on the domain of the 
operator 8Q-

Step 3 . If the metric g is chosen as in (1.6), then there is also a 
natural almost complex structure (call it JR) which acts on the range of 
So. The latter is induced from a square —1 endomorphism (also called 
JR) on the vector bundle £ R © A + whose sections define <Vs range. Here, 
£R —> X denotes the product bundle I x l Likewise, e<c, below, will 
denote the product complex line bundle. 

To define JR, remark first that the metric in (1.6) splits A2T*X as 
A_|_ © A_. The form io is self dual with respect to this splitting and 
has norm y/2 everywhere. Conversely, if g is any metric for which to 
is self-dual and has norm y/2, then J = g~lto defines an almost com­
plex structure J on TX such that (1.6) holds. Note that J induces an 
endomorphism of A2T*X with square 1 which preserves A + . The + 1 
eigenspace of this endomorphism on A + is the span of to. The orthogo­
nal compliment is the —1 eigenspace. The latter is an oriented, 2-plane 
bundle over X which is the underlying real bundle of the complex line 
bundle K~l = A 2 ^ ' 1 . 

Wi th the preceding understood, view £R © A + as a complex 2-plane 
bundle by writing the latter as e<c © K~l, where x + y • io G e^ © A + is 
identified with x + ^ — 1 -y G £j> Multiplication by yj — 1 on ec © K~l 

defines the endomophism J R on ER © A + . 

Step 4. In general, SoJ — JRSO ^ 0. However, this difference is 
always a zero'th order operator. The symbol of #o intertwines J with 
JR; and #o itself intertwines J with J R when J is an integrable almost 
complex structure. 

The fact that SoJ — JR<5O is zero'th order implies that there is a 
relatively compact perturbation of öo which does intertwine J and JR. 
For example, ö\ = 2 _ 1 • (So — JR • öo • J) has this property. 

Since 6i differs from So by a zero'th order operator, both its kernel 
and cokernel are finite dimensional. Furthermore, because 6i intertwines 
J with JR, its kernel and cokernel have natural structures as complex 
vector spaces. And, since complex vector spaces have canonical orienta­
tions, the virtual vector space kernel (#i)— cokernel (<5i) has a canonical 
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orientation. 

S t e p 5. The complex orientation for kernel (#1)—cokernel (Si) 
canonically orients the line d e t + = kernel(<5o) — cokernel(<5o)- The argu­
ment here is standard K-theory since the family of operator 

{<$t = t-<$o + ( l - t W i } * e [ o , i ] 

defines a continuous map of Fredholm operators with respect to appro­
priate Hilbert space completions of Q1 and Q° © Q2+. (The Sobolev 
spaces L\ for the range and L2 for the domain will suffice.) The point is 
that the association of the virtual vector space kernel (St)— cokernel (St) 
to t G [0,1] defines an element in the real K-theory of the interval (see 
the Appendix in [2].) Since the interval is contractible, this element is 
trivial. In particular, it has vanishing first Stieffel-Whitney class, so it 
is orientable and an orientation at t = 1 induces one at t = 0. 

Note that the purpose of orienting the line d e t + is to obtain a rea­
sonably canonical orientation for the moduli space M.. In this regard, 
the symplectic orientation of d e t + induces an orientation on JV[ which 
is described directly in Section 4. 

T h e identif ication of S w i t h H2(X;Z). As remarked, the set 
S has the natural structure of an affine space modelled on H2(X;Z). 
This implies that the identification in question arises immediately with 
the specification of a "canonical" Spin c structure. And, as observed in 
[29], there is a canonical Spin c structure on a symplectic manifold. 

With the metric chosen from an w-compatible J, the canonical Spin 
structure is characterized by the identifications 

(1.7) S+ = I®K~1 and S _ = T 0 ' 1 , 

where K~l = A2T°>1 again. Indeed, this splitting of S+ is defined as 
follows: Clifford multiplication defines an endomorphism from A + into 
the bundle of skew hermitian endomorphisms of S+. Wi th the preceding 
understood, the splitting of S+ in (1.7) is the decomposition of S+ into 
eigenbundles for the action of u>; here LO acts with eigenvalue — li on 
the trivial summand I, and it acts with eigenvalue +2i on the K~l 

summand. 

As just remarked, the identification in (1.5) of a canonical element 
in S identifies 

(1.8) SaH2(X;Z). 
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Under this identification, a class e G H2(X;Z) is sent to the S p i n c 

structure whose S± bundles are given by 

(1.9) S+ = E © (R-1 <g> E) and 5_ = T 0 ' 1 <g> £ , 

where E is a complex line bundle whose first Chern class is isomorphic 
to e. Once again, this splitting of S+ is into eigenbundles for the action 
of LO on S+; and the convention is that the bundle where LO acts as — li 
is written first. 

By the way, after the identification in (1.8), the dimension 2d of 
the Seiberg-Witten moduli space (as given in (1.2)) can be rewritten 
as follows: If e G H2(X;Z) and if e is used to determine the S p i n c 

structure as in (1.9), then the formal dimension of the moduli space A4 
is 

(1.10) 2-d = e»e-c»e 

where c = c\ (K) with K = A 2T 1 ' 0 . (The number e • e — c • e is even 
because the class c is characteristic: Its mod 2 reduction is the second 
Stieffel-Whitney class of X.) 

T h e natural chamber w h e n b2+ = 1. Suppose now that X 
is a compact, oriented 4-manifold with b2+ = 1 and a symplectic form 
to. The latter defines a canonical c-chamber for each c G H2(X;Z) by 
requiring /z in (1.1) to obey i : fx LO A ß > 2-K • [LO] • c. This last chamber 
will be called the "symplectic chamber". 

Note, by the way, that two symplectic forms LO and u/ on X define 
the same chamber when [LO] • [UJ1] > 0. Thus, the symplectic chamber 
depends only on the form UJ up to continuous deformations through 
closed forms v with \y\ • [u1] > 0. 

In the subsequent discussions, the Seiberg-Witten invariant for such 
a pair (X,UJ) will always denote the map SW from Proposition 1.3 as 
defined in the symplectic chamber. This b2+ = 1 definition of SW will 
be implicit in the subsequent discussions. 

d) P s e u d o - h o l o m o r p h i c submanifo lds 

As noted in the introduction, the Gromov-Witten invariant is defined 
by counting (in a suitable sense) pseudo-holomorphic submanifolds on 
the symplectic manifold X. Thus, a more complete description of this 
invariant must start with a digression to discuss pseudo-holomorphic 
submanifolds. There are four parts to this discussion. 
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Part 1. The complex line bundle K = A 2 T 1 , 0 is called the 
canonical bundle. Note that the isomorphism class of K, and thus its 
first Chern class c G H2(X;Z), are independent of the choice of UJ-
compatible almost complex structure J. Furthermore, this isomorphism 
class and also c are both unchanged if LO is changed through a continuous 
family of symplectic forms. Note the sign convention here: c • [to] < 0 
when X = CF 2 . 

Part 2. A submanifold E in X is called pseudo-holomorphic 
when J preserves T E . It follows from the non-degeneracy of (1.6) that LO 
is non-degenerate on T E and so orients E. Infact, J induces the structure 
of a complex curve on E. Then, the inclusion map of E into X is pseudo-
holomorphic in the sense of Gromov [5]. 

If E is a connected and compact pseudo-holomorphic submanifold, 
then the genus of E is constrained by the adjunction formula to equal 

(1.11) genus = 1 + - ( e • e + c • e), 

where e is the Poincaré dual to the fundamental class [E] of E. 
Henceforth, all pseudo-holomorphic submanifolds in this article should 

be assumed to be compact unless stated to the contrary. 

Part 3. Fix a pseudo-holomorphic submanifold E. Since J pre­
serves T E , it must also preserve the orthogonal compliment in TX of 
T E . The latter is the normal bundle, N, of E. Thus, N has a natural 
structure as a complex line bundle over E. The metric from TX de­
fines a connection on N —> E, and thus endows N with a holomorphic 
structure as a bundle over the complex curve E. With this understood, 
one can introduce the associated <i-bar operator, <9, to map sections of 
N to sections of N & T®,lC. Here, T0,lC is the usual anti-holomorphic 
summand of T* C ® R C. 

One's first guess is that the kernel of 5 corresponds to the vector 
space of deformations of E in X which are pseudo-holomorphic to first 
order. However, this guess is wrong, in general. Rather, this vector 
space corresponds to the kernel of certain canonical, zero'th order de­
formation of d. This deformation is an M linear operator, D, which also 
maps sections of N to sections of N ® T0,1C, and which is defined as 
follows: The 1-jet off of E of the almost complex structure defines a pair 
(v,n) of section of T°^C and N®2 ®T°>lC. (See (2.3) in [28].) Then 

(1.12) Dh = dh + v • h + fj, • h. 
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Part 4. Note that the index of D is given by the Riemann-Roch 
formula, which is to say that it equals 2d in (1.10) in the case where 
e G H2(X;Z) is Poincaré dual to [£]. As the index is, by definition, 
the difference between the dimensions (over R) of the kernel and the 
cokernel of D, a necessary condition for the triviality of cokernel(D) is 
that 2 • d be non-negative. In general, this condition is not sufficient. 
However, all pseudo-holomorphic submanifolds have trivial cokernel if 
the almost complex structure is chosen from a certain Baire subset of 
LO compatible almost complex structures. (This fact is proved in, e.g. 

[14].) 

e) T h e G r o m o v - W i t t e n t y p e i n v a r i a n t s 

Fix e G H2{X;Z). This subsection defines Gr(e) G A*H1(X;Z). 
(The reader is referred to [26] for the proofs of the assertions below.) 
The discussion here is broken into seven parts. 

Part 1. Introduce the integer d = d(e) as defined by (1.10). 
Then Gr(e) lies in the direct sum Z Q A 2 ^ 1 ©• • -®A2dHl. Its projection 
into k2pHl (for 0 < p < d) can be determined by evaluating Gr(e) 
on a decomposable element in A2p(Hi(X; Z ) / Torsion). Of course, when 
p = 0, the corresponding component of Gr(e) is simply an integer. With 
the preceding understood, make the following choices when d > 0 : First, 
choose p G { 0 , . . . , 2d} and if p > 0, choose an element 

7i A • • • A 72p G A2pHi/ Torsion. 

Then, for each j G { 1 , . . . , 2p}, choose an oriented, embedded circle in 
X to represent the class 7 j . To simplify notation, the chosen circle will 
be denoted by 7j also. Make these choices of T = {7j}i<j<2p so that 
the distinct circles are disjoint. With T chosen, choose a set O C X of 
d — p distinct points which miss each circle in V. 

Part 2. Let % = T-L(e,J,T,Q) denote the set whose typical 
element is an unordered set, h, of pairs { (C^m/ ; )} , where each C^ is 
a compact, oriented, pseudo-holomorphic submanifold in X, and the 
corresponding nik is a positive integer. The elements in h should be 
constrained as follows: 

1. For each k, introduce e^ to denote the Poincaré dual to [C^], and 
dfc = efc • e^ — c • efc. Require d^ > 0. 

2. Require that nik = 1 unless d^ = 0 and the genus of Cfc is also 0. 
Thus, Cfc is a torus with trivial normal bundle. 
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3. Require that S^m^e^ = e. 

4. There is a partit ion T = U^r^., where each IV contains some even 
number 2 • pk elements with 0 < pk < dk- Furthermore, Ck inter­
sects precisely once each 7 G r^.; and no 7 £ Tj. is tangent to Ck 
at their intersection point. Moreover, Ck has empty intersection 
with the elements of T — i \ . 

5. Each Ck contains precisely dk — Pk points of Q. 

6. Require that the Ck fl Cy = 0 when k 7̂  k!. 

(1.13) 

(The final condition implies that ek • e'k = 0 when k ^ kl. And this 
implies that % is empty whenever d (from (1.10)) is negative.) 

Part 3. Suppose that h G V., and that (Ck,m,k) G h is such 
that dk > 0. This data can be used to define a real vector space Vk 
of dimension 2 • dk as follows: First of all, each z G Cfc fi O con­
tributes a summand iV|z to Vk, where N —> Ck is the normal bundle 
to Ck in X. Meanwhile, each 7 G T^ contributes a real line summand 
to Vk; the latter being the line N\z/p(T^\z), where z = 7 fl C^, and 
p : TX\Z —> N\z is the tautological projection. 

Note that N is naturally oriented, as is each 7 E T J . This means 
that each of the summands of Vk has a natural orientation. Thus, Vk 
inherits an orientation with the choice of an ordering for the set I V 
For, this ordering gives the order of the oriented real line summands in 
Vk- The summands which are indexed by the points in Ck fl $1 are each 
naturally complex, and so their order in Vk is immaterial. 

With Vk understood, note that any section a of the normal bundle 
N defines a tautological element in Vk by restricting a to the points in 
CjjflQ and to the points where the elements of IV intersect O. The pre­
ceding defines a tautological map from C°°(N) to Vk whose restriction 
to the kernel of the operator D in (1.12) will be denoted by GV 

Part 4. Here are some salient properties of the set H : 

• Each h G % is a finite set. 

• There is a Baire set W of triples (J, T, ÇI), for which J is LO com­
patible and the corresponding set % is finite. Furthermore when 
h G % and (Ck,m,k) G h, then: 
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a) The operator D in (1.12) has trivial cokernel. 

b) If dk > 0, the homomorphism G^ : kernel(D) —> V& is an 
isomorphism. 

c) If dk = 0 and m^ > 1, then the pull-back of D to any finite 
cover of the torus Ck also has trivial cokernel (and kernel). 

(1.14) 

These facts are proved in [26]; see also [12]. 

Part 5. Assume now that the data (J,F,Q) is chosen from the 
set W in (1.14). Let h G % and (C,m) = (C^ ^m^) G h. The purpose 
of this part of the discussion is to associate to such a pair an integer, 
r(C,m). There are three cases to consider. 

If m = 1 and dk = 0. Here, r(C, 1) G {±1} and it counts (mod 
2) the spectral flow for a path of zero'th order deformations of D which 
starts with D and ends with a C-linear operator 

D1 = 3 + v' : C°°(C; N) ->• C°°(C; N <g> T°^C) 

whose kernel and cokernel are also trivial. The path t —> Dt can be 
chosen so that: 

• The set of t where cokernel {Dt) ^ {0} is a finite number, N. 

• At such t where cokernel (Dt) ^ {0}, the dimension of this cokernel 
is 1. 

• At such t where cokernel (Dt) ^ {0}, the restriction of the t-
derivative of Dt to kernel (Dt) composes with projection onto 
cokernel (Dt) as an isomorphism. 

(1.15) 

Because D' is C-linear, the set of v' where kernel (D') ^ {0} is a codi-
mension 2 variety in C°°(C]TailC). This insures that r (C , 1) depends 
only C and, in particular, not on the details of D's deformation. 

If m = 1 and dk > 0. The integer r(C, l) G {±1} again. 
However, the definition in this case requires the choice of an ordering of 
the elements of I V As remarked above, the latter serves to orient the 
vector space V^. Next, choose a continuous path t —> Dt so that : 

• For each t G [0,1], Dt is a zero'th order deformation of D. 
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• D0 = D. 

• Df has trivial cokernel for all t. 

• D i = d + v' is C-linear. 

(1.16) 

With the preceding understood, the association of the kernel (Dt) to 
t G [0,1] defines a 2 • d^ dimensional, real vector bundle over [0, 1]. 
The fiber of this vector bundle over t = 1 is complex, so naturally 
oriented; and the latter induces an orientation of the kernel (D), the 
fiber over t = 0. With this orientation for kernel (D), the linear map 
Gk is then an isomorphism between two oriented vector spaces. Now 
define r(C, 1) = + 1 if Gk preserves orientation, and otherwise define 
r (C , 1) = - 1 . 

Note that r(C, 1) is independent of the choice of the path {Dt}, but 
it will change sign if the ordering of T^ is changed by a permutation 
with odd parity. 

If m > 1. As noted above, this requires C to be a torus (and N to 
be topological^/ trivial.) There are three distinct isomorphism classes 
of non-trivial real line bundles over C, and by tensoring (over M) the 
range and domain of D with any one of these, one obtains a suite of 3 
new operators. Agree to call any one of these a "twisted version" of D. 
Note that the index of D and any of its twisted versions is zero. This 
is because dk is zero when C is a torus with trivial normal bundle. 

With the preceding understood, the value of r(C,m) depends only 
on the various possibilities for the mod(2) spectral flow for the operator 
D and its twisted versions. (Once again, the genericity assumptions on 
J are such as to insure that these spectral flows are well defined.) This is 
to say, that r(C, m) depends only on the mod 2 spectral flow for D and 
on the number of D's twisted version which have non-trivial spectral 
flow. (And, of course, it depends on m.) In this regard, once m is fixed, 
there are eight possibilities for r(C, m); and it is convenient to label the 
possibilities with a tag, ±k, where the ± indicates whether the spectral 
flow for D is + 1 or —1, and where k G {0,1, 2, 3} indicates the number 
of the twisted versions of D which have non-trivial spectral flow. 

For a fixed tag, ±k, it proves convenient to present the data 
{r(C,m)}m=i ;2,... with the help of a "generating function", f±k(t)- This 
is to say that f±k is, by definition, that formal power series for which 
the coefficient of tm is r(C,m). This sort of presentation is convenient 
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here only because f±k(t) is, in all cases, a fairly simple function of t. 
Here are the eight generating functions: 

f+i(() = l + i. 

Mt) 1 + t 

r+3 (t) 

l + t2 

(i + t ) ( i - t 2 ) 

l + t2 

o(t) = l - t . 

1 

-2(<) 

-3(t) 

1 + t 

1 + t2 

1 + t ' 

1 + t 2 

( l + t ) ( l - t 2 ) 

(1.17) 

End the digression. 

P a r t 6. Suppose that e G H2(X;Z) has been chosen, and that 
d = e • e — e • e > 0. Let p G { 0 , . . . , <ff and 

71 A • • • A 72p G A2p(iï"i(X; Z) / Torsion). 

Fix (J, r ,Q) G W so that the conclusions of (1.14) hold. Then, let 
h = {(Ck,mk)} G %. The preceding step defined an integer weight 
r(Ck,mk) for each (Ck,mk) G h from the given data and the choice of 
an ordering on the corresponding IV The purpose of this step is to use 
the data {r(Ck, rrik)} to define an integer weight, q(h), to the set h. The 
definition of w(h) is simplest when p = 0, whence 

(1.18) q(h)=l[r(C k,rnk) 

In the case where p > 0, each r(Ck,mk) depends on the choice of 
an ordering for the corresponding IV This dependence is compensated 
for in the definition of q(h) as follows: The chosen orderings of the 1^ 
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also induce an ordering of T which differs from the given labeling by a 
permutation, a, of the set { 1 , . . . , 2p}. The latter has a parity, which will 
be denoted by e (a) G { i l } - Note that e (a) is insensitive to the choice 
of ordering for {(C^m/;)} as each T^ has an even number of elements. 

With the preceding understood, associate the weight 

(1.19) q(h) = e(a)-\{r{Ck,mk) 
k 

to each h G % in the case when p > 0. Note that q(h) in (1.19) is 
insensitive to the chosen orderings of each of the IVs. 

Pa r t 7. Here is the definition of Gr: 

Definition 1.4. Define Gr: H2(X;Z) ->• A*H1(X;Z) as follows: 
Set Gr(0)= 1. For e G H2(X; Z) - {0}, set d = e • e - c • e. Then 

• Gr(e) = 0 if d < 0. 

• If d > 0, 

a) Fix JeW, and use J to define H = H(e,J,0,0). With 
% understood, define the projection of Gr(e) in the Z sum-
mand of A*H1(X;Z) to equal S/je-^ç(/i) where q(h) is given 
by (1.18). 

b) Fix p G { 1 , . . . ,d} and then fix 

71 A • • • A 72p G k2p{Hi(X] Z) / Torsion). 

Then, choose (J, T,Çi) G W and use this data to define 
H = H{e, J, r , ft). With % understood, define 

Gr (e)(7i A • • • A 7 2 p) = Zhenq(h), 

where ç(/i) is given by (1.19). 

The following proposition describes the salient properties of the pre­
ceding definition: 

Proposi t ion 1.5. Let (X,UJ) be a pair consisting of a smooth, com­
pact, connected ^-m^nifold X with a symplectic form LO. If 
e G H2(X;Z), then the value of Gr(e) as given in Definition I.4 is 
independent of the precise choice for the data (J, T, ft) and thus depends 
only on the symplectic form to. Furthermore, Gr(-) is constant if 10 is 
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changed through a continuous path of symplectic forms. Finally, Gr be­
haves naturally with respect to diffeomorphisms of X in the following 
sense: Let ip : X —> X be a diffeomorphism, and let Gr^ and Grtp*w 

denote the respective Gromov invariants as defined by u> and ip*LO. Then 
Gv^eH^GUe)). 

A proof of this proposition can be found in [26]. 

2. T h e proof of T h e o r e m 1 

The purpose of this section is to reduce the proofs of Theorems 1 
and 2 to a few key propositions. In this regard, take X henceforth to 
be a compact, connected, oriented 4-manifold with symplectic form LO. 
When a metric is required for X, it will be assumed implicitly to come 
from an w-compatible almost complex structure J via (1.6). 

a) S o m e special cases 

The proof that SW = Gr treats certain classes e G H2(X;Z) as 
special cases. This subsection constitutes a digression of sorts to handle 
these special cases. 

The first of the special cases concerns the class 0 G H2(X; Z) . 

Propos i t i on 2 .1 . Let X be a compact, oriented, symplectic 4-
manifold. Then SW(0) and Gr(0) are both + 1 . 

Proof of Proposition 2.1. First, Gr(0) = 1 by definition. For SW, 
Proposition 4.1 and Theorem 1.3 of [27] imply that there is a unique 
gauge orbit of solution to the e = 0, /io = 0 and r » 1 version (2.4). 
(See also [29].) Section 7a proves that its sign is + 1 . 

The next proposition considers the remaining special cases. The 
statement of this proposition requires the introduction of the set S G 
H2(X;Z) of classes with square —1 which can be represented by the 
Poincaré dual of an embedded, symplectic 2-sphere. 

Propos i t i on 2.2. Let X be a compact, oriented, symplectic 4-
manifold with b2+ > 1. Then SW(e) and Gr(e) vanish unless s • e G 
{-1 ,0} for all se S. 

Proof of Proposition 2.2. Consider first the case for Gr. (Note 
that the argument for Gr does not require the b2+ > 1 assumption.) To 
begin, suppose that s G S. Then it is a consequence of Gromov's work 
[5] that s can be represented by an embedded, pseudo-holomorphic 2-
sphere. (According to the main theorem in [27], any embedded sphere 
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with self intersection number —1 in a b2+ > 1, compact, symplectic 
4-manifold is homologous to a psuedo-holomorphic sphere.) Now, sup­
pose e G H2(X;Z). Write e = Efc^fc • e^, where each class ek is repre­
sented by the Poincaré dual of a pseudo-holomorphic submanifold, and 
ek • ek' = 0 unless k = k'. Suppose also that m^ = 1 whenever ek G S. 
Since pseudo-holomorphic submanifolds intersect with locally positive 
intersection number (see, e.g. [13]), it follows that s • ek > 0 unless 
ek = s. s • s = — 1, because at most one such ek can equal s and there­
fore s»e > —1. And, any other e^'s must have zero intersection number 
with s by assumption. Thus, s • e G {—1,0}. 

The case for SW follows from a "blow up" formula for SW which 
describes the Seiberg-Witten invariant for a connect sum y # C P 2 in 
terms of those for Y. This formula is reproduced in [3]. To apply this 
blow-up formula, remark first that if a class s G H2(X; Z) is represented 
by an embedded, pseudo-holomorphic sphere of square —1, then X is 
a connect sum, y # O P 2 , where Y is a symplectic manifold, and s is 
Poincaré dual to the image in X of the generator of ff-^CP2). The 
blow-up formula in [3] can now be used to prove the desired vanishing 
theorem for SW(e) given the apriori knowledge that the manifold Y has 
simple type in the sense that the Y version of SW vanishes on any class 
e' where d(e') = e' • e' — cy • e' > 0. The latter assertion is proved as 
Assertion 6 of Theorem 0.1 in [27] for the original version SW(-) which 
maps H2(X;Z) into Z. However, the same argument (in Section 7c of 
[27]) also proves that the extended SW(-) G A*Hl(X;Z) vanishes on 
classes e' with d(e') > 0. (The preceding argument uses the b2+ > 1 
assumption in the proof of the blow-up formula, and in an application 
of the adjunction formula from [9] and [16].) 

b) T h e S e i b e r g - W i t t e n equat ions w i t h parameter r 

The proof that SW = Gr procèdes from here through a step by step 
reinterpretation of the defining formula (1.5) for the Seiberg-Witten 
invariant. This process starts in this subsection where the Seiberg-
Wit ten equations are rewritten in a convenient form. 

It turns out that there is a useful way to rewrite (1.1) on a symplectic 
manifold X which exploits the decomposition in (1.9). This rewriting of 
(1.1) requires a preliminary, two part digression. Part 1 of the digression 
observes that the bundle K~l comes equipped with a canonical connec­
tion (up to the action of C°°{X;U{1)) (see, e.g. [29]). To define this 
canonical connection, remember first that for any fixed Spin structure, 
the choice of a connection on det(<S+) and the Levi-Civita connection on 
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the bundle Fr defines a connection on the Spin lift F. Thus, the choice 
of a connection (say A) on det(S ,

+ ) gives a covariant derivative, V A , 
on sections of S+. Now consider the canonical Spin c structure in (1.7). 
Restriction of VA to a section of the trivial summand I and projection 
of the resulting covariant derivative onto I (g> T*X define a covariant 
derivative VA on the trivial complex line bundle. With the preceding 
understood, remark that there is a unique choice of connection AQ (up 
to the afore-mentioned gauge equivalence) on det(S ,

+) = K~l for which 
the corresponding covariant derivative on the trivial line bundle admits 
a non-trivial, covariantly constant section. 

For Part 2 of the digression, consider the general Spin c structure in 
(1.7). Since det(<S+) = E2 ® K~l, the choice of the connection AQ on 
K~l allows any connection A on det(S ,

+ ) to be written uniquely as 

(2.1) A = A0 + 2a, 

where a is a connection on the complex line bundle E. Thus, with AQ 
chosen, the Seiberg-Witten equations in (1.1) can be thought of as equa­
tions for a pair (a,ip), where a is a connection on E, and ip is a section 
of 5+ in (1.9). 

End the digression. With this reinterpretation of (1.1) understood, 
note now that it proves useful to "renormalize" the form ß in (1.1) by 
writing 

(2.2) ß = -jcü + P+FAo+ißo. 

Here, r can be any non-negative number and /io can be any section of 
A_|_. (In practice, think of /io as being close to 0.) Furthermore, in the 
case where r > 0, it also proves useful to write 

(2.3) V = r 1 / 2 (« , /3) 

to correspond with the splitting in (1.9). Then, with the preceding 
understood, the Seiberg-Witten equations in (1.1) read 

DA(a,ß)=0, 

P+Fa + j(1 - M 2 + | /3|2V - "-(aß* - a*ß) - i/i0 = 0. 

Here, aß* and a*ß are sections of K and K~l, where the latter are 
naturally identified as the orthogonal compliment of the span of LO in 
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A+<g)C. Note that this last equation differs from the analogous equations 
in [25], [27] and [29] in that the ß used here is —i times that used in the 
previous papers. The insertion of this factor of —i here avoids numerous 
factors of % later on. 

Rewriting (1.1) as in (2.4) realizes the Seiberg-Witten equations as 
equations for data (a, (a,ß)) G Conn(_E) x C°°(S+), where Conn(_E) is 
the space of smooth connections on the complex line bundle E. With 
the preceding understood, introduce, for r > 0, the moduli space 

M{r) C (Conn(E) x C^iS+^/C^iX^S1) 

of equivalence classes of solutions to (2.4) for some previously chosen 
f o r m /j,Q. 

c) The appearance of G and Q in the count for SW 

The purpose of this subsection is to reinterpret the integral in (1.5) 
for the d > 0 case of SW as a weighted count of certain preferred 
elements of the space M^r'. This reinterpretation of SW explains how 
r and O, which appear in the definition of Gr, enter the definition of 
SW. 

To reinterpret (1.5), first choose a set T = {'Jj}i<j<2p of embedded, 
oriented, 1-dimensional submanifolds of X as in the definition of Gr in 
Section le. Remember that this set is to be pairwise disjoint, and that 
for each j , the corresponding jj generates the class of the same name 
which appears in (1.5). With T chosen, select a set Q C (X — Uy7j) of 
d — p distinct points. 

With r and O chosen, let 

M^n = {(a, (a,ß)) G My' : a_ 1(0) intersects each point 

in O and each 7 G T}. 

Under favorable circumstances, the number in (1.5) is obtained from 
Mpj j by summing certain signs (±1) which are associated to its points. 
Needless to say, such a computational scheme requires some regularity 

(r) 

from M], Q- The precise statement of these requirements uses a certain 
family of differential operator that points in Conn(_E) x C°°(S+) pa­
rameterize. The following digression serves to introduce this family of 
operators. 

The operator associated to a given S = (a, (a,/?)) will be denoted 
by Lw or, simply, L when there is minimal chance of confusion. This 
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operator LE maps i-Q1 ®C°°(S+) to %• (Q0©Q2+)©Coo(5'_) by sending 
(a', (a',/3')) to the element whose three components are: 

• *d* a' + i • ^im(äa' + ßß') 

• P+da' - i^re{äa' - ßß') • w + ${äß' + ö'/3 - aß' - a'ß) 

ô aa' - (ÔA0+a)*/3' + jj2aa'01 + ^ / V 

(2.6) 

Here, da is the projection of the covariant derivative onto T0,lX, and 
(dA0+a)* is the formal I/2-adjoint of the projection of the covariant 
derivative onto X2T°'1X = K~l. Also, a'0 1 is the projection of a' onto 
T0,lX. Note that the assignment of S to L= is naturally equivariant 
with respect to the action of C°°(X; S1) on the spaces involved. This is 
to say that when the latter group is allowed to act on C°°(S±) by mul­
tiplication, on i • Ql'0>2+ trivially and on Conn(_E) x C°°(S+) as defined 
earlier, then !/</,.= (0 • £) = (fi • L^Ç. 

As asserted in Proposition 6.2 of [28], the space M.(r> (as defined 
with some previously chosen form JJ,Q in (2.4)) has a natural smooth 
manifold structure near those points S where cokernel L= = {0}. A 
point S where L= has such a trivial cokernel will be called a smooth 
point. Note that M.(r> can be assumed to consist solely of smooth points 
if ßo is chosen from a suitable Baire set. 

End the digression. 
(r) Here are the precise requirements for M^ a : 

(r) 

a is a finite set of points; and each such point is a smooth 
point of JVl^K (There is no need to assume that M.(r> consists 
solely of smooth points.) 

• Let (a, (a,ß)) G M^ and let 7 G T. Then a_ 1(0) n 7 is a single 
point, q, and the covariant derivative of a along 7 at g is non-zero. 

• Let (a, (a,/3)) G M^n. Define 

G : kernel^) - • (©œen^|x) © ( © 7 e r ( £ | g / V a ( T 7 | g ) ) ) 

as follows: Assign to (a', («',/?')) in kernel(L) the vector whose 
component in E\x is a'(2;) and whose component in E\q/aV(T^\q) 
is the projection of a'(q). Then require that G be an isomorphism. 
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(2.7) 

Say that M p n is regular when (2.7) holds. In general, there is no 
(r) 

apriori reason for .M r a to be regular. However, with T and Q fixed, 
there will be an open and dense set in Q2+(X) of choices of /io for which 

(r) 
the resulting A4 r Q is regular. 

(r) 

When At r Q is regular, then a sign can be associated to each of its 
points. The definition of this sign involves the following three steps: 

Step 1. The bundle E, being complex, is naturally oriented. 
Also, 7 is, by assumption, oriented, so E/Va(T^) is oriented at the 
point where g intersects a_ 1(0) . 

Step 2. With the preceding understood, the bundle 

(2.8) V = (®xenE\x) 0 (® 7 6 r (£ | g /Va(T 7 | g ) ) ) 

is oriented with an ordering (up to even permutations) of the set 
{lj}i<j<2p- The latter is ordered as {71,72, • • • ,72p}-

Step 3. The endomorphism G in (2.7) maps the oriented space 
kernel(Iz) to the oriented space V. Assign +1 to (a, (a, /?)) G MPQ when 
G is orientation preserving. Otherwise, assign —1 to (a, (a,/?)). 

Given the preceding, consider: 

Proposition 2.3. Suppose that d > 0 and that T and O are defined 
(r) 

as above. Suppose, as well, that ,M r a is regular. Then the integeral in 
(1.5) is equal to the sum of the numbers (±1) which are assigned to the 

(r) 
points of .Mp Q. 

Proof of Proposition 2.3. The basis for this reinterpretation rests 
on the observation that the assignment to a point 

((a,(a,ß)),x) eM{r) xX 

of a(x) defines a section, s, of the complex line bundle £ of equation 
(1.2). Let s be a small perturbation of s which vanishes transversely. 
Then, this zero set, a-^O) C M^ x X, is a smooth, codimension 2 
submanifold with a natural orientation. The latter endows s _ 1 (0) with a 
fundamental class which represents the Poincaré dual to the first Chern 
class c of £. With this understood, the assertion in Proposition 2.3 
follows in a straightforward manner by reinterpreting cup products of 
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the cohomology classes in terms of intersections of submanifolds which 
represent their Poincaré duals. 

d) The appearance of pseudo-holomorphic curves in the 
count for SW 

A fundamental input to the proof of Gr = SW is the fact that 
solutions to (2.4) for large r (and ßo = 0) determine pseudo-holomorphic 
curves in X with fundamental class Poincaré dual to e. Here is the precise 
statement: 

Proposition 2.4. Let X be a compact, oriented, symplectic mani­
fold. Fix an LO-compatible almost complex structure on X, and use the re­
sulting metric to define the Seiberg-Witten equations. Fix e G H2(X;Z) 
and use e to define the Spinc structure in (1.9). Also, fix a finite (maybe 
empty) collection {ç^} of closed subsets of X. Given e > 0, and then 
given r sufficiently large, the following is true: If (a, (a, ß)) G M M has 
a~l(0) intersect each Ç&, then there is a compact (not necessarily con­
nected), complex curve C with a pseudo-holomorphic map ip : C —>• X 
with 

1. <p*[C] equal to the Poincaré dual of e; 
2. (p(C) f i f t / 0 for each k; 
3- supx:a(x)=0dist(a;, </>(<?)) + supx6v , ( c ) dist(x, a'1 (0)) < e. 

Proof of Proposition 2.4- This follows immediately from Theorem 
1.3 in [27]. 

Needless to say, Proposition 2.4 plays a premier role in the proof 
that SW = Gr. 

The next result considers the images of the curves C which appear 
in the previous proposition for certain special choices of the set {?&}• 
However, the statement of the proposition requires the introduction 
of the set S C H2(X;Z) whose elements have square —1 and can be 
represented as the Poincaré dual of a symplectically embedded 2-sphere. 
The statement of the proposition also reintroduces the set W of (1.14). 

Proposition 2.5. Let X be a compact, oriented, symplectic man­
ifold. Fix an LO-compatible almost complex structure on X, and use 
the resulting metric to define the S eiberg-Witten equations. Fix a class 
e G H2(X;Z) to define the Spinc structure in (1.9) with the property 
that s»e > — 1 for all elements s G S. Let d = 2_ 1(e«e — c»e) and when 
d > 0, fix p G {0, . . . , d}. When p > 0, fix an ordered set £ C H\{X; Z) 
of2p classes. Then, there exists a Baire set of data (J, F,Q) GW where: 
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• J is a smooth, LO-compatible almost complex structure on X and 

a) If d > 0 and p > 0, then F = {71, . . . ,72p} is a set of 2p 
pair-wise disjoint, embedded loops in X which generate the 
elements in F_. Otherwise, F = 0 . 

b) If d — p > 0, then Q is a set of distinct, d — p points in X 
which miss all loops in F. Otherwise, il = 0. 

• Use J to define the metric in (1.6). For r > 0, let M.(r> denote 
here the /io version of the moduli space of solutions to (2.4) for 
the Spinc structure in (1.9). Given e > 0, then for all sufficiently 
large r, 

a) M^ = 0ifd<O. 

b) If d = 0, let (a, («,/?)) G Ai^r'; and if d > 0 suppose that 

(a, («,/?)) G M p | j . In either case, there exists 

h={(Ck,mk)}£H=U(e,J,F,n) 

such that 

(2.9) sup dist(x,UkCk) + sup dist(a;, a_ 1(0)) < e. 
x:a(x)=0 x£UkCk 

Proof of Proposition 2.5. Suppose that there exists a class e G 
H2(X; Z) as described, plus a triple ( J , r , [ ! ) e W and some e > 0 such 
that the conclusions of the proposition failed to hold. The argument 
below will show that (J, F, ÇI) lies in the compliment of a certain Baire 
set. There are five steps to the argument. 

Step 1. Under the assumptions, one can find an increasing, 
unbounded sequence {rn} of positive numbers and, with r = rn, a point 
(an, (an, ßn)) G M.(r> which violates (2.9). On the other hand, it follows 
from Theorem 1.3 in [27] that there is a compact, complex curve C with 
a pseudo-holomorphic map ip : C —> X which obeys: 

• <p»[C] is Poincaré dual to e. 

• <p(C) intersects each point in O and each loop in F. 

limn^oo[supa;:an(a,)=0dist(2;,^(C)) + s u p ^ ^ c ) dist(x,an
1(0))] 

0. 

(2.10) 
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The goal in the subsequent steps will be to prove that <p(C) = U^C^ 
if (J, r , Q) have been chosen in a suitably generic fashion. 

Step 2. Consider the set <p(C) in (2.10). The compliment of 
a finite set of points, A, in <f(C) is an embedded, pseudo-holomorphic 
submanifold. (See, e.g [33], [19].) Let E° = <p(C) - A. Then E° is the 
compliment of a finite set of points in some compact, complex curve, 
E. Furthermore, the tautological embedding of E° in X extends as a 
pseudo-holomorphic map from, ip : E —> X. 

With the preceding understood, let {Efc} denote the components of 
E, and, for each k, let e% denote the Poincaré dual to ^>*pfc]- Note that 
e = S^rrifc • e^ where the m^ are positive integers. 

Consider now the possibilities for the set {S^} . The first obser­
vation stems from the characterization of ip given in [33], [19] and 
[14]. In particular, the map ip c a n be perturbed to a map ip' which 
is an immersion, with locally positive intersection numbers, and which 
pulls back w as a strictly positive form. Let n^ denote the number 
of double points of ip"s restriction to E&. Then the genus of E& is 
1 + 2 _ 1 • (efc • efc — nfc + c • efc). Furthermore, for generic J, there will be 
no pseudo-holomorphic maps which represent e% from a surface of this 
genus unless <4 = 2 _ 1 • (e^ • e^ — n^ — c • e^) > 0. (This can be proved 
using the analysis for the proof of Proposition 5.2 in [26].) 

Thus, if J is chosen from a suitable Baire set, one can suppose with­
out loss of generality that dk > 0 for each k. 

Step 3 . Next, note that the analysis for the proof of Proposition 
5.2 in [26] can also be used to prove that there is a Baire set of choices 
for (J, r , Ci) for which the following conditions hold: 

• For each k, there exist pk € {0,... ,dk} and a subset T^ C T such 
that Efc interects each member of T^ exactly once, and no member 

ofr-r*. 

• Each Eft contains exactly d^ — p^ points of Q. 

• Each Eß. is immersed by ip. 

• When Efc intersects a member 7 G T^, the tangent line to 7 is not 
in TE fe . 

(2.11) 
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Note that the first two lines of (2.il) imply that d = 2 1-(e»e —c«e) 
equals T.kdk. 

Step 4. Agree now to change notation and use {sa} to label 
those ek for which the corresponding T.k is a sphere with square — 1. Use 
{tk} to label the remaining classes. Then 

d = Sfe4 = ^k'rnk{dk + nk) + 2~1T,kmk(mk - 1) • tk • tk 

(2.12) + Hk±kimkmkdk • tk> + Hk^mkm,jtk • sa 

+ 2" 1 S ( J (m ( J -m2) . 

To view the ramifications of (2.12), introduce e»sa = T.kmktk»sa — ma. 
Then, 

(2.13) 2"1(m(J - ml) = 2~1ma(l + e»sa) - 2~1T,kmkmatk • sa, 

and it follows from (2.12) that 

£*A = Sfemfc(4 + nfe) + 2"1 • Efcmfc(mfe - 1) • tfe • tfc 

(2.14) + ^k+klmkmkdk • tk> + 2"1 • S^mfem t̂fe • s^ 

+ 2 _ 1 ^ ^ / « ^ ( l + e » ^ ) . 

In the case where e • sa > —1, all terms on the right side of (2.14) are 
positive and so the equality holds if and only if: 

• nk = 0. 

• mk = 1 unless dk = tk • tk = 0. 

• tk • tki = 0 unless k = k'. 

• h • sa = 0. 

(2.15) 

Step 5. Given the constraints in the last two lines of (2.11) 
and in (2.15), it follows that {(Ek,mk)} G % when the triple (J,Q,T) 
are chosen from a Baire subset of elements in W. But, this conclu­
sion contradicts the assumed violation of (2.5) by the original sequence 
{(an, («„,/?„)), and thus verifies the proposition. 

e) The appearance of SW solutions in the count for Gr 
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While the points of the /J,Q = 0 version of M\, }
n determine elements in 

%, the points in the latter set also determine elements in this same /io = 
(r) 0 version of - M r r r Indeed, each point h G H will typically determine 

a subset Q(h) G M-Y\Ì w n e n r is large. The set in question comes from 
Proposition 5.2 in [28] and is described in more detail below in (2.20), 
(2.21) and (2.22) plus Proposition 2.10. 

By the way, under certain circumstances, Q(h) will contain precisely 
one element, in which case the assignment $(•) defines a map from H 

(r) to Alp n when r is large. In particular, consider: 

Proposition 2.6. Let X be a compact, oriented, symplectic mani­
fold. Fix an LO-compatible almost complex structure on X, and use the re­
sulting metric to define the Seiberg-Witten equations. Fix e G H2(X;Z) 
and use e to define the Spinc structure in (1.9). Assume that s»e > — 1 
for all elements s G S. Let d = 2 _ 1 • (e • e — c • e) and when d > 0, 
fix p G {0, . . . , d}. When p > 0, fix an ordered set T C Hi(X; Z) of 1p 
classes. Suppose that there exists a triple (J, T, Q) in the Baire subset of 
Proposition 2.5 where the corresponding set % contains only elements 
of the form {{Ck,m,k = 1)}. Let -Mp n denote the r > 0 and ßo = 0 
version of (2.5). When r is large, then 

• M.YÇI satisfies the conditions in (2.7). 

• There is a I - I map $(r) : % ->• M^'n. 

• The map &(r> is also onto. 

• When (a, («,/?)) = &(r\{(Ck, 1)}), then a_ 1(0) is an embedded, 
symplectic submanifold of X which is isotopie to U^C^ and obeys 

sup dist(a;, UfcCfc) + sup d i s t i a - (0)) < Ç • r~ ' , 
x:a(x)=0 xeUkCk 

where £ is independent of r. 

(2.16) 

The first three assertions of the proposition constitute a special case 
of Proposition 2.10, below. However, note here that the existence of a 
1-1 map &(r' which obeys (2.16) is a direct consequence of Propositions 
5.2, 6.1 and 6.3 in [28]. The bulk of the remaining arguments for the first 
three assertions concerns the assertion that &r> is onto M^ n- (These 
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arguments are given here in Sections 5 and 6.) Equation (2.16) is also 
asserted in Proposition 2.10, but follows directly from Proposition 2.5. 
The assertion that a _ 1 ( 0 ) is symplectic follows from the analysis in 
Section 4 of [27]. 

Consider the nature of the assignment <£>(•) in the cases where Propo­
sition 2.6's assumptions fail. The discussion of this more general case is 
broken into six parts. 

Part 1. Let C be a complex curve, let N —> C be a holomorphic 
line bundle with a hermitian metric and let m be a positive integer. 
Then, let v be a section over C of T0,1C and let ß be one of N2 ® 
T0,1C. Note that this data appears for free whenever (C,m) comes as 
an element of some h in some 1-L. Indeed, in this case, take N to be the 
normal bundle to C and take (u, /z) as in (1.11). (A precise definition of 
(f, /i) in this case is given in Section 2a of [28].) 

Now, introduce the subspace ZQ C C°° (®i<q<mNq) as in Section 3 
and Proposition 3.2 of [28]. In this regard, recall that the elements of 
ZQ can be viewed as solutions of a certain non-linear, ellipitic equation 
which has the schematic form 

(2.17) By + vK • y + fiF(y) = 0. 

Here, H acts as multiplication by q on the Nq summand of ®i<q<mNq; 
and F is a certain smooth, fiber preserving map from ®i<q<mNq to 
®i<q<mNq~2. (Note that F is not holomorphic in the fiber coordinates.) 

In the case where m = 1, the map F sends y to its complex conjugate 
and so in the m = 1 case, ZQ = kernel(D). In the case where m > 1, the 
map F is not M-linear, as can be seen from the fact that F(0) ^ 0. (See 
Proposition 3.4 in [28].) In particular, in the m > 0 case, the author 
has no explicit description of the set ZQ. 

Part 2. Fortunately, an explicit picture of ZQ in the m > 1 case 
is not required here. Indeed, over and above that which is established 
in [28], the proof that SW = Gr requires only a certain compactness 
criteria for ZQ. The statement of this criteria requires the introduction 
of a certain variant of the operator in (1.11). The variant is defined on 
any holomorphic curve C" which comes equipped with a holomorphic 
map / to the given curve C. The variant of (1.11) on C" will be denoted 
by D' and it is defined as in (1.11) but with C replacing C, f*v replacing 
v, and /*/i replacing /z. 

Propos i t i on 2.7. Suppose that C is a complex torus and suppose 
that N is a topologically trivial, holomorphic line bundle over C. Fix a 
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pair (u, /i) as above and define the corresponding set 

ZQ C C°°(©i<g<mJ/V
9) 

as in Proposition 3.2 of [28]. Then ZQ is compact when the following 
is true: The operator D' corresponding to any connected, holomorphic 
covering f : C —>• C of degree m' < m has trivial kernel and cokernel. 

(This proposition is proved in Section 3) The preceding proposition 
plus Lemma 5.4 in [26] have the following corollary: 

Propos i t i on 2.8. Fix a class e G H2(X;Z) and let 

d = 2~ • (e • e — c • e). 

Assume that d > 0 and when d > 0, fix p G { 0 , . . . ,d}. When p > 0, fix 
an ordered set T C Hi(X;Z) of 2p classes. There is a Baire subset of 
the set W in Proposition 2.5 which has the following additional property: 
If (J, r , O) is taken from this set, then the corresponding set H. contains 
only elements of the form, {(Cfc,mfc)} where the corresponding ZQ for 
the nik > 1 pairs is compact. Indeed, when m^ > 1, then the operator 
D' corresponding to any connected, holomorphic covering f : C —>• C^ 
of degree nik or less has trivial cokernel. 

Part 3 . Part 1, above, introduced the space ZQ. For each y G ZQ, 
introduce the linear operator 

Ay : C°°(®i<q<mN0) -»• C°°((®i<q<mNi) ®T°>lC) 

which sends y' to 

(2.18) Ay • y' = By' + M • y' + /iF„, • y', 

where F*^ denotes the differential of F at y. Say that ZQ is regular when 
Ay has trivial cokernel at each y G ZQ. When ZQ is regular and also 
compact, then it consists of a finite set of points. (See Proposition 3.2 
in [28].) 

With the notion of "regular" understood, the next proposition gen­
eralizes Proposition 2.6. However, before stating the proposition, intro­
duce the following notation: First, when nik > 1 and (Cfe,mfc) comes 
from some h G T-L, use ZQ to denote the (Cfc,TOfc) version of ZQ. Sec­
ond, when h = {(Ck,mk)} G V., let Y^ denote the one point space when 

(k) 
all mfc = 1, and otherwise set Y^ = Xk:mk>iZQ • 
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Proposition 2.9. Fix a class e G H2(X;Z) with the property that 
s • e > — 1 for all elements s G S. Let d = 2 _ 1 • (e • e — c • e) and when 
d > 0, fix p G {0, . . . , d}. When p > 0, fix an ordered set T C H\(X; Z) 
of 1p classes. Suppose that there exists a triple (J, T, Q) in the Baire 
subset of Propositions 2.5 and 2.8 where the corresponding set h has 

(k) the following property: Each ZQ corresponding to each m% > 1 pair 

(Cfe,mfe) from any h = % is regular. Let M^-çi denote the r > 0 and 
ßo = 0 version of (2.5). When r is large, then: 

• M-YÇi satisfies the conditions in (2.7). 

• There is a I - I map $(r) : UheuYh ->• M^'n. 

• The map &r> is also onto. 

• When (a,(a,ß)) = $(r)({(Cfc,mfc)}), then a'1^) obeys (2.16). 

This proposition is also a special case of Proposition 2.10. As with 
Proposition 2.6, all but the third point follow more or less directly from 
Propositions 5.2, 6.1 and 6.3 plus Lemma 6.6 in [28] so the brunt of the 
proof focuses on the third point. 

Part 4. Unfortunately, the author knows no way to guarantee 
that the assumptions of Proposition 2.9 hold. However, in the case 
where some Z^ is not regular, one can still proceed, although the 
discussion is somewhat more complicated. 

To begin, take (J, T, ÇI) from the Baire set in Propositions 2.5 and 
2.8. Take h = {(Cfc,mfc)} from the corresponding set T-L. The discussion 

(k) in this Part 4 describes a certain finite dimensional manifold, ICA , which 
can be associated to each pair (Cfc,m^). 

In the case where nik = 1, set A(= A^) = {0} and let 1CA denote an 
open neighborhood of the origin in the kernel of the (C^, m^) version of 
the operator D in (1.11). 

In the case where m^ > 1, let N denote the normal bundle to C^ 
and choose a finite dimensional vector subspace 

A = Ak c C°°((©i<g<mJV9) ®T^lCh) 

so that the following is true: For each y G ZQ, the vector space A should 
project surjectively onto the cokernel of Ay. The existence of such a A 
is guaranteed by Lemma 5.1 of [28] because ZQ is compact. 
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With A = Ak understood, let K,^ C C00(©i<g<TO7V<') denote a 
certain open neighborhood of ZQ in the subspace of y G C°° (®i<q<mNq) 
which obey the equation 

(2.19) By + ^H • y + pF(y) G A. 

In particular, it follows from Lemma 5.1 in [28] that one can choose 
(k) 

the neighborhood in question so that the resulting ÌCA is a smooth 
submanifold in C°° (®i<q<mNq) whose dimension is that of A. One can 

(k) ~ ~ 
also choose K,A to have compact closure. These constraints will hence-

(k) 
forth be assumed implicitly. Further requirements on K,A may also 
be made, but it turns out that all of these can be met by "shrinking" 
any given version by replacing it by its intersection with some smaller 
neighborhood of ZQ. 

Part 5. Once again, take the data (J,F,Q) from the Baire 
set described in Propositions 2.5 and 2.8. Let h = {(Cfc,mfc)} be in 
the corresponding %. Propositions 5.2, 6.1 and 6.3 in [28] assert that 
the data {K,^} can be chosen, as described above, so that for all r 
suÆciently large, there exists an embedding 

(2.20) * v ( = * r ) : x * 4 f c ) ->• (Conn(£) x C 0 0 ( 5 + ) ) / C 0 0 ( X ; S1), 

and a smooth map 

(2.21) iph,r(= Vv) : Xfc/CJ? ->• XfeAfc 

with the following properties: 

• iphr(0) is embedded by iph.r onto an open set in the /io = 0 version 

k (k) 

• For each k, introduce tßA to denote the map from £%' to Ak 

which associates the left-hand side of (2.19) to each point y. Then 
|VVi,r ~~ xkÌ)AÌ — C ' r _ 1 ) where Ç is independent of r. 

• If S G Ai^r' H I m a g e ^ / j r ) , then kernel(L=) is in the image of the 
f * 

Let y G XkïCA and write ^h,r{y) = («? (<^,ß))- Then 

differential of ^h,r 

sup dist(a;, UfcCfc) + sup d i s t i a (0)) < Ç • r , 
x:a(x)=0 xeUkCk 
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where ( is independent of y and r. 

(2.22) 

Here are two remarks concerning (2.22). First, with regard to the 
third point, note that the tangent space to 

(Conn(E) x C 0 0 ( 5 + ) ) / C 0 0 ( X ; 5 1 ) 

at S has a natural identification with the subspace of 

(a ' ,(c/ , /3 ')) £i-n1®C°°(S+) 

for which the first line of (2.6) gives zero. 

For the second remark, note that the fourth line of (2.22) insures 
that the images of {^h,r '• h G %} are disjoint when r is large. 

Part 6. The analog of Proposition 2.9 in the general case is given 
below. However, the statement requires the following short digression 
to introduce new notation. 

To begin the digression, suppose that the assumptions in Proposi­
tions 2.8 and 2.5 are satisfied. When h = { ( C ^ m / J } G V., introduce 
Y/i C XkK,A to denote the \I//^-inverse image of the set of (a, (a,ß)) 

where a _ 1 ( 0 ) intersects each 7 G T and each x G $1. When y G YJj and 
the corresponding a _ 1 ( 0 ) intersects each 7 exactly once, and at a point 
where V « | T 7 7̂  0, introduce the vector bundle V as in (2.8). In this 
case, define a map Gy : T(XÌCICA ) \ y —> V as follows: First, associate 
to y' G T(XÌCK.A ) its push-forward, (a',(a',ß')) via the differential of 
^h,r- Then, Gy is obtained by restricting a' to the points of Q and to 
those of {7 fi a _ 1 ( 0 ) : 7 G T}. End the digression. 

Propos i t i on 2.10. Fix a class e G H2(X;Z) with s»e > — 1 for all 
s G S and then let d = 2 _ 1 • (e • e — c • e). Assume that d > 0 and when 
d > 0, fix p G { 0 , . . . , d}. When p > 0, fix an ordered set T C H\(X; Z) 
of2p classes. The Baire subset ofW in Propositions 2.5 and 2.8 can be 
assumed to have the following additional property: Take (J, T, ÇI) from 
this set to define %. For each h = {(Cfe,mfc)} G V., the corresponding 
data {1CA } can be chosen so that when r is large, then the following 
hold: 

• For each h = {(Cfc,mfc)} G T-L, the corresponding Y\t C x^/C^ is 

a smooth submanifold which is diffeomorphic to x^.mk>iiCA . 
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• For each y G Y^, the corresponding a 1(0) intersects each 7 G T 
only once, and at a point where V « | T 7 7̂  0. 

• For each y G Y/j, the corresponding map Gy is a surjection. 

• The ^h,r inverse image of M-^ìì *S V ^ W ^ Y/J. Here, ip^^ comes 
from (2Ï21). 

(r) 
• Each S G .Mp Q /«es m the image of some ^h,r-

Proof of the first four assertions of Proposition 2.10. Write the map 
^>h,r as in Proposition 5.2 and (5.2) of [28]. Were the term a' missing, 
then the first four assertions would follow directly from (1.14) using the 
definition of ( ß ) in Sections 2 and 3b of [28]. The fact that the 
assertions still hold with the a' term present follows directly from the 
estimates in Lemma 6.6 and (4.1) in [28]. 

The proof of the final assertion of Proposition 2.10 occupies Sections 
5 and 6 here. 

f ) T h e appearance of a curve count in the c o m p u t a t i o n of 
S W 

The Propositions 2.9 and 2.10 suggest that (1.5) can be reinter­
preted as a weighted count of elements of % where the weight for each 
h is obtained by creatively counting points in the appropriate version of 
Y/j. Such a reinterpretation of (1.5) is possible, and is presented in this 
subsection. The results are summarized precisely in Propositions 2.11, 
below, and Proposition 2.13 which appears in the subsequent subsec­
tion. (These correspond, respectively, to the special case of Proposition 
2.9 and the general case of Proposition 2.10.) However, the answer is 
schematically as follows: The weight for h is a product of factors. Here, 
each (Ck,mk) with nik = 1 contributes the factor r(Ck, 1) which is de­
scribed in Part 5 of Section le. Meanwhile, each (Cfc,mfc) with m^ > 1 
contributes a factor, r'(Ck, m^), which is obtained as an algebraic count 
of the points in the (C^, m^) version of the space ZQ. Finally there is an 
overall factor of e(a) = ± 1 just as in (1.19). 

The remainder of the discussion in this subsection is relevant to 
the special case where the assumptions of Proposition 2.9 hold. The 
discussion is divided into two parts. 

Part 1. This part describes how to obtain the factor r'(C,m) 
when the corresponding ZQ is regular. (Remember that this means that 
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the operator Ay in (2.18) has trivial cokernel for each y G ZQ.) For this 
purpose, return to the milieu of Proposition 2.7 where C is a complex 
torus, N —> C is a topologically trivial, holomorphic line bundle and 
m is a positive integer. Also, specify (u, u) so that the operator D' 
corresponding to any holomorphic covering / : C" —> C of degree m or 
less has trivial kernel. In this case, ZQ is compact. 

If the operator Ay in (2.18) has trivial cokernel for each y G ZQ, 
then ZQ consists of a finite set of points (see Proposition 3.2 in [28]). In 
this case, the weight r'(C,m) can be obtained by summing ± 1 weights 
associated to the points of ZQ. These weights are obtained as follows: 
Consider a 1-parameter family of operators of the form 

(2-23) {Aj, + nt}te[o,i], 

where 

{TH : L\{®i<q<mNq) -»• L2((®i<q<mNq) ® T^C)}^^ 

is a smooth family of bounded operator which obeys the following: 

• no = 0. 

• Ay + m is C-linear and invertible. 

• IMyOlk^s-Mly'lli^ + C-lly'lk-

• The set of t G [0,1] where cokernel(Aj, + ni) ^ {0} is some finite 
number N. 

• At such t where cokerne^A^ + ni) ^ {0} this cokernel is 1-
dimensional, and the restriction of the derivative of n< to kernel(Ay 

+ ni) projects surjectively onto cokernel(Aj, + ni). 

(2.24) 

Here, || • II2 = (fç \ • I2)1 '2 is the standard L2-norm. The norm || • 111,2 
denotes the L\ norm where the derivative portion is computed using 
any metric compatible, covariant derivative on N. That is, 

l l - l l i , 2 = ( l iv( - ) l l i + l l - l l i ) 1 / 2 . 

(Note that the constraint in the third line insures that each Ay + n< is 
a Fredholm operator.) In (2.24), Ç can be any ^-independent constant. 
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Standard perturbative arguments show that there are paths {nt} 
which obey (2.24); in fact, one can take {nt} to be zero'th order op­
erators coming from a path of homomorphisms from ®i<q<mNq to 
(®i<q<mNi) ® T^C. (See, e.g. [7].) 

The integer N depends on the precise path {nt} chosen. However, 
(—l)N is pa th independent. With this understood, associate to each 
y G ZQ the weight ey = (—1)^ and associate to ZQ the sum of the 
weights in the set {ey : y G ZQ}. 

Part 2. This part considers the count for (1.5) in the fortunate 
case where the assumptions of Proposition 2.9 hold. 

Propos i t i on 2 .11 . Make the same assumptions as in Proposition 
2.9. When h G %, define the weight 

q'(h) = e(cr) •Uk:mk=1r(Ck,l)Ilk:mk>1r'(Ck,mk). 

Here, r(Ck, 1) is defined as in Part 5 of Section le, while e (a) is defined 
as in Part 6 of Section le, and r'(Ck,mk) is defined in Part 1 of this 
subsection. Then the integeral in (1.5) is equal to Y^henl'i^). 

This proposition is a special case of Proposition 2.13; although a 
special case of it is proved directly in Section 7. In any case, note that 
Proposition 2.9 guarantees that the indexing set for the count is correct. 
Thus, the issue here is soley that of getting the weight assignments 
correct. 

g) Curve count ing for S W in the general case 

The discussion here for the general case has five parts. The first three 
parts consider the count for points in ZQ, and the last two consider the 
relevance of the latter count to the computation of (1.5). 

Part 1. This part and Part 2 define the weight r'(C,m) in 
the case where ZQ is not assumed to be regular. Thus, return again 
to the milieu of Proposition 2.7 where C is a complex torus, N —>• C 
is a topologically trivial, holomorphic line bundle and m is a positive 
integer. Also, specify (v, ß) so that the operator D' corresponding to 
any holomorphic covering / : C" —> C of degree m or less has trivial 
kernel. As before, this last assumption insures that ZQ is compact. 

In the case where Ay has non-trivial cokernel for some y G ZQ, one 
assigns a weight using a two step procedure. The first step reintroduces 
the manifold /CA as in (2.19) and defines an orientation for the virtual 
vector bundle TK,\ — (/CA X A). The orientation in question is explained 
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in this part of the subsection. Given such an orientation, Part 4 of this 
subsection defines the weight for ZQ. 

To orient the virtual bundle TIC A — (/CA X A) first introduce QA, 
the L2 orthogonal projection in L2((®i<q<mNq) <g> T ^ C ) onto A. Now, 
fix y G /CA and consider (f — QA) • Ay. Since A maps surjective onto 
the cokernel of Ay (by assumption), this operator maps L2(®i<q<mNq) 
onto (1 - QA) • L2{(®i<q<mNq) ®Tü>lC). (This is to say that the latter 
map is surjective.) Furthermore, the kernel of (f — QA) • \j is equal to 
the tangent space at y of /CA-

With the preceding understood, choose a smooth family {nt}te[o,i] 
of operators from L\{®i<q<mN<i) to L2({®i<q<mN<i) ® T 0 - ^ ) which 
satisfies the first three points of (2.24). As A has, by assumption, pos­
itive dimension, one can choose {rit} so that for each t, the operator 
{l-QA)-(Ay+nt) maps onto ( f - Q A ) •£2((©i<«/<mA^)<g>T°<1C). With 
this understood, then the association of the kernel of (f — QA) • (Aj,+ nt) 
to t £ [0,1] defines a vector bundle over [0,1]. Since such vector bun­
dles are necessarily trivial, an orientation for the virtual vector space 
kernel((f — QA) • (Aj, + ni)) — A serves to orient TK,\\y — A. 

To orient kernel((f — QA) • (Ay + ni)) — A, remark that the assumed 
invertibility of the operator Ay + m insures that QA • (Ay + n{) maps 
the kernel of (1 — QA) • (Aj, + n\) isomorphically onto A. An orientation 
of kernel((l — QA) • (Ay + m)) — A is then obtained by demanding that 
QA • (Aj, + n\) preserve orientation. 

With regard to the previous definition, note that the assumed C-
linearity of Ay+ri\ insures that the orientation so defined is independent 
of the precise path {n<}. 

Part 2. The association to y G ÏC\ of the left-hand side of (2.19) 
defines a smooth map ipA '• /CA —> A whose zero set is ZQ. Let w be any 
smooth map from /CA to A which obeys 

• ipA + w has only non-degenerate zeros. 

• \w\ < IV'AI on the compliment of a compact set which contains ZQ. 

(2.25) 

Associate to each zero of ipA + w the sign of the determinant of the 
differential of the map ipA+w. Note that this sign is well defined because 
of the first point in (2.25) and T/CA — (/CA X A) has been oriented. 

The second point in (2.25) and the fact that ZQ is compact insure 
that there are a finite number of zeros of ipA + w. With this understood, 
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define the weight r'(C, m) for ZQ to equal the sum of the signs associated 
to each zero of ipA + w. 

Because the set of maps to A which obey the second point of (2.25) is 
convex, the usual argument for the invariance of the Euler class works 
here to prove that this r'(C,m) is independent of the choice for w. 
Similar reasoning shows that r'(C, m) is independent of the choice of A 
provided that projection maps A surjectively onto cokerne^Ay) for all 
y G ZQ. (Indeed, to compare the weight assignment for different A's, it 
is enough to consider the assignments for the case where A C A'. In this 
case, /CA sits in /CA' as a submanifold. Furthermore, the composition of 
(1 — Q A ) with the differential of ipA' defines an isomorphism, £>A,A'? from 
the normal bundle of /CA to A'/A. This implies that the Euler class as 
computed using /CA' is the product o f tha t using /CA with ± 1 ; where the 
sign is determined by whether PA,A' preserves or reverses orientations. 
It is left as an exercise to verify from the definition in Part 3 that PA,A' 
preserves orientation.) 

To summarize, the preceding has defined a weight assignment, 
r'(C, m) for the case where the data (C, N, m, v, ß) satisfy the following 
property: When / : C —> C is a holomorphic covering map for degree 
m or less, then the corresponding operator D' has trivial cokernel. 

Part 3. This part summarizes the properties of the weight 
assignment that was just defined. For this purpose, consider 

Propos i t i on 2.12. Let y denote the Frechet space of 5-tuples 
(C, N, m, v, ß) where C is a torus with a complex structure; N is a 
topologically trivial, holomorphic line bundle over C; m is a positive 
integer; v is a section over C ofT0,1C; and ß is a section over C of 
N2 (g) T°>lC. Let y' C y denote the subset with the following property: 
The operator D' on any holomorphic, 2-sheeted covering f : C —>• C has 
trivial kernel. Then, for any positive integer m, the weight assignment 
r'(C,m) given in Parts 1-3, above, for ZQ extends to data points in y' 
to define a locally constant map from y' to Z. 

Proof of Proposition 2.12. It is left as an exercise using perturba­
tion theory to prove that r'(C,m) given in Steps 1-3 defines a locally 
constant, Z-valued function on the subspace y" C y of the 4-tuples 
(C, N, v, ß) with the property that the operator D' has trivial cokernel 
for any holomorphic cover / : C —> C of degree m or less. However, 
y" C y' and Lemma 5.13 in [26] imply that this inclusion identifies the 
path components of the two spaces. 
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Part 4. Proposition 2.10 insures that the count for (1.5) can be 
interpreted as a count of elements in % with appropriate weights. The 
following proposition summarizes: 

Proposition 2.13. The conclusions of Proposition 2.10 can be 
strengthened to include the following: When h G %, define the weight 

q'(h) = e(cr) • nfe:TOfc=ir(Cfc, 1) Uk:mk>1r'(Cki mk). 

Here, r(Ck,l) is defined as in Part 5 of Section le, while e(a) is 
defined as in Part 6 of Section le, and r'(Ck,mk) is defined in Parts 
1-3 of this subsection. Then the integeral in (1.5) is equal to ^^^'(h). 

This proposition is proved in Section 7. However, it is timely here 
to sketch how the proof goes. 

Part 5. The sketch of the proof of Proposition 2.13 requires 
a digression to present a rather formal reinterpretation of the compu­
tation in (1.5) as a computation for an Euler class of a vector bundle 
over a finite dimensional manifold. Here is the idea: A finite dimen­
sional manifold Y C (Conn(JB) x C0 0(5+)) /C0 0(X; S1) will be called a 

(r) "Kuranishi model" for the /J,Q = 0 version of Ai^ Q when the following 
conditions are satisfied: 

• Y has compact closure. 

• A neighborhood of Ai^ Q in MSr' is contained in Y. 

• If S G M.(r> n Y, then the kernel of L= is a subspace of TY|=. 

(2.26) 

With regard to the third point, remember that the tangent space to 
{Corm{E)xC00{S+))//C00{X;S1) at S has a natural identification with 
the vector space of (a', (a',/3')) G « • O1 $ C°°(S+) which give zero in 
the top line of (2.6). Thus, kernel(L=) is naturally a subvector space in 
this tangent space. 

Next, introduce the subspace Yr,n C Y of (a,(a,ß)) for which 
a_ 1(0) contains each point in Q and intersects each 7 G T. Say that 

(r) 
y is a "regular Kuranishi model for M^ Q when 

• If S = (a, (a, ß)) G YY£I, then a_ 1(0) intersects each 7 G Y exactly 
once, and at a point where V « | T 7 7̂  0. 
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• If S = (a, (a,ß)) G îr ,n, introduce the vector space V as in (2.8) 
and define the homomorphism G : TY\w —> V as follows: Assign to 
(a',(a',ß')) G TY|= the vector whose component in E\x is a'(x) 
and whose component in E\q/Va(Tj\q) is the projection of a'(q). 
Then, require that G be a surjective. 

• YT,Q, is a smooth, codimension 2d submanifold of Y. 

(2.27) 

Note that the third point above follows from the first two using the 
implicit function theorem. In fact, TYr,n|s is equal to the kernel of the 
homomorphisms G. 

The relevance of the Kuranishi model to the computation of (1.5) 
stems from the following proposition: 

(r) 

Proposition 2.14. Let Y be a regular Kuranishi model for M^Q. 
Then there exists: 

• A canonical, dim(Yr,n) -dimensional vector bundle W —> Yr,n with 
fiber metric. 

• A canonical orientation for the virtual vector bundle TYptn — W. 

• A canonical section wofW^- Yr,n such that io_1(0) = M^ìì-

Furthermore, this data has the following significance: Let w' be any 
section of W such that: 

• w + w' have only transversal zeros, 

• \w'\ < \w\ on the compliment of a compact subset which contains 

Then w + w' has finitely many zeros; each zero has a weight in {±1} 
which is +1 if the differential of w + w' is orientation preserving and 
— 1 otherwise; and the sum of these weights is equal to the integral in 
(1.5). 

(Note that the standard arguments for the invariance of the Euler 
class apply here to prove that the just described weighted count of the 
zeros of w + w' is independent of w' subject to the given constraints.) 

This last proposition is proved in Section 4. 
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End the digression. 
The notion of a Ku 

relevant precisely because a neighborhood 

(r) The notion of a Kuranishi model for the /ZQ = 0 version of A4 r n is 

(2.28) Y C U^ A r ( x f e 4 f e ) ) 

of U/t̂ /'̂ "r(0) is just such a regular Kuranishi model when r is large. This 
is guaranteed by (2.22) and Proposition 2.10. Thus, to prove Proposition 
2.13, it suÆces to prove the following is true when r is large: For each 
h G T-L, there is an open neighborhood Oh C Y/j of ip^r(0) and 

• There is a bundle isomorphism $ : ^*h rW —> Oh x (xkAk). 

• A certain pair of orientations of TO/, - 0 / , x (XAAAO agree. The 
first is induced via $ using the orientation given in Proposition 
2.14 for TYh - ^*hrW. The second is defined as follows: First, 

(k) 

write Yh = Xk:mk>ifc-A a s m Proposition 2.10. Then, orient each 
of the mk > 1 versions of TK,A — 1CA x A& with the orientation 
given in Part 1 of Subsection g, above. Finally, take the induced, 
product orientation for the virtual bundle Töh —Oh x

 (XÄAÄ;) and 
multiply by e(a) • Uk:mk=1r(Ck,l), where each r(Ck,l) = ±1 is 
defined in Part 5 of Section le using r^ = {7 G V : 7 fi Ck 7̂  0 } , 
and e (a) is defined in Part 6 of Section le. 

• The Euler number computed from a perturbation of $ • ^*h rw is 
identical to that which is computed from a perturbation of the 
map ipr of (2.21). (Note that both maps to x^A^ have the same 
zero set.) 

The Euler number which is computed by ipr in (2.21) gives the 
weight for h in Proposition 2.13. 

(2.29) 

h) The final arguments 

Given now Proposition 2.13 (or, if one is fortunate, Proposition 
2.11), the equality between SW and Gr follows from the next propo­
sition: 

Proposition 2.15. Let C be a holomorphic torus, m a positive inte­
ger, N a topologically trivial, holomorphic line bundle over C,u a section 
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ofT0,1C and m a section of N2 ®T0,1C. Suppose that {C,N,m,v,n) 
are such that the operator D' has trivial cokernel in the case where 
f : C —>• C is a holomorphic covering of degree m or less. Define 
r'(C,m) as in Proposition 2.12. Reintroduce r(C,m) as defined in the 
m > 1 case of Part 5 of Section le. Then r(C,m) = r'(C,m). 

Proof of Proposition 2.15. The proof is arranged into four steps. 

Step 1. Suppose that C is a complex torus, N —> C is a holo­
morphic line bundle, v is a section of T0,1C, and /z is one of N2 (g)T°'1C. 
Suppose that the data (C, N, u, /z) lies in the space y' of Proposition 
2.12. Introduce the formal power series 

(2.30) f{C;z) = l + Xm>1r'(C,m)-zm. 

Apriori, f(C;z) depends on the complex structure of C, the holo­
morphic structure on C's normal bundle N and the pair (u, /z). However, 
according to Proposition 2.12, this power series is locally constant on 
the components of the space y'. This is to say that (2.30) defines a 
locally constant function from y' into the space of formal power series. 

Step 2. Consider the case where X = T 4 , the 4-torus, with 
its symplectic structure which comes by writing T 4 = M 4 /Z 4 and then 
pushing forward the form to = dxl A dx2 + dx3 A dx4 from a funda­
mental domain in M4. Fix an w-compatible almost complex structure 
J. Let e be the cohomology class on T 4 which is Poincaré dual to the 
2-torus which is defined setting x3 and x4 to zero. When m i s a posi­
tive integer, let J[m] denote the set of connected, pseudo-holomorphic 
submanifolds whose fundamental class is Poincaré dual to m • e. (Since 
T 4 has trivial canonical bundle, the adjunction formula guarantees that 
each such manifold is a torus.) It follows from Proposition 5.2 in [26] 
that the each J[m\ is finite when J is chosen from an appropriate Baire 
subset of w-compatible, almost complex structures. With the preceding 
understood, introduce the formal power series 

(2.31) p{z) = n m >!n c e < 7 [ m ] f(C; zm). 

Step 3. The Seiberg-Witten invariants for T 4 are all known; 
the only non-zero invariant is the class 0 G K2{X\12). This implies, via 
Proposition 2.13, that P(z) = 1. This is to say that P{z) is, infact, 
independent of the precise choice for the almost complex structure J 
(as long as the latter is suitably generic). 
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On the other hand, as J is changed, elements will appear in J[m] 
and also disappear. A limited example of this phenomena is described 
in Section 6 of [26]. In particular it is not hard to prove that one can 
obtain, by varying J, a torus C which realizes any given component of 
the space y' in Proposition 2.12. 

Now, according to Lemma 3.1 in [26], the space y' is the compliment 
in y of a codimension 1 variety, V. Then, the equality P{z) = 1 forces 
relations on the polynomials f(-,z) which are assigned to components 
of y' which sit on opposite sides of a codimension 1 s t ra tum of V. These 
relations can be discerned by repeating (word for word) the analysis in 
Section 5e of [26]; they are precisely those in (5.26), (5.29), (5.30), and 
(5.31) in [26]. 

S t e p 4. As remarked in [26], the relations in (5.26), and (5.29-
31) of [26] determine P(- , z) on y' uniquely in terms of its value on the 
component ^o C y' where ßQ = 0. (Lemma 3.1 in [26] asserts in part 
that the condition /J,Q = 0 singles out a unique component of y'.) 

Fortunately, the value for f(-,z) on this component can be computed 
explicitly. Indeed, on such a component, the space ZQ for a given m is, 
according to (2.17), the vector space 

®i<q<mkernel(B + q • v : C°°(Nq) -+ C°°(Nq <g> T°^C). 

If v is chosen in a suitably generic fashion, then each of the kernels in 
question will be trivial and so, for each m, the space ZQ will consist of 
a single point. Furthermore, the operator in (2.18) is invertible for the 
generic v when ß = 0, so the single point in ZQ will be a regular point. 
Also, the operator in (2.18) in this case is already C-linear, so Part 1 of 
Section f, above, asserts that r'(C, m) = 1 for all m. Therefore, f(-,z) on 
^o is equal to (1 — z)~l. According to the discussion surrounding (5.32) 
in [26], this implies that r(-,m) = r'(-,m) for all m on all components 

ofy. 
i) S u m m a r y 

To summarize: The proof of Theorem 1 is completed with proofs of 
Proposition 2.1 in Section 7, Proposition 2.7 in Section 3, Proposition 
2.10 (just the final assertion) in Sections 5 and 6, Proposition 2.13 in 
Section 7, and Proposition 2.14 in Section 4. 

3. ZQ and compactness : T h e proof of Propos i t i on 2.7 

This section serves as a digression of sorts to prove Proposition 2.7. 
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If the reader is willing to take Proposition 2.7 on faith, then the reader 
can skip ahead to Section 4. For the reader who is continuing in this 
section, the milieu is primarily that of Proposition 2.7. 

The proof of Proposition 2.7 is reduced in the first subsection below 
to a corollary of a pair of auxiliary propositions. The proofs of these 
two propositions then occupy the remainder of this section. 

a) N o n c o m p a c t n e s s in ZQ 

Suppose that C is a connected, complex curve; n : N —> C is a 
holomorphic line bundle with hermitian metric; v is a section of T0 '1«? 
and ß is a section of N2 (g)T°'1C. The data C, N, v, and /j,, plus a positive 
integer m, is sufficient to define the subspace ZQ C C°° (®i<q<mNq) as 
described in Section 3 of [28]. In this regard, remember that ZQ consists 
of sections y = ( y i , . . . , y m ) which obey an equation of the form given 
in (2.7). 

The first lemma below describes, in part the behavior of non-compact 
subsets of ZQ. The statement of this lemma requires a short, four part 
digression. Part 1 of the digression introduces the tautological section s 
of n*N —> N which assigns each point to itself. Part 2 of the digression 
is to introduces a certain almost complex structure J on the total space 
of N. This J is defined by the condition that Tl,0N is locally spanned 
by the 7r-pull-back of forms in Tl,0C and by VQS + H*V-S + H*ß-s.. Here, 
Vg is the unitary connection on N which is defined by the holomorphic 
and hermitian structures. 

Part 3 of the digression introduces the function, R, on C°° (®i<q<mNq) 
which sends y to 

(3.1) R[y}= sup sup K l 1 / " . 
C l<q<m 

Part 4 of the digression introduces the map 

p : C°°(C; ©i<g<mJV«) - • C°°(7V; TT*Nm) 

which assigns to y = ( y i , . . . , ym) the section 

(3.2) p[y] =sm + n*yi • sm~l + ••• + n*ym. 

Propos i t i on 3 .1 . Let C be a connected, compact complex curve 

and let m > 0 be an integer. Let N —>• C be a holomorphic, hermitian 

line bundle and let (u,fj) G C°°(T°'lC © (N2 <8>T°^C)). Use this data 
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to define the space ZQ. Let {yj = (yji,... ,yjm)}j=i,2,... C ZQ be a se­
quence with the property that the set {Rj = R[Vj]}j=i,2,... is increasing 
and unbounded. For each j , define S j C N to be the set of points 
n G N where p[yj](Rj • rj) = 0. Then there is a compact, complex 
curve C, a J-pseudo-holomorphic map ip : C —>• N which does not 
factor through C, and an infinite subsequence (hence renumbered con­
secutively) of {Sj} with the property that the (subsequence) {Sj} con­
verges as j —> oo as integral currents in N to the current fCiP*(-)-
Furthermore, this convergence is pointwise in the sense that 

{sup{dist(77, ip(C')) + dist(E j 5 rj) : 7] G S j 

and rj G </?(C")}}j=i,2,... 

converges to zero as j —> oo. 

The next proposition considers the possibilities for C and ip when 
C is a torus and where N is the trivial bundle. 

Propos i t i on 3.2 . Let C be a torus and suppose that N is topologi­
cal^ trivial. Fix the data {v,n) G C°°{T°>lC®N2 <^T°^C). Let S C N 
be the image of a compact, complex curve by a non-constant, pseudo-
holomorphic map. Then S is an embedded, J-pseudo-holomorphic torus 
in N which represents a non- zero multiple of C in H2(N; Z) = Z. Fur­
thermore, 

• The embedding S C N gives E the structure of a complex curve, 
C", for which the tautological inclusion into N is pseudo- holo-
morphic. Then, the compostion of the projection n : N —> C 
with the tautological inclusion defines a holomorphic covering map 
f-.C'^fC. 

• There is a not identically zero section h of the bundle f*N —> C 
which obeys dh + (f*u) • h + (f*ß) -h = 0. 

• The tautological inclusion of C into N is also obtained by com­
posing h with the tautological map from f*N to N. 

Proof of Proposition 2.7. The proposition is an immediate corollary 
to the preceding two propositions. 

The next six subsections contain the proof of Proposition 3.1. The 
subsequent subsection contains the proof of Proposition 3.2. 

b) A vor tex digress ion 
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Of necessity, the proof must exploit the properties of (2.7) whose 
solutions comprise ZQ. In this regard, remark that the complications 
in the proof stem from the F term in (2.7) and the fact that the latter 
is not known (for m > 1) explicitly. However, the F term is obtained 
by considering the original characterization of ZQ in Section 3 of [26] 
as a space of sections over C of a fiber bundle whose typical fiber is 
the moduli space of solutions to the vortex equations on C. Thus, the 
proof of Proposition 3.1 requires an unavoidable return to the vortex 
story of Sections 2b,c and 3 of [26]. In particular, each solution to (2.7) 
determines (via Proposition 3.2 in [26]) a solution to (3.5) in [26] and 
vice-versa. The proof of Lemma 2.7 will exploit, for the most part , the 
version of ZQ as the space of solutions to (3.5) in [26]. The reader may 
wish to consult Sections 2b,c and 3 of [26] to review this whole story. 
Also, the notation below is borrowed freely from these same sections of 
[26]. 

The proof of Proposition 3.1 comprises seven steps. This subsection 
contains the first step, which is a digression to establish some useful 
technical estimates about vortices and points on C. The first lemma 
below summarizes facts about vortex solutions on C. The second lemma 
summarizes a clustering property of points in C. 

Lemma 3.3, below, introduces the moduli space CTO of solutions to 
(2.4) in [26] on C with vortex number m. Given such a solution c = 
(V,T), the lemma also introduces the operator 0 C as described in (2.12) 
of [26]. In the statement of the lemma, the vector space kernel(0 c) 
consists of elements which are anihilated by 0 C and are square integrable 
on C. 

L e m m a 3.3 . Fix m > 1 and there is a constant Ç such that the 
following is true: Let c = (v, r ) G Cm . At each rj G C, one has 

. ( l - | r | 2 ) < C - S A : T ( A ) = 0 e - l " - A ^ . 

• | V „ T | < C - ( 1 - | T | 2 ) . 

• / / ( a , « ) G k e r n e l ( e c ) , ^ e n | ( a , a ) | < C - | | ( a , a ) | | 2 E A : T ( A ) = o e - l " - A l ^ 

(3.4) 

Furthermore, suppose that A G C and r > 1 have the property that \r] — X\ 
is either less than r or greater than 5r whenever rj is a zero of r . Let 
X\,r denote the function on C whose value at r] is x(|ry — A|/2r). Then 
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there exists an element w G kernel(0 c) which has the form 

(3.5) w = XA,r((2V2)-1(l - \T\2)dfj, [dvr])) + «/ , 

where w' obeys \\w'\\2 < C e _ r • 

The next lemma will be applied to the points in the set T _ 1 ( 0 ) . 

L e m m a 3.4. Fix m > 1 and n > 1. Then, there exists Ç > 1 with 
the following property. Let A C C be a set of m points. Let r > 0 
be given. Then there exist Ç' G (1,C) and o, decomposition of A as the 
disjoint union of non-empty subsets {Aj} with the property that: 

• diam(Aj) < Ç'r, 

• dist(Aj,Afe) > nÇ'r. 

The remainder of this step is occupied with the proofs of these two 
propositions. 

Proof of Lemma 3.3. For the first assertion in (3.4), note that 
Lemma 4.9 in [27] finds a constant Ç such that (1 — | r | 2) is bounded 
by ö > 0 at points where the distance to any zero of r is greater than 
Ç/ô. It then follows from (8.1) and (8.2b) of [6] that there is a constant 
Ç > 1 with the property that the function u = 2 _ 1 • (1 — | T | 2 ) obeys 
the equation d*du + 8 _ 1 • u < 0 at points with distance greater than Ç 
from r _ 1 ( 0 ) . With this last point understood, deduce the first line of 
(3.4) using the comparison principle with the Greens function for the 
operator d*d + 8 _ 1 with poles at the zeros of r . (Remember that when 
K > 0, the Green's function with pole at A for the operator d*d + K2 on 
C is bounded at by C • e_Kl ' '_Al/^ at points r\ G C with \n — A| > 1.) 

The second assertion in (3.4) is (8.2c) in [6]. To prove the third asser­
tion in (3.4), note first that standard elliptic regularity theorems provide 
a c-independent bound for s u p c | ( a , a ) | by a c-independent multiple of 
11(a, CK)112- To obtain a pointwise bound, the Bochner-Weitzenbock for­
mula for &C&C will be employed to obtain a differential inequality for 
|(a, a ) | . It follows from this Bochner-Weitzenbock formula, (3.4.2), and 
Lemma 4.9 in [27] that there exists a c-independent constant Ç which is 
such that u = \(a,a)\ obeys d*du + A~l -u < 0 at points with distance Ç 
or more from T - 1 ( 0 ) . Given the preceding, use the comparison principle 
with the Green's function for the operator d*d + 4 _ 1 with poles at the 
zeros of r. 
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To prove (3.5), first use (3.4) to conclude that 

(3.6) | e c (x . ( (2 v
/ 2)- 1 ( l - \r\2)dfj, [dvr}))\ < ( e " ^ . 

Meanwhile, I/2-orthogonal projection finds w G kernel(0c) and a unique, 
L\ element w" such that 

(3.7) x.((2V
/2)-1(l - \T\2)dö, [dvT]) = w + Q\w". 

Take the L2 inner product of (3.7) with Q'cw" and integrate by parts 
where appropriate to conclude (using (3.6)) that 

||ey|||<c-e-^-|K'||2. 
Meanwhile, the Bochner-Weitzenboch formula in (2.13) of [28] implies 
with (3.4) that | | 0 ÏM/ ' | | 2 > ( _ 1 • H^'lk where Ç > 1 is independent of 
c. These last two inequalities imply (3.5). 

Proof of Lemma 3.4- The construction of the subsets {Aj} involves 
iterating the "basic clustering construction". The basic clustering con­
struction takes as input a number r\ and gives as output a partition of 
A into non-empty subsets {Aj(ri)} with the property that the diameter 
of each Aj(ri) is less than m-ri , and with the property that when j ^ k, 
then the distance between Aj(ri) and A^(ri) is greater than r\. Given 
that such a "basic clustering construction" exists (see below), here is 
an iterative algorithm which constructs the data for Lemma 3.4: The 
starting value for r\ on the first run through is r. The iteration for the 
algorithm increases the value of r\ to 2 • n • m • r\ on the subsequent run. 
Anyway, here is the generic run: Given r\ > r, invoke the basic cluster­
ing construction to create {Aj(r\)}. If it is the case that the distance 
between Aj(r) and A^(r) is greater than n • m • r\ for all j ^ k, then 
stop and set Ç' = m • r\/r and {Aj} = {Aj(r\)} for use in Lemma 3.4. 
Otherwise, rerun the "basic clustering construction" using 2n • m • ri for 
the new value of r\. 

This algorithm must terminate after m steps because the number 
of elements in the partition of A as UjAj(-) for a given run is at least 
one less then that of the previous run. Here is the basic clustering con­
struction: Define an equivalence relation on the points of A by asserting 
that 7] ~ rj' when there is an ordered subset {r/i,... ,r]p+i} C A such 
that r]i = r], r/p+i = r/', and \r/j+i — Ì]J\ < ri for all j G { 1 , . . . ,p}. Let 
{Aj(ri)} denote the set of equivalence classes. It follows that these sets 
partition A. Furthermore, diam(Aj(ri)) < m • r\. 
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c) "Renormalized" sections of Nq. 

This subsection constitutes Steps 2 and 3 of the proof of Proposition 
3.1. Suppose that y G ZQ, and set R = R[y]. Given z G C, let k(z) 
denote the zeros of the restriction of p[y] to n~l(z). Given A G A(z), let 
m (A) denote the multiplicity of A as a zero of p[y] on •K~1(Z). Given the 
preceding, introduce, for each q G { 1 , . . . , m}, the section hq[y] of Nq 

whose value at z is 

(3.8) hq[y] = SAeA(z)m(A) • (\/R)q. 

Note that hq[y] is a smooth section with smooth dependence on y. (For 
example, h\ = yi/R, h<i = R~2 • ((yi)2 — 2 • y2), and in general, hq is a 
polynomial function of y.) 

Lemma 3.5. Given q > 1, t/îere is a constant Ç > 1 utì/ì i/ie 
following significance: Let y G ZQ, construct hq = hq[y] as in (3.8) and 
then the following are true: 

• |ô/ lg + SAeA(z)çm(A)(A/i?)"-1(^A/iî + /uA/^)l <CR- 1 / 2 -

• / \Vehq\
2<Ç 

e 

• Let z,z' G C and let PZjZ> : Nq\zi —> Nq\z denote the parallel 
transport along some shortest geodesic. Then 

\hq(z)-PZjZ,hq(z')\<C-diSt(z,z')1/2. 

(3.9) 

The remainder of this step and Step 3 are occupied with the 

Proof of Lemma 3.5. Given the first line in (3.9), it follows that 
\dhq\ < C- The second line follows from this last inequality after in­
tegrating \dhq\

2 over C and then integrating by parts. The third line 
also follows from the bound \dhq\ + \hq\ < Ç using standard regularity 
estimates for the 9-operator. Thus, it remains only to verify the first 
line of (3.9). This occupies Step 3 of the proof of Proposition 3.1. 

Step 3. The verification of the first line of (3.9), proceeds as 
follows: To begin, use y to parameterize a solution, c(y), to the vortex 
equations in each fiber of N as in Proposition 3.2 of [28]. Indeed, after a 
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choice of C-linear identification of a fiber with C, the vortex c(y) = (V,T) 
is determined from p[y] by the formula 

(3.10) (v, T) = (du - dû, p[y]e-u) . 

Here, u is a complex valued function on C whose real part is the unique, 
real valued function on C which solves the equation 

(3.11) i • ddRe{u) = 8" 1 * (1 - | p | 2 e - 2 R e W ) 

on C with the asymptotic condition 

Re(w) = m • In \r)\ + o(l) 

as \r)\ —> oo. Meanwhile, the imaginary part of u is chosen (in part) so 
that at points r] G C with |r?| 3> R, then r = f •i]m where / is a positive, 
real valued function. (In (3.10) and (3.11), p[y] is viewed as the m ' t h 
order polynomial r\m + y\ • r\m~x + • • • + ym on C.) 

Note that (3.11) guarantees that (V,T) obeys the vortex equation 
(see [30]) 

• i • dv = 4 " 1 * (1 - | T | 2 ) , 

• BT + vot\T = 0, 

(3.12) 

where i>o,i = du is the (0,1) part of the 1-form v. 

Next, remark that hq can be obtained directly from r using the 
identity in (2.6.3) of [28]. To be precise, 

(3.13) hq[y]\z = {^rlR-q f ^ ( 1 - | T | 2 ) . 
N\Z 

With (3.13) understood, compute dhq by passing the derivative under 
the integral. The result is 

(3.14) dhq = {%ix)-1R-q I sqdH(l - | r |2) . 
N\Z 

Here, dH is defined as a certain horizontal derivative which is defined 
by the hermitian connection 6 on N. To be precise here, consider a 
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local trivialization for N with fiber coordinates 77 £ C. Then d sends 
a function / on N to 

(3.15) dHf = <ff + 0- (fj-j^ - V^j / , 

where dc is the usual exterior derivative along C. Meanwhile, because 
(V,T) obeys (3.12) on each fiber, the expression in (3.14) is equal to 

(3.16) dhq = (27r)-1iR-q [ sqdvdHv. 
N\Z 

Here, dv is the exterior derivative along the fibers of N. And, as (v, r) 
obeys (3.12) on each fiber, there is a section iponNofi- n*(T*C) such 
that (V°,T°) = (dHv + dvip, dHr — ipr) has the form ((—Wa — a),a), 
where (a, a) is a 7r*TC-valued element in the kernel of 0C on each fiber. 
Note that ip is found as the solution of a certain inhomogeneous Laplace 
equation on each fiber. The equation in question is: 

(3.17) (dv)*dv<p + 4 - 1 \T\ V - *d * (dHv) - i4-lim{fdHT) = 0. 

(With regard to the proof of existence for (3.16), keep in mind that 
(dHv,dHT) decays to zero exponentially fast along each fiber of TV.) 

Since (dv)2 = 0, the expression in (3.16) is valid with v° replacing 
dHv. Then, integration by parts (with the decay estimates from (3.4)) 
finds (3.16) equivalent to 

(3.18) dhq = - ( 4 • ^2TT)-1iR-q [ qsq-1dvs A a. 
N\Z 

Now, (a, a) are 7r*TC-valued; so the decomposition 

T*C(g)C = T 0 ' 1 C©T 1 ' 0 C 

induces the decomposition (a,a) = (ao,i?«o,i) + (oi,0)^i,o)- With this 
understood, dhq is given by (3.18) but with ao,i replacing a. The fact 
that ao,i determines dhq is fortunate because, (ao,i?«o,i) is determined 
directly by the defining equation for ZQ. More precisely, (ao,i,ao,i) 1S 

determined by the vortex picture version of (2.7) which is equation (3.5) 
in [28]. In particular, according to (3.5) in [28] and (3.4.3), at a point 
7] £ ir~l(z), the norm of (ao,i?«o,i) is no greater than 

(3.19) 1(00,1,00,1)1 < C#£ A e J V U : r ( A ) = o e - l " - A ^ . 
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It thus follows from (3.18) that 

(3.20) \dhq\<Ç. 

To proceed further, fix z G C and invoke Proposition 3.2 using 
r = yjR, n = 10 and A = A(z) = p[y]_1(0) n N\Z. Let {Aj} denote the 
resulting partition of A[z]. And, for each j , let dj denote the diameter of 
Aj. Let £j denote the center of mass of Aj, and let nij denote the sum 
of the multiplicities of the points in Aj. 

Reintroduce a standard bump function, x '• [0, oo) —> [0,1] which is 
non- increasing and which equals one on [0,1] and zero on [2, oo). Then, 
use dj to promote x to the function Xj on N\z whose value at a point 77 
i s X ( | ? ? - 0 l / 2 - d j ) . 

With the preceding accomplished, Lemma 3.4, (3.18), (3.19) and 
Taylor's theorem with remainder imply that 

(3.21) 9/ig + S j ( V 2 7 r ) _ 1 î i 2 _ 9 / (xjqsq~1dvsAa0>1) 
N\Z 

<C,e VR/C 

that 

(3.22) 

(3.23) 

uws iiuii i yo.-LZ), yo.^-L) ai iu une uuui iu un u i a n n 

\3hq--Zjq(Çj/R)<'-1bj\<<:R-1/2, 

bj = - ( 4 • y/2it)-liR-1 I XjdVs A a0,i. 

1V3 

It remains as yet to identify bj. For this purpose, it is convenient to 
rewrite (3.23). The first step in this process only simplifies the notation. 
For this step, choose a C-linear, hermitian identification of N\z with C 
so that s can be replaced by the complex coordinate 77 G C. And, all 
derivatives will henceforth denote derivatives along C unless explicitly 
noted otherwise. 

The second step in rewriting (3.23) inserts the identity 

1 = 1 - | T | 2 + |T |2 

in front of ao,i. The resulting equation for bj is: 
(3.24) 

6, = - j r ' ( 2 * ) - ' < / * ( ^ ( i J)dr] A ao,i + | r | dr\ A ao,i . 
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This last equation is further modified by using the fact that (ao,i, ao,i) 
are annihilated by 0 C to write r • ao,i = —2 • ^/2 • ò\,ao,i. With this 
understood, (3.24) becomes 
(3.25) 

bj = -R~1(2TT)~1Ì / Xj f r 7 ^ ( 1 ~ lT|2)rf?? A ao,i - Td'q A dva0,i J . 

Next, integrate by parts on the second term under the integral in (3.25) 
to write the latter as 

bj = - R-\2n)-li j xj ( ^ = ( 1 - \A2)dr, A a0,i 

(3.26) + [5vf] a0,idr] Adfjj + ei , 

where |ei | < Ç • e~vRli>. 

The next step in the rewriting of (3.23) invokes (3.5) to conclude 
that there exists an element w G kernel(0 c) which differs from 

Xj-(^-(l-\r\2),[dvr}) 

by some w' with 1? norm bounded by Ç • e~vR'^. Thus, bj differs from 

(3.27) - R - \ - x f{w,(a0>1,a0>1)) 

by no more than Ç • e~vR/Ç. Here, (, ) denotes the Hermitian inner 
product on T 0 ' ^ © C. 

To procede, introduce (i>o2?Toi) a s m (3-5) of [28]. Then (3.27) is 
equal to 

(3.28) -R-^-1 f (w^vlo^o)), 

since (fo2?Toi) differs from (00,1,010,1) by an element in the image of 
0 C , and w is I/2-orthogonal to all such elements. 

Now, according to (3.5) of [28], the expression in (3.28) is equal to 

(3.29) - R - \ - x j (w, {yr) + M) ( ^ = ( 1 - | r |2 , [5„r])) 

And, the latter differs from 

(3.30) - R - \ - 1 / x i ( ^ + w ) ( 8 - 1 ( l - | r | 2 ) + |ö„r |2) 

e 
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by no more than Q-e v-R/C. (Use (3.5) here.) Then, it follows from (3.4) 
that (3.30) differs from 

(3.31) - ( ^ 7 ^ + ^ ( 0 / ^ ) ) TT"1 / x ^ S - H l - b f ) . \9VT\2) 

by no more than Ç • R~1'2. Finally, integration by parts (using (3.12)) 
plus (3.4) establishes that the integral in (3.31) (with the factor of n~l) 
differs from 

(3.32) ( S y r ) " 1 / Xj(l-\r\2) 
N\Z 

by less than Çe~vR'1'. This last integral is within CR-1'2 ofrrij. Indeed, 
this follows from (3.12) using (3.4.1) and (3.4.2) plus the fact that r / | r | 
has winding number nij on any circle with center £j and radius between 
2 • dj and 4 • dj. 

Thus, (3.31) implies that bj = nij • (v • (Çj/R) + ß • (£j/R)) plus a 
term whose norm is no greater than CR-1'2. In particular, this means 
that 

(3.33) Bhq = -Zjq^/RY^mj {v(£j/R) + » fa/R)) + e, 

where |e| < CR-1'2. The first assertion in (3.9) then follows from (3.32) 
by invoking the definition of £j as the center of mass of the points in 
A,-. 

d ) T h e se t S 

This subsection defines the set S and constitutes Step 4 of the 
proof of Proposition 3.1. To begin, let {yj} C ZQ be as described 
in Proposition 3.1. For each index j , construct the m-tuple h[yj] = 
(hi[yj],... ,hm[yj]), where hq[-] is given by (3.8). It follows from the 
final assertion of Lemma 3.5 that the sequence {/i[yj]} is equicontinu-
ous, and thus there is a subsequence (hence relabled consecutively) such 
that {/i[yj]} converges pointwise and uniformly on C to a Holder con­
tinuous (with exponent 1/2), Sobolev class L2 section h = (hi,... , hm) 
of ®i<q<mNq. 

With h understood, introduce 

y = (yi,--- ,ym) 

of ®i<q<mNq where y is such that the zeros, { A J } K J < T O G Symm(iV), 
of 

P[y] = sm + yis™-1 + ... + ym 
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satisfy SjA^ = hp. (Note that 

Vi = hi,y2 = 2~1(hj -h2),... 

and, in general yp is a polynomial function of {/i}p'<p.) Note that y is 
Holder continuous also, and Sobolev class L\. 

It follows from the first assertion of Lemma 3.5 that the relabled 
sequence {Sj} converges pointwise to S E p[y]_ 1(0) as described by 
Proposition 3.1. Remark that E cannot coincide with C because of the 
pointwise convergence of {/i[yj]} to h. It follows from the definition of 
R[yj] that h cannot be the zero section. With regard to Proposition 3.1, 
it remains as yet to prove that E is the image by a pseudo-holomorphic 
map of a compact, complex curve. This task occupies the remaining 
steps of the proof of Proposition 3.1. 

e) T h e regular po ints of E 

Define the order function (a map from E to { 1 , . . . }) by declaring 
the order of a point x G E to be the order of vanishing of the section 
p at x. With this understood, call a point in E regular when the order 
function is constant on some open neighborhood of the point. A non-
regular point will also be called singular. Note that the set of regular 
points is open (by definition) and dense. (If U C E is an open set, 
let o(U) denote the minimum of the order function on U. As the order 
function is integer valued, this o(U) is achieved by points in U. Such 
points are regular because p[y] is continuous.) 

This step considers the pseudo-holomorphicity of E near its regular 
points. 

L e m m a 3.6. The set of regular points in E defines a (possibly 
non-compact) pseudo-holomorphic submanifold of N. 

Proof of Lemma 3.6. Let i b e a regular point of E of some order 
b. Then x has a neighborhood in E which is the graph of a Holder 
continuous, Sobolev class L\ section, t, of N over an open set in C. Also, 
dt has bounded norm. (This all follows directly from the assertions in 
Lemma 3.5.) With this last point understood, Lemma 3.6 is reached by 
proving that Dt = dt + v • t + ß • t = 0. Thus the proof of this assertion 
follows. 

Let B be a small, open, convex ball with center ir(x) on which t 
is defined. By shrinking B if necessary, one can assume that there 
exists 8 > 0 such that at each z G B, the distance between t(z) and its 
compliment in E n N\z is greater than S. Furthermore, one can assume 
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that the distance between t(z) and the parallel t ransport of x along a 
short geodesic in B is no more than #/16. (Remember that t is Holder 
continuous.) 

The polynomial p[y](s) = sm+yi-sm~1 + - • •+ym factors as (s—t)b-p\ 
where pi(t(z)) ^ 0 for all z G B. Note that p\ is also Holder continuous; 
and BHpi has bounded norm. 

With the preceding understood, consider the section q of TT*N over 
N\B which is given by 

(3-34) q = 3s{-p^W-3M^)-
Here, t is not distinguished from its pull-back by n to N. Note that 
q(t) = t and q(£) = 0 if £ G E — Image(t). Also, if z G B is fixed, then 
q defines a polynomial function on N\z of the tautological section s of 
•K*N over N\z. In this regard, the derivative, g', of q with respect to s 
obeys g'(t) = 1 and q'(£) = 0 if £ G E - Image (t). 

From the definition of E and the first assertion of Lemma 3.5 it 
follows that t is the C0,1'2 and L\ limit of the sequence of sections {tj} 
of N | (J where 

(3.35) tj(z) = (8ir)-1R-1 [ g(i?[c J]"1s)(l - | T J | 2 ) . 

Thus by the second assertion of Lemma 3.5 and the stated properties 
of q', \dtj + vtj + /itjl converges to zero as j tends to infinity. This last 
fact proves the lemma. 

f ) T h e s ingular po ints of E 

This subsection argues that E contains only finitely many singular 
points. The argument here constitutes Step 6 of the proof of Proposition 
3.1. 

It is suÆcient to prove that there are finitely many singular points in 
the restriction of E to •K~1(B) where B is any small disk in C. To begin, 
choose such a disk, and let Breg C B denote set of points z for which 
E n n~l(z) is regular. Note that Bveg is open and dense. Let B' C Bveg 

be a path component. Then n : E | ß / —> B' is a covering map. This 
means that there is a positive integer k < m such that locally on B', E 
is the image of sections {t a} a<T O with associated multiplicities {m[a]}. 
(This is to say that the polynomial p over B1 factors as n a ( s — £a) •) 
Each ta is, locally, a section of N which is annihilated by the operator 
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D. Globally, the set {ta} defines a section of the tensor product of N 
with a representation of iri(B') in a group of permutations. 

In any event, the section q' = Tla^ß(ta —tß)m^a'm^' defines a smooth 
section over B' of the appropriate power of the line bundle N. The 
significance of this q' is that it is non-vanishing on B', and that it 
extends continously as the zero section to B — B'. This extension of q' 
to the whole of B will be denoted by q. However, note that q' has a 
second extension to the whole of B in that q' is the restriction to B' of 
a section of a power of N which is obtained as products from the set 
{/ip}i<p<TO. This means, in particular, that q' has bounded L\ Sobolev 
norm over B!, and thus the extension, q, of q' by zero on B — B' has 
bounded L\ norm over the whole of B. This observation will be relevant 
momentarily. 

Since each ta is annihilated by the operator D, the section q' obeys 
a differential equation of the form 

(3.36) dßq' = w • q', 

where w is uniformly bounded on the closure of B' and smooth inside. 
It is a straightforward matter to find a continuous, Sobolev class L>\ 
function u on B which obeys the equation 

(3.37) du = w. 

With u understood, consider that e~u • q is a continuous, Sobolev 
class L\ section of N over B which satisfies 

(3.38) B(e-'uq) = 0 

on B' and is zero on B — B'. It follows that e~u • q is holomorphic in B, 
and thus the set B — B' is finite. 

g) P r o o f of Propos i t i on 3.1 

This subsection completes the proof of Proposition 3.1 with an ar­
gument that S is the image of a compact, complex curve by a pseudo-
holomorphic map. To begin, let E r e g C S denote the set of regular 
points. It follows from the previous step that E — E r e g is a finite set, 
and that each end of E r e g has the topology of a punctured disk. 

Let C'Q = S r e g . Then C'ü inherits the structure of a complex curve 
with finitely many ends, with each being a punctured disk. As there 
is no obstruction to extending a complex structure from a punctured 
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disk in C to the whole disk, C0 is naturally the compliment of a finite 
set of points in a compact, complex curve C. Furthermore, C" admits a 
tautological map, ip, into N which is continuous and whose restriction 
to CQ is its embedding as S reg. (The map (p sends C" — CQ to the singular 
points of E.) Thus, tp is pseudo-holomorphic except possibly at the finite 
number of points in C — CQ, where it is, at worst, continuous. However, 
a standard removable singularity theorem implies that ip is everywhere 
pseudo-holomorphic. 

Here is the removable singularities argument: Take a local complex 
coordinate for C near a point in C — CQ, and take local coordinates for 
N near the tp image of the given point. Then <p becomes a continuous 
map from a disk in C to C2 which obeys an elliptic equation on the 
punctured disk. Elliptic regularity theorems from, e.g. [17], can be 
used to prove that tp is smooth over the whole disk, and thus obeys 
the elliptic equation everywhere. The point is that the hard removable 
singularity theorem of Sacks and Uhlenbeck [24] is not necessary here 
— the hard part of the theorem in [24] is the proof that the map in 
question is continous. Here, p> is given as continuous. 

h) P r o o f of Propos i t i on 3.2 

There are five steps to the proof. The first four prove that E is an 
embedded torus. 

Step 1. There is a compact, complex curve E' and a pseudo-
holomorphic map (which will be called tp) from E' to N whose image 
is E and which is an embedding on the compliment of a finite set of 
points in E'. The push-forward of the fundamental class of E' is neces­
sarily a positive multiple, say q, of the fundamental class of E. Because 
the images of pseudo-holomorphic maps have locally positive intersec­
tion number, this implies that E and C are disjoint. (Remember that 
[C] • [C] = 0.) This local positivity of intersections also yields that the 
local intersection numbers between E and the fibers of N are all posi­
tive. Thus, counting multiplicity, E intersects any fiber exactly q times. 
However, as tp is mostly an embedding, the local intersections with all 
but finitely many fibers of N have multiplicity 1. 

Step 2. This step describes the local form for the map tp. For this 
purpose, remark that the composition of ip with the projection n gives 
a holomorphic map between E' and C since n is pseudo-holomorphic. 
Thus, E ' is a ramified cover of C As remarked, the points where the 
differential of tp is zero are mapped by ip to the multiplicity greater than 
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1 intersection points of S with a fiber of ir. The structure of j near such a 
point in £ ' can be seen as follows: First, there is a complex coordinate w 
on a neighborhood in E' centered at such a point, and there is a complex 
coordinate z o n a neighborhood in C of its n • y?-image such that the 
composition of ip with IT is given by z = wb where b G { 2 , . . . , q}. 

With the preceding understood, let 77 denote the fiber coordinate 
with respect to a local, d-holomorphic trivialization for N near ir(ip(p)). 
Then ip near p has the following form: 

L e m m a 3.7. Let p G S ' be a point where the differential of n • tp is 
zero. Then, there is: 

• A ball 5 c S ' with center p with a complex coordinate w (where 
0 corresponds to p). 

• A complex coordinate z for C near n • ip(p) such that n • ip sends 
w to z = wb for some b G { 2 , . . . , q}. 

• An extension of z to a coordinate system (z, n) for N near tp(p) 
such that tp sends w to 

(3.39) (z,ri) = (w\ g(w)), 

where g is a complex valued function on a neighborhood of w = 0. 
Furthermore, if a divisor k G { 2 , . . . , b} ofb has been chosen, then 
g can be written as g = go + g\ where 

a) 9o = «o + Po where ao G C — 0; and po is a function which is 
invariant under the multiplicative action on C of the group 
of k'th roots of unity. Also, |po| < C " M f c-

b) gi = a\ • wx + p i , where | p i | < Ç • \w\x+1, a\ G C — 0, and 
A G Z + is not divisable by k. 

Proof of Lemma 3.7. The existence of w and z satisfying the 
first two points above follows, as remarked, from the fact that n • ip 
is holomorphic. To explain the third point, first introduce the fiber 
coordinate r\ for N near 7r_1(0) so that T0,lN is locally spanned by 
dz and dfj + f • dz; here, / = f(z,i]) is a smooth function of z and 
7] with linear dependence on r\ and its complex conjugate. Since ip is 
supposed to be pseudo-holomorphic, both of these forms must annihilate 
the push forward by ip of d/dw. To understand the implications of this 
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requirement, introduce a function g of w by writing ip(w) = (w ,g(w)). 
With g understood, then the push-forward of d/dw is the vector field 
b-wb~1d/dz+gw-d/dr)+gw-d/df). Thus, the condition that ip is pseudo-
holomorphic translates to the following condition on the function g : 

(3.40) gw + <p*(f)bwb-1 = 0. 

In general, this last equation is an R-linear equation for the complex 
function g since <p*(f) has the form f(wb,g), which is a linear functional 
of g and its complex conjugate. It follows from the preceding remarks 
that the space of solutions to (3.40) in a small ball B about 0 is a vector 
space over R with an action of the group Z& of 6'th roots of unity. In 
particular, if k G { 2 , . . . , b} is a factor of ft, then Z& is a subgroup of Z j . 
Thus, any solution g has the form go + g\ where go is the Z^-invariant 
part, and g\ averages to zero under the Z& action. 

In the situation at hand, the first observation is that <?i(0) = 0 
because evaluation at the origin is a Z& invariant map from functions to 
C. However, Aronszajn's unique continuation principle [1] implies that 
<7i can not vanish to infinite order at 0. Thus, there exists an integer A 
which is not divisable by p and is such that 

(3.41) gi=axw
x + 0(\w\x+1), 

where a\ G C. (In general, one might expect S0<fe<A«fc ' wX~k • wk 

for the C(|it>|A) part of g\\ but only (3.41) is consistent with (3.40).) 
Furthermore, a\ ^ 0, for otherwise E would not intersect the generic 
fiber of n in the correct number of points. 

As for go, because E is disjoint from C, the function go can not vanish 
at the origin. The estimate for the size of po follows using Taylor's 
theorem with remainder in conjunction with (3.40). 

Step 3 . This step uses Lemma 3.7 to perturb ip so that the 
resulting map, ipi, is an immersion with some special properties. The 
following lemma summarizes: 

L e m m a 3.8. Given a positive integer k and e > 0, there is a smooth 
map ipi : E ' —> N with the following properties: 

• pi is homotopic to ip and agrees with the latter on the compliment 
of radius e balls about the singular points. In general, p\ is e close 
to ip in the Ck topology. 

• tpi is an immersion where pairs of sheets intersect transversely 
with only positive double points. 
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• J followed by orthogonal projection defines a homomorphism J\ 
on TT.' whose square is e-close to — 1. 

Proof of Lemma 3.8. Introduce a bump function x on [0, oo) which 
is non- increasing, 1 on [0,1] and 0 on [2, oo). Given e as in the lemma, 
and given ei G C — 0 with |ei | small, per turb ip near w = 0 to 

(3.42) Wim) = (w\elX(2\w\/e)w+g0+g1). 

This perturbation has support where \w\ < e. A homotopy between ipi 
and ip is obtained by replacing e\ in (3.42) by t • e\ and letting t run 
between 0 and 1. Also, if |ei | <C efc+1, then the map ip\ will be e-close 
to ip in the Ck topology. Furthermore, it follows from Lemma 3.7 that 
(fi is an immersion. To check the assertion about the endomorphism J, 
consider that 

ipu(d/dw) =bw ~ d/dz + gwd/dr) 

(3.43) + gwd/dfj + eixd/dn 

+ 2e~ x'\w\(£i9/dri + ëid/dfj). 

The action of (—i) • J on the latter simply changes the sign of the term 
with ëi . Thus, tpi is J-pseudo-holomorphic except where e/2 < \w\ < e. 
And, here, the ratio of the norm of the anti-holomorphic to that of the 
holomorphic part of (3.43) is no greater than C|ei|e1_&. This can be 
made smaller than e by choosing |ei | <C eb-

Now consider the possiblities for the self intersections of </3i(S). (This 
is the last issue to check for the proof of Lemma 3.8.) In this regard, 
note that ipi can take w and w' to the same point only if w' = q • w 
where g is a non-trivial ò'th root of unity. To obtain more information, 
fix such a root q, and let k G { 2 , . . . , b} be the smallest integer for which 
qk = 1. Use this choice of k in Lemma 3.7 to define go and g\. According 
to Lemma 3.7, the points w and q • w are sent to the same point in N 
by tpi if and only if 

(3.44) Eix-{q-l)w = gi{w)-gi{qw). 

In light of the final assertion of Lemma 3.7, the latter equation reads 

(3.45) eix(<7 - 1)«; = (1 - qX)axw
x + 0(\w\x+1). 

(Note that 1 — qx ^ 0 because A / 0 mod(A;).) 
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When e is small and |ei | much smaller, there will be precisely 
A — 1 non-trivial solutions w to (3.45) for each choice of q. (To see this, 
note that when |ei | <C eA, the solutions to (3.45) which occur where 
x(2 • \w\/e) > 0 all occur where x(-) = 1. And where x(-) = 1, the fixed 
point equation in (3.45) is a perturbation of the holomorphic fixed point 
equation e\-{q — l)-w = (1 — qx) • a\ • wx.) It is left as an exercise for the 
reader using (3.44) to check that all pairwise intersections of sheets are 
transverse and have positive local intersection numbers. (The reason 
for this is that when |ei | is small, then (3.45) is a perturbation of a 
holomorphic fixed point equation, and the sheets for the corresponding 
holomorphic immersion have the aforementioned properties.) 

Step 4. This step uses Lemma 3.8 and a version of the adjunc­
tion formula to conclude that E ' is a torus. Indeed, 

2-1{<pu - i - J . <pu) : Ti ) 0E' - • <pu(TlfiN) 

defines a C-linear homomorphism between complex vector bundles over 
E' . The third point of Lemma 3.8 insures that the map is injective. The 
cokernel bundle is a complex line bundle E —> E i whose underlying real 
bundle is the normal bundle to the immersion ip\. Since C is a torus 
and N is topologically trivial, it follows that CI^TQ^N) = 0, and thus 

(3.46) c i (Ti ) 0 £i ) = - c i ( £ ) . 

On the otherhand c\ (E) can be computed by counting with signs the 
zero's of a suitably generic section. Because of the geometric interpreta­
tion of E as the normal bundle to the immersion, such a section defines 
a deformation of ip\ to a second immersion, ip!x. Then, the intersection 
number between ^ i ( S ' ) and ^ i ( S ' ) is equal to c\(E) + 2 • n, where n 
is the number of double points for the immersion ip\. (According to the 
second point of Lemma 3.8, all such points count positively.) On the 
otherhand, according to Step 1, the intersection number between ^ i ( S ' ) 
and ^ i ( S ' ) computes a multiple [C] • [C], and the latter is zero. Thus, 
ci(E) = — 2 • n < 0 with equality if and only if ipi is an embedding. 

Now return to (3.46). The unavoidable conclusion is that 
ci(Ti ;oS') < 0 with equality if and only if ipi is an embedding. This 
means that E ' is either a torus (whence ipi is an embedding), or else 
it is a sphere. The latter case can be ruled out because there are no 
holomorphic maps from CF 1 to a torus that are not constant, and n • ip' 
is a non-constant, holomorphic map. 
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S t e p 5. Because E' is a torus and n-ip' is holomorphic, it follows 
that the latter is a covering map. This requires S to be a submanifold 
which intersects each fiber of n exactly q times, all with multiplicity 
one. 

The fact that each point in E n n~l(z) has multiplicity one implies 
that E is locally the image of sections (hi,... , hq) of N. Here, hi ^ hj 
when i = j . Furthermore, because E is holomorphic, each hi is an­
nihilated by the operator D in (1.11). (This last condition makes E 
pseudo-holomorphic.) As demonstrated in Section 5h of [26], the data 
(hi,... , hq) can be viewed as follows: There exists a section h of 7r*iV 
over E which is unique up to deck transformations for the covering map 
7T, obeys dh + (f*v) • h + (/*/i) • h = 0, and whose push-forward via 
7T gives (hi,... ,hq). This last fact implies the remaining assertions of 
Proposition 3.2. 

4. Orientat ions and other construct ions for M^ 

The section serves as a digression of sorts to set up some background 
concerning JVl^K In particular, the discussion below concerns, first, the 
manner in which an orientation for the line d e t + = H° ® det(Hl) ® 
det(H2+) induces one on MSr>. The second concern is Proposition 2.14 
and the computation of the integral in (1.5) from a Kuranishi model. 
In particular, Proposition 2.14 is proved in Subsection 4c, below. 

a) Orient ing M^ 

The purpose of this subsection is to review the method by which an 
orientation of the line de t + induces one on M\r>. For this purpose, fix a 
class e G H2(X; Z) and consider the Spin c structure whose S± is given 
by (1.9) where E —> X is a complex line bundle with first Chern class 
e. Fix r > 1 and let M{r) C (Conn(£) x C 0 0 ( E + ) ) / C 0 0 ( X ; S1) denote 
the moduli space of solutions to (2.4) for some choice of form JJ,Q. In 
this subsection no notational distinction is made between the different 
versions of M.(r> as defined by different choices for /J,Q in (2.4). In a 
subsequent subsection, the moduli space of solutions to (2.4) for a given 
/ i o / 0 will be denoted by Ai^[ßo\-

Let S = (a, (a, ß)) G M^. Say that S is a smooth point when the 
operator L in (2.6) has trivial cokernel. It follows from Proposition 6.2 
in [28] that MSr> has the structure of a smooth manifold of dimension 
2 • d (as in (1.10)) near a smooth point S. What follows is a definition 
of the orientation on MSr> in a neighborhood of a smooth point. (The 
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Sard-Smale Theorem [23] can be used as in the proof of Theorem 3.17 
of [4] to prove that M.(r> consists entirely of smooth points when UQ is 
chosen from an appropriate open and dense subset of i • Q2 + . See, e.g. 
[15] or [8].) 

The definition for the orientation for the Seiberg-Witten invariant 
near a smooth point is simplest when the integer 

d = d(e) = 2~ • (e • e — c • e) 

vanishes, so this case will be considered first. (Note that d > 0 apriori 
because MS1"' has a smooth point.) 

The case d = 0. Since the zero'th homology of a point has a 
canonical generator, an orientation for a zero dimensional space is an 
association of ±1 weight to each element. With this understood, the 
association of a ±1 weight to a smooth point S procèdes as follows: First 
define an almost complex structure JD on i • TX © S+ by using J on the 
TX summand and by using multiplication by % on the S+ summand. 
And, define an almost complex structure, JR on i • (ER © A+) © S- by 
using the endomorphism of the same name from Step 3 of Section lc on 
the i • (EK © A+) summand, and by using multiplication by i on the S-
summand. Next, introduce the operator L as in (2.6), and consider a 
smooth path of linear operators of the form {L + nt}te[o,i], where: 

• nt : L2(i • T* © S+) ->• L2(i- (eK © A+) © S-) is bounded for each 
t. 

• no = 0. 

• L + m is surjective. 

• L+n\ is also complex linear with respect to the complex structures 
on J R on i • T* © S+ and JD on i • (ER © A+). 

• The set of t G [0,1] where cokernel(L + n<) ^ {0} is finite, say 
with N elements. 

• If cokernel(I/ + nt) ^ {0}, then this cokernel is 1-dimensional. 

• For each t, the t-derivative of nt at t restricts to kernel(I/ + nt) to 
map the latter isomorphically onto cokernel(I/ + nt). 

(4.1) 
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(Note that dim(kernel(L + n<)) = dim(cokernel(I/ + nt)) in this case 
because the index of L is the integer 2 • d.) 

Straightforward arguments from analytic perturbation theory (as in 
[7]) can be used to prove that such a family {nt} exists. In fact, one can 
take rit to be a zero'th order local operator which comes from a section 
of Hom(i • T* © S+; i • (sR © A+) © S-). 

With (4.1) understood, the sign for (a, (a, /?)) G M^ is defined 
to equal (—1)^, where N is given in (4.1). This can be shown to be 
independent of the choice of the path {nt}. 

By the way, the operator L + n\ can be chosen to have the form 

(4.2) L + m = 2~l(L - JR • L • J) - 2"1(cr - JR • a • J ) , 

where a is an endomorphism from i • T* © S+ to % • (e^ © L+) © S-. In 
this example, n\ is a zero order, local operator. This follows from the 
fact that the symbol of L intertwines J with JR. It is left to the reader 
to verify that cokernel(I/ + n\) = {0} for a suitably generic choice of a. 
(Use perturbation theory from [7] to prove this.) 

T h e case d > 0. To orient M^ in this case, first recall that 
the tangent space to MSr> at the orbit of S = (a, (ex, ß)) is canonically 
identified with the kernel of the operator L. This means that it is suf­
ficient to coherently orient the kernel of L. For this purpose, choose a 
smooth path {nt : L2(i-T* © S+) ->• L2(i • (eK © A + ) © S,_)}te[0;1] which 
obeys the first four points in (4.1). Because 2 • d > 0 now, such a path 
can be found where L + nt has trivial cokernel for all t. (Use analytic 
perturbation theory to prove this assertion.) 

As L + nt has trivial kernel, and as the index of L + n< is the integer 
2 • d, it follows that the assignment to t G [0,1] of the vector space 
kernel(I/ + n<) defines a smooth, 2 • d dimensional vector bundle over 
[0,1]. The fiber of this bundle at t = 0 is TM^\s, and the fiber at t = 1 
is the vector space kernel(L + m ) . However, as the operator L + n\ is 
C-linear, its kernel has the structure of a complex vector space, and so 
is naturally oriented. Then, the orientation of the fiber of the vector 
bundle over {0} G [0,1] induces one on the fiber over any other point, 
and over {1} in particular. 

b) Kuranishi m o d e l s 

The discussion in [27] relates pseudo-holomorphic submanifolds to 
ßo = 0 solutions to My>. For this reason, it is necessary to have a 
computational scheme for the Seiberg-Witten invariants which involves 
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only the ßo = 0 version of (2.4) even in the case where the resulting 
space M M or M^n has non-smooth points. The scheme used below 
involves the notion of a Kuranishi model (see (2.26)) for subspaces of 
M.(r>. This subsection considers the Kuranishi model in an abstract 
setting. 

The discussion in this subsection about Kuranishi models is broken 
into three parts. 

Part 1. Suppose that 

Y C (Conn(E) x C 0 0 ( 5 + ) ) / C 0 0 ( X ; S1) 

is a finite dimensional submanifold with compact closure which contains 
M.(r> and has the additional property that the kernel of the operator L 
at points S £ M ^ ' is contained in TY|=. Such a submanifold Y will be 
called a "Kuranishi model" for MSr>. More generally, if TV G MSr> is a 
compact subset, then a submanifold 

Y C (Conn(E) x C 0 0 ( 5 + ) ) / C 0 0 ( X ; Sl) 

will be called a Kuranishi model for J\f if the following two conditions 
are met: 

• Y has compact closure. 

• Y contains an open neighborhood A/i C M.(r> of TV. 

• If S G A/I, then kernel(L-) C TY\E. 

(4.3) 

The following lemma asserts that Kuranishi models exist: 

L e m m a 4 .1 . Let H G M.(r> be a compact set. Then J\f has a 
Kuranishi model. 

Part 2. This part and Part 3 contain the 

Proof of Lemma 4-1- When 

2 = (a,(a,ß)) G (Conn(£) x C°°(S+))/C°°(X; S1), 

introduce the vector subspace, 7s , of elements (a', («',/?')) in 

i-n1(x)®c0O(s+), 
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which gives 0 for the first line in (2.6). A ball in this vector space 7s 
about the origin provides a local chart around S for 

(Conn(E) x C 0 0 ( 5 + ) ) / C 0 0 ( X ; 5 1 ) 

via the map which sends a point (6, (r?, A)) G 7s to the orbit of the 

configuration (a + jj^b, (a + 77, ß + A)) in 

(Conn(£) x C 0 0 (5+ ) ) /C 0 C (A ' ; 5 1 ) . 

(See, e.g. [15] or [8].) Here and below, it is assumed that (a,ß) is not 
identically zero. 

Next, let C°°(X; S1) act on the vector space % • ü2+ © C°°(S-) via 
its standard multiplication action on C°°(S-). Wi th this understood, 
the quotient space 

(4.4) (Conn(£) x C°°(S+)) x C oo ( X ; S 1 ) (i • Ü2+ © C°°(S_)) 

defines a smooth vector bundle over the smooth part of 
(Conn(£) x C 0 0 ( 5 ' + ) ) / C 0 0 ( X ; S1). Indeed, the chart for the latter given 
by a small ball in any 7s gives a trivialization of (4.4) as a vector bundle. 

The claim now is that there exists a finite dimensional, smooth sub-
bundle W over a neighborhood of M in (Conn (£ )xC°° (S+) )/C°°(X; S1) 
of the vector bundle in (4.4) with the following property: At each S G jV, 
the projection of W onto cokernel(Ls) is surjective. 

To prove this claim, first consider a point S = (a,(a,ß)) G A/". 
Because the operator L varies continuously with movement in A/", there 
is an open, coordinate neighborhood, [/=, of S in 

(Conn(£) x C^iS+fì/C^iXìS1), 

which has the property that for all S' in a slightly larger open set, the 
projection of the kernel of L^ onto the cokernel of L=/ is surjective. 
(Take [/= to be a small radius ball in the space 7s- The slightly large 
open set can be a concentric ball with slightly larger radius.) 

Next, use the fact that A/" is compact, to find a finite set T of points 
in Af with the property that the corresponding set of open sets {£/s}ser 
covers Af. 

With r understood, here is the remaining task: For each S G T, 
extend the vector space kernel(I/Ì) over Us't^s' as a vector sub-bundle, 
VFs of (4.4). Furthermore, the sum of these extensions (not direct sum) 
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should define a vector subbundle of (4.4) over U=C/=;. That is, a vector 
subbundle W —> U=?7s of (4.4) should result from the assignment to 
each point the vector space of linear combinations of elements from the 
corresponding fibers of {W~:}ser- (Here, each WE is a subbundle of (4.4) 
by assumption.) 

The existence of such extensions of {kernel(I/Ì)}=er is a straightfor­
ward exercise, using a partition of unity for the (finite) cover {Us}zer 
and the fact that at the image of L at any point is infinite dimensional. 
The details of this last part of the argument are left to the reader. 

For each S where W is defined, use 11= to denote the I/2-orthogonal 
compliment in the fiber of (4.4) over S onto the subspace W|=. 

Part 3. Note that the following expression defines a section, M, 
of (4.4): 

. ±- (p+Fa + j(l - M 2 + \ß\2u -\(aß- Ö/3)) 

• DA(a,ß) 

(4.5) 

With W and M understood, let Y\ denote the set of points S for 
which W is defined and which obey the constraint 

(4.6) (1 - n s ) • H(S) = 0. 

It follows from the definition of W that the differential of (4.6) is 
surjective along J\!', and thus the implicit function theorem insures that 
there is a neighborhood, Y, of J\f in Y\ which has the structure of a 
smooth, finite dimensional manifold. Since M vanishes along J\f, the 
tangent space to Y\ along J\f is the kernel of the operator (1 — 11=) • L=. 
The latter contains the kernel of ij=. Thus, y is a Kuranishi model for 
Af. 

Note that any Sobolev class L\ solution to (4.6) will consist of C°° 
data. This follows from standard elliptic arguments, since elements in 
W\z are smooth sections of i • Q2+ © C°°(S'_), and those with unit L2 

norm obey S-independent bounds on derivatives to all orders. See, e.g. 
[17]. 

c) Proof of Proposition 2.14 

The proof of Proposition 2.14 is broken into eight steps. 



522 CLIFFORD HENRY TAUBES 

S t e p 1. Let y be a Kuranishi model for A'fpQ. Introduce the 

L2-orthogonal compliment, 7V=, of TY|= in 7=. Because the kernel of L 
is tangent to Y at points in JV[^\ no generality is lost by assuming that 
at each S = (a, (a,/?)) G y, the operator L maps iV= injectively into 
i • 0 2 + © C°°(5'_). One can also assume without loss of generality that 
y has compact closure in (Conn(£) x C 0 0 ( 5 + ) ) / C 0 0 ( X ; S1). 

Note that these last two assumptions can be achieved by "shrinking 
Y" in the following manner: Take the given Kuranishi model Y and re­
strict attention to an open neighborhood Y' C Y of Ai^r'. Then rename 
y as y 

S t e p 2. At each S G y, let W|= denote the quotient of 

i-n2+ ©C°°(S_) 

by L(7V=). This is a finite dimensional vector space, and as S varies in 
y, these spaces fit together to define a vector bundle, W —>• y Note that 
the real K-theory class of the formal difference TY — W has a natural 
orientation. Indeed, this K-theory class is isomorphic to the index class 
of the operator L. The latter is represented by the formal difference 
kernel(Iz) — cokernel(L).) And, the orientation for the index class of L 
is obtained by deforming L to a C-linear operator as in the previous 
subsections. 

To be more precise about this orientation, suppose, for the sake of 
argument that d im(y) > 0. Fix S G Y, and consider 11= in this step as 
a projection onto W\s as a subvector space in L2(i • (e^ © A + ) © S-). 
Now, one can choose a family of operators {«t}te[o,i] to satisfy the first 
four lines of (4.1); and so that for each t G [0,1], the operator (1 —11=) • 
(I/= + ni) has trivial cokernel when mapping from L\(i-T*® S+) to the 
Hilbert space (1 - LIS) • L2(i • (eK © A + ) © S-). 

With the preceding understood, the assignment of kernel((l —11=) • 
(I/= + ni)) to t G [0,1] defines a smooth vector bundle H —> [0,1] with 
the property that HQ = TY. Meanwhile, the association to v G Hi of 
n = • (I/= — m ) • v defines a map, Ki : Hi —> W\s, and one can also 
require of {wt}tg[o,ii that Ki be surjective. 

Meanwhile, the kernel of Ki is the kernel of L = + n i , and so a complex 
vector space in a natural way. With this understood, the orientation 
between Hi and W|= is defined by the condition that Ki define an 
orientation preserving isomorphism from _ffi/kernel(Ki) to W| = . The 
choice for an orientation for Hi — W|= then induces one for HQ — W|= = 
TY\w — WE (since an orientation on HQ induces one on Hi). 
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Step 3. Introduce Yr,n as in (2.27) and the bundle V = 
(®xenE\x) © (© 7 e r ( -E |g /Va(T7 | g ) ) ) as in (2.8). Note that the kernel of 
the homomorphism G in (2.27) is the same as TYr,n- Thus, G defines 
an isomorphism between the normal bundle of Yr,n in Y and the vector 
bundle V. And, since V has a natural orientation, the normal bundle 
of Yr,n in Y can be oriented by declaring that G preserve orientation. 
With this last point understood, the orientation for TY — W in the 
previous step induce an orientation of the virtual bundle TYr,n — W. 

(r) 

Note that the existence of a regular Kuranishi model for M.^ n can be 
assumed by choosing T and Q in a sufficiently generic way. Indeed, the 
first point in (2.27) can be achieved at S in M^çi by making a generic 
choice of r , O. With this understood, suppose that y is a Kuranishi 
model for M^]\r If the second point of (2.27) holds at all S G M^'n, 

then by shrinking Y if necessary, the first two points of (2.27) can be 
assumed to hold at all points of Yr,n- This then guarantees that third 
point of (2.27). On the other hand, if the second point of (2.27) does not 

(r) 

hold at all points S G -M.^ n, then Y can be "enlarged" to insure that 
it does. This enlarging process simply replaces y by a neighborhood of 
the zero section in a finite dimensional subbundle of the normal bundle 
of y in (Conn(£) x C 0 0 ( 5 + ) ) / C 0 0 ( X ; S1). 

Step 4. This step constructs a canonical section over Y of 

the bundle W whose zero set is homeomorphic to M.(r> fl Y. Thus, the 

restriction, w, of this section to Yr,n will have it>_1(0) = M p | j . 
The construction is as follows: At S G y, let 11= denote the L2 

orthogonal projection onto the L2 orthogonal compliment of L(N^). 
Solve for x = x(E) G iV= with the property that (1 — 11=) -H(S + a;) = 0. 
Here, M(-) G i • 0,2+ © C°°(S-) assigns to (a, (a, /?)) the expression in 
(4.5). The implicit function theorem insures that there is a unique small 
solution x = x(S) on some neighborhood of MSr> in Y which varies 
smoothly as a function of the point S. By shrinking Y if necessary, one 
can assume that x(-) is defined on the whole of Y. Now, the section w 
of W is defined by the assignment of 11= • M(S + x(E)) G W|= to S G Y. 

Because the assignment of S G y to x(E) is a section of Y's normal 
bundle, and Y is assumed to contain Jv[^\ one can assume (by shrinking 
y if necessary) that M.^r' = io _ 1 (0) . 

Step 5. Pu t the results from the preceding steps away for 
the time being to consider the computation of (1.5). In particular, 
compute (1.5) using Proposition 2.3 with the moduli space 

M^[ßo] of 
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equivalence classes of solutions to (2.4) as defined with /JO / 0 very 
small and r very large. 

This step considers this space M^[ßo\- In particular, note that 
.M^f/io] must be very close to M^r' = .M^fO] since both are com­
pact and the defining equation gives uniform apriori estimates of solu­
tions which depend continuously on the choice for /J,Q. The closeness of 
M [ßo] to MS1"i allows for the following construction of the former: 
At each S G Y, solve for small x = x(E) G A= which makes 

(4.7) (1 - n s ) • (M(S +x)- ir-^2(p0,0)) = 0. 

When jj,Q has small norm, there will be a unique, small solution x(E) 
to this equation for each S G Y. Furthermore, by shrinking Y if nec­
essary, one can be sure that when /io is small, then the assignment to 
S = (a, (a, ß)) of S + x(E) in Conn(_E) x C°°(S+) defines a smooth em­
bedding, $ : Y - • (Conn(JB) x C 0 0 ( 5 + ) ) / C 0 0 ( S ; S1) which is evidently 
isotopie to the identity. (The isotopy sends t G [0,1] and S to S+t-a;(S).) 
In addition, the assignment to S of 11= • (M(S + a;) — i - r - 1 ' 2 • (/io, 0)) can 
be assumed to define a smooth section, lof/io], of the bundle W over Y. 

(The meaning of the term "small" as used above can be made precise 
as follows: There exists £ > 0 such that if the L2 norm of /io is less than 
£, then there will be a unique L\ solution x(E) with L\ norm less than 
£ _ 1 . Furthermore, for each k > 0, there exists £& > 1 such that the L2

k+l 

norm of x(E) will be bounded by £& • \\ßo\\2,k-) 

With the preceding understood, it is a straightforward exercise to 
verify that 

(4.8) M^[^] = Hw[^]-l(0)). 

S t e p 6. Now consider the operator L for 3>(S) when S C 
io[/io]_1(0). Let io [/io]* denote the differential of w[ßo] at a zero of it>[/io], 
understood as a linear map from the fiber of TY to that of W. The 
claim is that <1>* intertwines kernel(it>[/io]*|s) with kernel(L). Here is 
why: If v G T Y | = , then the component of £$(-;) (u + x*v) in i • 0 2 + © 
C°°(S-|-) is annihilated by (1 — 11=). This follows from the definition 
of $ and because S G it>[/io]_1(0). Furthermore, if v is annihilated by 
the differential of tt>[/ioL then this same component is also annihilated 
by 11=. Thus, !/$(=) (v + x*v) lies in the i • Q° summand of the range. 
But then there is unique tangent vector u(v) G i • Q1 <g> C°°(S+) to 
the C°°(X; S1) orbit through the point S + x(E) which, when added to 
v + x*v, puts the result in the kernel of £$(=). In this regard, note that 
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the element v + x*v + u(v) can not vanish when JJ,Q is small because 
the L3 norm of u(v) is bounded by £ • ||u||3,2 ' 11 A*o 112,2 where £ can be 
assumed independent of S. 

Conversely, iff' is annihilated by £$(=), then there is a unique choice 
of tangent u(v') to the orbit of C°°(X; S1) through S + a;(S) so that v' + 
u(v) is in the space 7=. With the preceding understood, write v'+u(v) = 
v+vi, where v is tangent to Y at S, and v\ G iV=. Then, the vanishing of 
the (1-11=) projection of the i • &2+® C°°{S-) part of L # ( S ) (v ' + «(u)) 
implies that i>i = a;*u. (Use the implicit function theorem here.) And, 
given this last fact, the vanishing of the 11= projection of the part of 
£$(- ) (« ' + u{v)) in i • ̂ 2 + © C°°(S-) implies that v is in the kernel of 

Step 7. The fact that <&* intertwines the kernels of IÜ[/ZO]* and 
L shows that A^^r^[/io] consists of smooth points precisely when W[/J,O] 

has transverse zeros. Furthermore, the implicit function theorem can 
be used to show that when ßo is small, then A/f^r^[//o]r,n obeys (2.7) 
precisely when W[/J,O] has transverse zeros when restricted to Yr,n-

Step 8. According to Proposition 2.3, a count with ± 1 weights 
of the points in M.(r>[/j,o]r,n gives (1.5). On the otherhand, a count of 
the points in u>[//o]_1(0) fl l r , n with ± 1 weights yields the Euler class 
computation in Proposition 2.14. Thus, Proposition 2.14 follows by 
demonstrating that the ± 1 weights in the two counts are the same. The 
latter task is accomplished below in the d = 0 case. The general case is 
left to the reader. 

To begin, reinterpret the projection n = as the L2-orthogonal projec­
tion onto W\E in i-ü°®i-Ü2+ ®C0C(S-). Remember that W\E has zero 
projection into the first summand. Now consider the family of operators 
Z/$(S) + rit as in (4.1). Assuming that W has positive fiber dimension, 
one can use analytic perturbation theory from [7] to find nt as in (4.1) 
with the property that for each t G [0,1], the operator £$(=) + n< maps 
L\{i • T* © S+) surjectively onto 

(1 - u s ) • L2(i • (effi© A+) © 5_) . 

Then, for each t, let Ht C L\{i • T* © S+) denote the kernel of 
(1 — n=) • (£$(=) + ni). This is a finite dimensional vector space, and as 
t varies through [0,1], the latter define a vector bundle H —> [0,1]. Note 
that the argument which showed that <&* intertwines kernel(it>[/io]*) with 
kernel(L) proved that HQ = TY\w. 
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Now, consider that the association of v G Ht to 

TlE-((Lm)+nt)(v))GWE 

defines a homomorphism, Kt; and as t varies in [0,1], the latter fit 
together to define a homomorphism of vector bundles 

K:H->[0,1] xW\E. 

Furthermore, KQ = iü[/io]*- Note that Kt has a kernel precisely when 
-^$(s) + n t n a s a kernel, so the spectral flows for the family {-£$(=) + nt} 
and for the family {Kt} agree. With this understood, the sign compar­
ison is completed with the remark that the definition of the orientation 
for TY|= — W\s sets det(Ki) = 1. To be precise, the orientation on 
TY\w — W\s was defined by considering the corresponding K\ for a 
family which took L= to a C-linear operator. However the latter family 
could have been chosen so that its endpoint also equaled !/$(=) + n\. 

5. T h e proof of Propos i t i on 2.10 and t h e image of ^h^ 

The purpose of this section and Section 6 is to prove Proposition 
2.10. Since all but the final assertion are discussed in Section 2, the 
focus here is on the final assertion. In this regard, Proposition 2.5 will 
be used to reduce the final assertion of Proposition 2.10 to a special case 
of Proposition 5.1, below. 

Proposition 5.1 addresses the issue of whether or not the construc­
tions from Section 5 of [28] capture all of the large r and /io = 0 solutions 
to (2.4) which lie in M ^ . The statement of said proposition involves 
some complicated preconditions, and so a preliminary, digression is re­
quired to set the stage. (These complicated preconditions are due to 
the fact that singular pseudo-holomorphic curves can at times arise from 
limits of sequences of solutions to (2.4). Per force, such sequences do not 
come from the gluing construction of the previous subsections because 
that construction starts by choosing a pseudo-holomorphic submanifold. 
Most probably, there is an extension of the gluing construction to allow 
singular pseudo-holomorphic curves in X, but any such extension would 
lengthen an already lengthy story.) The digression below has five parts. 

Part 1. Let C C X be a compact, pseudo-holomorphic sub-
manifold. Let N —> C denote the normal bundle to C in X. Specify an 
almost complex structure J^ on TN by the condition that the J^ ver­
sion of the (1, 0) part of T*N be spanned locally by forms A0 G 7r*T1'°C 
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and Ai = V$s + ir*v • s + n*/z • s. Here, v is the section of T ' C and 
/i is the section of N2 ® T0,1C which appear in (1.11). Also, s is the 
tautological section of TT*N over N. 

Part 2. Introduce the notion of a constraint set for C. This is 
a finite (possibly empty) set, if, of disjoint subsets of N; where each 
element is either a point in C or else a real line through the origin in a 
fiber of 7T : N -)• C. 

Part 3. Let m > 1 be an integer and let i f be a constraint set of 
C. A submanifold C will be called (m, i f )-rigid when every J ^ - pseudo-
holomorphic map into TV which satisfies the following three conditions 
factors through C (the zero section of N): 

1. The domain is a compact, complex curve. 

2. The push forward of the fundamental class of the domain curve is 
a multiple of [C] which divides m. 

3. The image of the map intersects all members of K. 

(5.1) 

For example, if m = 1 and the operator from C°°(C; N) to C°°(C; N® 
T0,lC) which sends a section h to 

(5.2) Dh = deh + uh + uh 

has trivial kernel, then C is ( l ,0) - r ig id . 

Part 4. Let m > 1 and let y = ( y i , . . . , y m ) be a section of 
®i<q<mNq. Let i f be a constraint set for C. Then y will be said to 
intersect all members of the constraint set K when the zero set of the 
section p(y) = sm + ir*yi • sm~l + • • • + 7r*yTO of ix*Nm contains all 
points of K and also intersects all lines from K. (Remember that s is 
the tautological section of TT*N —> N.) 

Part 5. Suppose i f is a constraint set for C. An extension of i f 
is the set of subsets of X which consists of the points in i f (as elements 
in C C X) and a collection of properly embedded, open arcs in some 
tubular neighborhood of C. Here, the arc components of the extension 
are indexed by the line components of i f as follows: The arc which 
corresponds to the line 7 G i f intersects C in a single point, the point 
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where 7 intersects C. Furthermore, the projection to N of the tangent 
line of the arc at its intersection point with C should give 7. 

End the digression. 

Proposition 5.1. Let {(Ck,mk)} be a finite set of pairs consisting 
of a compact, pseudo-holomorphic submanifold Ck and a positive integer 
rtik with the property that the submanifolds in the set {C^} are pairwise 
disjoint. Fix a constraint set Kk for each Ck and suppose that each Ck is 
(m,k,Kk)-rigid. For each k, let e^ G H2(X;Z) denote the Poincaré dual 
to [Ck], and let e = Efc f̂c • e^. Let E —>• X be a complex line bundle with 
first Chern class e, and use E to define the Spinc structure as in (1.9). 
Let {rj} be an unbounded, increasing sequence of positive, real number 
and, for each j , let {(a,j, (a>j, ßj))} be a sequence of solutions to (2.4) 
using the Spinc structure in (1.9) and using r = rj and JJLQ = 0. Suppose 
thai for each k, an extension of K^ has been chosen, and suppose thai for 
each j , the set a~ (0) intersects each element of the chosen extension. 
Suppose, in addition that 

(5.3) lim { sup dist(a;, C) + sup d i s t i a " (0))} 
^°° x:aj(x)=0 xeC 

exists and has limit zero. When j is large, then (a,j, (aj,ßj)) is described 
by Proposition 5.3 in [28]. To be more precise, the following hold: 

• There is, for each k, a compact subset fC^k> in the {Ck,mk) version 
of ZQ. With fC^k> understood, choose a subspace A& in the (Ck,mk) 
version of C°°(((Bi<q<mNq) ®T0,lC) with the property that the 
projection of A& to cokernel(Ay) is surjective for each y G ÏC^k>. 
Here, Ay is the operator in (2.18). 

• With fC^k> and A& understood, there is a finite dimensional sub-
manifold 1CA C C°°(©i<ç<miV9) as described in Lemma 5.1 and 
(5.1) of [28] in the case A = Afe. 

• When j is large, (a,j,(a>j,ßj)) is contained in the image of the 
r = rj, map 

(5.4) yr : Xfe/Cf - • (Conn(£) x C™(S+))/C°°(X; S1), 

which is described in Proposition 5.2 of [28]. 



COUNTING CURVES AND CONNECTIONS 529 

Proof of Proposition 2.10. As remarked, only the final assertion 
needs to be proved. To start the proof, note that when h = {(Ck, m^)} G 
V., then each (Ck,mk) comes with a natural constraint set, K^. This con­
straint set can be described as follows: Return to (1.13) and introduce 
the subset Y^ of Y with its 2 • pk elements. Each 7 G Y/, intersects Ck 
precisely once, and at a point where its tangent line is not tangent to 
Cfe. Said tangent line then projects to a line throught the origin in the 
normal bundle to Ck at the intersection point. With this understood, 
Kk consists of these 2pk lines and the dk — Pk points in Q which lie 
on Cfe. The claim now is that under the given assumptions, each Ck is 
(mfc,l£fc)-rigid. Given the claim, then the final assertion of Proposition 
2.10 follows from Propositions 2.5 and 5.1. 

To prove the claim, consider first the case where nik = 1. In the case 
where dk = 0, then Ck is ( 1 , 0 ) rigid when D in (5.2) has no kernel, and 
this is guaranteed by the choice of (J, T, Q) from the appropriate Baire 
set. Likewise, when m^ = 1 and dk > 1, then Ck is (l,Kk) rigid when 
the linear homorphism Gk in (1.14) is an isomorphism. Once again, this 
is guaranteed by the choice of (J, T, ÇÏ). 

Note that a pseudo-holomorphic map to N which pushes forward the 
fundamental class to equal [C] must have domain C. This is because the 
composition of the map with the projection to C is holomorphic and 
degree 1. The adjunction formula then guarantees that the map in 
question is an embedding. Because the fibers of N are also pseudo-
holomorphic, the image of the map must coincide with the image of a 
section h of N. The condition that the latter be pseudo-holomorphic is 
the same as the condition that Dh = 0. 

In the case where m^ > 1, the curve Ck is then a torus and the 
normal bundle N is topologically trivial. In this case, K^ = 0 and the 
choice of (J, r , ÇI) guarantees that Ck is (m^, 0 ) rigid. This follows from 
Propositions 2.8 and 3.2. 

a) P r o o f of Propos i t i on 5.1 

Suppose that a sequence {(%•, (aj,ßj))} of solutions to (2.4) satisfies 
(5.3). Then, there is a fundamental distinction between two different 
sorts of behavior. The distinction is based on the rate at which the 
sequence of sets { a J ^ O ) } converges to UfcC^. In order to make this 
distinction, introduce, for each j , the number 

(5.5) öj = sup dist(x,L>kCk). 
x:ctj(x)=0 



530 CLIFFORD HENRY TAUBES 

According to (5.3), the sequence {öj} limits to zero as j tends to oo. 
With the preceding understood, consider the sequence {öj • y/vj}. 

Distinguish between the case where 

(5.6) lim sup ôjy/rj 
j-too 

is finite, and where it is not finite. The next two propositions explain 
the significance of this distinction. 

Propos i t i on 5.2. Let {(Cfc,mfc)} be a finite set of pairs consisting 
of a compact, pseudo-holomorphic submanifold Ck and a positive integer 
rtik with the property that the submanifolds in the set {C^} are pairwise 
disjoint. For each k, let e^ G H2(X;Z) denote the Poincaré dual to 
[Ck], and let e = E^m^ • e^. Let E —>• X be a complex line bundle with 
first Chern class e, and use E to define the Spinc structure as in (1.9). 
Let {rj} be an unbounded, increasing sequence of positive, real numbers 
and, for each j , let {(a,j, (ay, ßj))} be a sequence of solutions to (2.4) 
using the Spinc structure in (1.9) and using r = rj and /io = 0. Suppose 
that the limit in (5.3) exists and is zero and that the limit in (5.6) is 
finite. Then the conclusions of Proposition 5.1 hold for { (ÖJ, (oij,ßj))}. 

Take particular notice of the fact that this last proposition makes 
no mention of any constraint assignments. However, constraint assign­
ments assumptions are required in the proof of Proposition 5.1 when 
ruling out the case where (5.6) is infinite. To see this, suppose first that 
(5.6) is infinite. By passing to a subsequence if necessary, one can ar­
range that there exists a fixed C C U J C J such that for all j , the number 
öj is equal to the distance from some point in a~ (0) to C. 

Introduce the normal bundle N —> C and its disk subbundle N° 
with its identification (as in Lemmas 2.1 and 2.2 of [28]) with a tubular 
neighborhood of C in X. (This identification will be implicit in the sub­
sequent discussions.) For each j , consider the fiberwise multiplication 
by ö~ as a map from N to itself. This map sends the disk bundle of 
radius öj into the disk bundle of radius 1. These maps induce (from 
the given almost complex structure J on JVo) a sequence {Jj} of al­
most complex structures on N which converge in the C°° topology on 
compact subsets to the homogeneous almost complex structure J^. 

For each j , use multiplication by ö~ to push the set a~ (0) forward 
to give a subset of N with at least one point having distance 1 from C. 
Let T,j C N denote this new set. Note that [S,-] = m • [C] in H2(N; Z) 
where m > 1 is the integer which is paired with C. 
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Now, consider 

Proposition 5.3. Make the same assumptions as in Proposition 
5.2 except suppose now that (5.6) is infinite. Then there is a compact, 
complex curve C°, a J^-pseudo-holomorphic map ip : C° —> N, a posi­
tive integer m°, and a subsequence o/{Ej} (hence relabled consecutively) 
with the following properties: 

1. [C°] is homologous to m° • [C]. 

2. /imj_>00{sup.ceE. dist(a;,'0(Co))+supa;e^(C.o-) dist(a;, £y)} exists and 
is zero. 

3. The integer m° divides m. 

Furthermore, if, for all j sufficiently large, each a~ (0) intersects all 
members of the extension of some given constraint K, then ip(C°) in­
tersects all members of K. 

Note that these two propositions together imply Proposition 5.1. 
Here is why: If each C^ is (m^, Äfc)-rigid, then the conclusions of Propo­
sition 5.3 can not be met; and therefore the assumption in Proposition 
5.2 that (5.6) is finite must hold. Hence, Proposition 5.1 follows from 
the conclusions of Proposition 5.2. 

It is convenient to prove Propositions 5.2 and 5.3 in reverse order. 
The remainder of this section is occupied with the proof of Proposition 
5.3, while the next section considers Proposition 5.2. 

b) Key estimates 

There are two sorts of key estimates for solutions (a, (a,ß)) of (2.4) 
which are used in the proof of Proposition 5.2. These are provided 
in this subsection. The first estimate describes a_ 1(0) in small balls, 
and the second describes the curvature of the connection a in the same 
sorts of balls. Note that these estimates use the apriori information 
that a_ 1(0) is close everywhere to a pseudo-holomorphic submanifold 
to obtain regularity information. (Here is an analogy: Let C C C2 be 
a complex analytic subvariety whose points are all within an apriori 
bounded distance from a complex line L. Then C is a union of complex 
lines parallel to L.) 

To set the stage here, suppose that U^C^ C X is a compact, pseudo-
holomorphic submanifold, and that (a,(a,ß)) is a large r solution to 
(2.4) with the property that each component of a_ 1(0) is contained 
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in a tubular neighborhood of some component of U^C^. Furthermore, 
assume that for each component C C UjCfc, 

(5.7) (5 = max{r~ ' , sup dist(x,C)} 
xeN°:a(x)=0 

is much less than the radius of a disk bundle N° for C. Here, the radius 
of N° should be chosen so that the exponential map from Lemmas 2.1 
and 2.2 in [28] can be used to implicity identify N° with a tubular 
neighborhood of C in X. Also, this neighborhood should be disjoint 
from UfcCfc — C. 

With the preceding understood, focus attention on a single compo­
nent C C UfcCfc. Note that the homology class carried by a _ 1 ( 0 ) n N° 
is some multiple of [C], and let m denote this multiple. 

The first key lemma is stated below. In the statement of the lemma, 
9 denotes the Hermitian connection on N which is induced by the metric 
connection on TX. 

L e m m a 5.4. Suppose that E —>• X is a complex line bundle. Let 
C be as described above. Given e > 0, there exists a constant Ç£ > 1 
with the following significance: Suppose that r > Q and that (a, («,/?)) 
is a solution to (2.4) as described above for the Spin structure which 
is defined by E. Suppose also that 8 is given by (5.7) with 8 < 1/Çe. Let 
z G C and let B C C be the disk of radius 8 and center z. Identify N\B 
with B x C by parallel transport using the connection 6 along the radial 
geodesies out from z. Then, there is a set A C C of m or less points 
such that for any z' G B, every point in n~l(z') n a _ 1 ( 0 ) has distance 
e • ô or less from a point in A, and vice versa. 

As remarked above, the second key lemma concerns the curvature 
of the connection a. To state the lemma, consider a disk B C C, and 
introduce, on B, an orthonormal basis {«0)«i} f ° r the J-version of 
Tl'°C with the following properties: First, Ko is a section of the TT*T*C 

summand which is in Tl,0C on C. Second, K\ = ç • V#s + o where a is a 
section of TT*T*C ® TT*N which vanishes along C, and where £ is a real 
valued function which behaves near C as ç = 1 + 0 ( | s | 2 ) . (See Section 
2a of [28].) 

Use the basis {no, KI} to expand the curvature of the connection a 
as 

, r oN Fa =f0K0 A K0 + / l / î l A Kl + f+K0 A Ki 
(5.8) - _ _ _ - _ 

- j + Ko A Kl + / _ K 0 A Kl - / _ K 0 A Kl. 
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Here, /o and f\ are real valued functions on N°, while f± are sections of 
appropriate line bundles over N°. The goal is to estimate the L1 norms 
of fo and f± and f\ over n~l{B). 

Lemma 5.5. There is a constant Ç > 1 with the following signifi­
cance. Suppose that E —>• X is a complex line bundle, that r > £ and 
that (a, (a, /3)) «s a solution to (2.4) as described above for the Spinc 

structure which is defined by E. Suppose that ö is given by (5.7), and 
that this number is much less than the radius of the disk bundle N°. Let 
B C C be a disk of radius 8. Then: 

*• L-HB)(\fi\ - fi) < ÇPr-K 

3- L-HB)\u\<cr-y^. 

4- / ,-I (B)(I/OI + * 1 / 2 I / - I ) < C « 3 . 

(5.9) 

c) Proof of Lemmas 5.4 and 5.5 

This subsection is occupied with the proofs of the preceding two 
lemmas. 

Proof of Lemma 5.4- The proof is by contradiction. Suppose, given 
e > 0, no such constant Q exists. Then, one can find an unbounded 
sequence of values for r, and a sequence of values for ö tending to zero; 
and for each such pair of (r, ö), one could find a corresponding solution 
(a, (a, /?)) to (2.4) as described in the lemma with a point zo G C which 
violated the conclusions of the lemma. To obtain a contradiction, for 
each element in the sequence, take the corresponding point zo and fix 
complex, Gaussian coordinates (z, rj) for a neighborhood of z0 in N°. 
Here, the 77 = 0 surface should be tangent to C at the origin (which is 
zo). Now, dilate this coordinate system by #_ 1 so that the radius ö ball 
centered at 0 becomes the radius 1 ball centered at zo-

Corresponding to each pair of (r, S) values is the corresponding so­
lution (a, (a,ß)) to (2.4). Pull this solution back to the dilated ball (as 
in Section 4 of [27]) and denote the result as (a', (a',/3')). 

Now, there are two cases to consider. In the first case, the sequence 
of (r, ô) values is such that yV • ö is bounded. Here, the analysis of 
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Section 4 in [27] can be applied directly to argue that the sequence of 
sets {a ' _ 1 (0 )} has a subsequence (hence relabled consecutively) which 
converges nicely on compact domains to a 2-dimensional, complex al­
gebraic variety S C C2 having m or less components. Furthermore, no 
point in S can have distance more than 1 from the plane 7] = 0 since no 
point in a _ 1 ( 0 ) has distance more than 8 from C. It follows then that S 
is a set of m or less planes, each parallel to the plane h = 0. Thus, the 
nature of the convergence of the sequence {a / _ 1 (0 )} to S as described 
in Section 4 of [27] contradicts the assumption that the sequence was 
obtained from a violation of the conclusions of Lemma 5.4. 

The second case has the sequence of values for y/r • 8 unbounded. 
Here, the dilated fields (a', (a',/3')) solve the Seiberg-Witten equations 
on compact subsets of C with r replaced by r' = r • S2. These solutions 
obey estimates as in (1.25) of [27] using this value of r ' , since one can 
simply rescale the estimates for (a,(a,ß)) from X. With this under­
stood, one can then repeat the arguments in Sections 5 and 6 of [27] to 
conclude that , again, the corresponding sequence of sets {a ' _ 1 (0 )} has a 
subsequence (hence relabled consecutively) which converges on compact 
domains in C2 to a complex, algebraic, dimension 2 subvariety S c C 2 

with m or less components, and whose points all lie at distance 1 or 
less from the plane 77 = 0. Thus, S is, again, a finite set of m or less 
planes, all parallel to 77 = 0. The nature of this convergence (as detailed 
in Section 6 of [27]) contradicts the assumption that the sequence was 
obtained from a violation of the conclusions of Lemma 5.4. 

Proof of Lemma 5.5. The proof has nine steps. Before starting, 
remark that in the course of this proof and in subsequent proofs through 
out this section, the symbol Ç will represent the "generic" constant, that 
is, a number which is larger than 1 and whose value is independent of r, 
(a, (a, ß)) and of 8. Thus, Ç depends only on the metric and symplectic 
form near C, and on the first Chern class of the line bundle E. Further­
more, the precise value of Ç is allowed to change from line to line. This 
convention obviates the need to label such constants with subscripts. 
(Imagine labeling the lines in this article and then implicitly labeling 
each occurrence of £ by the line on which it appears.) 

S t e p 1. This first step estimates f\. For this purpose, remark 
that the integral of /1 over a fiber n~l{z) of N° is equal to i/2 times that 
of Fa over •K~1(Z). It follows from the estimates in (1.24) of [27] that the 
latter is equal (up to an error of size (•e~vr>(>) to IT times the evaluation 
of c\{E) on a class in H^iX; Q) which has intersection number 1 with C 
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and intersection number zero with the remaining components of U^Cfc. 
The value of c\(E) on the latter class is equal to the integer m. 

Step 2. This step estimates | / i | — f\. The estimate uses the 
following two results: 

Lemma 5.6. Fix a complex line bundle E —> X and there is a 
constant Ç > 1 which depends only on c\(E) and on the Riemannian 
metric and which has the following significance: Let r > Ç and suppose 
that (a, (a, ß)) is a solution to (2.4) with the Spin structure as in (1.9). 
Then, 

(5.10) \P-Fa\ - -^—(1 - H 2 ) < Cexp[-C"1 /2r1 /2dist(a;,a-1(0))]. 

Lemma 5.7. Fix a complex line bundle E —> X and there is a 
constant Ç > 1 which depends only on c\(E) and on the Riemannian 
metric and which has the following significance: Let r > Ç and suppose 
that (a, (a, ß)) is a solution to (2.4) with the Spin structure as in (1.9). 
Let B C C be a ball of radius t G ( r - 1 / 2 , ^ - 1 ) and let s G (r - 1 /2 ,£) . 
Then, there exists a set Q of less than £ • t2/s2 balls of radius s with the 
following properties: 

1. Each ball has center on a_ 1(0) n B. 

2. For each ball in Q, construct the concentric ball with radius s/2. 
Then, the resulting set consists of pairwise disjoint balls. 

3. Every point in B with distance Ç~l • s or less from a_ 1(0) is con­
tained in a ball from Q. 

Assume these last two results momentarily, to continue with the 
proof of (5.9.2). First of all, it follows from the definition of {KO,KI) 

that LO = i • 2 _ 1 • (KO A KO + KI A KI) . Thus, (2.4) implies that 

(5.11) / o + / l = 8 - i r ( i _ | a | 2 + | / 3 | 2 ) ) 

and that |/o — / i | < 2 - 1 ' 2 • |P_F a | . With the preceding understood, it 
follows from (5.10) and (5.11) that 

(5.12) |/0 - f\\ - (jo + fi) < C • e x p K - ^ r 1 / 2 distfo a-^O))]. 

Thus, 
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• /o > -Cexpf-C-V^distOr,«-1^))]. 

• h > -Cexp t -C 'V^d i s tCœ^-^O) ) ] . 

(5.13) 

It follows from (5.13) that \fi\-fi<(- expf-C'V1 /2 distar, a" 1 (0))]. 
The integral over B of exp[—("V1/2 dist(a;, a_1(0))] can be esti­

mated by considering, for each integer n > 1, the integral of the latter 
over the region in B consisting of points with distance from a_ 1(0) 
in the range from (n — 1) • r - 1 ' 2 to n • r - 1 ' 2 . Using Lemma 5.7, the 
contribution from this last set is no greater than 

(5.14) Ce"n /C(n4r-2)((52/(n2r-1)) < C ^ r " 1 ^ - ™ ^ . 

Thus, the sum over all non-negative, integer n of (5.14) yields 

(5.15) f e x p [ - C " V / 2 dist(x, a" 1 (0))] < C<*2r_1. 
B 

Equation (5.9.2) follows directly from (5.15). 

Proof of Lemma 5.6. This assertion is proved by mimicking the 
proof in [27] of the assertion for (1 — |a|2) in Proposition 4.4 in [27]. 
Indeed, agree to denote the left-hand side of (5.10) by y, and then this 
function obeys equation (4.22) in [27] with appropriate constants. Given 
Proposition 3.4 in [27], the argument subsequent to this equation gives 
the bound in (5.10). 

Proof of Lemma 5.7. Mimic the proof of Lemma 3.6 in [27]. The 
point is that each ball of radius s/2 with center on a_ 1(0) contributes 
some ( _ 1 • s2 to the integral r _ 1 • (1 — |a|2) over B (see Proposition 3.1 
of [27]). On the other hand, said integral can be no bigger than Ç • ô2 

(see Proposition 3.1 in [27]). 

Step 3. This step considers the estimate for / + in (5.9). For 
this, note that | / + | is bounded by a fixed multiple of r • |/3|, and the 
latter is bounded, curtesy of (1.24) in [27], by 

Cr1 / 2(exp[-C"1r1 / 2dist(2; ,a-1(0))]+r-1) . 

The integral over B of the latter can be estimated using (5.15). 

Step 4. This step estimates | /_| in terms of /o and f\. To begin, 
let p and q be complex numbers, and consider the expression 

(5.16) fo-\p\2 + fi-\q\2-2-Re(f.-qp). 
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(Let K = p • Ko + Q ' Ki, which is (1,0) form on N°. Then, (5.16) is 
- * ( K A K A Fa)-) Since 2 _ 1 ( /o + / i ) is the component of i • Fa along w, 
one finds that (5.16) is no smaller than 

(5.17) ( 2 ^ 2 ) - 1 ( b | 2 + k | 2 ) • ( j ^ ( l - H 2 + |/3|2) - | P _ ^ | ) • 

Now use (5.10) and (5.17) to conclude that (5.16) is no smaller than 

(5.18) - C • ( b | 2 + \q\2) • e x p [ - C " 1 / 2 r 1 / 2 dist(œ,a_ : L(0))]. 

This last equation is true for any choice of p and q. In particular, 
take p = ±R • / _ / | / _ | , where R > 0 is arbitrary, and take q = 8. Wi th 
these choices understood, it follows that 

Ä • <J • I/-I < C • ((^2 + # 2 ) • e x p [ - C " 1 / 2 r 1 / 2 distar, a " 1 (0))] 

+ ^ 2 - / 1 + i ? 2 - / o ) . 

This last expression gives the desired bound for | / _ | . 

Step 5. This step begins the task of estimating the integral of 
I/o| over B. For this purpose, introduce a standard bump function x on 
[0, oo) which is non-increasing and obeys x(t) = 1 where t is less than 
1, and x(t) = 0 where t is greater than 2. Promote % t o a function, xc, 
on C by setting xc{z) = x (d is t (z ,z 0 ) /£) . 

Now, introduce the 1-form 

(5.20) 1 = i2~1xc- (s- Ves-sVes). 

Note that the exterior derivative of 7 is 

(5.21) dj = ixcVes A VQS - i • \s\2xcF$ + i^~ldxc • (s • Vgs - sVes). 

Step 6. Consider the integral over N° of the form d'y A i • Fa. 
Use integration by parts to express this as an integral over dN°, and 
use (1.24.5) in [27] and the fact that ö is much smaller than the distance 
from a _ 1 ( 0 ) to the boundary of X — N° to conclude that 

(5.22) d-y A i • Fa 
NO 

<(e y/r-S/C 
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S t e p 7. With (5.21), this last equation can be used to estimate 
the relative sizes of the various components of the curvature of Fa. 
Indeed, the immediate implication is 

(5.23) [ /o <C [ (<*2|/il + l/+l + l/ 

Here, B' C C is the ball of radius 2 • ö having the same center as B. 
To exploit (5.23), invoke the first line of (5.13) and (5.15) to obtain 

an estimate for the integral over •K~1(B) of | /o | . Next, invoke (5.19) with 
R = e' • ô and e' < 1. Here, choose e' > 0 so as to be independent of r, ö, 
and (a,(a,ß)); and so that (5.19) and (5.23) (plus (5.8.1) and (5.8.2)) 
imply the estimate 

(5-24) / | /o| < C*3 + (100)-1 / | /o | . 

S t e p 8. Now, the assignment to zo in B of the number that 
is given by the left-hand side of (5.24) defines a continuous function on 
C, which thus has a maximum. Consider ZQ now where this maximum 
occurs. If 6 is small (less than some C"1), then the b a l l S ' can be covered 
by less than 50 balls of radius 6. This means that the integral term on 
the right-hand side of (5.24) (with the factor of 1/100 in front) is no 
greater than 1/2 of the number on the left-hand side of (5.24). Thus, 
the left side of (5.24) is no greater than Ç • <53 where ZQ is chosen for the 
left side to be its largest. Hence, for any choice of ZQ, 

(5.25) | /o |<C^-
TT-1(B) 

S t e p 9. The estimate for the integral of S1'2 • | / _ | in (5.8.4) is 
obtained by taking R = ô1'2 in (5.19) and then invoking (5.15), (5.8.1) 
and (5.24) to bound the integral of S3'2 • | / _ | by a uniform muliple of 
8\ 

d) T h e proof of Propos i t i on 5.3 

The proof requires nine steps. For the first three steps, suppose, as in 
the previous section, that U^C^ C X is a compact, pseudo-holomorphic 
submanifold, and that (a, (a,/?)) is a large r solution to (2.4) with the 
property that each component of a _ 1 ( 0 ) is contained in a tubular neigh­
borhood of some component of UfcC^. Furthermore, assume that (5.7) 
holds for each component C C U^C^. 
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Until further notice, focus attention on a given component C C UfcC^ 
and reintroduce the integer m which is the multiple of [C] that is carried 
by the homology class of a _ 1 ( 0 ) n iVo. 

Step 1. Given z G C, introduce the function xc,z on C whose 
value at a point z' is equal to x(dist(z, z')/S). Here, again, x is a stan­
dard, non-increasing bump function on [0, oo) which is one on [0,1] and 
zero on [2, oo). Thus, xc,z n a s support in the radius 2 • ö ball in C with 
center z. Agree to identify the fiber of N over z' in the support of xc,z 
with N\z via parallel transport out from z along the short geodesic be­
tween z and z' using the connection 6. This identification is implicitly 
assumed in what follows. 

With the preceding understood, define, for p = 1, 2 , . . . , the section 
hp of N®p over C whose value at z is 

(5.26) hp(z) = ( r t óTr 2 ^ ) - 1 f ô~pspiF A TT*(XCZ • w c ) -
N° 

Here, s denotes the tautological section of n*N —> N, and u>c denotes 
the volume form on C. 

Here is the first fundamental lemma: 

L e m m a 5.8. For each p = 1 ,2 , . . . , there exists Çp > 1 such that 

when r > Çp and ô < Ç - 1 , then \hp\ < Çp and also \dßhp\ < Çp. Further­

more, in the case where p = 1, one has \Dh\\ < Ci • (ô-1'2 + ( yV^) - 1 ) , 

where D is the operator in (5.2). 

Step 2. This step consists of the 

Proof of Lemma 5.8. The fact that \hp\ is uniformly bounded 
follows from the definition of 6, from the exponential decay estimates in 
(1.24) of [27], and from Lemma 5.5. To estimate dghp, note first that 
hp can be written as a weighted average of a push-forward via the map 
7T : N° ->• C. T h a t is, 

(5.27) hp = (rtóvr2^)-1 I >K*(spiFa) • Xc,z • uc-

Now, agree to identify the fiber of T*C at any point z' in the support 
of Xc,z with the fiber of T*C at z by using the Levi-Civita connection 
on C to parallel t ransport along the short geodesic from z to z'. Wi th 
this understood, the covariant derivative of hp is equal to 

(5.28) Vehp\z = {m2n2S2)'1 I dgTr*(spiFa) <g> Xc,z • wc + error, 
c 
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where the error term is bounded by £ • Æ. There are two sources for this 
error term. The first source is the fact that when z' is in the support of 
Xc,z, then \6zi — 9Z\ < Ç • Æ. The second source of error arises as follows: 
The assignment of a pair of points (z,z') in C to the number xc,z{z') 
defines a smooth function on C x C whose z-derivative is minus its z' 
derivative up to an error which is bounded by a uniform multiple of Æ. 
(Remember here that TC\Z> and TC\Z have been implicitly identified 
when z' and z are both in the support of Xc,z-) With the preceding 
understood, the bound on the size of the error term follows using the 
same argument which proves that \hp\ is bounded. 

Given now (5.28), the next task is to interchange the order of the 
push-forward and the exterior derivative. These two operations would 
commute were the fiber of N° a compact manifold with boundary. As it 
is, the failure to commute can be expressed in terms of the push-forward 
of sp • % • Fa from the boundary of the closure of N°. This last term is 
bounded by Ç • e~vr>(>, and so can be ignored as far as the proof of 
Lemma 5.8 is concerned. Thus, 

Vehp\z =(m2-K2Æ2)-1p-Æ-p 

n*{sp~l • Ves A % • Fa) <g) xc,z • wc + error, 

where the error term here is still bounded by Ç • Æ in norm. 
Introduce ç and a by writing K\ from the basis { K O J ^ I } of T 0 ' 1 ^ 0 

as K\ = ç • VQS + a where a is a section of ir*T*C <g> n*N which vanishes 
along C and where ç is a positive function on N° which behaves as 
ç = I + C( | s | 2 ) near C. (See Section 2a and (2.2) of [28].) Then, this 
last expression can be written as 

V0hp\z ={m2n2Æ2)-1pÆ-p 

(5.30) • / TT^SP-1 • Ç - ^ K I -a) Ai-Fa)® Xc,z • wc 
c 

+ error. 

Now, one can project this onto the (0,1) part ot T*C. And, at the risk 
of adding a factor of Ç • Æ to the error term, this projection gives 

(5.31) B0hp\z = (m2Tr2Æ2)~1pÆ~p / Tr*(sp~1q)xc,z^C + error, 
C 

where q is the 3-form 

(5.32) q = /+K0(0,i) A Ki A Ki - /-K0(o,i) A «i A «i - a0,i A iFa. 

(5.2yj 



COUNTING CURVES AND CONNECTIONS 541 

Here, the subscript 0,1 indicates that projection onto ir*T ' C should be 
performed. In this regard, note that |/«o(o,i)l ^ C' \s\ a n d the C( |s | ) part 
of (To,i equals v • s + \i • s. (See Section 2a and (2.3) of [28].) With these 
estimates in hand, and with Lemma 5.5, one finds that 

d$hp = — p • v • hp + ß • (rn2iT S ) ~ p8~p 

-ïï*{sp~lsiFa)xc,z^C + error, 

where the error is now bounded in norm by 

(5.34) c - ^ + ^ r 1 ) -

Here, the appearance of ô1'2 is due to Lemma 5.5's estimate for | /_ | ; 
and the appearence of (y/r • ô)~l is due to Lemma 5.5's estimate for 

The assertion that \dghp\ is bounded follows now by bounding the 
explicit integral term in (5.34); and the latter is bounded by mimicking 
the argument (which was given above) that bounded hp. 

To complete the proof of Lemma 5.8, consider the p = 1 case of 
(5.33). Here, the explicit integral term in (5.33) is equal to ß • h\. 

Step 3 . The purpose of this step is to state and then prove: 

L e m m a 5.9. For each p = 1 ,2 , . . . , there exists Çp > 1 such that 
when r > Çp and ô < Ç - 1 , then there is a uniform bound on the C0,£ 

Holder norm of hp when e < 1. This bound depends only e, the local 
geometry of C and on c\(E). In addition, for each k > 0, the section 
hp has a uniform bound on its L\ Sobolev norm by a constant which 
depends only on k, the local geometry of C and on c\{E). (This norm, 
controls the integral over C of the k'th power of \V$hp\.) 

Proof of Lemma 5.9. Use standard elliptic regularity results to the 
fact that hp and Bghp are uniformly bounded in norm. 

Step 4. This step proves Proposition 5.3 in the case where 
m = 1. By assumption, one starts with a sequence (a,j, (a>j,ßj)) of solu­
tions to (2.4) where the corresponding sequence {rj} of r values is un­
bounded, while the corresponding sequence {öj} of ö values is decreasing 
to zero in such a way that the sequence {\/ri " öj} is also unbounded. 
By passing to a subsequence, one can assume that each of these three 
sequences moves monotonically in the appropriate direction. With this 
as background, construct, for each j , the section hi = hij of N. It fol­
lows from the previous two lemmas that there is a subsequence of {hi j} 

(5.33) 
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which converges strongly in C0,1'2 and L\ to a section, t, of N which is 
annihilated by the operator D from (5.2). 

Meanwhile, it follows from Proposition 4.2 in [27] that for all j suÆ­
ciently large, the set A = Aj from Lemma 5.4 consists of a single point. 
With this understood, Lemmas 5.4, 5.5 and the exponential decay esti­
mate in (1.24) of [27] imply the following: Given e > 0, then for all j 
suÆciently large and for all z G C, the distance between Ejri7r_1(2;) and 
hij(z) is smaller than e. This last observation implies that the limit, t, 
from the preceding paragraph, is non-trivial, since each S j has a point 
with distance 1 from the zero section. It also yields that the image of 
t intersects an element of the given constraint set K when each a~ (0) 
intersects the corresponding element of the extended constraint set. 

The argument is completed with the observation that the image in 
N of a section which is in the kernel of D is a Joo-pseudo-holomorphic 
submanifold. That is, take C = Co, and then the section t gives the 
map ip of the proposition. 

S t e p 5. To proceed with the argument in the general case, 
consider some given configuration (a, (a, /?)) as in Steps 1-3 where r is 
large, ô is small and y/r • 8 is large. The section h = (hi,... , hm) of 
®Kq<rnNq defines a section y = {yi,... ,yTO} of the same bundle as 
follows: The section y is determined by the condition that the zeros, 
{•^j}i<j<m G Symm(N) of the polynomial section 

(5.35) p[y] =sm + n*yi • Z™"1 + • • • + n*ym 

of n*Nm —> N satisfy ^jXp- = hp for each p. Thus, y is a polynomial 
function of h, and thus Holder continuous with some positive exponent 
and Sobolev class L\. 

Here is the relationship between p[y]_1(0) and the set 

S = {i G N : a(6 • Ç) = 0} : 

L e m m a 5.10. Given e > 0, there exists ((e) > 1 which depends 
only on the geometry of X near C and on c\ (E) and has the following 
significance: Suppose r > ((e) and ö < ( ( e ) - 1 . Then for each z G C, 
every point of n~l(z) n S has distance e or less from a zero of p[y] on 
N\z, and vice versa. 

Proof of Lemma 5.10. This follows from Lemmas 5.4 and 5.5 using 
(1.24) in [27]. 
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Step 6. Now, consider a sequence {(a,j, (a>j,ßj))} as in Propo­
sition 5.3 corresponding to an unbounded sequence, {VJ}, of r values, 
and a sequence {öj} of ö values which limits to zero. It follows then 
from Lemma 5.9 that the corresponding sequence {yp,j}i<p<m has a 
subsequence (hence relabled consecutively) which converges strongly in 
L\ and also in C 0 ' 1 ' 2 to y = {y }i<p<TO. Let X_ denote the zero set of 
p[y] with the latter defined in (5.35). Note that as z varies in C, this 
E defines a closed subspace in N. And, Lemma 5.10 implies that the 
set {Sj} has a subsequence which converges in the distance measure to 
E. In particular, it follows from this that if, for each j , the set a~ (0) 
intersects an element of an extended constraint set for C, then E must 
intersect the corresponding element of the constraint set. 

The set E has two types of points, the regular points, and the singular 
points. The meaning of these terms is as follows: A point £ G E_ is 
regular when the following is true: There is a neighborhood U C N of £ 
with the property that when z G vr(?7), then the intersection of ir~l(z) 
with E_ Pi U has exactly one point. A point in E is singular when it is 
not regular. 

By definition, the set of regular points of E_ is open. This set is also 
dense in E_. (To see that E_ is dense, introduce the multiplicity function 
on E which counts the multiplicity of a point £ as a zero of the restriction 
of p(y) to 7T_1(7r(£)). The latter function takes values in { 1 , . . . , m} and 
its local minima are necessarily regular. Furthermore, being a function 
with a finite number of values, it takes on a local minimum on every 
open set.) 

The nature of E_ near a regular point is described by 

L e m m a 5.11. The set E is a J^-pseudo-holomorphic submanifold 
in a neighborhood of any regular point. 

As for the set of singular points, consider: 

L e m m a 5.12. There are only finitely many singular points in E_. 

These two lemmas are proved in Steps 8 and 9, respectively. 

Step 7. Given Lemmas 5.11 and 5.12, the proof of Proposition 
5.3 is completed with the following observation: Let E r C E_ denote 
the set of regular points. It follows from Lemma 5.11 that E r is a J^-
pseudo-holomorphic submanifold of N, and thus inherits the structure 
of a complex curve Cr for which the tautological embedding, ip, into 
N Joo-pseudo-holomorphic. Furthermore, according to Lemma 

5.12, this Cr has a finite number of ends, with each being diffeomorphic 
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to the compliment of the origin in the unit disk. Let CQ denote the 
complex curve which is obtained from Cr by adding the origin to each 
of these disks. Standard arguments prove that the complex structure on 
Cr extends uniquely over Co to give the latter the structure of a complex 
curve. Then, the map ip extends in the obvious way as a continuous map 
from Co into N which is Joo-pseudo-holomorphic on the compliment of 
a finite number of points. And, standard elliptic regularity arguments 
prove that this map ip 1S everywhere Joo-pseudo-holomorphic. (Note 
that these arguments are much simpler than the removable singularities 
arguments in Sacks and Uhlenbeck [24] since it is known here apriori 
that the map ip is continuous.) It was remarked previously that the 
image of ip (i.e., X_) intersects any element of a contraint set which is 
intersects all of the Ej 's . 

S t e p 8. This step contains the 

Proof of Lemma 5.11. It follows from the definition that the set 
of regular points of X_ defines a continuous submanifold of N which 
fibers locally over C. A point z G C will be called a regular value when 
X! n ir~l(z) = E r n n~l(z). The set of regular values of C is open and 
dense. (A regular value near a given z' can be found by taking a neigh­
borhood of z' and asking for a point in said neighborhood which is a 
local maximum for the integer valued function which assigns to z the 
number of points in X! n n~l{z).). If z is a regular value, then the pro­
jection 7T : X! —> C is a proper covering map of some neighborhood of z 
with some number k G { 1 , . . . , m} sheets. 

At a point z G C, write p[y]_ 1(0) on N\Z as 

{{ti{z),ni)... ,{tk(z),nk)}, 

where ti(z) G n~l(z) is a zero of p[y] and where n, is the multiplicity of 
ti(z) as a zero of p[y] on •K~1(Z). Note that when z is a regular value, 
then the integers {rn} are constant on a neighborhood of z, and each 
ti(-) is a continuous and L\ section of N over some neighborhood of z 
whose image defines a sheet of E over said neighborhood. With this 
understood, it follows that E is Joo-pseudo-holomorphic near the n-
inverse image of a regular value, z, if each section ti is annihilated by 
the operator D (in (5.2)) on some neighborhood of z. 

To see that such is the case, use (5.33) plus (1.24) from [27] to 
conclude that 

(5.36) VimDtii» l = o. 



COUNTING CURVES AND CONNECTIONS 545 

Now, p can take values from 1 to m in (5.36), and the totality of these 
m equations can be solved if and only if Dti = 0 for all i. 

Now, suppose that £ is a point in E r which does not project to a 
regular value. None the less, a neighborhood of £ in E r is the image of a 
continuous section, t\, over a disk in C. Furthermore, as just observed, 
this i i is annihilated by D on a dense, open set of the disk in C. El­
liptic regularity for the operator D implies that t\ is annihilated by D 
everywhere. 

Step 9. This step contains the 

Proof of Lemma 5.12. It is sufficient to prove that the set of points 
in any disk B C C which are not regular values is finite. With this 
understood, let C" C B denote a path component of the set of regular 
values. Since £_|c" —> C is a covering map, there is a positive integer 
k < m such that locally p[y] _ 1 = {(ti, WÌ)}KÌ<A; on C. Here, the integers 
n, are constant, and each ti is, locally, a section of N over C which is 
annihilated by D. (A given ti is globally defined on C" up to possible 
confusion with tj for which n,j = n,.) 

In any event, the section q = Yli^j(ti — tj)nini defines a smooth 
section over C of the appropriate power of the line bundle N. The 
significance of this q is that it is non-vanishing on C", and that it extends 
continously as the zero section to B—C. This extension of q to the whole 
of B will be denoted by q'. However, note that q has a second extension 
to the whole of B in that q is the restriction to C of a section of a 

power of N which is obtained as products from the set {y }i<p<m-
This 

means, in particular, that q has bounded L\ Sobolev norm over C", and 
thus the extension, q', of q by zero on B — C" has bounded Lf norm over 
the whole of B. This observation will be relevant momentarily. 

Since each ti is annihilated by the operator D , the section q obeys 
a differential equation of the form 

(5.37) deq = w • q, 

where w is uniformly bounded on the closure of C" and smooth inside. 
Let oc denote the characteristic function of C. It is a straightforward 
matter to find a continuous, Sobolev class L\ function u on B which 
satisfies the equation 

(5.38) du = o w. 
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With u understood, consider that e u • q' is a continuous, Sobolev 
class L\ section of N over B which obeys 

(5.39) de{e-uq)=0 

on C" and which is zero on B — C. It follows that e~u • q' is holomorphic 
in B, and thus B — C is a finite set of points. 

6. The image of ^>r 

The purpose of this section is to give a proof of Proposition 5.2. 
What follows is an outline of the seven parts to the proof. 

Part 1. Proposition 5.2 follows from the following slightly 
weaker claim: 

Claim. Given an initial sequence {(a,j, (a>j, ßj))} which satisfies 
the assumptions of Proposition 5.2, there exists a subsequence for which 
each (a.,-, (aj,ßj)) has a point on its gauge orbit of the form 

(6.1) Lr + ^La', (ar + a',ßr + ß')\ , 

where (ar, (ar,ß )) and (a', (a', /?')) are obtained from a point in x/C^ 
as described in Proposition 5.2 of [28]. 

The proof of the preceding claim is complicated by the fact that the 
object of the search is a point on a gauge orbit. (The gauge orbit is the 
orbit of data under the natural action of the group C°°(X; S1).) To be 
more explicit, the search for the gauge orbit point requires apriori esti­
mates and the apriori estimates (which come via an elliptic differential 
equation) require an apriori choice of a point on the gauge orbit. (The 
Seiberg-Witten equations are not, by themselves, elliptic. They become 
so only after an appropriate choice of point on a gauge orbit.) Thus, 
there is a chicken versus egg problem here which must be solved. 

The resolution chosen below finds the appropriate gauge choice in 
steps; where each step gives estimates (from the Seiberg-Witten equa­
tions) which facilitate the gauge choice for the subsequent step. Various 
aspects of the proof of Proposition 5.2 are established as part of some 
of these intermediate steps, and are then plugged in to subsequent esti­
mates. 

For example, the first step of the proof of the claim above uses 
a subsequence of {(a,j,(aj,ßj))} (hence renumbered consecutively) to 
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construct data y = {yk}, where each yk is a section of the corre­
sponding (Ck,mk) version of ®i<q<mNq. This step relies heavily on 
arguments from the preceding section. (It turns out in the end that 
(a,j, (aj,ßj)) has a point on its gauge orbit which is described by (6.1) 

where (ar, (ar, ß )) and (a', (a', ß')) are obtained from a point in xlCA 

which is close to y.) 
Now, each yk lies in the corresponding (Cfc,mfc) version of ZQ. How­

ever, the proof of this assertion requires a number of intermediate steps. 
For example, the initial construction of {yk} does not establish that yk 

is smooth; rather, only a Holder estimate and an apriori bound on the 
Sobolov L™ norm for n < oo are initially available. Were each {yk} 
known to be C2 apriori, then the whole argument would be consider­
ably shorter. As it is, the fact that yk is not known apriori to be of 
class C2 accounts for at least one level of complexity in the ensuing 
arguments. 

In any event, once the appropriate gauge choice for (a,j, (aj,ßj)) is 
secured, and once the necessary apriori estimates are derived, then the 
argument for the claim above closes by invoking the uniqueness aspects 
of the contraction mapping arguments which underly all of the steps in 
Section 5 of [28]. These uniqueness assertions insure that (a,j, (aj,ßj)) 
is, for large j , obtained from the constructions in [28]. 

All of this results in an admittedly lengthy and complicated argu­
ment. 

Part 2. As remarked above, the first step of the proof uses 
a subsequence of the sequence {(a,j, (a>j,ßj))} (hence renumbered con­
secutively) to construct a point y = {yk} G xlCA . Near C = Ck, a 
given point on the gauge orbit of (a,j,(aj,ßj)) can be written in the 
form (ar, (ar,ß ) )+ remainder, where r = rj and (ar, (ar,ß )) are de­
termined by yk as described in Sections 2 and 3b of [28]. The goal will 
be to find a point on the gauge orbit where certain apriori estimates 
are available for the corresponding remainder. This step makes a pre­
liminary choice for the gauge orbit point; a choice which comes via a 
two step process. The first step (Section 6b and Lemma 6.1) chooses an 
initial gauge for the data (oj, (oij,ßj)) near each C = Ck using results 
from Section 4 in [27]. This initial choice manifestly gives pointwise 
control of CCJ — ar and of the pull-back to the fibers of the normal bun­
dle N —> C of the 1-form a,j — ar. The gauge only controls the L2 norm 
of the horizontal part of a,j — ar (and its vertical derivative). 

The gauge choice from the first step is then modified (in Section 
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6c and Lemma 6.3) to insure that a,j — ar and the pull-back of a,j — ar 

satisfy a zero-divergence like (Coulomb) condition along each fiber of N. 
In particular, only the components of the 1-form a,j — ar along the fibers 
of N are involved. A useful gauge choice which involves all components 
of the 1-form unattainable at this point in the argument 
because of the paucity of apriori estimates. 

Part 3 . With the gauge choice from Part 2, the Seiberg-Witten 
equations are employed to derive a refined apriori L2 bound on a,j — ar 

(See Section 6d and Lemma 6.4.) The argument here is lengthy and 
convoluted, in part because the Seibeg-Witten equations with the gauge 
choice from Part 2 are not completely elliptic. 

Part 4. This part uses the refined L2 estimates from Part 
3 to prove that each yk lies in ZQ. (See Section 6e and Lemma 6.5.) 
The argument here boils down to the following: For each j , the data 
(oj, (oij,ßj)) solves the r = rj version of the Seiberg-Witten equations 
in (2.4). Furthermore, this data can be written as (ar,(ar,ß )) + Pj-, 
and because of the estimates from Part 3, it is known that the pj's 
tend to zero rapidly as j gets large. The Seiberg-Witten equations for 
(oj, (aj,ßj)) and the minute size of pj at large j constrains the data yk; 
and this constraint says no more nor less than yk G ZQ. 

Part 5. This part (Section 6f and Lemma 6.6) finds, for each 
y' near y in x^/C^ and for large j , a point on the gauge orbit of the 
data (a,j,(aj,ßj)) which satisfies a zero-divergence gauge condition on 
the whole of X with respect to (ar[y'],(ar[y'],ß [y1]))- As indicated, 
(ar, (ar,ß )) is now defined as in Sections 2 and 3b of [28] by y' instead 
of y. The point y' will be treated as a parameter until its value is fixed 
in the last step of the proof of the claim. The construction of the 
zero-divergence gauge orbit point first uses the fact that each yk lies 
in ZQ to refine the apriori estimate for CCJ — ar and a,j — ar in the 
gauge from Lemma 6.1. These refined estimates are then exploited to 
find a solution to a certain differential equation which defines the zero-
divergence gauge. 

Part 6. This step (Section 6g and Lemma 6.7) employs 
(ar, (ar,ß )) as defined by y' (near y) to write the zero-divergence gauge 
orbit point (a,j,(aj,ßj)) (from Lemma 6.6) as in (6.1) (Here, the label 
by the index j is implicit. This will be the policy throughout this section 
when the chance for confusion is small.) 

With the help of Lemma 6.6's apriori estimates, the data q' = 
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(a',(a',ß')) is then cut (as in (4.6) of [28]) into constituent pieces 

(<70) {<Zfc}) which satisfy (5.3) of [28]. 

Part 7. This last part (Section 6h) completes the proof of 
Proposition 5.2 with a proof that (go, {%}) a s obtained in Lemma 6.7 
from (a,j,(a>j,ßj)) are, in fact, given by the constructions in Section 
5 of [28]. The arguments here use the previously established apriori 
estimates while invoking the uniqueness assertions of the contraction 
mapping arguments which underly all of the constructions in Section 5 
of [28]. 

Before starting with the details, be forwarned of two conventions 
which are used in the proof: First, the symbol £ will represent a con­
stant which is independent of the index j and of any other choices of 
parameters. Furthermore, the precise value of £ is allowed to change 
from line to line. The second convention uses r for Vj when no confu­
sion is likely to arise. 

The reader should also be aware that the notation and conventions 
of [28] are used heavily here, often without comment. 

a) T h e data {yk} 

To begin the construction of {yk}, let {(a,j, (ctj,ßj))} be a sequence 
as in the statement of Proposition 5.2. Focus attention on a component 
C C UfeCfe and introduce the integer m which is the multiple of [C] given 
by the value of c\{E) on a rational homology class which has intersection 
1 with C and zero with the other components of U^Cfc. For j large, one 
can assume that the number ö as defined in (5.7) using a = CCJ is less 
than R/y/rj, where R > 1 is j - independent . 

For each j , and for p G { 1 , . . . , m } , construct the section hp = hpj 
— 1/2 

of Np over C as in (5.26), but use everywhere r • in place of 6. Then, 
introduce the section { y i , . . . ,ym} of ®i<q<mNq which is defined by 
the condition that the zeros of p[y] = sm + y\sm=l + • • • + ym give the 
unique point { A J } K J < T O in Symm(iV) with the property that hp = SjA^ 
for each p. It follows from Lemma 5.9 that for each such p, the sequence 
{yp,j} converges in the C0,1'2 n L\ topology to a C0,1'2 n L\ section, y 
of Np. For each k, let yk denote the (C^, m^) version of (y , . . . , y ) . 

By the way, suppose that when j is large, each a~ (0) intersects 
each member of a fixed extension of a given constraint set G^ for Cfc. 
Then, as in the proof of Step 6 of the proof of Proposition 5.3, it follows 
that for each k, the zero set of p[yk] must intersect all members of Gk-
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b) The first choice of gauge 

Although each y may not be a smooth section of the corresponding 
(C/;,mfc) version of ®i<q<mNq, none-the-less, y = {yk} still defines, for 
each r, data (ar,(ar,ß )) via the constructions in Sections 2 and 3b. 
The latter consists of a Holder continuous and L>\ connection ar and 
section (ar ,ß ) of S+. 

Note that the construction of (ar, (a r , ß )) involves fixing a positive, 
r-independent constant 8. The latter is chosen given y, but in any event, 
can be assumed smaller by a factor of 10~6 or more than the distance 
between any two distinct members of {Cfc}. Note that this ö is not the 
same as that which appears in (5.7). The latter will not be used below. 
Also, remember that the size of ö is further restricted to be less (by a 
factor of 10~3) than the radius of a certain tubular neighborhood N° 
about each C = C^. Such tubular neighborhoods for different elements 
in {Cfc} are disjoint. Here, N° is identified via the exponential map of 
Lemmas 2.1 and 2.2 of [28] with a disk bundle of the same name in the 
normal bundle to C. The radius of N° is denoted below by Lo­

with the preceding understood, a point on the gauge orbit, Oj, of 
(a,j,(oij,ßj)) can be written as in (6.1). In particular, at points with 
distance ö or less from a given C^, this representation of the given gauge 
orbit point has the form 

(6.2) | (e + p*rv + -^=br + ^=a', (p*rT + a', Xr + /?')) } • 

Here, r = rj, while c = (f ,r) is the section of the (Ck,mk) version 
of vortex bundle ((2.15) in [28]) defined by yk, and (ftr,Ar) are defined 
from yk as in Section 3b of [28]. (See (3.12) in [28], where (6.2) is valid. 
Write a' as 

(6.3) a = ayK\ — ayK\ + ac — äc-

Here, ac is a section of T0,1N which lies in n*T*C. (Remember that n\ 
is defined in Part 4 of Section 2a in [28].) 

The purpose of this subsection is to find a point on the afore­
mentioned gauge orbit where pointwise estimates for (ay, (a',ß!)) are 
available. (It will become abundantly clear that estimates for ac are 
hard to come by.) Such estimates are provided by Lemma 6.1, below. 
In the statement of the lemma, and subsequently, V denotes the co-
variant derivative using the connection 6 + p*v when the object of the 
derivative is a section of a bundle which involves E. And, V y denotes 
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the covariant derivatives along the fibers of N. Also, in the statement 
of the lemma, || • |J2 denotes the L2 norm over 

Lemma 6.1. Fix e > 0 and a positive integer d. For all sufficiently 
large j , a point on the orbit Oj can be chosen so that the data q = 
(a', (c/,/3')) has the following properties: 

1. On the tubular neighborhood N° of any C G {C^}, 

Y, r-d'/2|(v^'(ay,«',/3')| < £ • e^^l/C. 
0<d'<d 

2. On this same tubular neighborhood, 

||V(ay,c/,/3')||2 + | |V y a c | | 2 + y/r • I M h < C-

3. Where the distance to any C^ is greater than So/2, the norms of 
a', a', and ß' and of their covariant derivatives to order d are 
bounded by exp(—y^/O-

Here, r = rj, and the constant Ç is independent of e and j . 

(Note that the second point above gives L? control over all deriva­
tives of (ay, a', /?'), but only the derivative of ac along the fibers.) 

Proof of Lemma 6.1. The proof is carried out in five steps. 

Step 1. The pointwise estimate in the lemma for /?' follows 
from Proposition 4.4 in [27]. The pointwise estimates for the covariant 
derivative of ß' along the fibers of N follow from Proposition 4.4 in [27] 
given the pointwise estimate for ay. Likewise, the bounds for the higher 
order covariant derivative for ß' along the fibers of N follow from those 
for ay given the following generalization of Proposition 4.4 in [27]: 

Proposition 6.2. Fix a complex line bundle E —> X and a integer 
d > 0. There is a constant £ which depends only on ci(E),d and on 
the Riemannian metric and has the following significance: Let r > Ç 
and suppose that (a, («,/?)) is a solution to the r-version of the Seiberg-
Witten equations for the Spin structure with S+ defined by E. Then at 
any point x G X and for any d' G {0,1, . . . ,d} 

\{Vi{a^r-ß))\{x) < Cr d ' /2 e x p ( _^ r d i s t ( 2 ; 5 a - i ( o)) / C ) . 
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Proof of Proposition 6.2. The proof is obtained by a straightforward 
application of the strategy which proved Proposition 4.4 of [27]. 

The L2 estimate for the covariant derivative of ß' follows from the 
pointwise estimate of ß' using the L2 estimate for ac and Proposition 
4.4 in [27]. 

S t e p 2. This step begins the task of choosing a point on the 
orbit of (a,j, (aj,ßj)). To start, note that Proposition 4.4 in [27] has the 
following consequence: Fix öi > 0 and when j is sumcently large, then 
11CKj-1 — 1| and the norms of the a,j covariant derivative of ay and of the 
curvature of oy are bounded by Ç • e~vrK a t points where the distanct 
to any Ck is greater than 8\. 

One can conclude from the preceding that for all sufficiently large 
j , there is a gauge for (oy, (ay,ßj)) for which the corresponding pair 
(a', a ' ) and their covariant derivatives to order d are point-wise bounded 
by C • e~vr>(> where the distance to any Ck is greater than <?o/4. Indeed, 
the gauge should be chosen so that a' = gj • ar with gy real. Then, 
the estimates from Proposition 4.4 in [27] imply the stated supremum 
bound for a'. Here, ar is constructed from the data {yk} as detailed 
in Section 2 of [28]. The estimates from this same proposition for the 
Oy-covariant derivative of a' give both the C° estimate for a' and the 
C 1 bound for the covariant derivative of a'. 

The bound for the covariant derivative of a' and the higher covariant 
derivatives of (a', (a',/3')) follow by similar arguments from Proposition 
6.2. 

S t e p 3. This step extends the previous gauge choice to obtain 
estimates where the distance from any given C G {Ck} is ö(l/y/rj). To 
procede, suppose first that some e\ > 0 has been specified. Now, remark 
that the assumptions of Proposition 5.2 together with Proposition 4.4 
in [27] find Ro > 1 such that for large j , the section ay has norm greater 
than 1/2 where |s | > Ro/^r. Thus, if the gauge choice here also requires 
ccj = Qj-ar with gj real, then Proposition 4.4 in [27] and Proposition 6.2, 
above, imply that the conditions of Assertion 1 of Lemma 6.1 are met 
using £i for e as long as \s\ > Ri/y/rj, where i?i is determined by ei , 
but not j . (A lower bound for i?i is given by Ç • | ln(ei)| .) The argument 
here is the same as that employed by the previous step. However, in this 
case, note that only estimates for (ay, a') and their derivatives along 
the fibers of N are available. This is because the vortex (u, r ) is smooth 
along the fibers of N, but of undetermined differentiability in horizontal 
directions. 
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On the otherhand, because (v, r ) is an h\ section of the (C, m) 
version of (2.11) in [28], one can conclude that Assertion 2 of Lemma 6.1 
holds as long as the integration domain is restricted to where R\/yJri < 
\s\ < Æ0. 

Step 4. This step begins the task of choosing the gauge for 
(a,j, (aj,ßj)) where \s\ < 2 • Ri/^/rj. Begin with the observation from 
Proposition 4.2 in [27], that for large j , the yVj rescaled restriction 
of (a,j,aj) to N\z must be close to some vortex at every z G C. To 
be precise, fix e\ > 0, R > 1 and the non-negative integer d. Choose 
z G C and dilate (in Gaussian coordinates centered at z) the ball of 
radius Rijyjrj with center z to a ball of radius Ri- Use the Gaussian 
coordinates to identify this ball with the centered, radius Ri ball in M4. 
Also, use the almost complex structure J\z to identify this M4 with C 2 . 

For sufficiently large index j , the pull-back to this radius R2 ball (by 
the dilation map) of some point on the gauge orbit of (oj, (oij,ßj)) will 
have Cd norm within e\ of the pull-back to the radius R2 ball (by a C 
linear projection from C2 to C) of a vortex solution, say (u', r ' ) , on C. 

Next, note that the dilation map pulls back the fibers of TV to give a 
codimension 2 foliation of the ball of radius R2 in C2 by submanifolds. 
These submanifolds are close to being linear complex lines. Indeed, 
there is a complex linear vector space isomorphism C2 = C © C and a 
diffeomorphism (f> : C © C —> C © C with the following properties: Write 
<f>{z,rj) = (z',r]'). Then, in the radius R% ball about the origin: 

• 7/ = 0 gives the pull-back by the dilation map of the zero section 
of TV, 

• the z' = constant planes give the pull-back by the dilation map of 
the fibers of N, 

• \<p(x) - x\ < Cr_ 1 /2 |a; |2 and |V(0 - id)\ < C^"1 / 2 , 

• \Vs<p\ < C s r - ( 8 - 1 ) / 2 for s > 2. 

(6.4) 

With this understood, one can suppose, without loss of generality, that 
(V',T') is pulled back by the composition of the map 4> followed by a 
C linear map to C. This is to say that the zero's of r ' define a set of 
parallel, complex lines in the (z', rf) plane. Furthermore, since the zeros 
of the rescaled a,j stay uniformly close to the zero section of N, one can 
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assume (for large j) that (V, r ' ) is pulled back by the map which sends 
(z',r]') to r)'. 

Meanwhile, on each of the z' = constant complex lines, the zeros of 
the pull-back of aj are (assuming that j is large), e\ close to those of 
the pull-back by the dilation map of the complex function r as defined 
by the vortex ( I>,T) . (This follows from the definition of yk.) The last 
fact implies that the zeros of r ' must be within 2 • ei to those of r and 
vice versa on each of the z = constant complex lines. Since the vortex 
solution (i>', T ' ) on C is determined by the zeros of r, for sufficiently large 
j , the pull-back to the ball of radius i?2 in C2 by the dilation map of a 
point on the gauge orbit of (a,j,oij) must be e\ close in the C° topology 
to the pull-back of (6 + p*v, p*r) by this same dilation map. 

Furthermore, using elliptic regularity for the vortex equations, it 
follows from the preceding that for sufficiently large j , the pull-back of 
(6 + P*V,P*T) by the dilation map must restrict to each of the z' = 
constant complex lines to be ei-close in the Cd topology to (V',T'). 

This argument shows that there is a gauge for (aj,a>j), when j is large, 
for which, in the ball of radius R% in C2 , the following is true: The 
derivatives to order d along the z' = constant complex lines of the pull-
back of (oj — (6 + p*v),a>j — P*T) are ei-close to zero. 

With the preceding understood, one can (when j is sufficiently large) 
undo the rescaling in the ball, to obtain a point on the gauge orbit 
of (a,j,(oij,ßj)) with the following property: The corresponding data 
(av,o,c,a.') restricts to the ball of radius R^/^/r and center z to obey 
| (V v )® d (ay,ac, ot')\ < £\ • rd I2 for any integer d! < d. Here, e\ is any 
fixed apriori, positive number. 

S t e p 5. The preceding estimates are uniform in the coordinate 
z, which implies the following: Given ei > 0 and i?2 > 1, there is, for all 
sufficiently large j , a set Aj C C which has the properties listed below. 

• Aj contains no more than Ç • VjjR\ members. 

• Distinct points in Aj have distance greater than i?2/(4y /rj) apart . 

• The balls of radius i?2/(4 • \ / r j ) a n d centers at points of Aj cover 
C. 

• For each point in Aj, there is a gauge for {aj, (oij,ßj)) such that 

the resulting (ay,ac,a!) has its derivatives along the fibers of 

N to each order d' < d bounded by e\r • in the ball of radius 

R2IWrj about the given point. 



COUNTING CURVES AND CONNECTIONS 555 

(6.5) 

Here, £ is independent of ei, i?2 and j . 

Step 6. The next task is to glue these local gauges together 
to find a gauge on the orbit of (oj, (aj,ßj)) over a radius Ç~l • R2/Vrj 
tubular neighborhood of C for which the resulting (ay,ac,a>') have 
derivatives of order d! < d along the fibers of N bounded by C, • £\ • rd '2. 
This last job is a straightforward exercise with cut-off functions and is 
left to the reader. Here, £ can be assumed to be independent of R^ e\ 
and j . And, for the purposes of the proof of Lemma 6.1, it is sufficient 
to take i?2 = C" " -Ri- When gluing the local gauges together, remember 
that where two of the balls overlap, the corresponding two gauges for 
(a,j,oij) must differ by a small gauge transformation because in either 
gauge, the pair (a,j,oij) is close to the same rescaled vortex (6+p*v, p*rr). 

Step 7. The final task is to modify the gauges from Steps 3 and 
6 in the region where \s\ G (Ri/y/rj, 2 • Ri/y/vj) to make a globally 
defined gauge for (a,j, (aj,ßj)). This is another straightforward exercise 
with cut-off functions which is also left to the reader. One is aided here 
also by the fact that in each gauge, (a,j,oij) is close to the same rescaled 
vortex. 

The result of this step is a gauge for (a,j, (aj,ßj)) (when j is large) 
for which the estimates in Assertion 1 of Lemma 6.1 are met using Ç • e\ 
instead of e. Also, the estimates in Assertion 2 are also met, except 
possibly for the finite bound on the L2 norm of the horizontal derivatives 
of ay and a'. The latter bounds follow, respectively, from L2 bounds 
for the component / + of the curvature of a,j (see (5.8)), and for the a,j-
covariant derivative ofay. Both of these L2 bounds follow directly from 
the estimates in (1.24) of [27]. (Note that a crucial minus sign is missing 
from the exponent of the last expression in (1.24) of [27]. The sign is 
corrected, however, in the reprint of the article which appears in the 
Internat. Press volume.) In this regard, note that the complex conjugate 
of r - 1 ' 2 • f+ involves the horizontal anti-holomorphic derivative of ay, 
together with vertical derivatives of ay and also of ac- Thus, the L2 

norm of r~1'2 • /+ over N° (with the now established parts of Lemma 
6.1) bounds the L2 norm of the horizontal, anti-holomorphic derivative 
of ay. Finally, integration by parts can be used to parlay the latter 
bound into a bound for all horizontal derivatives of ay. Alternately, one 
can argue from (1.24) in [27] that r - 1 ' 2 • /_ also has a uniform L2 norm 
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bound. The latter controls the L2 norm of the holomorphic, horizontal 
derivatives of ay in terms of the vertical derivatives of ay and ac-

To summarize: Given £\ > 0, all of the Assertions of Lemma 6.1 
can be met for suÆciently large j using £ • ei instead of e, where £ is 
independent of e\ and j . And, with this understood, take e\ here to 
equal Ç~l • e to obtain Lemma 6.1. 

c) A fiberwise "Coulomb" gauge 

This subsection modifies the gauge choice from Lemma 6.1 so that 
the resulting pair (a1, a') obeys the fiberwise coulomb gauge condition 

(6.6) dvay — dväy -\ j-(p*?a' — p*.TÖt) = 0, 
2 y 2 

where |s| < 8Q/2. Here is a precise statement: 

Lemma 6.3. Fix e > 0 and a positive integer d. For all sufficiently 
large j , a point on the orbit Oj can be chosen so that the data q = 
(a', (c/,/3')) has the following properties: 

1. On the radius 8$ tubular neighborhood of any C G {C^}, 

Y, r-d'/2|(v^'(ay,«',/3')| <ee-^|s|/C. 
0<d'<d 

2. On this same tubular neighborhood, 

| |V(ay,a',/3')||2 + | |V y a c | | 2 + y/r • | | a c | | 2 < C-

3. Where \s\ < So/2 on this same tubular neighborhood, (6.6) holds. 

4- Where the distance to any Ck is greater than Jo/2, the norms of 
a', a', and ß' and of their covariant derivatives to order d are 
bounded by exp(—\/r/C)-

Here, r = rj, and the constant Ç is independent of e and of j . 

The remainder of this subsection is occupied with the 

Proof of Lemma 6.3. Let (a'ol(i, Q îd? ß'0\d) ^ e g i y e n by the gauge for 
(oj, (oij,ßj)) as specified by Lemma 6.1, and using d + 1 instead of d. 
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Lemma 6.3's data (a', a', ß') is defined in terms of a function v! on 
by the following rule: 

a' = a'old + i • r ' du', 

ai = e'^'"11'a'old + ( e ~ i W P r T - p*r), 

(6-7) ß'= e-^u'(ß'old + ßr) - ßr. 

Meanwhile, write u' = x<j0/2 " u? where the function u is required to be 
square integrable on N° and is chosen to insure that (6.6) holds where 
|s| < #o/2. (Here, x is a standard cut-off function on [0, 00) which is 1 
on [0,1] and 0 on [2, 00). Then, with the choice of t > 0, the function x 
is promoted to a function, xt = x(ls(')IA) o n N.) The latter condition 
can be implimented by requiring u to solve a differential equation on N 
which has the schematic form: 

-2dvdvu + 2-1/2r\p*rT\2u 

(6.8) + ^/'rx50/2 f ôyay )0id - öyäy )0id + — - {p*.fa'oXâ - p*Tä'old) J 

+ r1Z(u, «old) = 0-

Here, the term 1Z has the property that \lZ(u,a>'oì(ì)\ < ( • (\u\2 + \u\ • 
laóidl)- ^lso? ^ has compact support where |s| < <5o- With the preceding 
understood, the proof of Lemma 6.3 requires an existence theorem for 
(6.8) and apriori estimates for the solution u. This is the next order of 
business. 

The first observation is that (6.8) differentiates only along the fibers 
of N, so one can restrict attention to the fiber of N over any given point 
z G C. Thus restricted, (6.6) becomes an equation on C. The strategy 
then is to find a solution, u, which decays to zero at infinity. Such a 
solution will be found as the fixed point of a certain map with the help 
of the contraction mapping theorem. (See, e.g. Section 4a in [28].) The 
map in question sends a function u on N\z to T(u), where the latter is 
given by 

(6.9) 
VrXö0/2 (dvav,oid - dvaVy0\d 

+ 7^(PrTOióid - PrTa'oid)) + r1Z(u,a'old) 

Here, Gr is the Greens function kernel for the operator 
(-2dvdv + 2-1/2r\p*rT\2) on N\z. 
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Concerning the Greens function Gr, remark that 

(-2dvdv + 2-l/2r\p*rT\2) 

is obtained by rescaling the operator 

{-2dvdv + 2-ll2\r\2) 

on C. The latter defines a bounded map from the L\ Sobolev space to 
L2 with bounded inverse. This inverse, G, is given by an integral kernel; 
and an exercise with the maximum principle shows that 

(6.10) G(V,rf) < C| lnflrç - r / | ) | exp(- | r ? - r / | /C) . 

Here, £ is independent of the pair 77 and rj'. In any event, GT is obtained 
from G by scaling by r. To be precise, 

Grifi, ff') = r _ 1 • Giy/r -r], y/r • / / ) . 

It is convenient to set up the contraction mapping argument for (6.9) 
as follows: Given x > 1, define the Banach space Bx by completing the 
space of functions on N with compact support using the norm 

(6.11) | |u|| = sup{exp(y /r |s | /a;) • \u\}. 
N 

It is an exercise with the maximum principle (use exp(—y/r • \s\/x) 
as a comparison function) to find a constant Ç which is independent 
of r (that is, j) and is such that if x > ( and e < ( _ 1 , then T maps 
Bx to itself and is a contraction on a ball centered about the origin 
of radius Ç - 1 . (The version of Ç here is determined by the constants £ 
which appear (6.10) and in the estimates for (ayj0id, «old) m Lemma 
6.1.) Thus, when e < ( _ 1 and j is sufficiently large, the contraction 
mapping theorem provides the function u which is a fixed point of the 
map T in (6.9). Apriori estimates for this function u then follow by 
differentiating the map T and invoking the estimates in Lemma 6.1 for 
av,oid a n d «old- (Remember that (I>,T) are infinitely differentiate along 
the fibers of N, and also that Lemma 6.1 has been invoked using d+1 
instead of d.) In any event, one finds by straightforward arguments, that 
the derivatives of u along the fibers of N to order d' < d + 1 of u are 
apriori bounded by Ç • e • rd '2 • e~vr\s\/C. 

The preceding bounds plus (6.7) imply the first assertion of Lemma 
6.3. 
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To prove the second assertion of Lemma 6.3, apriori bounds are 
required for the L norm over N of Vu and V y V u . The latter are 
obtained as follows: Start by differentiating (6.8). This can be done on 
almost every fiber of N since c = (v, r ) is a Sobolev class L2 section of 
(2.11). The result is an inhomogeneous equation for the derivatives of 
u of the form 

(6.12) (-2dvdv + 2-1/2r\p*rT\2)Vu + Remainder = 0. 

The term here marked "Remainder" involves smaller terms with Vu, 
terms which are linear in VVT, V ^ a ^ and terms which are linear in 
Vöy,old a n d V y Vay)0id. With the preceding understood, take the point-
wise inner product of (6.12) with Vu, and then integrate the result over 
N°. Integration by parts with the help of Lemma 6.1 and the trian­
gle inequality yields apriori L2 bounds for Vu and V y V u . The latter 
bounds plus (6.7) lead to Assertion 2 of Lemma 6.3. 

The third assertion of Lemma 6.3 follows by construction, and the 
fourth assertion can be obtained directly from Lemma 6.1. 

d) 1/2 b o u n d s on ac 

The purpose of this subsection is to employ the Seiberg-Witten equa­
tions to refine parts of the L2 estimate from Assertion 2 of Lemma 6.3. 
The statement of the refined estimates requires the digression that fol­
lows. To start the digression, fix z G C, and let f) b e a complex coordi­
nate on N\z which isometrically identifies the latter with C. By Lemma 
6.3, when j is large, then 

(6.13) {V,T)+X^TÖ0/4 (^^{p*r-i(av)dfi - p*-i(äv)dri), p^ia')) 

is close to (v, T ) , but (i>, r ) may not be the closest solution to the vortex 
equations. To find the closest solution, introduce the map T of Propo­
sition 3.2 in [28]. The latter maps sections of ®i<q<mNq to sections of 
the vortex bundle of (2.15) in [28]. Also, introduce the operator 0 C as 
defined in (2.12) for c = ( I>,T) . Remember from Part 2 of Section 2c of 
[28] that the kernel of 0 C can be naturally identified with the tangent 
space at (i>, r ) to the vortex moduli space. 

Now note that when j is large, there exists a unique section y'k of 
© i < ç < m ^ ' which has the following properties: 

• \y'k — yk\ < £ a n d \\y'k — yk\\i,2 < C-
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Write 

Then 

T(y'k) = (v, T) + ( i ( t i • dfj - h • dri),t0). 

X^rö0/4:Pr-i(aV,a') - (h, t0) 

is L2 orthogonal on each fiber of N to the kernel of 0C. 

(6.14) 

To find y , first fix z G C and take any y k G ®\<q<mNq\z. Define a 
map from ®i<q<mNq\z to kernel(0c) by assigning the L2 orthogonal 
projection along N\z of Xy/r60/4P*-i{aVi «') — (ii, to) to each y'k. The 
fact that there is a unique, y'k close to yk which makes this projection 
zero follows using the implicit function theorem because the differential 
of the assignment of (ti,io) to y'k at yk is the map Ti of Proposition 
3.2 in [28]. (Remember that the latter defines an isomorphism between 
®Kq<mNq\z and kernel(0c).) The estimates on the size of y'k — yk in 
the first line of (6.14) follows from the bounds on (ay,a') in the first 
two assertions of Lemma 6.3. 

Given y'k, and (ti,io) a s m (6-14), introduce t = (p*to,p*ti) as an 
element of the vector bundle Vo from (4.16a) in [28]. With t understood, 
introduce 

• Vv = (a'v,a") = Xs0/i{av,Oi') - t. 

• VC = (ac,ß')-

(6.15) 

Of course, r\c has no need of y'k for its definition. For use later, note 
that the definition of t insures that r\y is L2 orthogonal on each fiber of 
N to the kernel of the operator 0 as defined in (4.28) of [28]. 

The following lemma provides an apriori estimate of the size of rjv 
and rjc '• 

Lemma 6.4. Under the assumptions of Lemma 6.3, there exists a 
constant £ which is independent of e and the index j , and is such that 
for all j sufficiently large, 

y ( w , ^ ) | | | + r| |(w,^)| | | + ||Vtìt||2 
-ff 2 

(6.16) 
+ livelli+ l|VV||i< Cr" 
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Here, V denotes the covariant derivative in directions which are hori­
zontal in TN. (Use the connection 9 + p*v on sections of bundles which 
involve E.) 

Remark that (6.16) bounds ||ac||2 by (-r_1, which is a factor of r~1'2 

smaller than the estimate from Assertion 2 of Lemma 6.3. Likewise, 
(6.16) gives bounds for Vvac and VHay which are a factor of r~1'2 

smaller than those from Lemma 6.3. 
The remainder of this subsection is occupied with the 

Proof of Lemma 6.4- As hinted, these estimates are obtained using 
the elliptic properties of the Seiberg-Witten equations. The derivation 
requires six steps. 

Step 1. This step reintroduces the Seiberg-Witten equations to 
the story. For this purpose, reintroduce, from (4.28) of [28], the operator 
0 and its formal L2 adjoint &' on each fiber of N. Also, reintroduce on 
N the operators dH and dH which appear in (4.17) of [28]. 

Following the discussion in Section 4c of [28], rewrite the large r 
version of the Seiberg-Witten equations (where \s\ < <5o/8) as equations 
for the pair r]y and r\c in the schematic form given below. (This equation 
is written out under the assumption that (6.6) holds.) 

1. G-TÌV + (2-1(XHac + \Häc), XHß') + nv + TZv = 0. 

2. Q^qc + XH{t{w) + rlv) + Kc + n°c = 0. 

(6.17) 

Here, \H = a • (dH + b • <9ff), where a = 1 + C(|s|2) and b = 0{\s\); 
and both are determined solely by the J and LO near C. (Note that the 
derivatives which are defined by dH and dH are covariant dérivâtes, 
using the natural connections on the various summands of (4.16) of [28] 
as defined from 6 and the Levi-Civita connection on TC.) Meanwhile, 
IZy and V?c are determined by the data (V,T). In particular, their L2 

norms on N obey 

(6.18) | | ^ c | | 2 < C r - 1 / 2 . 
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Furthermore, IZy and TZQ satisfy the pointwise bounds: 

\Kv\ < (Wr(\t\ • \w\ + \W\2 + \ß'\2 + \ß'\\ac\) + \t\ 

(6.19) + | »TV | + |T7C| + |a|(|Vt| + |Vr?y| + |Vyr?c|)] 

\R>c\ < C[\MI*I • Vtc\ + Viv\Vic\) + |*| + Viv\ + Vic\ 

+ |s|(|Vt| + |VT7K| + |Vvr7c|)]. 

Here is one further, crucial remark concerning IZy and IZy : Both 
1ZV and 1ZV are sections over N of the trivial complex line bundle. As a 
real bundle, the trivial complex line bundle can be written as the direct 
sum of two trivial real bundles, n*A2T*C © ffi. The isomorphism from 
the latter to the former involves the volume form u>c of C; it sends 
a pair (a • iOc,b) to the complex number a + i • b. In particular, this 
isomorphism defines a real structure on the trivial complex line bundle. 
With the preceding understood, note that both IZy and 1ZV correspond 
to real sections of the trivial complex line bundle, since both come from 
sections of the n*A2T*C summand. 

Step 2. The plan now is to consider (6.17) as an elliptic system 
for (r)v, T}C) a n d the section LO of Ve, and so obtain apriori L\ estimates 
via the associated Weitzenboch formula. To start, take the L2 norm of 
(6.17.2) over the subset of TV where \s\ < <?o/16, and so obtain, with the 
help of the triangle inequality, the inequality 

liofili + l|Äff(t + w)lll 
+ 2 • Re(etr?c, XHt)2 + 2 • R e ^ V , Ä ^ W ) ) 2 

< C ( r - l + (£2r + l ) . I l ^ m 

+ r - 1 | |V f f ( t + w ) l l l + r - 1 | | V V l l i ) -

Here, the constant £ is independent of the index j and of the parameter 
e. The derivation of (6.20) uses the apriori bounds 

r - l / 2 . |VV ( < + w ) | + |( t + w ) | < C . e-Wr\s\/C 

from Lemma 6.3. The derivation also uses the apriori estimates from 
(1.24) in [27] which bound \ß'\ by a multiple of r"1/2 . 

The most troublesome terms in (6.20) are the third and fourth terms 
on the left side. The analysis of the third term occupies the remainder 
of this step, and the fourth term is treated in the subsequent step. 

To begin, write t = t' + t", where t' is obtained by rescaling Ti • 
{y'k — yk) using pr. Here, Ti is defined using yk as in Proposition 
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3.2 of [28]. In particular, note that at each z G C, this T i maps 
®i<q<mNq\z isomorphically onto the kernel of the operator 0 C as de­
fined by c = T(yk). Thus, @t' = 0. Furthermore, since T i is essentially 
the differential of the map T at yk, it follows that \t"\ < Ç • e2. Likewise, 
| | V y t " | | 2 < C • e • l |V y t | | 2 and also \\VHt"\\2 < C • e • l |V f f i | |2 . 

Given the preceding, integrate by parts in the third term in (6.20) 
to obtain the following inequality: 

| 2 - R e ( e V a f f £ > 2 | 

(6.21) < 2 | R e ( A f f r ? c , e t " ) 2 | 

+ C ( r - 1 + i ? o | | r ? c | | | + e | | V V l l l + ^ o " 1 | | V ^ | | | ) . 

Here, £ is independent of the index j and the choice of e. Also, Ro > I 
can be anything, in principle, although a particularly useful choice is 
made below. (The last terms on the right side of (6.21) arise from 
boundary terms where \s\ = Æo/16> a n d from the failure of the horizontal 
derivatives and vertical derivatives to commute. These terms can all be 
handled with the help of Lemma 6.3 and with the apriori estimates in 
(2.5) and Lemma 2.4 of [28].) 

Now, integrate by parts in reverse to rewrite the first term on the ride 
side of (6.21) in terms of 2 • | Re{@^r]c, Ä f ft2)2|. The resulting inequality 
will have the same form as (6.21) but for a different choice of the param­
eter £. (As before, this £ can be chosen so as to be independent of e and 
the index j.) Finally, use the fact that the norms of t" are a factor of e 
smaller than those of t to bound the expression 2 • | Re(0^77c') ^Ht"}2\ 
by Ç • e • l l © * ^ ! ^ • I lV^ t j ^ , where Ç is again, independent of e and of j . 
Thus, the (6.20) can be replaced by 

| |0 t r?c | | i + l|Äff(t + w ) l l i + 2Re(0 t ? ? c , \Hwh 

< C ( r - i + ( £ V + i^ll^lll + i^HV^Il! 

(6.22) + r - i | | v i V | | 2 , + £ | | V V l l ! ) -

Here, and subsequently, it is assumed that RQ » £ » r _ 1 . Note that 
the constant £ which appears here can be taken to be independent of e, 
i?o and also the index j . 

Step 3 . This step considers the fourth term on the left in 
(6.20), which is to say the third term on the left in (6.22). To begin, 
integrate by parts to replace the third term on the left in (6.22) with 
—2 • Re(XHric, &r]y)2 plus a remainder. This remainder term (which 
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arises from boundary terms where \s\ = 8Q/'8 and from the failure of 
derivatives to commute) can be bounded by an expression which has 
the same form as the right-hand side of (6.22). (Again, use Lemma 5.16 
and (1.25) from [27].) The result of this replacement is the inequality 

l i o f i l i + ||Äff(t + w ) l l | - 2 R e ( A ^ c , e W ) 2 

(6.23) < ( ( r - 1 + (s2r + R0)\\ric\\t + ^ G l V ^ H l 

+ l|vVlll + £||vVlli))-
(The i?o which appears here is different than that which appears in 
(6.22). Even so, Ro > 1 is free to choose, although a particular choice 
given below proves most useful. Also, the constant £ in (6.23) is bigger 
than that which appears in (6.22), but it is still independent of the index 
j or the choice of the parameters e and Ro.) 

To make further progress, use (6.17.1) to substitute for Qr]y to ob­
tain the inequality 

liofili + l|Äff(t + w)lll 
+ Re(\Hac, \Hac + \Häc 

(6.24) +(nv + 7 4 ) i ) 2 + ||A V i li 

> C ( r - 1 + (e2r + i?o)(||r?c||| + | |wlll) 
l f f 2 ff2 V |2N + V ( l | V " i | | 2

; + | |V 'VI | 2
; ) + £||Vl/r?c 

To deal with the third term on the left side of (6.24) it is necessary to 
exploit the fact that (IZy + 1Zy)o is real. With this understood, the 
triangle inequality can be used to obtain 

t N Re(XHac,XHac + \Häc + (nv + 1Z\r)i)2 

(6.25) 
- y l l 2 -> 4-1 | |A f fac + \Hâc\\l - Ç\\KV + ft° 2 

Furthermore, the L2 norm of IZy + 1ZV is bounded by an expression 
which is similar to that appearing on the right-hand side of (6.24). This 
all means that (6.24) can be replaced by the inequality 

HöVlli + Pff(t + w)lll + l|Aff ac + \Häc\\l + PVIII 
< C ( r - i + (eV + i ?o ) - ( l i b i l i+ | |wlll) 

(6.26) +Ä0-1(l |VH t | | i + ||V V i l i ) + e | | V V i l i ) -

Here, of course, the constant Ç is not the same as that which appears 
previously, but in any event, it can be taken to be independent of the 
index j and the parameters e and RQ. 
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Step 4. This step uses (6.17.1) to bound the L2 norm of 0 • r\c 
by a multiple of the sum of the L2 norm of (2_ 1 • (XHac + XHäc), XEß') 
and of 1Zy + 1ZV. As a result, (6.26) implies that 

WQwWì + WQ^cWì + f^it + wìWì 

(6.27) 
_i_l l \ f f „ _i_ \ # ^ II2 _i_ l l \ f f « ' l l 2 

+ ||A ac + A ac||2 + l|A P 112 
< C ( r - i + (eV + i?o)(||r?c||| + | |wlli) 

+ ̂ (IIV^III + ||V Vili) + e||V Vili)-
Here, again, the constant £ can be assumed to be independent of e, Ro 
and the index j . 

Step 5. This step invokes Lemma 4.6 in [28] and the fact that rjy 
is fiberwise L2 orthogonal to any element in the kernel of 0 to conclude 
that 

1. | | V V l l i + r | | w l l i < C l | 0 w l l i -

2- | | V V l l i + r | | ^ | | | < C l | 0 V 2 
2-

(6.28) 

Step 6. This step considers the relationship between 
IIA-**(ì + ì?y)lli a n ( ì the sum of ||Äfft||2 and ||Äff77y|||. For this purpose, 
write t = t' +1" as in Step 2. The first observation here is that 

(6.29) ||XVl!<C£2||VV!. 
Thus, 

(6.30) \\XH(t+11y)\\2 < C- 1 ( | |Ä^ ' | | | + | | Ä V l l i ) + 2Re(Ä^' , Ä V > 2 . 

To estimate the cross term in (6.30), it proves useful to introduce 
over an open ball B c C a n orthonormal basis {tt>g}i<g<TO for the bundle 
®i<q<mNq. For each q, write the corresponding T\-wq as (6, ö) and then 
define uq = (r~1'2p*b, p*.8). Thus, {uq} defines, fiberwise over B, a basis 
for the kernel of 0 . Remark that because c = (V,T) defines a Sobolev 
class L2 section of (2.15) in [28], each uq obeys 11V t̂iglI2 < ( • r - 1 ' 2 . 

Now, t' is a linear combination of the {uq}. And, since each uq is 
L2 orthogonal on each fiber to r]y, and |i'| and \r)y\ are both pointwise 
smaller than e, it follows that 

(6.31) KÄ^ÄVhl^r-^llVV + llVVl 2j 
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Given the preceding, one can conclude from (6.30) that 

(6.32) \\XH(t + W ) | | | > CHIIÄ^'H! + \\\HVv\\l) - (zr-\ 

where, again, Ç is independent of e and the index j . 
Given (6.23), the plan now involves integration by parts to com­

pare the L2 norm of XHt with that of V f fi , and similarly for r\c- This 
procedure is straightforward and yields from (6.32) the inequality 

(6.33) IIÄ^^ + ^ l l l ^ r ^ l l V ^ ' H l + l l V V l l D - C e r - 1 , 

where Ç here is different than in (6.32), but still independent of e and 
the index j . 

Step 7. This step plugs (6.28) and (6.33) into (6.27). The 
resulting inequality gives the assertion in Lemma 6.4. 

e) The appearance of ZQ 

Here is the important feature of {yk} from Section 6a: 

Lemma 6.5. For each k, the data yk from Section 6a lies in 
the (Ck^rrik) version of the variety ZQ. In particular, this implies that 
each yk is a smooth section of the corresponding (Ck,mk) version of 

Note: The assertion that yk lies in ZQ is equivalent to the assertion 
that the (3.5) of [28] is identically zero when c = T(yk). 

The remainder of this subsection is occupied with the. 

Proof of Lemma 6.5. Return to the milieu of Section 4 in [28], 
and reintroduce the bundle Vi —> N° in (4.16b). Lemma 4.4 in [28] 
describes a natural identification between i • (e © A+) © S- and Vi. 
As such, the left hand side of (6.17) defines a canonical section of Vi 
from data rjv = (a'v,a") and rjc = (ac,ß')- That is, the left hand 
side of (6.17) is defined whether or not the Seiberg-Witten equations 
are satisfied; the Seiberg-Witten equations assert only that this section 
vanishes. 

With the preceding understood, reintroduce from Lemma 4.5 in [28] 
the vector bundle K\ —> C whose fiber over z is a certain space of 
sections over n~l(z) of the vector bundle Vi. This bundle K\ depends 
on the data (v, r ) , so it can not yet be said to be smooth, but it is C0,1'2 

and one can talk about a Sobolev class L2 section. This bundle K\ 
depends on r in a simple fashion; an appropriate r-dependent fiberwise 
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rescaling canonically identifies K\ with the bundle Ve ® T ' C —> C as 
defined in Section 3 of [28] for c. 

Now, multiply the left hand side of (6.17) by x<50/
4 a n d take the fiber-

wise L2 orthogonal projection of the result onto K\ to define a section, 
s = s[r; (rivive)] over C of K\. This section is, of course, identically 
zero when {rjv-i'nc) comes from (a,j, (oij,ßj)), a solution of the r = Vj 
and ßo = 0 Seiberg-Witten equations. But for the generic choice of 
(i]v,i]c), the section 5 need not vanish. 

Meanwhile, the fact that the bundle K\ (as defined for a given r) 
is obtained by scaling the fixed bundle Ve <g) T0,lC can be exploited 
in the following way: With r fixed, reverse this scaling to obtain from 
the expression in (3.5) of [28] a canonical section, # r , of K\. Note that 
with the norm on K\ defined as in (4.30) of [28], the norm of i9r is 
independent of r. 

Given the preceding, here is the strategy for the proof of Lemma 6.5: 
As described above, (a,j,(aj,ßj)) defines a pair (T)V,TIC) and thus the 
section s[rj, (ï?y,/?c)] of K\ which is, apriori, known to be zero. But, if 
(i]v,i]c) are sufficiently small, then this section will hardly differ from 
s[rj , (0,0)]. However, the latter section is almost êj as defined using 
r = rj. Indeed, the section s[r, (0,0)] differs from êr by a term which is 
bounded pointwise by a multiple of r - 1 ' 2 . Thus, if (rjy, fie) are, for large 
j , sufficiently small, then the vanishing of S[VJ, {rivive)] will imply that 
the norm of êr tends to zero as r = rj gets large. However, as remarked 
above, the norm of êr is independent of r and equals the norm of (3.5) 
in [28]. Of course, this implies that (3.5) in [28] vanishes which is what 
needed proving. 

This strategy is carried out in three steps. 

Step 1. With the help of (6.17) and the analysis of Section 4 
of [28], (especially (4.19) in [28]), one can now compute the section 5 in 
terms of the data (riv,f]c)- Here is s: 

$r + n • Xö0ß(&]vc + \H(t(w) + nv)) 

(6.34) +U.XSoß^(ä'ß', a'ae) 

+ remainderi + remainder , 

where, n is the fiberwise L2-orthogonal projection onto the span of 
the kernel of the operator 0 which appears in (4.28) of [28]. In this last 
expression, the term marked as "remainderi", contains the contribution 
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from the operators Q and Rem which appear in (4.19) of [28]. This term 
has the schematic form 

n^r(vVvV,vV) 
(6.35) + n • n2 • (VHav, VHac, V f f « ' , VHß') 

+ IT • 1Z3 • (av,a',ac,ß')-

Here, 7Z\ is a compactly supported, R-linear bundle endomorphism over 
N° which is bounded in norm by £ • \s\ and whose covariant derivative 
is bounded in norm by £. Meanwhile, V,2 is a compactly supported, Bi­
linear bundle endomorphism over TV0 which is bounded in norm by Ç- \s\ 
and has horizontal covariant derivative which are also bounded in norm 
by Ç • \s\. Finally, IZ3, is a compactly supported, M-linear bundle endo­
morphism over N° which is bounded in norm by Ç. This constant Ç can 
be taken to be independent of j . This term contains the contributions 
to s from IZc in (6.17). 

Meanwhile, the term labeled as " remainder" has norm bounded by 
C • r - 1 ' 2 and has, itself, two pieces. The first piece is obtained from an 
appropriate r-dependent rescaling of the section of Ve <g) T0,lC which 
is obtained from the expression in (3.5) of [28] by the replacement of 
n c • (•) with IIe • (1 — XÖO/A) ' (')• The second piece is accounted for by 
the difference between the êr and s[r, (0,0)]. This term contains the 
contributions to s from 1Z®C in (6.17). 

S t e p 2. Let B C C be a ball, and let {w'}i<q<m be an orthonor­
mal basis for the bundle (®i<q<mNq) <g> T0,1C over C. The homomor-
phism T i maps {w'} to give a basis for the bundle Ve ® T0,lC over B. 
(Remember that Ve is defined using c = (v, r ) and thus is a bundle with 
Holder continuous transition functions.) Now, fix r = rj. After the ap­
propriate r dependent rescaling, the basis {T\w'q} of Vc®T0,lC defines 
a basis {wq} for K\ over B. These basis elements have r-independent 
norm and inner product as measured by the metric on K\ which comes 
from the norm in (4.30) of [28]. 

Note that each wq defines an element, wq, over n~l(B) which is, 
on each fiber of N, in the kernel of the operator 0 from (4.28) in [28]. 
Furthermore, the supremum norm of w_ is bounded by a j- independent 
constant Cs. Finally, the L2 norm over •K~1(B) of w_ and of VHw_q are 
bounded by C, • r - 1 ' 2 . (These estimates are simple consequences of the 
scaling relationship between w_q and T\wq.) 

S t e p 3 . Let u = (ui,... , uq) : B —> Cm be a smooth, compactly 
supported map. Then T,quq • wq defines a section of K\ over B. The 
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L2 inner product of this section with dr is independent of r as rescaling 
finds it equal to the L2 inner product of T.uq-w' with the section in (3.5) 
of [28]. On the other hand, the L2 inner product of T,quq • wq with dr 

can be computed using the fact that the sum in (6.34) is supposed to be 
zero. With this understood, consider the L2 inner product of T,quq • wq 

with the various terms (other than the first) in (6.34). 

The L2 inner product of T,quq • wq with the second term in (6.34) is 
bounded in norm by e~vrK for an appropriate, j - independent constant 
Ç because w_ is annihilated on each fiber by the operator 0 . (Up to 
contributions from where |s | > Æo/8, integration by parts identifies the 
inner product of this second term with the inner product of T,quq • Qw_ 
with something. Meanwhile, the contributions from where \s\ > ÆQ/8 
can be estimated using Lemma 6.3.) 

The L2 inner product of T,quq • wq with the third term in (6.34) is 
given by 

(6.36) r(\XqUqWq, Xö0/4^H{t{w) + T]V))2, 

where (-,-)2 is short-hand for the L2 inner product over N°\B- After 
integrating by parts, Lemma 6.3 can be invoked to bound (6.36) by 
C ' IM|i,2 ' £, where Ç is a j and e independent constant, and || • ||i;2 
signifies the L2 norm of a Cm-valued function on B. 

The L2 inner product of T,quq • wq with the fourth term in (6.34) has 
the form 

(6.37) r(Y,quqwqiXö0/4^-^(ä'ß', a'ac)j • 

Together, Lemma 6.3 can be used to bound the norm of this term by 
C • £ • 1Mb- (Of particular importance here is the bound of ||/?c||2 by 
C-r" 1 . ) 

The L2 inner product of T,quq • wq with terms "remainderi" and 
"remainder" in (6.34) can be bounded in norm by Ç- (e + r - 1 ' 2 ) • ||w||i 2 
by using Lemma 6.3 and (1.24) in [27] together with the stated proper­
ties of the endomorphisms {!Zb}b=i,2,3- (Integrate by parts to move the 
derivatives onto uq and w_q.) 

The preceding estimates imply that the L2 inner product on C be­
tween Tiquq • wq and êr is zero, since its norm is independent of r and 
thus arbitrarily small. Hence, (3.5) of [28] must vanish for c = T(yk) as 
claimed. 
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f) Rechoosing the gauge 

With each yk now known to be a smooth section of the (Cfc,mfc) 
version of ®i<q<mNq, the gauge choice for (a,j, (ctj,ßj)) at large j can 
be refined further so as to coincide with the gauge choice which is im­
plicit in the constructions of Section 5 in [28]. To elaborate, note that 
Sections 2 and 3b of [28] takes data {y'k} G Xfc/C^ near {yk} and con­
structs an approximate solution, (ar,(ar,ß )) = (ar[y'], (ar[y'], ß [y'])) 
of the r = Tj and /io = 0 version of the Seiberg-Witten equations in 
(2.4). Then, Proposition 5.2 and Section 5 in [28] describe a perturba­
tion of ( ß )) which gives an honest solution to (2.4) when {y'k} is 
mapped to zero by the map ipr m Proposition 5.2 of [28]. The perturba­
tion of ( ß )) is expressed as in (6.1) where the data (a', (a',/3')) 
are constrained to satisfy the "zero divergence" gauge condition: 

(6.38) *d * a'+ i^Cim(ära'+ ßrß') = 0, 
v2 

on the whole of X. Thus, the proof of Proposition 5.2 requires the 
following: Given {y'k} G x^/C^ near {yk} and j large, a point on 
the orbit of (oj, (oij,ßj)) must be found, for which the corresponding 
(a',(a',/3')) satisfies (6.38). 

Here is the main result of this subsection: 

Lemma 6.6. There is a constant Ç > 1 with the following signifi­
cance: Fix e > 0 but less than ( _ 1 and a positive integer d. Take the in­
dex j large. For each k, choose a point y'k G 1CA with L2-distance (_ 1-£ 
or less from yk. Use {y'k} to define the data (ar, (ar,ß )) for r = rj as 
specified in Sections 2 and 3b of [28]. Then, there exists a point on the 
orbit of (aj,(ctj,ßj)) which is such that the data q' = (a', (c/,/3')) as 
defined by comparison with (ar, (ar,ß )) as in (6.1) obeys: 

1. At each x G X, 

E r-d'/2\(Vrd'(a'Aa',ß'))\ 
(6.39) o<d'<d 

< e • exp(-A/rJ- dist(x, UfeCfe)/C). 

2. Equation (6.38) holds. 

The remainder of this subsection is occupied with the proof of this 
last lemma. 
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Proof of Lemma 6.6. The proof is accomplished via seven steps. 

Step 1. Return to the gauge for (a,j, (aj,ßj)) which is given in 
Lemma 6.1. For the moment, define (a',(a',ß')) using {yk} to define 
the reference data ( ß )). Given that each yk is now known to be 
smooth, the proof of Lemma 6.1 can be readily modified to prove that 
the data (a', (a',/3')) as just defined is smooth and satisfies (6.39) when 
j is large. 

With the preceding understood, agree to label the data from Lemma 
6.1's gauge using {yk} for reference data now as («old> (^óid'^óid))- Also, 
agree to label the reference data ( LA/IT* « I \JCir. « ß )) as defined by {y'k} as 

\ÇLr,y' •> \Qr,y' ' P_r yi 11 • 

Step 2. The gauge from Lemma 6.6 for (a,j,(a>j,ßj)) will be 
determined by a function u on X as follows: 

(a', (a ' , /?')) = I aold —du + ary — aryl, (el'ua'old 

(6.40) V Vr'] 

+ {e^ar,y - ar,y,),^ß'old + {e^ß^ - ^ ) ) J . 

The function u will be found by considering (6.38) as an equation for u 
on X. The latter equation is equivalent to an equation of the form: 

(6.41) - * d * du + 2-ll2rj | a r y \2u + Z(u) = 0, 

where 

Z(u) = iy/r * d * a'oid 

_l_ 2 _ 1 / 2 r ( |a r ; 2 / / | 2 • (sin(u) — u) + im{(kryie
l'u • «old' ) 

(6.42) +iy/r *d* {ary —aryi) 

+ 2~l'2r im{äryie
l'u • (ary — çxry>)) 

+ 2-VV tmCßrJeluß'old + e « - « ^ - £.y,))). 

With regard to forthcoming arguments, remark that Z obeys the fol­
lowing apriori, pointwise bound: 

\Z{u)\{x) <Çr{ee-^r<x^c 

(6.43) + | u | 2 + M | | y ' - y H e - V ^ W / C 

+ | | y ' - y | | e ~ ^ r " d ( a : ) / c ) . 

file:///JCir
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Here, d(x) = dist(a;, UfcCfc). Also, \\y' — y\\ = Efc||y'fc — yk\\2- And, as 
always, r = rj. Meanwhile, the constant Ç is independent of r, e and the 
index j . Note that the derivation of (6.43) invokes (6.39). Remark also 
that the second to last line in (6.42) is bounded by Crl|y' — v\\ ' e~vr'd'(>. 
This fact follows from the definition of a„ ,,i and from the manner in 
which y' parameterizes (c^y, («j-y,/? ,))• See Sections 2 and 3b of 
[28]. 

Step 3. The function u in question will be found by a contraction 
mapping argument on a ball about the origin in a certain Banach space. 
The Banach space in question, C, is obtained as the completion of the 
space of smooth functions on X using the norm, 

(6.44) IMI* = ||V«||2 + \/rllull2 + SUP \u\-

The map in question, T, sends a function u to —G[Z(u)]. Here, G[-] 
is the integral operator which is defined by the Greens function for the 
operator — * d * d + 2~1'2 • r • |a r J

2 . In order to affect this strategy, 
it is necessary to first prove that T maps a ball about the origin in C 
to itself. Subsequently, one must demonstrate that T is a contraction 
mapping on such a ball. 

Step 4. Consider first the question of the range of the map T 
when restricted to the ball in C where ||u||* < 1. To estimate the L>\ 
norm of T = T(u), multiply both sides of the equation 

(6.45) ( - * d * d + 2- 1 / 2 r |a r J
2 ) T = -Z(u) 

by T and integrate the result over X. After integrating by parts on the 
left side of the resulting equation and employing Holder's inequality to 
bound the right side of the resulting equation, one finds that 

(6 46) l | V T | | 2 + r|1 KJTHi <(Vr\\TMs + \W - y\\ 
+ A/r||w||2(sup |ti|)). 

This last equation is derived with the help of (6.43). 
Meanwhile, the right-hand side of (6.46) is greater than Ç~l -r • | |T | | | 

where £ is independent of T and r. (A heuristic argument procèdes 
as follows: If a significant fraction of the L2 norm were concentrated 
where \ary\ > 1/2, then the estimate follows immediately. On the 
otherhand, when a significant fraction of the L2 norm of T comes from 
where \ary\ < 3/4, then this fraction must sit where the distance to 
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UfeCfc is 0{r~ll2). For such T, the size of ||VT||2 is bounded from below 
by C_1 " Vr ' 11̂ 1 h • i n feet, for this last estimate, one needs only the 
components of VT which lie along the fibers of the normal bundle N to 
each C = Cfc. (In any event, it is straightforward to produce a completely 
rigorous argument along these lines using cut-off functions.) 

Given these last facts, then (6.46) implies 

(6.47) | |VT||! + r\\T\\l < Q(e2 + \\y' - y\\2 + \\u\\\). 

Step 5. Turn now to the task of estimating the sup norm of T. 
The tool of choice for this task is the maximum principle whose appli­
cation requires the introduction of a certain comparison function. To 
define this function, let d(-) = dist(-,UfcCfc) and reintroduce a number 
R\ with the property that |ar;2/| > 1/2 where d(x) > R\j\/r. Now, 
introduce £ > 16 and the function w on X which is defined as follows: 

(6.48) «,(•) = exp[->d(-)/(CÄi)] + CRi"2-

A straightforward calculation finds a constant Ç > 16 which is indepen­
dent of j and hence r (when j is large) and is such that 

(6.49) ( - * d * d + 2-1/2r\arJ
2)w > ("V. 

Here, £ depends on i?i. 
Given w, consider the function 

w' = \T\ - C ' - ( e + \W -y\\ + \\u\\D- w 

for various choices of Ç'. It follows from (6.43) that there exists £' > 1 
which is independent of e, r and the index j , and is such that 

(-*d*d + 2 - 1 / 2 • r • \ar,y\2)w' < 0 

on X. With this understood, the maximum principle asserts that w' can 
not have a positive maximum. This implies that 

(6.50) \nu)\<Ç(£ + \\y'-y\\ + \\u\\î). 

Step 6. It follows from (6.47) and (6.50) that there is a constant 
£ > 1 which is independent of e and j and is such that when 

e + l |y ' -y | |<C" 2 , 



574 CLIFFORD HENRY TAUBES 

then T maps the ball of radius ( in C to itself. 
It remains as yet to prove T is a contraction mapping on the radius 

Ç ball in £ for a suitable choice of Ç. This task can be accomplished by 
straightforward modifications of the preceding argument, and is left to 
the reader. 

S t e p 7. The proof of Lemma 6.6 is completed with the veri­
fication of the estimates in (6.40). For this purpose, remark that the 
contraction mapping construction with (6.50) bounds s u p x \u\ by Ç • e 
when ||y|| < Ç~l • e. This last fact, plus (6.43), implies that u obeys the 
following differential inequality where d(x) > R\j^Jr : 

(6.51) ( - * d * d + ( 4 V 2 ) - 1 r ) | M | <Csre-^rd^^. 

Here, \\y' — y\\ < ( _ 1 • e is assumed. 
Now, given ( ' > 1, introduce the comparison function 

W = e-Vrd(x)/C +e-Vr-/C\ 

For a suitable (r and j independent) choice of £' and £", the function 
w' = \u\ — Ç"ew obeys the inequality 

(6.52) (-*d*d+{A^2)-lr-)w' < 0, 

where d(x) > R\j^Jr and w' is non-positive where d(x) = R\j^Jr. Thus, 
the maximum principle implies that w' < 0 everywhere; and this last 
fact implies the pointwise bound of \u\ by Ç£e~vrd(x>>(> for some r, e and 
j independent choice of Ç. 

Given this supremum bound and the fact that (a'old, (o'ol(i, ß'oidj) 
obeys (6.39), a bound by Çpr

pi2e~vrd(x><(' for the order p derivatives 
of u at a point x G X follows by standard elliptic regularity estimates. 
(To invoke standard techniques, use a cut-off function to localize (6.41) 
to the ball of radius 2 _ 1 • (d(x) + r - 1 ' 2 ) about the given x. Then refer 
to [17], Chapter 6.) 

These estimates for u and its derivatives imply via (6.40) the asserted 
estimates for (a', (a',/3')) in Lemma 6.6. 

g) T h e definit ion of q° and {qk} 

Fix small e > 0 and take the index j to be large. For each k, choose 
a point y'k G 1CA in the ball of L2- radius e about yk. Use {y'k} to 
define the data ( ß )) choosing r = Vj as specified in Sections 

2 and 3b of [28]. (Here, and below, the dependence of this data on 
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y' will generally not be noted explicitly.) Take the point on the orbit 
of (oj, (a>j,ßj)) as described by Lemma 6.6 and use this point in (6.1) 
along with ( ß )) in order to define (a', (a',/3')) on X. 

With the preceding understood, the goal for this subsection is to 
decompose the data q' = (a',(a',ß')) as in (4.6) of [28] in terms of 
(q°,{qk}) where (g°, {qk} satisfy (5.3) in [28]. That is, the goal is to 
write 

(6.53) q' = II* (1 - X±Æ,k)q° + EfcXiooÆ.fc?*. 

Here, q° is a section of i • T*X © <5+,o? where S+ß is the plus spin 
bundle for the canonical Spin c structure on X. (See (1.7).) And, qk 

is a section over the normal bundle, N, of C^ of the C^ version of 
the bundle Vo in (4.16a) of [28]. Meanwhile, Xb,k is a bump function 
which is defined for 0 < b < So/2. It has support in the radius b tubular 
neighborhood of C^ and it is given in terms of a standard bump function 
on [0, oo) by Xb,k = x(\s\/b)- (The function x takes values in [0,1]; it 
is non-increasing, it vanishes on [2, oo) and it is 1 on [0,1].) In (6.53), 
the constant ö is chosen once and for all, with positive value less than 
IO"3 • S0. 

The interpretation of (6.53) requires an identification of S+to with 
the given Spin c bundle S+ on the support of 11 .̂(1 — XiÆ,k)- This iden­
tification is made via (1.9) by using the section ar of E to trivialize E 
where ar ^ 0. The interpretation of (6.53) also requires an identification 
of the Cfc version of Vo with i • T*X © S+ on the support of XiooÆfc- The 
latter identification is explained in Lemma 4.4 of [28]. 

With the preceding understood, consider: 

L e m m a 6.7. There exists a constant Ç > I with the following 
significance: Fix e > 0, but less than Ç~l and a positive integer d. Take 
the index j large. For each k, fix a point y'k G 1CA with I?-distance 
( _ 1 • e or less from yk. Use {y'k} to define the data (ar, (ar,ß )) for 
r = Tj as specified in Sections 2 and 3b of [28]. Define q' = (a', (a',/3')) 
as in Lemma 6.6 from (a,j,(aj,ßj)). Then, there exists data (q°, {qk}) 
as described above such that (6.53) holds, and such that (5.3) of [28] 
holds as well. Furthermore, 

• For each k, ^0<d'<d r-
d'/2\Vm'qk\ < e e ^ N / ^ . 

(6.54) 
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(This last line holds at each point in the normal bundle N of Ck-) 

The remainder of this subsection is occupied with the 

Proof of Lemma 6.7. The proof is accomplished in five steps. 

Step 1. The data (q°,{qk}) are defined from q using some 
auxiliary data, {fk}. Here, fk is a section over the normal bundle of 
the C = Ck and trivial E version of the bundle Vi from (4.16b) in [28]. 
The data {fk} is specified below. However, given this data, here is 

• q° = Hfe(i - X25Æ,k)q + ^kXiooÆ,kfk-

• qk = X25Æ,k,q - (1 - XU,k)fk-

(6.55) 

Note that (6.53) holds, as required. When interpreting the first line 
in (6.55), use Lemma 4.4 in [28] to interpret XiooÆ,k • /* as a section of 
i-T*X®S+ß, where S+ß is the plus spin bundle for the canonical Spinc 

structure as given in (1.7). In this regard, remember that q° should be 
interpreted as a section of i • T*X © S+ß also. The latter interpretation 
requires the identification of the given S+ as in (1.9) and it requires the 
identification using ar of E with the trivial line bundle where ar ^ 0. 
The interpretation of the second line in (6.55) also uses Lemma 4.4 in 
[28] and the identification via ar of E with the trivial bundle where 
ar T̂  0. 

Step 2. The data {fk} is constrained by the requirement that 
(5.3) of [28] holds. This constraint is implied by the requirement that 
fk obey 

(6.56) 
Lkf

k + X I - X2Æ,fc)X20<Æ)fcMg', fk) + w(qk, q0)} 

-p{dX25Æ,kW = 0. 

on the normal bundle N of Ck- Here, L^ is as defined in Section 4 of 
[28] but with the trivial vortex (v = 0, r = 1) replacing c = T(y'k). This 
is to say that L^ is defined using the m^ = 0 version of (2.15) in [28]. 
Note that when viewing (6.56) as an equation to determine fk from g', 
one should look at q° and qk as functionals of q' and fk through (6.55). 
In this way, (6.56) reads: 

(6 56) Lk^k ~ ^r^ ~ XiÆ^XimÆ'kW^ki -f*) 
+ y/r{l - X25Æ,k)X25Æ,k^(Q', </) - p{dX25Æ,kW = 0. 
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It is left as an exercise for the reader to verify that (6.56) (or, equiv-
alently, (6.57)) insures that (q°,{qk}) solves (5.3) in [28]. 

Step 3 . This step verifies that (6.57) has a unique, small solution 
for large j . In this regard, the key point is that both L^ and its formal 
I/2-adjoint are robustly invertible. Indeed, using the analysis in Sections 
4d-e of [28], one finds that for large r, 

• IIMk^C-HHV&lh + Vr-H&lk). 

• |l4&lb>C-1(l|V6||2 + v /r. | |6| |2). 
(6.58) 

In both lines, Ç > 1 is independent of b and r. (The top line holds for 
all smooth sections b of Vo with compact support, and the second line 
holds for all smooth, compactly supported sections of the bundle Vi 
from (4.16) of [28].) With regard to applying the analysis in Sections 
4d-e of [28], note that neither KQ nor K\ arises in this case because the 
vortex which defines L^ has vortex number zero. 

With the preceding understood, one can mimick the discussion in 
Section 4e (specificaly Lemma 4.8) of [28] to prove that L^ has a bounded 
inverse (called P in Lemma 4.8 of [28]) which maps L2(Vi) to L2(Vo). 
Furthermore, this inverse obeys the apriori bound 

\\VP(h)\\2 + y/r\\P(h)\\2<C-\\h\\2. 

Here, £ is independent of r and h. 

Step 4. Write (6.57) as the condition for a fixed point of the 
map T on L2(Vi) to itself which sends h to 

Lk X ' ( v M 1 - X4Æ,k)XiooÆ,k^{h, h) + $(</))• 

The existence of a constant Ç > 1 and a unique fixed point, ho, of T 
with L2 norm bounded by Ç~lr~1'2 follows from standard dimension 4 
Sobolev inequalities when Lemma 6.6 is invoked to estimate the size of 
the q' dependent terms in (6.57). Indeed, with the help of Lemma 6.6, 
one finds that ||/io||2 < ( e ^ ' V C when j is large. Here, C, is independent 
of j . 

Step 5. Pointwise estimates for fk = P(ho) can be obtained 
by employing the L2 estimate for fk from the previous step with stan­
dard elliptic "bootstrapping" arguments. The result is a bound on the 



578 CLIFFORD HENRY TAUBES 

derivatives of fk to order d by (e vr/C. (The bootstrapping arguments 
are of the sort given in Chapter 6 of [17].) 

h) The proof of Proposition 5.2 

It has now been established that q' is given by (6.53) with the data 
{q°,{qk}) as described in Lemma 6.7. In particular, (5.3) of [28] is 
satisfied. To complete the proof of Proposition 5.2, it remains still 
to verify that {y'k} G X j X ^ can be found for which Lemma 6.7's 
data (g0, {qk}) is constructed as described in Section 5 of [28]. This 
verification requires six steps. 

Step 1. Fix e > 0, but very small, and a positive integer d. 
For each k, fix a point y'k G 1CA with distance ( _ 1 • e or less from yk. 
When the index j is very large, use {yk} to define the data (q°,{qk}) 
as described in Lemma 6.7. 

Step 2. This step verifies that when the index j is large, then 
the resulting q° is described by Lemma 5.3 in [28]. The argument here 
is straightforward because the first line of (5.3) is satisfied and, for large 
index j , the assumptions in Lemma 5.3 of [28] concerning the L2 norm 
of the data {qk} is met. Since Lemma 6.7's q° is small when the index j 
is large, the uniqueness assertion of Lemma 5.3 in [28] implies that the 
q° from Lemma 6.7 must come via Lemma 5.3 in [28]. This is to say 
that Lemma 5.3 in [28] finds a solution to the first line of (5.3) in [28] as 
a function of extra data. The extra data in (5.3) of [28] is qk. With this 
understood, the point is that q° from Lemma 6.7 is given by Lemma 5.3 
in [28] when the extra data for the latter is {q } from Lemma 6.7. 

Step 3. This step begins the process of verifying that each qk 

from Lemma 6.7 is also described by Section 5 of [28] when j is large. 
(k) For this purpose, fix y G x^/C^ near to y as before. Then, fix k. When 

xk is a section of the (Cfc,mfc) version of ®i<q<mNq, write 

T(y'k + xk) = T(y'k) + ((2 • y/2)-\b - b, A) 

and let 
tk(x) = (r-^2p;b,p;x,0,0) 

as a section of W (The latter is defined in (4.16a) of [28].) 
According to Lemma 5.4 of [28] and Lemma 6.7 here, each q has a 

unique decomposition as 

(6.59) qk = P(hk)+tk(xk), 
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where xk is a section of ®i<q<mNq, hk is in the c = T(y'k) version of 
X2(Vi;üTi), and 

• ll^lb <(£• 

• supç. \xk\ + \\xk\\2 + r_1/2||Va;||2 < (e. 

• hk obeys (5.12) in [28]. 

• xk obeys (5.20) in [28] with llk as in (5.25) and (5.26) of [28]. 

(6.60) 

(The last two points hold because (2.4) is obeyed.) 
The estimates above for the norms of hk and xk can be further 

refined: 

Lemma 6.8. There is a constant Ç > 1 with the following signif­
icance: Fix e > 0 but less than £_ 1 . Then fix {y'k} G x^/C^ with L2 

distance e or less from {yk}. When j is large, use {y'k} to define q' from 
(a.,-, (cijjßj)) and introduce q° and {qk} as in Lemma 6.7. In addition, 
for each k, introduce hk and Xk as in (6.59) and (6.60). Then, for each 

• \\hk\\2 <Cer - 1 / 2 , 

• ||Va;||2 < C£) 

• sup,-; \xk\ + \\xk\\2 < Çs. 

(6.61) 

Step 4. This step consists of the 

Proof of Lemma 6.8. To start, rewrite (5.12) of [28] as hk = —Yk 

and then square both sides of this equation. Straightforward manipula­
tions with (6.60) find that 

(6.62) \\hk\\2 < Qer-1'2 + Cer^'^Vx^, + Çe\\P{hk)\\2. 

With regard to (6.62), note that the terms with yjr • uj(-,P(hk)) enter 
into the third term on the right side of (6.62). The extra factor of e 
appears here because of the bound in Lemma 6.7 of qk by C e e _ r -
The second term on the right side of (6.62) comes from the term in 
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(5.12) of [28] that contains (1 - II) • T{tk). (The operator T is defined 
in (4.45) of [28].) The point is that the leading order in xk part of tk 

contributes to ||(1 — II) • T(tk)\\\ an amount which is no greater than 

jAr-i/2||a;A;||2 < £j- - 1 /2£. The higher order in xk parts of tk contribute to 
||(1 — TT) - T{tk)\\2 as in the second term on the right side of (6.62). To 
see that the leading order in xk part of tk contributes as stated, note, 
on the one hand, that the differential of tk at zero maps xk to a section 
of Vo which comes from a section of the vector bundle KQ —> C. (This 
bundle is defined in Lemma 4.5 of [28].) On the other hand, the symbol 
of T maps a section of Vo which comes from a section of KQ to a section 
of Vi having the form w' where w' is a section of the bundle K\ —> C. 
This last property of the symbol of T implies that (1 — IT) • T acts as 
a zero'th order operator on sections of Vo which come from sections of 
KQ. 

In any event, Lemma 4.8 in [28] and (6.62) imply that when e is 
small and j is large, then 

(6.63) \\hk\\2 < Qer-1'2 + C,cr-ll2\\Vxk\\2. 

The next step in the proof of Lemma 6.8 uses (5.20), (5.25) and 
(5.26) in [28] to bound the L2 norm of the derivative of x . In this 
regard, introduce Ayi to denote the operator 

B + M + pF,ylk : C ° ° ( © i < g < m ^ ) - • C°°((©i<g<miV«) ® T^C) 

and let A = A&. Introduce the L2-orthogonal projection Q\ on 

onto A. Because Ayi is Fredholm and Q\ is finite rank, 

( 6 6 4 ) I | V ^ | | 2 < C | | ( I - Q A ) - A ^ | | 2 + C| |^| | 2 

<C||(l-QA)-A2/,a:fe||2 + Ce. 

Meanwhile, the L2 norm on the far right side of (6.64) is given, courtesy 

of (5.20) in [28], as 

(6.65) C H ( 1 - Q A ) - ^ | | 2 . 

A bound for (6.65) can be obtained using (5.25) and (5.26) in [28]. In 
particular, the term go = fk(xk) • Vxk and g i , . . . ,34 in (5.25) of [28] 
contribute, respectively, no more than the following to (6.65): 
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• C(e + r~1/2)||Va:*||2. 

• Cl |z* | | 2<Ce-

• (er\\p(hk)\\2 < Çey/r\\h% < Ce2(l + l |Vs f c | |2). 

• (£r\\p(hk)\\2<(e2(l + | |Vx f c | |2). 

. Ce(l + Vr\\(l - QA)LkP(hk)\\2) < CE(1 + ||fr*||2) < C^ 

(6.66) 

Here are some comments with respect to (6.66): First, remember that 
the L2 norm over C of a section w of (®i<q<mNq) <g> T0,lC determines 
the L2 norm over N of the corresponding section T.i(w) of Vi (and 
vice-versa) by the rule 

(6.67) C^v^INk < 1Mb < Cv^lMk-

With the preceding understood, the bounds in (6.66) come about as 
follows: The bound for go follows from the bound for \xk\ by Ç • e and 
the first point in (5.26) of [28]. The bound for g\ from the pointwise 
bound of \tk\ and |s | • |V y t f e | on N by Çee~^r\z\^. The bounds for g2 

and g3 use the preceding bound for tk and the bound of \P(hk)\ by Ç • e 
which comes from the \qk\ bound in Lemma 6.7. (Use (6.63) also for 
the g2 and g^ bounds.) The bound for g± comes from the second line in 
(4.31) of [28] which allows a bound of ||II • LkP{hk)\\2 by Cr-1 / 2 | | / i f e | |2-
The contributions from the remaining terms in g^ can be analyzed in a 
completely straightforward manner using Lemma 6.7. 

Note that the second assertion of Lemma 6.8 follows when e is small 
and j is large directly from (6.64)-(6.66). Then, the first assertion of 
Lemma 6.8 follows from the second with (6.63). The third assertion of 
Lemma 6.8 reiterates part of (6.60). 

Step 5. Given Lemma 6.8, when the index j is large, then {hk} 
from Lemma 6.8 is determined by the data {xk} from Lemma 6.8 as 
described by Lemma 5.5 of [28]. Indeed,the second and third lines of 
(6.61) insure that {xk} from Lemma 6.8 is suitable data for Lemma 5.5 
of [28]. And, the uniqueness assertion in this last lemma plus the first 
line of (6.61) insure the claim. 

Step 6. Here is the situation: Take e small (there is j - independent 

upper bound) and j large. In addition, take {y'k} G x^/C^ within C_ 1 -£ 
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of {y } in the L2 norm. Then q can be written as in (6.59) where (6.60) 
and (6.61) hold, and {hk} is determined from the data {xk} by Lemma 
5.5. 

The claim now is that when j is large, then {y'k} can be chosen 
near to {yk} (as above) so that the corresponding {xk} is described by 
Lemma 5.6 of [28]. If such {y'k} can be found, then Proposition 5.2 has 
been proved. 

To characterize such {y/fc}, note that because of the first two lines 
in (6.61), and the uniqueness assertion in Lemma 5.6 of [28], the con­
dition on {y'k} is simply that each xk be L2-orthogonal to the tangent 
space to 1CA at y'k. Thus, the goal is to find {y'k} so that each of the 

corresponding xk is I/2-orthogonal to the tangent space at y'k to 1CA . 
With the preceding understood, remark that the existence of such {y'k} 
follows from the implicit function theorem and the fact that the direc­
tional derivative of xk(-) in the direction of some tangent vector wk to 
Xfc/Cjj0 at y'k obeys 

• \\xk • wk\\2 < Çs\\wk\\2 when k ^ k'. 

h h 

xz • w — w 112 S S>el \w 112-

(6.68) 

The proof of (6.68) is a straightforward, but tedious exercise which 
will be omitted except for the following comments: A change in {y } 
changes (ar, (ar,ß )) and thus q' in Lemma 6.7. Unwind the definitions 
to see that the resulting change in xk is the 0(wk) contribution to the 
second line in (6.68). However, changing {y'k} also changes both tk(-) 
and the splitting in (6.59). These other effects of changing {y'k} pro­
duce effects which are C(e • ||tt>fc||2)- (The justification of these remarks 
refers to the definition of ( ß )) in Sections 2 and 3b of [28], to 
arguments in the proof of Lemma 5.4 of [28], and to those in the proof 
of Lemma 6.6, here.) 

7. Proof of Proposition 2.13 

The purpose of this section is to prove Propositions 2.1 and 2.13. 
The proof for Proposition 2.1 is given in the first subsection. The second 
subsection proves, as a warm up, the d(e) = 0 case of Proposition 2.11 
(a special case of Proposition 2.13.) The remaining subsections are 
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devoted to the proof of Proposition 2.13. In this regard, the reader 
should review the discussion in Part 5 of Section 2g which outlines the 
proof. In particular, said discussion reduces the proof to a question 
of verifying the points in (2.29). Thus, the discussion below starts in 
Subsection 7c where (2.29) leaves off. 

By the way, for both Propositions 2.11 and 2.13, the key to the 
proof are Lemmas 4.11 and 6.7 of [28] which translate statements about 
operators on X to statements about operators on pseudo-holomorphic 
submanifolds of X. 

a) P r o o f of Propos i t i on 2.1 

As discussed in Section 2, there is a unique element in the e = 0, 
/io = 0 and large r version of MS1"' so it remains only to verify that 
this element should be counted with sign + 1 . As this unique element 
is (a = 0, (a = l,ß = 0)), Lemma 4.3 in [28] can be used to analyze 
the operator L for this solution. In particular, L has trivial kernel 
and cokernel, and ||-kw||2 > C _ l r l l u l | 2 for any u G i • Q1 © C°°(X). 
Meanwhile, the C-linear operator in (4.2) differs from L by a zero'th 
order multiplication operator which has an r-independent bound on its 
norm. These last two facts imply that for large r, there is no t G [0,1] 
where L + t-nl has non-trivial kernel. Thus, the sign in question is + 1 . 

b) P r o o f of Propos i t i on 2.11 w h e n d(e) = 0 

To set the stage, fix a class e G H2(X; Z) and also a triple (J, T, Q) 
as instructed in Proposition 2.10. For each 

h = {{Ck,mk)}i<k<n e H, 

introduce the data {1CA } as in Proposition 2.10 and the subspace 
(k) 

Yh C xkICA . When r is large, Proposition 2.10 refers to a certain 
embedding, 

v&r = %th : X fe/Cf - • (Conn(£) x C 0 0 ( 5 + ) ) / C 0 0 ( X ; S1) 

as in (2.20) whose image contains an open subset of the /io = 0 version 
of M{r). 

The simplest case to consider has d = d(e) = 0 and also makes the 
assumption in Proposition 2.9 that all A^ = {0} for each h GH. 

Here is the outline for the argument in this case: Given such 

h = {(Cfc,mfc)}, let ek denote the Poincaré dual to Ck. Then each 

d{ek) = 0 and Y^ = xklCA in Proposition 2.10 is a finite set of points 
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as each fCA is a finite set of points in the (Cfc,mfc) version of Z. For 
large r, the map ^heu^h,r identifies Uhen^h with the /io = 0 version 
o fMW. 

With the preceding understood, take h G V. and a point y G Y^. 
Then take a reasonable path of Fredholm operators that interpolates 
between L^iy\ and a C-linear operator. Lemma 6.7 in [28] will con­
struct a corresponding path for ffijA^. The latter path will be such 
that its spectral flow is the same as that of the former. Since the mod(2) 
spectral flow for ffifcA^ is independent of the precise path and the C-
linear endpoint, the just mentioned equality of spectral flows implies 
the d(e) = 0 case of Proposition 2.11. 

The details of this strategy are carried out in the five steps that 
follow. 

Step 1. This step does not require all A& = {0}. The following 
lemma summarizes the contents of this first step. The statement of the 
lemma introduces almost complex structures JD on i • T*X © S+, and 
J R on i • (EK © L_|_) © S-. The former acts as the given almost complex 
structure on the i • T*X summand, and it acts as multiplication by 
yj — 1 on the complex vector bundle S+. Meanwhile, the action of J R 
preserves the i • (e^ © L+) summand and acts there as described in Step 
3 of Section lc. And, J R also preserves the S- summand where it acts 
as multiplication by yj — 1. 

Lemma 7.1. The conclusions of Proposition 2.10 can be augmented 
with the following: Fix h = {(Cfc,mfc)} G H. There exists a constant Ç > 
1 which depends on {1CA } and has the following significance: Suppose 
that r > £ and also that 

y = (y1,...,yfc)GVr-
1(0)cxfe4

fc). 

Then, there exists a smooth, one parameter family of operators 

{TH : L2(i • T* © S+) ^L2(i- (£ffi © A+) © S-)}te[0,i] 

which obeys: 

• no = 0. 

• Lq,^ + m is C-linear in that it intertwines JD with JR. 

• suppig ||n t(p)||2 • \\p\\2
l <C-
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Proof of Lemma 7.1. To find such a constant £, note that rit 

can be taken to be an arbitrarily small perturbation of the operator 
t • 2~l(L + JR • L • JJJ) in the case where L = L^,r^yy In this case, 
I/C = 2 _ 1 ( I / — JR • L • Jr>). Thus, the size of rit is determined by the 
failure of Lqrty\ to intertwine JD with JR. The r-dependence in this 
failure is due to the appearance of ß + ß' in the definition of \I/r. That 
is, the norm of the r- dependent term is bounded by Ç • ^Jr • (\ß \ + \ß'\). 

Since both ß and ß' are bounded in norm by Ç• r - 1 ' 2 , this r-dependent 
term is uniformly bounded, with an r-independent bound. 

Step 2. There is one additional constraint to impose on the 
family {rit}. To state this constraint and simplify notation later on, 
introduce for each k the symbol N^k> to denote the C = Ck and m = rnk 

version of the vector bundle ®i<q<mNq. Now, remark that for each k, 
the operator m induces an operator n\ : ®k>L2(N^k >) —> L2(N^k>) by 
first sending v = (i>i,. . . , vk) to p(v) = ^kXö,kX.iHk G C°°(Vo) and then 
writing 

(7.1) n\{v) = T ^ 1 • x{xö,k^'{q',p{v)) + X5,fc"i(p(«)))-

Here, x(g) is the section of Ve (g> T®,lCk for which the corresponding x 
equals Tl-g; while c = T(yk). (In writing m(p(v)), the element Xö,kX.iHk 

in the (Ck,mk) version of Vo from (4.16a) of [28] has been identified, as 
directed in Lemma 4.4 of [28], with an element in i • O1 © C°°(S+). Like­
wise, X8,kTi(p(v)) has been identified as an element in Vi from (4.16b) 
of [28].)' 

L e m m a 7.2. Given e > 0, then for all r sufficiently large, the 
constant Ç and the path {nt} in Lemma 7.1 can be chosen so that the 
following additional conclusion holds: For each k, there is a bounded 
operator nyk which maps L2(7V(fe)) to L2{N^k) ®Tü>lCk) and obeys: 

• Ayk + nyk is C-linear. 

• ||(Aj,* +nyk) -vk\\2 > C"1 • I H | i , 2 for all vk in Ll(N^). 

• STipp7é0 | |nyfc (p)|I2/I |p| b <C-

• When v = (v1,... ,vn) G ®k>L2(N^kn>), then \\nk(v) - nykv
k\\2 

<sT,k>\\vk | |2. 

Step 3 . This step and Step 4 contain the: 
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Proof of Lemma 7.2. In proving the lemma, remark that it is 
sufficient to establish that there exists Ç, an operator 

m : L2(i • T* © S+) ^L2{i- (effi © A+) © 5_) 

and operators {nyk} which obey the assertions of Lemma 7.2, the sec­
ond assertion of Lemma 7.1 and the t = 1 version of the third assertion 
of Lemma 7.1. (Given m , then {n^} can be obtained as a small pertur­
bation of t • n\.) 

To find C, n\, and {ny*} start with the observation that because each 

1CA has compact closure in C0C(N^k>), there exists a constant Co > 1 
h (k) 

with the following significance: For each y G ÌCA , there exists 

fij,* : L2(iV(fc)) - • L2(iV(fc) » T 0 ' 1 ^ ) 

so that the first three assertions of Lemma 7.2 hold using £Q instead of 
Ç. (Note that it may not be possible to choose nyk to vary continuously 

withy f c G / C ^ . ) 
Now, let n\ be as in Lemma 7.1. The next part of the argument 

uses the set {nyk} to modify n\ so that the result satisfies the addi­
tional fourth assertion of Lemma 7.2. The arguments here require a 
preliminary digression. 

The digression starts by defining, for each k, a map, I+, from 
ft<c © C°°(S+) to C°°(N^) by associating to v the element 
T r X • x(X6,kv)i where 

œ:C°°(iV;Vo) - • C°°(VC) 

is defined by requiring that x(v) = IT • v. (This uses the identification 
near Ck, described in Lemma 4.4 of [28], between Vo and i • T* © S+.) 

The map 1+ intertwines the action of Jr> with multiplication by 
y/—ï. Here is why: First, T i is a C-linear map from TV"'' to Ve. (Here 
c = T(yk).) Second, the rescaling map from Ve to KQ is also C-linear. 
(See Lemma 4.5 of [28].) Meanwhile, as in Sections 4d and 4e of [28], 
a section (ay,a') of KQ over Ck defines Xö,k(av^i — ö y « i , (a ' ,0)) in 
i • O1 © C°°(S'_|_). (The 1-form KI is described in Part 4 of Section 2a 
of [28]. The identification of a section of KQ with a pair of 1-form 
and spinor comes via the identification in Lemma 4.4 of [28] between 
i • T°^N0 © S+ and the bundle V0 from (4.16a) of [28].) 

Next, define a map, 

lì : C^iN^ <g> T^Ck) ->• i • (Q° © 0 2 + ) © C 0 0 ^ . ) 
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as follows: Use T i and then rescale to first map N^ to Ki. Then, 
associate to any section (ft, A) of the bundle K\ —> C^ the element 

XÆ,k • (b-RiARo- bKi A K0, AK 0) G i • (0° © 0 2 + ) © C°°(S-). 

(Here, no is described in Part 4 of Section 2a, and the identification of 
a section of K\ with a pair of self-dual form and spinor comes via the 
identification in Lemma 4.4 of [28] between the bundles Ì-(SM_®A+)®S-

and Vi from (4.16b) of [28].) Note that I^_ intertwines multiplication 
by yj — 1 with JD . 

End the digression and consider n[ = ri\ + Efcl^ • (nyk — n\) • I+. 
Here are its key properties: There exists Ç and, given e > 0, then for 
suÆciently large r and y G ,0~1(O), 

• supp?É0||nì - p l h l H j 1 < C, 

• | |n i (Xi2^) - I-{nykUk)\\2 < C,e-^rlt\\uk\\2j 

• IK^rCî/) +n'i)JD -P-JR- (Lyr(y) H- ri^)_p||2 < e||p||2 
for a l l p G i - Q 1 © C ° ° ( ( S + ) . 

(7.2) 

These last assertions will be proved momentarily. To complete the 
proof of Lemma 7.2, remark that because of the third assertion in (7.2), 
there is an operator which can be added to n[ whose I/2-operator norm 
is bounded by e; and is such that the result, n", when subtracted from 
L^riy\ gives a C-linear operator. Furthermore, the latter will obey the 
last assertion of Lemma 7.2 because of the second assertion of (7.2). 

Step 4. To prove (7.2) remark that the first line in (7.2) follows 
from the fact that ri\ and each nyk are uniformly bounded in the L2-
operator norm. The second line follows directly from the definition n\. 
(Here, use the last line of (5.27) in [28].) 

Here is the argument for the third line of (7.2): Decompose 

p = n f e ( l - X4Æ,k) • P° + ^kXwoÆ,kPk 

by analogy with (4.6) in [28]. Since n'x = n\ on n,k(l — X4Æ,fc) " P°i it 
is enough to consider v!x on some p = XiooÆ,kPk- With this understood, 
write pk = P{h) + w as in (4.45) of [28]. Then, 

(7.3) | K ( x i o o Æ ^ ( / i ) ) -ni(xiooÆ,kP(h))\\2 < C e " ^ / C I I X i o o ^ ( / i ) | | 2 , 
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because P(h) is L2 orthogonal to all sections of Vo which come from 
sections of Ve. Use the last line of (5.27) in [28] to help derive (7.3). 
Thus, the argument is reduced to the case where p = Xwoö,k • W.-

To consider the case where p = Xiooö,kUL, note first that given e > 0, 
there is an operator 

</> = / : L\{N^) -+ L2{N^ ®T^Ck) 

such that: 

• ®k{\k +n\ + 4>) is C-linear, 

• | |0(«*)||2<e||«*||i,2. 

(7.4) 

Indeed, this follows by arguing as in the proofs of Lemma 6.7 in [28] 
using 

• the fact that both I± are C-linear; 

• the last line in (5.27) in [28]; 

• the fact that L^,riy\ + n\ is C-linear; 

• the first line of (4.47) in [28]. 

• Given e > 0, Assertion 4 of Proposition 5.2 in [28] finds Ç such 
that when r > £, then each y = {yk} G •0~1(O) has each yk at 
distance e or less from ZQ. 

(7.5) 

(The fifth point in (7.5) is used to control the contribution of the term 
Vy in (6.29a) of [28].) 

Note that cp in (7.4) comes from the Rem term in (4.19) of [28] (see 
Lemma 4.4 of [28]) and vy in (6.29a). A closer inspection of this term 
(following the lines of the proof of Lemma 4.4 of [28]) shows that when 
r is large, then this (f) differs from a C-linear operator by a term, 0', 
which obeys 

(7.6) | | 0 » l l 2 < e - | M | 2 . 
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With regard to (7.6), remember that the symbol of the operator L is C 
linear, as are the maps I±. Also, use the fifth point in (7.5) to control 
the contribution of vy. 

It follows from (7.6) and the first line of (7.4) that n\ — ffifcn^ differs 
from a C-linear operator by a term whose L2-operator norm is bounded 
by e when r is large. This last point implies that n\ — n\ differs on 
P = XiooÆ,£! " W. by a C-linear operator plus an operator which might not 
be C-linear, but whose L2-operator norm is bounded in any event by e 
at large r. The latter fact implies the third assertion in (7.2). 

Step 5. It follows from Lemma 6.7 of [28] that there is, for 

each k, a smooth family of operators {7f}te[o,ii mapping ®k'L\(N^k >) 

to L\(N^> ® T 0 ' 1 ^ ) with the following properties: 

• There is an isomorphism 
Et : kernel(©fe(A2/* + ^ + nk)) ->• k e r n e l ^ , . (y) + nt). 

• \\'tf(v)\\2<a£\\v% + r-1/4Xk>\\vk'\\i,2). 

(7.7) 

Here, {nk} is defined as in (7.1) but with n< replacing ri\. Also, e contri­
bution comes from the vyk term in (6.29a) of [28]. In this last equation, 
Ç is independent of r and {yk}. 

Meanwhile, for all v G LJ(N^), one has ||A2/*wfc||2 > ( 1 | |ffe | |i,2 
(by assumption). Thus, there exists an r and {yfe}-independent con­
stant Ç such that when r > C, then the family of operators {©^(Ay* + 
It + nt )}te[o,i] defines a smooth family of Fredholm operators. And, 
according to (7.7) and Lemma 6.7 in [28], the spectral flow for the latter 
family is equal to that for {L^,r^ + nt}te[o,i]- Moreover, because of the 

second assertion of (7.7), the manifolds {1CA } and this Ç can be cho­
sen so that no {©fc(Ay* + t • 7o }te[o,i] n a s cokernel or kernel. Likewise, 
because of the second assertion in Lemma 7.2, this same data can be 
chosen so that no member of {©^(A^ + t • (-yk + n\ — nyk) + ^i)}te[o,i] 
has cokernel or kernel. 

Thus, the mod(2) spectral flow for {L^,riy\ +nt\te\o,i] ls e Q u a l to that 
for a path of Fredholm operators which interpolate between ffi^A^ and 
®k(Ayk + nyk). As any path of Fredholm operators between the latter 
two yields the same mod(2) spectral flow, Proposition 2.11 is proved in 
the case all A*, are trivial. 
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b) T h e proof of Propos i t i on 2.13: T h e cons truct ion of $ 

As remarked in the introduction to this section, the verification of 
the assertions in (2.29) establishes Proposition 2.f3. 

To begin, make Proposition 2.f0's assumptions and then introduce 
the space Y as in (2.28). The first point in (2.29) concerns the vector 
bundle W —>• Y and an isomorphism, $ , of the latter with a certain 
trivial bundle over a neighborhood of ^ ~ 1 ( 0 ) . The construction of $ is 
the subject of this subsection. 

Before beginning, recall that the fiber of W at a point 

S = (a, («,/?)) G Y 

is the quotient of i • Q2+ © C°°(S+) by the L= image of the vector space 
iV~. Here, 7V= is the L2 orthogonal compliment of TY|= in the subspace 
of i • Ü1 © C°°(S+) where the first line of (2.6) gives zero. (The latter 
subspace is denoted by 7=.) In particular, this means that W|= can be 
viewed as the L2-orthogonal compliment of L=(At ) in i-ii2+ ®C°°(S+). 
This realizes TV as a subbundle of the restriction of the bundle in (4.4) 

t o y . 
Now, let h = {(Ck,mk)} G H. The vector bundle homomorphism $ 

in (2.29) will be defined as the projection onto W of a homomorphism, 

$ ' , from (x f e /C^) x (xkAk) to the ^ -pu l l -back of the bundle in (7.4). 
(k) The homomorphism $ is constructed as follows: Fix y G xkICA . 

Then, $'\y is the map from x^A^ to iil2+ © C 0 0 ^ - ) which sends 

Ì = {£i ,--- ?Cfc} G XfcAfc to 

(7.8) $; • e = Xfexioo^Xi • ik-
Here are some explanatory remarks: First, fix k and introduce the 
(Cfc, m*;) version of (2.15) or (3.1) of [28]. Second, reintroduce the map T 
of Proposition 3.2 of [28] which identifies ®i<q<mNq with the (Ck,mk) 
version of the space of sections of (2.15) or (3.1) of [28]. Third, set 
c = T(y'c) and then introduce the isomorphism T i : ©i<g<m 

Ni ->• Ve 

as in Proposition 3.2 of [28]. Extend T i to the C-linear isomorphism 
T i : {®i<q<mNi) (g) T°^C ->• Ve (g) T°^C and so interpret T i • Çk as a 
section of the latter. Fourth, remember that a section w of F c <g> T 0 , 1 C 
corresponds to a section of the bundle K\ from Lemma 4.5 in [28] and 
thus a section, w_, of the bundle Vi in (4.16b) of [28]. And, remember 
that when u is a section of Vi, then the identifications from Lemma 4.4 
of [28] define XwoÆ,kU as an element in i • (0° © tt2+) © C°°(S-). Finally, 



COUNTING CURVES AND CONNECTIONS 591 

note that the sections of Vi which come from sections of K\ have trivial 
projection into the % • Q° summand of % • (0° © Q2+) © C°°(S-). 

c) P r o o f of Propos i t i on 2.13: $ is an i somorphi sm 

The purpose of this subsection is to prove the following lemma: 

L e m m a 7.3. The conclusions of Proposition 2.10 and Lemmas 

7.1-7.2 can be augmented with the following: For all sufficiently large r, 
there exists a neighborhood Y' C x^/C^ o/'0~1(O) over which the map 

$ defines an isomorphism between Y' x (x^A^) and ^>*.W. 

This lemma gives the first point of (2.29). 

Proof of Lemma 7.3. Were the lemma false, then 

j / = ( j / 1 , . . . , y f c ) G x f c 4 * ) 

and a non-zero 

Ì = (£i , --- ,Ìk) G XfcAfe 

would exist such that &y • £ = L^r^p where p lies in the space 

and is L2 orthogonal to the the image of the differential of \I/r. The 
argument below will show that no such pair (y, £) exists when r is large. 
There are five steps to this argument. 

Step 1. Think of &y • £ in i • (0° © 0 2 +) © C°°(5_) with zero 
component in the i • 0 ° summand. Likewise, think of p as an element 
in i • Q1 © C°°(S+). Wi th this understood, invoke Lemma 6.7 of [28] in 
the case where </ = <&'• £. Let u = (u1,... ,u f c), p° and {h k} be as 
described in said lemma. It then follows from (6.29b,c) of [28] that 

• llVp^la + ^ r l ^ H a ^ C ^ - ^ S i b l l ^ l b + e-^^Sfcl ieiblb) , 

. \\VP(tik)\\2 + y/r\\ti% < C(r-1/2s f e , | |n f c ' | |1 ,2 + e-v/'-/Csfe,||efc'||2)-

(7.9) 

The reason for this is that (1 — X25Æ,k)&y£, a n d (1 — n)X25Æ,k^'yÇ a r e both 

ö(e~vr<^). Indeed, the former expression obeys such a bound because 

i$'-ei<ce-^ / c-x f e , | ie f c ' i i2 
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at points with distance S or more from any Ck. Meanwhile, the latter 
expression also obeys this bound for the same reason. (For this last 
case, use the vanishing of (1 — IT) • Xi£ to conclude that the (1 — IT) 
projection of X255,fcXiÇ is minus that of (1 - X256,k) • Xi£-) 

Furthermore, write uk = UQ + uk, where uk is annihilated by 
(1 — Q A ) • A y , and uk is L2-orthogonal to the kernel of 
(1 — Q A ) • Ay Here (and below), y = yk and A = A&. Then uk obeys 

(7.10) (1 - Q A ) • (Ayu
k + vy(u

k) + $ ( « ) ) = ffc, 

where fk satisfies ||ffc||2 < C e _ ^fe'll^fc'lb- (This last equation is 
(6.29a) in [28].) 

S t e p 2. Since uk is L2 orthogonal to the kernel of (1 — Q A ) • A y , 
from (7.10), the fifth line of (7.5) and then the estimate in Lemma 6.7 
of [28] for (f>k and vy it follows that 

(7.11) ll^Hi^^C^ll^lb + r-^S^II^'lli^ + C e - ^ ^ l l ^ l b , 

where e > 0 can be arranged as small as desired by making r large. In 
particular, when e < (2 • ( ) _ 1 , then summing (7.11) over k finds that 

(7.12) E f c | | ^ | | 1 , 2 < C ( £ | | 4 l l 2 + r - 1 / 4 E f c | | 4 l l i , 2 ) + C e - v / r / C S f c | | 6 | | 2 . 

Since all Lv
k norms of an element in the kernel of (1 — Q A ) • A y can be 

uniformly bounded in terms of the L2 norm, this last equation implies 
the inequality 

(7.13) Sfc| |«?| | i ,2<C(e + r - 1 / 4 )S f c | | «g | |2 + Ce-^r/CSfc||eib||2. 

S t e p 3. This step constitutes a digression to consider the im­

age of the differential of ^ r , where the latter is thought of as a map 

from XkK,A into Conn(_E) x C°°(Sjr). For this purpose, suppose that 

v = (v\... ,vk) G T(xfc/CA
fe))|2/. Let pv G i • Ü1 ®C°°(S+) denote the 

push-forward of v by the differential of \I/r. Then pv appears (by con­

struction) as 

(7.14) Pv = Uk(l - X4S,k) -P°v + ZkX25ö,kPkv 

Furthermore, one can write, for each k, pk = P(hk) + T x • uk. And, one 
can decompose each uk as vk + uk

t, where the former is in the kernel 
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of (1 — Q A ) • Ay, and the latter is L2 orthogonal to this kernel. It then 
follows from Lemma 6.6 of [28] that 

(7.15) \\p% + ||P(fc*)||2 + IkMb < Cr-1/2||^||2. 

Step 4. If p is to be L2 orthogonal to the image of the differential 
of \I/r, then p must also be L2 orthogonal to pv. (Note that pv is not 
necessarily in the subspace Tyr(yy However, it differs from an element 
in this subspace by a tangent vector to the orbit at ^fr(y) of C°°(X; Sl). 
And, a s p £ 7^ r(y) , the latter is L2-orthogonal to all elements in said 
orbit. Thus, p must be I/2-orthogonal to pv.) 

The I/2-orthogonality of p to all pv implies (using (7.15) and (7.9)) 
that H^olb < C - r - 1 ' 2 • ||t*i112- With the preceding given, take r large so 
that e in (7.12) is bounded by (2 • C)"1 . Then, (7.12) implies that 

(7.16) S*| |«*| | i ,2<Ce-V r / CS f c | |efc | |2 . 

And, this last estimate plus (7.9) implies that 

(7.17) | |Vp| |2 + V r | b | | 2 < C e - ^ / Ç S f e | | 6 | | 2 . 

Step 5. By squaring both sides of the equation L^r^p = Q'y • £ 
and integrating over X, one learns (after some straightforward algebraic 
manipulations) that 

(7.18) l|Vp||2 + > I H 2 > C K - £ l l 2 . 

Since \\Q'y • £||2 > C _ 1 ' r~1'2 • ||£||2, these inequalities in (7.17) and 
(7.18) are contradictory when r is larger than some constant Ç which 

is independent of y G x*XA . Thus, when r is large, there is no (y, £) 

with the properties assumed in the introduction. 

d) P r o o f of Propos i t i on 2.13: Orientat ions and $ 

This section considers the following lemma: 

L e m m a 7.4. The conclusions of Proposition 2.10 and Lemmas 
7.1-7.3 can be augmented to include the following: For each k with 

(k) 
mfc > 1, orient A&. Use the latter to orient /CA as described in Parts 1 
and 2 of Section 2g and then use Proposition 2.10's isomorphism Y^ = 

(k) xk-.mk>i^A t° o n e n ^ Yh by multiplying the product orientation with 
e (a) • rifc:m =ir(Cfc, 1). Here, r(C^, 1) is defined as in Part 5 of Section 
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le with the choice of a cyclic ordering of Yk = {7 G Y : 7 n Ck 7̂  0 } . 
Also, e (a) = ±1 is defined from these orderings of {Yk} as in Part 7 
of Section le. Next, orient ^>r{Yh) when r is large using the ^r, and 
use the orientation on ^ ( Y / J to orient W as described in the second 
assertion of Proposition 2.14- Then, when r is sufficently large, the map 
$ is orientation preserving over a neighborhood o/'0~1(O) n Y/j in Y/j. 

Note that this lemma implies the second point in (2.29). 

Lemma 7.4 follows directly from two auxilliary lemmas which are 
given below. The first lemma requires the following preliminary di­
gression. To begin the digression, for each k with mk > 1, choose 
an orientation for A& and use the orientation for the virtual bundle 
TlÖp - K,^ x Afe from Parts 1 and 2 of Section 2g to orient K,^. 

Meanwhile, for those k with nik = 1, the space !CA ^ is an open neigh­
borhood of 0 in the kernel of the C\. version of the operator D in (1.11). 
Orient this manifold as in the mu = 1 discussions in Part 5 of Section 

(k) le. Then, orient xkICA using the product orientation. Next, use the 

differential of \I/r to orient Y = ^>r(xkK,A ) and use the orientation for 
the virtual bundle TY-W in Step 2 of Section 4c to orient W. End the 
digression. 

Lemma 7.5. The conclusions of Proposition 2.10 and Lemma 7.1-
7.3 can be augmented with the following: Orient each Ak when mk > 1 
and take the product orientation for x^A*.. Orient W as in the preceding 
digression. When r is large, then the isomorphism $ is orientation 
preserving at points near ip~l(0). 

Lemma 7.6. The conclusions of Proposition 2.10 and Lemma 7.1-
7.3 and 7.5 can be augmented with the following: Fix an orientation for 
each 1CA and orient xkJCA with the product orientation. When r is 
large, then there is a neighborhood o/'0~1(O) where the following two 
orientations for Y^ C xkÌCA agree: 

• Orient Y\h by using Proposition 2.10 to write the latter as 
(k) xk:mk>iK-A • Then, multiply the product orientation by 

e (a) -Ilfc.̂ gj, )>o (̂Cfc) !)• Here, r(Ck, 1) in the case where d(ek) > 0 
is defined as in Part 5 of Section le using a choice of an ordering 
for the set 

Yk = {7 G r : 7 n ck + 0}. 

Also, e (a) is defined as in Part 6 of Section le. 
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For y G 1/j, introduce the oriented vector space V of (2.8) and then 

Proposition 2.10's epimorphism Gy : T{xkJCA ) \ y —> V. Identify 

TYh\y with the kernel of Gy and then use the given orientations on 

T(xkK,A ) \ y and V to induce an orientation on TY\t\y. (Note that 

V is even dimensional, so there is no ordering issue here.) 

The proof of Lemma 7.5 is given in the next subsection. The re­
mainder of this subsection contains the 

Proof of Lemma 7.6. For each k with d(ek) > 0, let 

rfc = {7Gr:7ncfe = 0}. 

Order the elements in T^ and then introduce the corresponding vector 
space Vk as defined in Part 3 of Section le. Note that an ordering of T^ 

determines a canonical orientation of Vk- For such k, introduce the linear 
surjection Gk '• 1CA —> Vk from Part 3 of Section le. (Remember that 
KA in this case is the kernel of the Ck version of the operator D from 
(1.11).) Now consider \I/r(y) = (a, (a,/?)). As described in Proposition 
5.2 and (4.1) of [28], the component a is a sum, a = ar + a ' , where 
\a'\ < Q-r~1'2. Furthermore, the differential of a ' in a tangent direction 
p to Xfc/C^ ' obeys |a ' j ) | < ( - r - 1 / 2 • ||p||2- (See Lemma 6.6 of [28].) With 
the preceding understood, note that were a = ar, then the assertions 
of the lemma would follow directly from the definitions in Sections 2 
and 3b of ar. Indeed, in this case, V would be identical to ®k:d(ek)>o^k 

and the homomorphism Gy would equal ®k,Gk- (The factor of e (a) in 
this case results by comparing the given orientation on V with that on 
®k:d(ek)>oVk-) This last fact with the small size of a' and its differential 
at large r then imply the lemma. (With regard to this last point, note 
from the definition that the behavior of ar and its differential along a 
tangent vector to x^K.^ is suitably uniform in r.) 

e) P r o o f of L e m m a 7.5 

The lemma compares an orientation on the virtual bundle T(Xk}CA ') 

- ^*W with one on the virtual bundle T(xklCA>) - xkAk. The plan 

will be to compare these relative orientations at points y G ^ ~ 1 ( 0 ) . If 

they agree at such points, then they will agree on some neighborhood of 

^ ~ 1 ( 0 ) . Thus, it is enough to compare the orientations only for points 
yeVv_1(0). 
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The proof has two parts. The first part of the proof considers the 
case where some A& is non trivial and translates this comparison ques­
tion in this case to a question of the equality of two relative orientations 
on T(XÌCICA )\y — XfcAfc. That is, the first part of the proof reduces 
the comparison of orientations on distinct virtual bundles to a question 
about orientations on the same virtual bundle. The remaining part of 
the proof compares the two orientations on T(x^fCA ) \ y — x^A^.. 

The latter two orientations are defined as follows: The first orienta­
tion is defined by considering a path of operators that per turb ffifcA^ 
to a C-linear operator. The second orientation is defined by considering 
a path of operators which per turb L^r^ to a C-linear operator. The 
paths in question, and the comparison of the kernels along the paths 
are compared with the help of Lemma 6.7 in [28]. As in the case where 
all Afc are trivial, these lemmas are used to construct a path for ©fcAy* 
from one for L^,r^yy Furthermore, this construction allows for a direct 
comparison of the kernels at corresponding points along the two paths. 
The resulting comparison leads to the conclusions of Lemma 7.5. The 
argument here is similar in most respects to that in Section 7a, above. 

Part 1. As just remarked, this part of the proof translates the 
comparison question in the case where some A& ^ {0} to a question 

of the equality of two orientations on the virtual bundle T(xkfCA ) \ y — 
XfcAfc. Thus, this part assumes that A*. ^ {0} for some k. There are 
three steps in this part of the proof. 

S t e p 1. This first step contains some preliminary constructions 
and remarks. 

To begin, note that the map $ can be rephrased as follows: Take 
(k) 9 

y G XklCA and remember that W j ^ y ) is the L - orthogonal compli­
ment inside % • 0 2 + © C°°(S-) of the L^iy\ image of the the subspace 
Nyr(yy, the L2 compliment of the image of the differential of \I/r in 7yr(y)-
(Remember that the latter is the subspace of % • O1 © C°°(S+) where the 
first line in (2.6) vanishes in the case where (a, (a,ß)) = \I/r(y).) Then, 
let nî,r(2/-) denote the I/2-orthogonal projection onto W l ^ ^ ) . With this 
understood, then $y = Yl^,r^ • & . 

Define a homotopy, J>', of the homomorphism <&' in (7.8) so that the 

resulting homomorphism at (t,y) G [0,1] x (x^/C^ ) sends £ G x^A^. to 

(7.19) ^y) • e = n ^ ( ! / ) • $ ; • £ + 1 • (i - u9r{y)) • &y • e. 
Here are some facts about <£>' : 
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• ik'rty) 1S injective for each pair (t,y). 

• The projection from the image of &t -, to cokemel(Lq,r^) is sur-
jective. 

(7.20) 

The injectivity of &t -, is a consequence of the fact that Qy = n ^ r ^ Q'y. 
The validity of the second assertion of (7.20) can be argued as follows: 
Identify the cokernel of (L^r/y\) with the kernel of (L-q,r/y\)^ to turn the 
projection in question into the L2 orthogonal projection onto the kernel 
of (L^ ,^) )* . However, kernel((I/1j?,(î/))t) C W\yr^ since 1^1$,.^ is the 
L2 orthogonal compliment of the (L^,r^) image of the subspace, Nyr(yy 
And, according to Lemma 7.3 and (7.19), the L2 orthogonal projection 
from the image of if(tj2/) gives the image of &0 \ which is W\yr(y)-

Step 2. Depending on the context, it is convenient to consider 

the image of &nv\ as either a subspace of i • 0 2 + © C°°(S-) or else 

a subspace in i • (Q° © Q 2 + ) © C°°(S-) with zero projection onto the 

i • 0 ° summand. When t G [0,1], let R(t,y) denote the I/2-orthogonal 

projection (on either i • Q2+ © C 0 0 ^ . ) or i- (fi° © Q2+) © C°°(S-)) onto 

the image of &t -,. Note that II(lj2/) is the I/2-orthogonal projection onto 

the image of $'y, while H-(o,y) = ^-^>r(y)-
With Tl(t,y) understood, then (7.20) implies that 

. (i - n(t)J/)) • L*r{y) : %r{y) -»• (i - n(t)!/)) • (i • n2+ © c ° ° ( 5 _ ) ) , 

. (i - n(t)!/)) • L*r{y) : i • nl © c°°(s+) -• (i - n(t)i/)) • (i • (n° © 
fi2+)©C°°(S_)) 

(7.21) 

are both surjections for each t G [0,1] and y G x^/C^ ' . 

Fix y G xkICA , and let F< denote the kernel of the operators in 
(7.21) as a function of t. (Both operators have the same kernel.) Note 

V0 = {(*r),v + ç(v) : v G T(xklC^)\y} 

that ^ « ^ ( X f c / C ^ ) in a natural way. Indeed 

where 
^.T(xkIC^)\y^N^{y) 
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is an appropriate linear map. On the otherhand, when y G ipr
 1(0), then 

(7.22) Vi = {(* r )„v : « G T{xkK,f\}. 

To prove (7.22), consider first that V\ is a vector space whose dimen­
sion is the same as that of T ( x j X ^ ')\y. Thus, if the former contains the 
latter, then they are equal. To see that the former contains the latter, 
note that when (a, (a,ß)) = ^r(y), then (4.5) defines an element H(y) 
which lives in the image of $'y. (This is by construction.) And, when 

H(y) = 0, then the differential of M along a direction v G T(xkK,A ) 
will also live in the image of &y and so is annihilated by (1 — i l ^ ^ ) ) . 
Finally, note that the differential of M at y computes L î,r(- î /\(( ,I'r)*'u). 

S t e p 3. When y G ,0~1(O), then the association of Vj to 
t G [0,1] defines a vector bundle, V —> [0,1], and so an orientation 
for Vo « ^ W l y induces an orientation on V\ « T(xkfCA')\y. In this 
step, implicitly orient the formal difference V\ — Vo using this induced 
orientation. 

Now, consider mapping Vj to x^A*. as follows: Associate to v G Vf 

the element §Lnv\ '^-^t(y) 'Lmr(y)V. Let Tt denote this map. If y G rip~1{iò) 

and k e r n e l ^ ^ j , ) ) = {0}, then kernel(T t) = 0 for all t. Thus, in this 
case, the relative orientation defined by To on the virtual bundle Vj — W 

agrees with that defined by T\ on V\ — x^A^. This case occurs when 
d(e) = 0 and *&r(y) is a smooth point of M.(r>. 

Now suppose that y G ,0~1(O), but that kernel(Lî,r(-î/)) ^ {0}. In 
this case, the kernel of Tt is the kernel of L^r^ for all t G [0,1]. With 
the preceding understood, choose a continuous family of isomorphisms 
Wt : kernel(L î,r( ' î /)) —> cokernel(T t) C x^A^.. Then, consider the path 
of operators L^,r^ + J>',t •> • wt where wt is to be thought of as a map 
from i • Q1 © C°°(S+) which is zero on the Z/2-orthogonal complement 
of kernel(L î, r ( ' î /)). It then follows that for every t, the map from Vj to 
XfcAfc which assigns to v the element <j?,~ N - 1 1 ^ ^ • (L^r^ +§i'uy\ -wì) -v 

is an isomorphism. 

Using the preceding family of isomorphism, an orientation for 

T{y<k^A )\v~ xk^k ÌS) again, induced by one on T{Xf,JCA ) \ y — W\^r^yy 

Part 2. Here again, suppose that y G ,0~1(O). It follows from the 
preceding remark that the question of whether 

(7.23) Identity - $ : T(xkK.f>)\y " xfcAfc ^ T(xkK.f>)\y - W\^r{y) 
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preserves orienation can be decided by whether two orientations on 
T(xkK,A )\y — xkAk agree. This part of the proof of Lemma 7.5 com­
pares the two relative orientations. There are eight steps to this part of 
the proof. 

Step 1. The first orientation on T(xklCA ) \ y — xkAk comes 

from Part 1 of Section 2g where an orientation is defined on each of 

the virtual vector spaces T(1CA')\ k — Ak. The resulting orientation on 

T(xkK,A )\v ~ xk^k is insensitive to a permutation of the labels of the 

set {(Ck,mk)}. This is because dim(T(/C^ ))|2/*) = dim(Afe) mod(2) for 

each k. 

Briefly, Section 2g's orientation of T{fCA )\yk — Ak is obtained as 
follows: In the case where d(ek) = 0 and Ak = {0}, the orientation is the 
mod(2) count of the number of points along the path in (2.24) where the 
operator (Ayk +n<) has non-trivial cokernel. In the case where d(ek) > 0 
or when A = Ak ^ {0}, the orientation is defined in three steps. First, 
define a vector bundle over [0,1] by assigning to each t G [0,1] the 
kernel of the operator (1 — Q\) • (Ayk +ni). Second, trivialize this vector 
bundle. Third, in the case where mk = 1, orient kernel (A * + n\) with 
its complex orientation. In the case where mk > 1 and A = Ak ^ {0}, 
orient the virtual vector space kernel((l — Q\) • (Ayk + ni)) — A by 
mapping the former to the latter using Q\ • (Ayk + n i ) . In all of these 
cases, remember that n\ should be chosen so that the latter map is 
an isomorphism. In fact, in the arguments that follow, take n\ = nyk, 
where the nyk is given in Lemma 7.2. 

With regard to the preceding definition, be aware that the same ori­

entation on the virtual bundle T(xklCA ) \ y — xkAk is obtained by taking 

any continous path, {î1^-)}te[0)i] of Fredholm operators from ®kL\{N^k>) 

to ®kL
2(N^ <g) T°'lCk) with the following properties: 

. T^ = ®kAyk, 

. T(1) = ®k(Ayk+nyk), 

• The map sending t G [0,1] to (©^(1 — QA))-T^ is suitably generic. 

In particular, its cokernel in © £ ; ( 1 - Q A ) -L2(N^ ®T°'lCk) should 

be trivial when dim(Xfc/G ) > 0. 

(7.24) 
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S t e p 2. The second orientation for T(X):1CA ) \ y — x^A^. is 
defined as follows: Consider a smooth family of operators 

{TH : L\% • T* © S+) ^L2(i- (£ffi © A+) © S-)}*e[0)i] 

and the corresponding 1-parameter family 

(7.25) L® = L*r{y) + x (3 t ) • $ ; • ioi + n t 

of differential operators. (Remember that J ^ \ = <£>'.) Choose {n^} as 

in Lemmas 7.1 and 7.2. Also, choose {n^} so that for each t, 

( 7 2 6 ) ( l - n ^ ) ) . ^ ) : , ^ 1 © ^ ^ ) 

->• (i - n(1)j,)) • (i • (fi° © ft2+) © c°°(,s_)) 

is surjective. Finally, choose n< so that the assignment of 

$ ' - 1 • n(1)j,) • L < % G XfcAfc 

to v G kernel((l — II(lj2/)) • I/1-1^) defines surjective linear map, 

(7.27) O : kernel(l - I I ^ ) • L « -»• xfcAfe. 

It is an exercise with analytic perturbation theory to see that such a 
smooth family {rit} can be chosen. 

With the preceding understood, let Ut C i • O,1 © C°°(S'_|_) denote the 
kernel of the operator in (7.26). Since this operator changes smoothly 
with t G [0,1], the collection of vector spaces {^t}te[o,ii fit together to 
define a vector bundle U —> [0,1]. 

The operator O induces a canonical orientation on U\ — x^A*. as 
follows: First, the kernel of O is the kernel of the operator L^r^ + n\. 
As the latter intertwines the almost complex structures JD and J # , the 
kernel of O has a natural complex vector space structure (induced by 
JD) and so has a natural orientation. On the otherhand, O maps U\ 
onto XfcAfc and this means that ?7i/kernel(0) inherits an orientation 
from XfcAfc using O to identify these two spaces. Since x^A*. is even 
dimensional, there are no ordering issues and so an orientation for both 
kernel(O) and ?7i/kernel(0) — x^A^ orients U\ — x^A^. 

The orientation on U\ — x^A^. induces one for the formal difference 
UQ — XfcAfc since vector bundles over the interval are trivial. In this way, 
a relative orientation is defined for T(xklCA ) — x^A^ because 

UQ = kernel((l - U(hy)) • L®) = T{xkicf)\y. 
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Step 3. Consider now Ut, the kernel of the operator in (7.26). 
An element p G Ut is characterized as a solution to the equation 

(7.28) L^r{y)P = nt{p) + $„•£ , 

where £ = ti'1 • n(1;2/) • {L^r{y)p - nt{p)). 
Equation (7.28) has the form L^r^p = g', so Lemma 6.7 in [28] can 

be invoked in the analysis. Here g' = nt(p) + $ ' • £ . 

Lemma 7.7. The conclusions of Proposition 2.10 and Lemmas 
7.1-7.3 and 7.6 can be augmented with the following assertion: There 
is a constant Ç > 1 and, given e > 0, there is a constant Ç' > 1 such 
that when r > Ç', y G ,0~1(O), and {rit} is as above and satisfies the 
constraints of Lemmas 7.1 and 7.2; then for each k, there is a family of 
linear maps 

{rk : (Bk,Lt(N^) -+ L2(N™ 0 T°>lCk)}rem 

which obeys: 

• \\rk • u\\2 < e • Y,k,\\u
k'\\it2. 

• Let Ht C ®k,L2(N^k') denote the vector space of u = (it1 , . . . ,un) 
for which 

(7.29 a) (l-QA)-(Ayku
k + nk + Tk)=0 

holds for each k. Here, nk is defined as in (7.1) but with rit re­
placing n\. Then, there is a linear isomorphism Qt, from Ht to 
the vector space Ut of solutions to (7.28). 

• The map Qt sends u top = Uk(l- xu,k) -P° + ^kXiooö,kPk, where 
p° is a linear functional of u G Ht which obeys 

(7.29b) ||Vp0 | |2 + y/r • |b° | | 2 < C • r~1/2 • S*||ufc||i)2. 

• Also, pk = P{hk) + Tx • uk, where uk obeys (7.29a) and 
hk

 £L2{VÏ,K{) obeys 

(7.29c) | | ^ | | 2 < C • (r"1 / 2 • ||ufc||1;2 + r " 1 • E f c , | |^ ' | | i ,2). 
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• The assignment of t G [0,1] to Ht defines a smooth vector bundle 
H —> [0,1], and then the assignment of t G [0,1] to Qt defines a 
smooth section, Q, of Hom(ff, U). 

Proof of Lemma 7.7. This lemma follows from Lemma 4.11 in 
[28] with the following two additional comments: First, (7.28) can be 
thought of as an equation for a pair, (p, £) with p g j - Q 1 ® C°°(S+) and 
£ G XfcAfc- And, as in the proof of Lemma 7.3, one has the pointwise 
bound (1 - X25Æ,kWy • £| < Ce-Vr/(^k\\îk\\2- Also, the L2 norm of 
(1 — n)x25Æ,A;̂ >y " £ is similarly bounded by Ce HCfclk- (As remarked 
earlier, the latter follows from the fact that (1 — IT) • T 1 •£ = 0.) Finally, 
the fifth point in (7.5) should be used to control the size of the term 
with vy in (6.29a) of [28]. 

S t e p 5. Lemma 7.7 describes a linear isomorphism, Q, between 
the vector bundles H and U over [0, 1]. Given an orientation of the 
latter, orient the former by declaring that Q preserve orientation. This 
Q translates the orientation for UQ — x^A^ in Step 3 into one for HQ — 
XfcAfc. Since bundles over [0, 1] are always trivial, the latter is induced 
from an orientation for H\ — x^A^. 

S t e p 6. Now, {Ht}te[o,i] a r e the kernels of the family of opera­
tors 

(7.30) {SW = ©fc(l - Q A ) • ( A , , + n\ + r*)}, e [ 0 ) i ] . 

By connecting S^> to ©fc(l — Q A ) • Ayk by a path of surjective Fredholm 

operators, and likewise S^-1' to ©fc(l — Q A ) • (Ay* + nyk), a pa th of 

operators {T^} will have been constructed as in (7.24) from which one 

can compute the orientation described in Step 2. 

To connect S^0' to ©fc(l — Q A ) • A ^ , remark that standard perturba­
tion theory arguments find Ç (independent of y) such that when r > Ç, 
then each of the operators 

(7.31) {©fc(l - Q A ) • (A„* + (t + 1) • T0
fc)} te[_1)0] 

has trivial cokernel. What is more, for each t in question, the I? or­
thogonal projection from the kernel to the kernel of ©fe(l — Q A ) • A & is 
an isomorphism. (These assertions use Lemma 7.7's estimate for TQ.) 

To connect SW to ©fc(l - Q A ) • A yk + riyk, remark that standard 
perturbation theory arguments find Ç (independent of y) such that when 
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r > (, then each of the operators 

(7.32) {©fc(l - QA) • (Ayk + (t - 1) • nyk + (2 - t) • ( - n f + rf ) )} t 6 [ 1 ) 2 ] 

has trivial cokernel. And, those same arguments prove that for each t 
in question, L2 orthogonal projection maps the kernel isomorphically to 
that of ©fc(l - Q A ) • (Ayk + nyk). 

Together, the family S^'' with (7.31) and (7.32) defines (after chang­
ing the scale for t) a family {TW} as in (7.24). 

Step 7. The orientation on H\ — xkAk that comes via U\ 
is defined by declaring that O • Q preserve orientation as a map from 
i f i / k e r n e l ( 0 • Q); and by orienting the kernel of O • Q by identifying 
the latter using Q with the complex vector space kernel(O). A second 
orientation on H\ — xkAk is obtained from an orientation on the virtual 
vector bundle kernel(©fc(l — Q A ) • (Ayk + nyk)) — xkAk by using the 
family of kernels from the operators in (7.32) to define a vector bundle 
over the interval [1, 2] whose fiber over 1 is H\ and whose fiber over 2 
is kernel (©^(1 — Q A ) • (Ayk +nyk)). Here, the orientation on the virtual 
vector space kernel(ffifc(l — Q\)-(Ayk+nyk)) — xkAk is defined as follows: 
First, the kernel of the linear map ®kQ\{^-yk + nyk) on kernel (©^(1 — 
Q A ) • ( A ^ +nyk)) is oriented by observing that the kernel of said linear 
map is the kernel of ®k(Ayk + nyk) which is a complex vector space. 
Second, use ®kQ\{Ayk +nyk) to identify x^A^ with the quotient vector 
space kernel(©fe(l - Q A ) • (Ayk + n2/*))/kernel(©fcQA(A2/* +nyk)). 

The claim here is that there exists Ç > 1 independent of y such that 
when r > £ these two orientations on Hi — xkAk agree. Here is why: 
First, 

(7.33) \0-Q(U)-®kQAiAykUkWi(u)+T?(U))\<Ce-^/t-Zk\\U
k\\i,2-, 

which is a consequence of the bounds for (1 — X25Æ,k) ' \^'y ' CI a n d 

\\(l-U)-X25Æ,k%<\h by C-e-^r-^kl\\u
k'\\2. Second, ®k(Ayk+nyk) dif­

fers from ®k{Ayk + n\ + r f ) by a term whose fc'th coordinate has norm 

(as an operator from the space ®kL
2 (iV(fc)) to L2{N^®Tü>lCk)) which 

is bounded by C, • r - 1 ' 4 . This means, as noted above, that L2 orthogo­

nal projection from the kernel of the t version of any of the operators in 

(7.32) to kernel(ffifc(l — Q A ) - ( A ^ +nyk)) is an isomorphism which differs 

from the identity by a term with norm bounded by Ç • r - 1 ' 4 . Thus, the 

inverse map is also an isomorphism which differs from the identity by a 

term whose norm is bounded by £ - r - 1 ' 4 . The composition of this inverse 
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map with the map ®kQA-(Ayk + (t — l)-nyk + (2 —1)-(—n\+t\)) thus dif­
fers from the map (BkQ\-(Ayk +nyk) on kernel(©fc(l — Q\)-(Ayk +nyk)) 
by a term which has norm bounded by £ - r - 1 / 4 . However, the latter map 
is surjective with an inverse having norm less than £, this curtesy of the 
second assertion of Lemma 7.2. Thus, when r is large, the maps which 
define the orientation for H\ extend across the vector bundle defined by 
the kernels of (7.32). And, on the fiber over 2, said extension gives the 
second orientation for H\. 

S t e p 8. The identification of HQ via Q with UQ defines an 
identification of the former space with T(xklCA ) \ y . Given the results 
of the preceding step, then Lemma 7.5 follows with a demonstration 
that the orientation which is induced on HQ by the latter identification 
is identical to that which is induced by considering UQ as the fiber over 
the point 0 G [—1,0] and T(xklCA ')\y = k e r n e ^ x ^ A ^ ) as the fiber 
over —1 for the vector bundle whose fiber over t is the kernel of the t 
version of the operator in (7.31). The claim here is that there exists 
Ç > 1 independent of y, such that when r > £ these two orientations 
agree. Here is why: The first orientation is that which is obtained by 
L2 orthogonal projection from HQ to kernel (©^(1 — Q A ) • A *). And, as 
remarked, this same L2-orthogonal projection defines an isomorphism 
from the t version of any of the operators in (7.31). 

f) Compar ing t h e sect ions w and ipr 

With Lemmas 7.3 and 7.4 understood, it follows that the section w 
of W from Proposition 2.14 can be pulled back by ^ r on a neighborhood 
Oh C Yh of W - 1(0) to define the map ^ ( f » : Oh -+ xkAk. This 
map can then be compared with ipr : 

L e m m a 7.8. The conclusions of Proposition 2.10 and Lemmas 7.1-
7.7 can be augmented as follows: When r is large, there is a smooth, 
dim(Y/j) + 1 dimensional, oriented manifold with boundary Z, and a 
smooth map p : Z —>• xkkk with the following properties: 

• dZ = Oh\J -Oh. 

• p\Y, = $-l(q>*rw). 

• p\(-Y>) = 4>r-

• p l(0) is compact. 
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Note that this last lemma implies the third point of (2.28) using 
standard, finite dimensional arguments about counting the zeros of sec­
tions of vector bundles. 

Proof of Lemma 7.8 

When S = (a, (a,/3)) G Conn(£) x C°°(S+), use 7= to denote the 
subspace in i-Çll®C0C(S+) where the first line in (2.6) holds. And, when 
y G Xfc/C^ , use Nyr/y\ C T^,rry\ to denote the L2 orthogonal compli­
ment of the image of the differential of ^>r. Note that the assignment of 

(k) (k) 

Nyr(y) to y G XfcÂY giy e s a smooth vector bundle N_ —> x^/C^ . Also, 
the'map from TV to (Conn(£) x C00(S'+))/C00(X; S1) which assigns to 
(y,x) the orbit of ^fr(y) + x restricts to an h\ neighborhood O C N 
of the zero section as a diffeomorphism onto an open neighborhood of 
^(xjfe/CA0) m the space (Conn(£) x C0 0(5+)) /C0 0(X; S1). 

When t G [0,1], and O^ C Y/j is an open neighborhood of ,0~1(O) 
use Zf to denote the set of solutions {(y, x) G 0_: y G Oh} of 

(7.34) ( 1 - % , , ) ) • HOMy)+aO = 0. 

Here, As before, when 

S = (a, (<*,£)) G Conn(.E) x C°°(5+), 

use (4.5) to define H(S) as an element in i • ü2+ © C°°(S-) or m 
i • (Q° © 0 2 + ) © C°°(S-) with zero projection onto the i • Q° summand. 
Note that standard elliptic regularity techniques (as in Chapter 6 of 
[17]) can be used to prove that an L\ solution x to (7.34) is smooth. 
This is because the range of R(t,y) consists of smooth elements. 

By shrinking O^ and 0_ if necessary (replacing O^ by its intersec­
tion with a smaller open neighborhood of ^E'r(Y/t)), one can arrange the 
following: 

. *7HM%) c Zt. 

• The tautological map from Zt into (Conn(E)xC00(S+))/C00(X; S1) 

intersects M.(r> only in M^ n-

• Each Zt is a smooth, submanifold of O near ^>~1(M.^>
n) of dimen­

sion dim(Y/j). 

• The set of triples Z = {(£, (y,x)) : (y,x) G Zt} is a smooth mani­
fold near ^>~1(M.^>

n) of dimension 1 + dim(Y/j). 
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• ZX = Oh. 

• ZQ is the image of a section of O over Oh- Thus, the bundle pro­
jection gives a canonical diffeomorphism between ZQ and O^. 

• Z can be oriented so that the induced orientations on Z\ and ZQ 
are opposite. 

(7.35) 

The preceding assertions can be established as follows: The first 
assertion follows directly from (7.34). The second assertion is a conse­
quence of the fact that each x G ^^r(y) is normal to M.(r>. To establish 

the third and fourth assertions, note first that if y G 1$>~1(A4Y n), then 
the linearization of (7.34) at (y, 0) is 

(i - n(t)J/)) • L*Ay) : T9r{y) -+ (i - n(t)„))i • n2+ © c°°(s+y, 

and the latter is surjective. Now appeal to the implicit function theorem. 
Indeed, it follows from the implicit function theorem that by shrinking 
each Oh if necessary, and also shrinking 0_ in each fiber over x^/C^ , 
one can arrange, without loss of generality, that each Zt is a smooth 
submanifold of 0_ of dimension Y^ and that Z is a smooth submanifold 
of the product [0, l ] x O having dimension 1 + Y^. 

Next, consider the assertion about Z\. This follows from the fact 
that H(\I/ r(y)) G &(xkAk) by the very definition of ^>r in Section 5. 
Thus, ö/j is a component of Z\, and it follows that by shrinking O^ and 
0_ again if necessary, one can assume, without loss of generality, that 
Zi = Oh. 

Next, consider the assertion about ZQ. In this regard, remember 
that (1 — 11(0,^(2/))) = (1 — n^ r(j,)) was defined as the L2 orthogonal 
projection onto L^,r^(N^,r^). Thus, the linearization of the t = 0 

version of (7.34) at y G ^'~1(AÌY n)
 1S already surjective on N^r(yy 

With this understood, an appeal to the implicit function theorem finds 
a neighborhood of ^>~1(M.^'n) in ZQ which has the form (y, x(y)), where 
x(y) G ^r(y) satisfies the equation 

(l-U^r(y))-U(^r(y)+x(y))=0. 

Then, by shrinking Oh and 0_ if necessary, the assertion about ZQ can 
be arranged. 
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Finally, consider the orientation question. In this regard, remark 
that Z contains the product [0,1] x 1$>~1(A4Y n) as a subspace. Then, 
the tangent space to Z at (t, (y, 0)) in the latter subspace is naturally 
isomorphic to R x TZt\y. Now, with y fixed, the assignment to t of 
TZt\y defines a vector bundle over [0,1] whose fiber at t = 1 or t = 0 
is naturally isomorphic to TYh\y. Thus, TZ is oriented along [0,1] x 

^^1(MYQ)Ì
 a n d the implicit function theorem implies that by shrinking 

ö/j and O if necessary, one can obtain a consistent orientation for TZ 
with the asserted properties. 

With Z understood as above, define the map 

H : Z ->• XfcAfe 

by assigning to each triple (t, (y, x)) the element J>,~ -]H^^r^M(^'r (y) + 

x). 

The identification of ZQ as the set of (y,x(y)) where (1 — IT,^^)) • 
^(^r(y) + x(y)) = 0 identifies the map H on Z0 with $ _ 1 • ^*w. Mean­
while, the identification of Z\ with the zero section in 0_ identifies H on 
Z\ with tßr. 

Finally, note that if H sends (y, x) G Zt to zero, then 

M(^r(y) + a;) = 0 and by definition, ^r(y) + x G MS1"'. However, since 

M^ C ^(Xfc/CJ?) and X IS ct section of the normal bundle to the 

submanifold ^ ( x ^ / C / ^ ) , one can assume (again, by shrinking both O^ 

and 0_ if necessary) that H((t,(y,x)) = 0 if and only if a; = 0 and 

g) T h e Euler number for ipr and the weight for h 

The validity of the final point in (2.29) when r is large follows from 
the fourth assertion of Proposition 5.2 of [28] using Proposition 2.7 to 
insure compactness. 
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