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Projection pursuit for discrete data

Persi Diaconis1 and Julia Salzman2,∗

Stanford University

Abstract: This paper develops projection pursuit for discrete data using the
discrete Radon transform. Discrete projection pursuit is presented as an ex-
ploratory method for finding informative low dimensional views of data such
as binary vectors, rankings, phylogenetic trees or graphs. We show that for
most data sets, most projections are close to uniform. Thus, informative sum-
maries are ones deviating from uniformity. Syllabic data from several of Plato’s
great works is used to illustrate the methods. Along with some basic distribu-
tion theory, an automated procedure for computing informative projections is
introduced.

1. Introduction

Projection pursuit is an exploratory graphical tool for picturing high dimensional
data through low dimensional projections. Introduced by Kruskal [35], [36], and
developed by Friedman and Tukey [28], the idea is to have the computer select
a small family of projections by numerically optimizing an index of “interest”.
The original projection indices were ad hoc. In joint work with David Freedman
[15], it was shown that for most data sets, most projections are about the same:
approximately Gaussian. Therefore, the interesting projections, the ones which were
special for this data set, are projections that are far from Gaussian.

Peter Huber [32] found his own version of this: projections are uninformative if
they are unstructured or “random”. Thus projections with high entropy are unin-
formative. For a fixed scale, distributions having high entropy are approximately
Gaussian. Huber also showed that the Friedman-Tukey index is a measure of non-
Gaussianess.

The purpose of the present paper is to give a parallel development for data in
discrete spaces: collections of binary vectors, rankings, phylogenetic trees or sets
of graphs. We develop a notion of projection as a partition of the discrete data
into blocks. We show that most for most data sets, most projections are close to
uniformly partitioned. This suggests that the informative summaries are the ones
with splits that are far from uniform.

The outline of the paper is as follows. Definitions and first examples are given
in Section 2. The ideas lean on classical developments in block designs and give
new applications for that theory. A discrete version of the Radon transform along
with an inversion theory is presented, determining when a collection of projections
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loses information. Section 3 gives a data analytic example in some detail. The
data arise from the problem of putting some of Plato’s works in chronological
order. Here, discrete projection pursuit leads to the discovery of a striking, easily
interpretable structure that does not appear in other analyses of this data (eg.
Ahn et al. [1], Cox and Brandwood [11], Charnomordic and Holmes [8], Wishart
and Leach [49]). Section 4 proves that for most data sets, most partitions lead
to approximately uniform projections. This leads directly to a usable criteria: a
projection is interesting if it is far from uniform. The distance to uniformity can be
measured by any distance between probabilities, and we consider the well-known
total variation, Hellinger and Vasserstein metrics.

The final section gives results for the least uniform projection. Theorem 5.1
shows that if the class of projections is not too rich, for example, the affine hy-
perplane in Zk, then for most data sets even the least uniform partition is close
to uniform. If the class of projections contains many sets, then least uniform pro-
jections are “structured”. The final theorem attacks the problem of a data analyst
finding “structure” in “noise”. Computational details for computing the metrics
and automating the analysis are in an Appendix.

There has been extensive development of projection pursuit for density esti-
mation (Friedman et al. [26]), regression (Friedman and Stuetzle [27], Hall [30]),
applications to time series (Donoho [22]), discriminant analysis (Posse [42], Polzehl
[41]) and standard multivariate problems such as covariance estimation (Hwang et
al. [33]). This has led to a healthy development captured in the modern implemen-
tations (Xgobi, Ggobi). Online documentation for this software is an instructive
catalog. We have not attempted to develop our ideas in these directions, but the
beginning steps of ridge functions will be found below.

2. Projections and Radon transforms

This section introduces our notation and set up for working with discrete data.
It defines projection bases, the discrete Radon transform and gives examples with
binary data and permutation data. Analysis will be performed on binary n-tuple
data from several works of Plato. Let X be a finite set. Let Y be a class of subsets
of X . Let f : X → R be a function. The Radon transform of f at y ∈ Y is defined
by

f̄(y) =
∑
x∈y

f(x).(1)

The class Y is called a projection base if:

|y| is constant for y ∈ Y (|y| denotes the cardinality of Y).(2)
There is a partition p1, . . . , pj of Y such that each pi is a partition of X .(3)

For a partition p, the numbers f̄(y)y∈p will be called the projection of f in
direction p. The sets in Y may be thought of as “lines” in a geometry. If lines in
the same partition are called parallel, then (3) corresponds to the Euclidean axiom:
for every point x ∈ X and every line y ∈ Y, there is a unique line y∗ parallel to y
such that x ∈ y∗. In the statistics literature, designs with property (3) are called
“resolvable” (See Hedayat et al. [31] or Constantine [10] for examples). Assumption
(2) guarantees that projections are based on averages over comparable sets.

Consider the following examples:
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Table 1

Percentage distribution of sentence endings

Type of ending Rep. Laws Phil. Pol. Soph. Tim.
∪ ∪ ∪ ∪ ∪ 1.1 2.4 2.5 1.7 2.8 2.4

- ∪ ∪ ∪ ∪ 1.6 3.8 2.8 2.5 3.6 3.9
∪ - ∪ ∪ ∪ 1.7 1.9 2.1 3.1 3.4 6.0
∪ ∪ - ∪ ∪ 1.9 2.6 2.6 2.6 2.6 1.8
∪ ∪ ∪ - ∪ 2.1 3.0 4.0 3.3 2.4 3.4
∪ ∪ ∪ ∪ - 2.0 3.8 4.8 2.9 2.5 3.5

- - ∪ ∪ ∪ 2.1 2.7 4.3 3.3 3.3 3.4
- ∪ - ∪ ∪ 2.1 1.8 1.5 2.3 4.0 3.4
- ∪ ∪ - ∪ 2.8 0.6 0.7 0.4 2.1 1.7
- ∪ ∪ ∪ - 4.6 8.8 6.5 4.0 2.3 3.3
∪ - - ∪ ∪ 3.3 3.4 6.7 5.3 3.3 3.4
∪ - ∪ - ∪ 2.6 1.0 0.6 0.9 1.6 3.2
∪ - ∪ ∪ - 4.6 1.1 0.7 1.0 3.0 2.7
∪ ∪ - - ∪ 2.6 1.5 3.1 3.1 3.0 3.0
∪ ∪ - ∪ - 4.4 3.0 1.9 3.0 3.0 2.2
∪ ∪ ∪ - - 2.5 5.7 5.4 4.4 5.1 3.9

- - - ∪ ∪ 2.9 4.2 5.5 6.9 5.2 3.0
- - ∪ - ∪ 3.0 1.4 0.7 2.7 2.6 3.3
- - ∪ ∪ - 3.4 1.0 0.4 0.7 2.3 3.3
- ∪ - - ∪ 2.0 2.3 1.2 3.4 3.7 3.3
- ∪ - ∪ - 6.4 2.4 2.8 1.8 2.1 3.0
- ∪ ∪ - - 4.2 0.6 0.7 0.8 3.0 2.8
∪ ∪ - - - 2.8 2.9 2.6 4.6 3.4 3.0
∪ - ∪ - - 4.2 1.2 1.3 1.0 1.3 3.3
∪ - - ∪ - 4.8 8.2 5.3 4.5 4.6 3.0
∪ - - - ∪ 2.4 1.9 5.3 2.5 2.5 2.2

∪ - - - - 3.5 4.1 3.3 3.8 2.9 2.4
- ∪ - - - 4.0 3.7 3.3 4.9 3.5 3.0
- - ∪ - - 4.1 2.1 2.3 2.1 4.1 6.4
- - - ∪ - 4.1 8.8 9.0 6.8 4.7 3.8
- - - - ∪ 2.0 3.0 2.9 2.9 2.6 2.2
- - - - - 4.2 5.2 4.0 4.9 3.4 1.8

no. sentences 3778 3783 958 770 919 762

Example 2.1. X = Z
k
2 the set of binary k-tuples. Here is a concrete example

of a data set with this structure; L. Brandwood classified each sentence of Plato’s
Republic according to its last five syllables. These can run from all short (∪) through
all long (-). Identifying ∪ with 1 and - with 0, each sentence is associated with a
binary 5-tuple. As x ranges over Z

5
2, let f(x) denote the proportion of sentences

with ending x. The values of f(x) are given in the first column of Table 1.

A second example of data with this structure is the result of grading cor-
rect/incorrect in a test with k questions. There are several useful choices of Y
given next:

2.1. Projections for data in Z
k
2

2.1.1. Marginal projections in Z
k
2

For i = 1, 2, . . . , k, let y0
i = {x ∈ Z

k
2 : xi = 0}, let y1

i = {x ∈ Z
k
2 : xi = 1}. The

sets Y = {yj
i }, 1 ≤ i ≤ k, j ∈ {0, 1} form a projection base. In the Plato example,
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the projections have a simple interpretation as the proportion of sentences with a
specific syllable in the ith place. Displaying projections offers no problem here; a
single number suffices.

A second natural choice of Y gives second order margins. This is based on sets
yab

ij = {x ∈ Z
k
2 : xi = a, xj = b}, 1 ≤ i < j ≤ k, a, b ∈ {0, 1}. In this case, a

projection consists of 4 numbers. In the Plato example, the projection along coor-
dinates i, j gives the proportion of sentences with each of the 4 possibles patterns
∪ ∪, ∪ -, - ∪, - - in positions i, j. Table 3 in Section 3 is an example of one method
to display such projections. Section 2 contains an analysis of the data in Table 1
based on these projections. The analysis gives a clear interpretation to a classical
way of dating the books of Plato. The analysis is independent of the other examples
in this section and can be read at this time.

Here are some examples to show how the structure of f is reflected in f̄ . If
f(x) = δx,x0 , f̄(y) = 1 if x0 ∈ y and zero otherwise. If f(x) = 1

2k for all x, then
f̄(y) = |y|

2k and hence is constant for all y. As a final example, consider a fixed,
non-zero vector y∗ ∈ Z

k
2 . Let S be the hyperplanes determined by y∗ : S = {x ∈

Z
k
2 : x · y = 0 mod 2}. Let

f(x) =
{

1
2k , if x ∈ S,
0, otherwise.

An easy computation shows

f̄(y0
z) =

{
1, if z = y∗,
1
2 , otherwise,

f̄(y1
z) =

{
0, if z = y∗,
1
2 , otherwise.

The hyperplane transform is essentially the same as the ordinary Fourier trans-
form on the group Z

k
2 . This is defined by

f̂(z) =
∑

x

(−1)x·zf(x).

If f is a probability on Z
k
2 , f̂(z) = 2f̄(y0

z)− 1. The transform f̂ has been widely
used for data analysis of this type of data. See Solomon [44] or Diaconis [18, 19],
Chapter 11. The discrete Radon transform with projections onto affine hyperplanes
is also used by Ahn et al. [1].

2.1.2. Affine hyperplanes in Z
k
2

This is one natural way of “filling out” the marginal projections presented above.
For z ∈ Z

k
2 and a ∈ {0, 1}, let ya

z = {x ∈ Z
k
2 : x · z = a mod 2}. The collection

Y = {ya
z}z∈Z

k
2 , a∈{0,1} forms a projection base. Observe that when z has a 1 in

position i and zeros elsewhere, ya
z equals the ya

i of the previous example. The sets
in Y are the affine hyperplanes in Z

k
2 . Similarly, the affine planes of any dimension

form a projection base. An analysis of the Plato data using all affine hyperplanes
is in Appendix A.3 below.
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2.2. Projections for data in X = Sn, the sets of permutations of n
letters.

Permutation data arises in taste testing, ranking and elections; for example, in pres-
idential elections of the American Psychological Association, members are asked to
rank order 5 candidates. Here, for a permutation π, f(π) is taken as the proportion
of voters choosing the order π. For background and many examples, see Critchlow
[12], Fligner and Verducci [25] or Marden [39].

2.2.1. Partitions based on marginal projections of permutations in Sn.

Let yij = {π ∈ Sn : π(i) = j, 1 ≤ i, j ≤ n}. These sets form a projection base. For
fixed i, the sets yi1, yi2, . . . , yin form a partition p(i). The projection in direction
p(i) has a natural interpretation in the example: how did people rank candidate i?
The projection can be displayed by making a histogram.

A second useful choice of Y is based on considering two positions: ykl
ij = {π ∈

Sn : π(i) = k, π(j) = l} with i �= j, k �= l. This leads to projections giving the
joint rankings of a fixed pair of candidates in the example. Such projections can
be displayed by making a 2-dimensional picture and gray scaling the (i, j) square
to correspond to the proportion of voters ranking the pair of candidates in order
(i, j). Similarly third and higher order projections can be defined.

2.2.2. Partitions based on subgroups of Sn.

When X is a group such as Sn, the following constructions for Y are available. Let
N be a subgroup of X . The orbits of N acting on X are the cosets {Ny}y∈X , and
the distinct orbits partition X . Varying N by conjugation, {yNy−1}y∈X , gives a
projection base for X .

When N is taken as Sn−1 = {π ∈ Sn : π(1) = 1} the projections are the marginal
projections defined above. Taking N as Sn−2 = {π ∈ Sn : π(1) = 1, π(2) = 2}
gives the second order margins. An important class of subgroups are the so-called
Young subgroups: let λ1 ≤ λ2 ≤ · · · ≤ λn be a partition of n so

∑
i λi = n.

Let Sλ1 × Sλ2 × · · · × Sλn be the permutations that permute the first λ1 elements
among themselves and the next λ2 elements among themselves, etc. These include
the previous examples and provide enough transforms for an inversion theory, as
will be shown below. Display of such projections is not a well studied problem. In
the case of a projection corresponding to a Young subgroup, one suggestion is a
1-dimensional histogram using one of the orderings suggested in Chapter 3 of James
[34].

If X = G/H where G is a group and H is a subgroup and G ⊂ N ⊂ H, with N a
subgroup, then the orbits of N in X are a partition and the orbits of {gNg−1}g∈G

form a partition base. One approach to the display of such projections is a 2-
dimensional histogram using the ordering given by one of the metrics suggested in
Chapter 7 of Diaconis [18].

2.3. Projections for X = R
p: Euclidean data.

Consider data vectors x1, x2, . . . , xn ∈ R
p. For γ in the p-dimensional unit sphere,

the projection in direction γ is just γ · x1, . . . , γ · xn. This is the classical Radon



270 P. Diaconis and J. Salzman

transform, with Y consisting of the affine hyperplanes yt
γ = x ∈ R

p : x · γ = t. For
fixed γ these partition the space R

p as t varies, and the partitions vary as γ varies. In
statistical applications, a histogram is made of γ · xi and one varies γ, trying to un-
derstand the structure of the p-dimensional data from the varying histograms. This
leads to the classical version of projection pursuit considered in the introduction.

2.4. Projections when X is a finite set with n elements, and Y is the
class of k-element subsets.

In this example, if k divides n, it is a non-trivial theorem of Baranyai that Y
forms a projections base. Details and discussion may be found in Cameron [7]. This
example occurs naturally when considering extensions of a given class of partitions.
For example, consider the marginal projections ya

i in Z
k
2 defined above. These sets

all have cardinality |ya
i | = 2k−1. It is natural to consider the extension to projections

based on the class of all subsets of cardinality 2k−1.

2.5. Uniqueness of Radon transforms:

We now consider the question: when is f → f̄ one to one? A convenient criteria
involves the notion of a block design. Let |X | = n. The class of sets Y is a block
design with parameters (n, c, k, l) provided

|y| = c for all y ∈ Y,(4)
each x ∈ X is contained in k subsets y,(5)

each pair x �= x
′
is contained in l subsets y.(6)

Affine planes or Z
k
2 and k sets of an n set are block designs. A great many other

examples are discussed in the literature of combinatorial designs. In the statistics
literature they are sometimes called balanced incomplete block designs. In the com-
binatorial literature they are often called 2-designs, or 2-(n, c, l) designs. It is easy
to see that the parameters n, c, k, l satisfy

|Y|c = nk,(7)
(n − 1)l = k(c − 1).(8)

Bailey [3], Dembroski [14] and Lander [38] are useful references for block designs.
The following result is well known in the theory of designs. We first learned it

from Bolker [4].

Theorem 2.2. If X is a finite set and Y is a block design with |Y| > 1, then the
Radon transform f → f̄ is one to one, with an explicit inversion formula given by
(12) below.

Proof. For any x,
∑

y:x∈y

f̄(y) = kf(x) + l
∑

s,s′∈X x�=x′

f(x′)(9)

= (k − l)f(x) + l
∑
x∈X

f(x).(10)



Projection pursuit for discrete data 271

If
∑

x∈X f(x) = 1, this determines f as

f(x) =
1

k − l

∑
y:x∈y

f̄(y) − l

k − l
.(11)

Observe that k > l follows from the assumption that |Y| > 1. When
∑

x∈X f(x) is
not known, it can be recovered by summing both sides of (9) in x. This gives

∑
x∈X

f(x) =
c

k − l + nl

∑
y∈Y

f̄(y)

and so the inversion formula

f(x) =
1

k − l

∑
y:x∈y

f̄(y) +
lc

(k − l)2 + nl(k − l)

∑
y∈Y

f̄(y).(12)

Remarks.

• It is not necessary that Y be a block design for f → f̄ to be one to one. For
example, Kung [37] shows that the Radon transform is one to one when Y
consists of the sets of rank i in a matroid. Diaconis and Graham [17] give
examples where the transform is one to one when Y consists of the nearest
neighbors in a metric space. For example, when X = Z

2k
2 and Y consists of

the balls of Hamming distance less than or equal to 1, the transform is one
to one, and an explicit inversion theorem is known. When X is Sn, the sym-
metric group, and Y is unit balls in the Cayley metric, the transform is one
to one if and only if n is in {1, 2, 4, 5, 6, 8, 10, 12}. Further work on inversion
formulas for functions on finite symmetric spaces is found in Velasquez [47]
and for functions on the torus Z

k
n in Dedeo and Velasquez [13]. Fill [24] dis-

cusses invertibility when the Radon transform of f at x averages over a set of
translates of f(x) which has applications to directional data and time series.

• The transform can still be useful and interesting if it is not one to one. For
example, the marginal projections in the example above do not capture all
aspects of the data but are often the first things to be looked at. In Z

k
2 ,

if high enough marginal distributions are considered, the function f can be
completely recovered. In the symmetric group, the projections correspond-
ing to all Young subgroups determine f because they determine its Fourier
transform. See Diaconis [18] for details.

3. Data analysis of syllable patterns in the works of Plato

This section presents a new analysis of data arising from syllable patterns in the
works of Plato. The data are given in Table 1. It records, for each of 6 books,
the pattern of long (-) and short (∪) syllables among the last 5 syllables in each
sentence. It is known that Plato wrote Republic early and Laws late. Plato also
mentions that he changed his rhyming patterns over time. This led Brandwood to
collect the data in Table 1.

The other books were written between these but it is not known in what order.
The goal of the analysis is to try to order the books. Our approach will be to study
the books one at a time, trying to find patterns.

Projection pursuit suggests looking at various partitions of the data, searching
for structured partitions which are far from uniform. Using first and second order
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margins as partitions, a reasonably striking difference between Republic and Laws
is observed. This suggests a simple, interpretable way of ordering the other books
as Republic, Timaeus, Sophist, Politicus, Philebus, Laws.

This agrees with the standard ordering as discussed in Brandwood ([6], pg. xviii)
and in Ahn et al. [1]. Other analyses of this data set are in Cox and Brandwood [11],
Atkinson [2], Wishart and Leach [49], Boneva [5], and Charnomordic and Holmes
[8]. [11] contains a history and explanation for the choice of data. The first three
analyses all use statistical models. Boneva’s analysis uses a form of scaling. None
of the previous analyses seem to have picked up the simple, striking pattern in the
data that projection pursuit leads to.

The analysis is presented below, in a somewhat discursive style, in the order it
was actually performed: first looking at the Republic, then Laws and finally the
other books. In the Appendix, we present a more automated and formal version.

3.1. Republic

Table 2 shows the first order margins; e.g., the proportion of sentences with ∪ in
position i, 1 ≤ i ≤ 5.

Roughly, positions 1-4 are evenly divided between long and short. The last po-
sition is clearly different. Table 3 shows the second order margins.

A glance at Table 3 shows that the first order effects are all too visible in the
second order margins. For example, the numbers in the first column (∪ ∪) are
all “small” while the numbers in the last column are “large”. One simple way of
adjusting for the first order structure is to divide each number in Table 3 by the
product of the marginal totals. For example, in the first row, .194 would be divided
by (.465)(.472) (from Table 2) while .271 would be divided by (.465)(1− .472). The
results are shown in Table 4.

Most of the ratios are close to 1, so a product model is a reasonable first descrip-
tion. The projection pursuit approach suggests that a partition of the data (here a
row) is “interesting” if the partition is far from uniform. By eye, looking at Table
4, positions (1, 2), (2, 3), (3, 4), (4, 5) are far from being all 1. Observe that these
positions are adjacent, as (i, i + 1).

Next observe that each of the 4 designated rows has a common pattern: the
first and last entries are small, the middle two entries are large. Going back to the

Table 2

First order margins for Republic

Position 1 2 3 4 5
Proportion of ∪ 0.465 0.471 0.466 0.511 0.362

Table 3

Second order margins for Republic

Position ∪∪ ∪ - - ∪ - -
(1,2) 0.194 0.271 0.277 0.258
(1,3) 0.208 0.257 0.258 0.277
(1,4) 0.238 0.227 0.272 0.263
(1,5) 0.177 0.288 0.185 0.350
(2,3) 0.209 0.262 0.257 0.272
(2,4) 0.241 0.230 0.269 0.260
(2,5) 0.162 0.309 0.200 0.329
(3,4) 0.211 0.255 0.299 0.235
(3,5) 0.170 0.296 0.192 0.342
(4,5) 0.167 0.343 0.195 0.295
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definitions, this pattern arises from a negative association of adjacent syllables; in
the Republic, adjacent syllables tend to alternate. The pattern in positions (1, 3)
shows that this cannot be a complete description; after all, if the symbols alternate,
the positions two apart should be positively associated, but (1, 3) displays negative
association. Looking at the other rows of the table, we observe that the size goes
big, small, small, big or its opposite, small, big, big, small. This is an artifact.
Consider the first row of Table 4. It was formed from 4 proportions that sum to 1:
w, x, y, z say. The 4 adjusted entries are

w

(w + x)(w + y)
x

(w + x)(x + z)
y

(y + z)(y + w)
z

(z + y)(z + x)
.

It is easy to show that the first entry is less than 1 if and only if the second is
larger than 1, if and only if the third is larger than one, if and only if the fourth
is less than 1. This means that the first column in Table 4, together with the first
order margins, determines the remaining entries. This artifact in no way reflects
on the association pattern noted earlier– the most structured rows correspond to
adjacent syllables, and adjacent syllables are negatively associated.

3.2. Laws and a comparison with Republic.

The first order margins for Laws are only slightly different from those in Republic
(see Table 5).

The pattern is the same: overall, fewer than half ∪’s; the last position sharply
smaller. The similarity between the first order margins in Republic and Laws sug-
gests that second or higher order margins must be used to order the remaining
books. The analog of the first column of Table 4 is given in Table 6.

The entries above are the proportion of sentences with ∪ ∪ in the (i, j) position
divided by the product of the marginal proportions.

Table 4

djusted second order margins for Republic

Position ∪ ∪ ∪ - - ∪ - -
(1,2) 0.89 1.10 1.10 0.91
(1,3) 0.96 1.00 1.00 0.97
(1,4) 1.00 1.00 1.00 1.00
(1,5) 1.10 0.97 0.96 1.00
(2,3) 0.95 1.00 1.00 0.96
(2,4) 1.00 1.00 1.00 1.00
(2,5) 0.95 1.00 1.00 0.97
(3,4) 0.89 1.10 1.10 0.90
(3,5) 1.00 1.00 0.99 1.00
(4,5) 0.90 1.10 1.10 0.94

Table 5

First order margins for Laws

Position 1 2 3 4 5
Proportion of ∪ ∪ 0.477 0.489 0.411 0.599 0.375

Table 6

Adjusted second order margins for Laws

Positions (1,2) (1,3) (1,4) (1,5) (2,3)
Adjusted ∪ ∪ 1.07 1.03 0.92 0.99 1.43
Positions (2,4) (2,5) (3,4) (3,5) (4,5)
Adjusted ∪ ∪ 0.97 0.98 1.04 1.09 1.02
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Again, pairwise adjacent positions are associated, all in the same way. Here, the
association is positive, whereas for Republic, the association is negative. This is the
striking pattern referred to above. It suggests a method of ranking the other books:
compare the sign pattern or actual ratios of the adjusted second order margins of
other books with Republic and Laws.

For definiteness, the sum of absolute deviations between second order margins
over all 10 positions will be used. This is carried out data analytically in Sections
3.3–3.5.

3.3. Analysis for Philebus and Politicus

These books are somewhat similar to each other. The first and second order margins
for Philebus are given in Tables 7 and 8.

Note the difference in first order margins: between Philebus and Republic (or
Laws) position 1 is high, as are positions 4 and 5. For second order margins, the
adjacent patterns are all positively associated ((2,3) being truly extreme). Compar-
ing Table 8 with Table 6, the association pattern matches Laws in direction, except
in position (1,5). The relevant averages for Politicus are given in Tables 9 and 10.

The first order margins are, very roughly, like those in both Republic and Laws,
but again the third position has a low proportion of short syllables. The second
order margins have the same pattern as Laws. The same remarks made for the
second order margins of Philebus apply.

Both Philebus and Politicus seem very similar to Laws. Which of these two is
closest to Laws? One simple approach is to consider the sum of the absolute values
of the differences between the entries of Tables 8 and 6 along with the differences
between 10 and 6. The sum for Laws to Philebus is .64, while the sum for Laws to
Politicus is .83. Thus a tentative ranking is: Politicus, Philebus, Laws.

Table 7

First order margins for Philebus

Position 1 2 3 4 5
Proportion of ∪ 0.522 0.464 0.398 0.594 0.465

Table 8

Adjusted second order margins for Philebus

Positions (1,2) (1,3) (1,4) (1,5) (2,3)
Adjusted ∪ ∪ 1.11 1.03 0.85 1.11 1.48
Positions (2,4) (2,5) (3,4) (3,5) (4,5)
Adjusted ∪ ∪ 0.92 0.85 1.02 0.95 1.01

Table 9

First order margins for Politicus

Position 1 2 3 4 5
Proportion of ∪ 0.477 0.457 0.348 0.524 0.469

Table 10

Adjusted second order margins for Politicus

Positions (1,2) (1,3) (1,4) (1,5) (2,3)
Adjusted ∪ ∪ 1.17 1.10 0.96 1.01 1.26
Positions (2,4) (2,5) (3,4) (3,5) (4,5)
Adjusted ∪ ∪ 0.86 0.90 1.05 1.10 1.13
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3.4. Analysis for Sophist and Timaeus

These books are quite similar to each other and, as we shall see, quite different
from Laws, Philebus and Politicus.

The first order margins are quite different from the books examined previously.
They are roughly consistent with all syllables being equally likely to be long or short.
The first order pattern seems closest to Politicus. The second order associations are
closer to 1 than in Laws, Politicus or Philebus. Adjacent positions are positively
associated, except for (3,4). The direction of association matches Laws in only 6 of
10 positions. The sum of absolute deviations between the entries of Tables 6 and
12 is .87.

We now give the analysis for the final book.
A distinctive feature of the first order margins is the large proportion of short

syllables in the third position. The adjusted second order margins are close to 1, so
Timaeus seems closest to Sophist. Of the 4 adjacent positions, two show positive
association and two show negative association. The direction of association matches
Laws in 6 positions; the sum of absolute deviations between Tables 14 and 6 is .94.
The distance between Timaeus and the Republic (Tables 14 and 4) is .6, so Timaeus
seems closer to Republic than to Laws using this measure. Because of the decrease in
the number of matches and the increase in the sum of absolute deviations, it seems
reasonable to rank order the three as Republic, Timaeus, Sophist. This completes
the discussion of this example. The Appendix contains an automated version.

4. Most projections are uniform

Graphical projection pursuit is a standard tool in data analysis. The classical survey
of Huber [32], the survey of Posse [42] and the online documentation in the Xgobi
and Ggobi packages contain extensive pointers to a large literature.

Table 11

First order margins for Sophist

Position 1 2 3 4 5
Proportion of ∪ 0.474 0.491 0.454 0.527 0.487

Table 12

Adjusted second order margins for Sophist

Positions (1,2) (1,3) (1,4) (1,5) (2,3))
Adjusted ∪ ∪ 1.07 1.03 1.01 0.93 1.07
Positions (2,4) (2,5) (3,4) (3,5) (4,5)
Adjusted ∪ ∪ 0.88 1.01 0.97 0.98 1.10

Table 13

First order margins for Timaeus

Position 1 2 3 4 5
Proportion of ∪ 0.494 0.476 0.565 0.521 0.496

Table 14

Adjusted second order margins for Timaeus

Positions (1,2) (1,3) (1,4) (1,5) (2,3)
Adjusted ∪ ∪ 0.98 1.02 0.97 1.04 0.92
Positions (2,4) (2,5) (3,4) (3,5) (4,5)
Adjusted ∪ ∪ 0.94 0.97 0.96 0.97 1.06
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The theorems of this section imply that for most data sets f(x), most projections
f̄(y) are about the same: close to uniform. This necessitates projection pursuit –
choosing projections that are far from uniformly distributed – to determine what
is special about a particular f . This gives an independent rationale for Huber’s
suggestion that Euclidean projections are interesting if they are far from uniform
in the sense of having minimum entropy (of course, the uniform distribution on a
finite set has maximum entropy).

Theorem 4.1. Let X be a finite set with n elements. Let Y be a block design
with block size c (so |y| = c for y ∈ Y). Let f : X → R be any function and let
μ(f) =

∑
x∈X f(x). Let y be chosen uniformly in Y. Then

Ef̄(y) =
c

n
μ(f),(13)

var f̄(y) =
c

n
(1 − (c − 1)

(n − 1)
)μ(f − μ(f)

n
)2.(14)

Proof. (13) follows from computing

Ef̄(y) =
1
|Y|

∑
y

f̄(y) =
1
|Y|

∑
x

f(x)|y : x ∈ y| =
c

|Y|μ(f).

For (14), assume without loss of generality, that μ(f) = 0. Then

var(f̄(y)) =
1
|Y|

∑
y

f̄(y)2 =
1
|Y|

∑
y

⎛
⎜⎝∑

x∈y

f(x)(f(x) +
∑
x�=x′

x,x′∈y

f(x′))

⎞
⎟⎠

=
k − l

|Y| μ(f2).

From (7) and (8), k−l
|Y| = c(n−c)

n(n−1) , giving the result.

Example 4.2. When Y is the j sets of an n set, |Y| =
(
n
j

)
, c = j, and the result

reduces to the usual mean and variance for a sample without replacement.

Example 4.3. Let X = Z
k
2 and Y be the j-dimensional affine planes. Then n = 2k

and c = 2k−j . If μ(f) = 1, the result becomes

E(f̄(y)) =
1
2j

, var(f̄(y)) =
1
2j

(1 − 2k−j − 1
2k − 1

)μ(f − 1
2k

)2.

For future use, observe that the cardinality of Y in this case is

2j(2k − 1)(2k − 2) · · · (2k − 2j−1)
(2j − 1) · · · (2j − 2j−1)

.

Returning to the situation in Theorem 2.2, Chebychev’s inequality implies:

Corollary 4.4. With notation as in Theorem 2.2, the proportion of y ∈ Y such
that

|f̄(y) − c

n
μ(f)| > ε

is smaller than
1
ε2

c

n
(1 − c − 1

n − 1
)μ(f − μ(f)

n
)2.
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Remarks. The corollary implies that for functions f which are “not too wild” in
the sense that μ(f − μ(f)

n )2 is small, most transforms f̄(y) are uninformative in
the sense of being close to their mean value. As an example, take X = Z

5
2 and f

the function defined by the first column of Table 1. Then μ(f − 1
32 )2 = .0021. If

Y is taken as the set of all affine hyperplanes, the corollary gives that 95% of the
transforms have |f̄(y) − 1

2 | < .04.
The next theorem says that for most probabilities f , μ(f − 1

n )2 is small (about
1
n ).

Theorem 4.5. Let (U1, U2, . . . , Un) be chosen uniformly on the n simplex. For
large n, the random variable

n3/2

2

(
n∑

i=1

(Ui −
1
n

)2 − 1
n

)

has an approximate standard normal distribution.

Proof. The argument uses the representation of a uniform distribution by means
of exponential variables. Let X1, X2, . . . , Xn be independent standard exponential
variables with density e−x on [0,∞). Let

S1 =
n∑

i=1

Xi, S2 =
n∑

i=1

X2
i .

For large n, the random vector(
Z1

Z2

)
=

1√
n

(
S1 − n

S2 − 2n

)

has an approximate bivariate normal distribution with mean vector zero and co-
variance matrix

(
1 4
4 20

)
. To check the covariance matrix, note that var(S1−n√

n
) =

var(X1) = 1, var(S2−n√
n

) = var(X2
1 ) = 20 and

1
n
E((S1 − n)(S2 − 2n)) = E

(
(X1 − 1)(X2

1 − 2)
)

= E(X3
1 ) − E(X2

1 ) − 2E(X1) + 2 = 4.

Represent a uniform vector on the n simplex as Ui = Zi

S1
. Then

n∑
i=1

(Ui −
1
n

)2 =
1
S2

1

n∑
i=1

X2
i − 1

n
=

1
S2

1

n∑
i=1

(X2
i − 2) +

2n

S2
1

− 1
n

.

Now S1 = n(1 + Z1√
n
) with Z1 = S1−n√

n
. Thus

S2
1 = n2(1 +

2√
n

Z1 +
Z2

1

n
).

Using the standard Op notation (see Pratt [43]),

1
S2

1

=
1
n2

− 2Z1

n3/2
+ Op(

1
n3

).
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Thus,

1
S2

1

n∑
i=1

(X2
i − 2) =

1
n3/2

1√
n

n∑
i=1

(X2
i − 2) + Op(

1
n2

),

2n

S2
1

=
2
n
− 4Z1

n3/2
+ Op(

1
n2

).

The bivariate limiting normality of
(
Z1
Z2

)
implies that Z2 − 4Z1 has an approximate

normal distribution with mean 0 and variance

var(Z2) + 16 var(Z1) − 8 covar(Z1, Z2) = 4.

Corollary 4.4 and Theorem 4.5 imply that for most probabilities f , most trans-
forms f̄(y) are close to uniform.

The final result of this section deals with the entire projection f̄(y)y∈p where p
is a partition of X into blocks in Y . Let X be a finite set. Let Y be a block design
on X with parameters (n, c, k, l). Suppose that Y is also a projection base for X
with p1, p2, . . . , pj being a partition of Y , and each pi being a partition of X . Of
course, j = |Y|c

n . The next theorem implies that for most functions, the projection
onto a randomly chosen partition is uniformly close to c

n .

Theorem 4.6. Let Y be a block design on X with parameters (n, c, k, l). Suppose
that Y is a projection base. Let f be a fixed probability on X . Let the partition p be
chosen uniformly at random over all partitions pi of X , where pi ⊂ Y. For ε > 0,∑

y∈p

|f̄(y) − c

n
| ≤ ε.(15)

with probability at least

1 − 1
ε

(
n(n − c)
c(n + 1)

μ(f − 1
n

)2
) 1

2

.

Proof. The probability model for choosing a random partition is based on a fixed
enumeration p1, p2, . . . , pj of the partitions that make up Y . Each partition is as-
sumed to be taken in a fixed order pi = {(y1

i , . . . , y
n/c
i )}. The random variable

S(p) =
∑

y∈p |f̄(y) − c
n | is invariant under permuting the y ∈ p among them-

selves. Thus a random variable with the same distribution of S(p) but exchangeable
f̄(y)y∈p exists. For this realization, E(

∑
y∈p |f̄(y) − c

n |) = n
c E|f̄(y∗) − c

n | with y∗

chosen uniformly in Y . Using Cauchy-Schwartz and Theorem 4.1, the expectation
is bounded above by

n

c

√
c

n

(
1 − c − 1

n − 1

)
μ(f − 1

n
)2.

Theorem 4.6 follows from this bound and Markov’s inequality applied to the
original random variable.

Remarks. From Theorem 4.5, μ(f − 1
n )2 .= 1

n for most functions f . For such f , the
theorem implies that for large block size c, most partitions are close to uniform in
variation distance. This may be contrasted with Theorems 4.1 and 4.5 which imply
that the components f̄(y) of most projections are close to c

n . When c is small, there
are many terms in the sum (15). As an example, consider the 2-sets of an n set
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where n = 2j. Let p be a random partition into 2-element sets. Let f be chosen at
random from the n simplex and p any fixed partition into two element sets. It is
straightforward to show that with probability tending to 1 as n tends to infinity,

∑
y∈p

|f̄(y) − 2
n
| → 8e−2.

The analogous result holds with the same assumptions when p is any fixed par-
tition of fixed size c. Similarly, it is natural to ask for a central limit theorem in
connection with Theorems 4.1 and 4.5. For j sets of an n set, such a theorem is
available from the usual results on sampling without replacement from a finite pop-
ulation. Most likely, there is a similar set of results for block designs with |Y| and c
large. See Stein [45] for results for designs arising from subgroups of a finite group.

5. Least uniform partitions

The results of Section 4 imply that, under suitable conditions, for most functions
the projection along most partitions is close to uniform. This suggests that the
special properties of particular functions are only seen in partitions that are far
from uniform. In this section, properties of least uniform partitions are examined.
Theorem 5.1 shows that for most functions, even the least uniform partitions will
be close to uniform if the the number of sets in Y is small in the sense that log |Y|
is small compared both to n and the block size c. This is true, in particular, for
affine hyperplanes in Z

k
2 .

Theorem 5.1. Let X be a set of n elements. Let Y be a class of subsets in X
of fixed cardinality c. Suppose that p1, . . . , pj is a partition of Y into partitions of
X . Let f be chosen at random in the n simplex. Let p∗ be the partition in pi that
maximizes

∑
y∈p |f̄(y) − c

n |. For any ε > 0,∑
y∈p∗

|f̄(y) − c

n
| < ε,

except for a set of f ’s of probability smaller than

(|Y| + 1)β

with β equal to 1 minus

1
β(c, n)

∫ c
n (1+ε)

c
n (1−ε)

xc−1(1 − x)n−c−1dx,(16)

where β(c, n) denotes the beta function.

Proof. Represent the ith component of a randomly chosen f as Xi

S where Xi are
independent standard exponentials and S =

∑n
i=1 Xi. Let y∗ be the set in Y with

the largest value of c
n (1 − ε). The argument begins by bounding the probability

that
|f̄(y∗) − c

n
| < ε

c

n
.

To begin with,

P
(
f̄(y∗) <

c

n
(1 − ε)

)
≤ P

(
X1 + · · · + Xc

S
<

c

n
(1 − ε)

)
.
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Further,

P
(
f̄(y∗) >

c

n
(1 + ε)

)
≤

∑
y∈Y

P
(
f̄(y) >

c

n
(1 + ε)

)

= |Y|P
(

X1 + · · · + Xc

S
>

c

n
(1 + ε)

)
.

Next, let y∗ denote the set in Y with the smallest value of f̄(y). To bound the
probability that |f̄(y∗) − c

n | < ε c
n , observe that f̄(y∗) = 1 − f̄(y∗∗) with y∗∗ the

union of sets in a partition omitting the one element that maximizes f̄ . Thus,

P
(
f̄(y∗) <

c

n
(1 − ε)

)
= P

(
f̄(y∗∗) > 1 − c

n
(1 − ε)

)
≤ |Y|P

(
X1 + · · · + Xn−c

S
> 1 − c

n
(1 − ε)

)

= |Y|P
(

X1 + · · · + Xc

S
<

c

n
(1 − ε)

)
.

Further,

P
(
f̄(y∗) >

c

n
(1 + ε)

)
= P

(
f̄(y∗∗) > 1 +

c

n
(1 − ε)

)
≤ P

(
X1 + · · · + Xn−c

S
< 1 − c

n
(1 + ε)

)

= P
(

X1 + · · · + Xc

S
>

c

n
(1 + ε)

)
.

Summing the four bounds thus obtained we see that both

|f̄(y∗) −
c

n
| < ε

c

n
, |f̄(y∗) − c

n
| < ε

c

n
(17)

except for a set of f ’s of probability smaller than (|Y|+1)β as defined by (16). Now
(17) implies that |f̄(y) − c

n | < ε c
n for all y ∈ Y. Summing this last inequality over

the partition p∗ completes the proof of the theorem.

Remarks. The beta integral that appears in the bound is straightforward to ap-
proximate numerically. A raft of techniques and approximations appear in the first
chapter of Pearson [40]. For example, consider cases where c

n = 1
2 . Then, using the

Peizer-Pratt approximation given in Pearson [40], and Mills’ ratio, the β in (16) is
approximately

2√
2π

e−
x2
2

1 + x
with x =

√
2c log

1
4(1

2 − ε)(1
2 + ε)

.

For this to be small when multiplied by |Y|+ 1, it clearly suffices that log |Y| be
small compared to c. This is the case for the affine subspaces of dimension j in Z

k
2

if j is bounded and k is large.
As a numerical example, consider the affine hyperplanes in Z

10
2 . Then |Y|+ 1 =

2049, c = 512, n = 1024. Taking ε = 0.1, (|Y| + 1)|β .= 2.595 × 10−7.

The next theorem shows that when there are many sets in Y , the least uniform
projection is typically far from uniform. The theorem deals with n sets in a set
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of cardinality 2n. The variation distance of a typical probability projected along
the least uniform half split is shown to be about 0.3. This may be compared with
Theorems 4.5 and 4.6 which show that for a typical probability f on 2n points,
|f̄(y) − 1

2 | is close to zero for most sets y of cardinality n.

Theorem 5.2. Let f be chosen at random on the 2n simplex. Let S− be the sum
of the n smallest f(x). Then for large n, the random variable

√
2n

(
S− − (

1
2
− log 2

2
)
)

has an approximate normal distribution with mean 0 and variance 3
2 − 2 log 2.

Proof. Represent a randomly chosen f as Xi

S where Xi are independent standard
exponential random variables and S =

∑2n
i=1 Xi. Denote the order statistics by

round brackets:
X(1) ≤ X(2) ≤ · · · ≤ X(n).

Let L1 = X(1), L2 = X(2) − X(1), . . . , L2n = X(2n) − X(2n−1). Then the Li are
independent, and Li+1 has the distribution of a standard exponential times 1

(2n−i)–
see Feller ([23] Section III.3). With this notation,

S =
2n∑
i=1

Xi =
2n−1∑
i=0

(2n − i)Li+1,(18)

S− =
1
S

n∑
i=1

X(i) =
1
S

n−1∑
i=0

(n − i)Li+1.(19)

The proof is completed by approximating the sums in this representation of S
and S−. Let μi = n−i

2n−i , so (n − i)Li+1 has the same distribution as μi times a
standard exponential. Let

σ2 = 2
n−1∑
i=0

μ2
i = 2

n−1∑
i=0

(1 − 2n

2n − i
+

n2

(2n − i)2
)

= 2
(

n − (2n log 2 + O(1)) +
3
2

+
n

2
+ O(1)

)

= 2n

(
3
2
− 2 log 2

)
+ O(1).

Now, let Z1 = S−2n√
2n

and Z2 =
(
∑n

i=1
X(i)−μi)√
2n

. The vector (Z1, Z2) has a limiting

bivariate normal distribution, with mean (0, 0) and covariance matrix
(σ2

1 ρ

ρ σ2
2

)
with

σ2
1 = 2, σ2

2 = 3
2 − 2 log 2, and ρ = 1

2 (1− log 2). To check the value of ρ, observe that
the covariance of Z1 and Z2 is 1

2n times

n∑
i=0

E
([

(2n − i)Li+1 − 1
] [

(n − i)Li+1 −
1

2n − i

])
=

n∑
i=0

n − i

2n − i

= n − n log 2 + O(1).
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Using the standard Op calculus,

1
S

=
1
2n

1
(1 + Z1√

2n
)

=
1
2n

(
1 − Z1√

2n

)
+ Op

(
1
n2

)
.

In particular,
1
S

=
1
2n

+ Op

(
1

n
3
2

)
.

The representation (19) for S− can be rewritten as

S− =
√

2n
Z2

X
+

μ

S
=

Z2√
2n

+
1 − log 2

2

(
1 − Z1√

2n

)
+ Op

(
1
n

)
.

It follows that
√

2n(S− − 1−log 2
2 ) has the same limiting distribution as Z2 −

(1−log 2)
2 Z1. This is normal with mean 0 and variance(

3
2
− 2 log 2

)
+ 2

(
1 − log 2

2

)
− 2

(
1 − log 2

2

)
=

3
2
− 2 log 2.

Corollary 5.3. Let f be chosen at random on the 2n simplex. Let (y, yc) be a
partition of X into an n set and its complement which maximizes the value of

|f̄(y) − 1
2
| + |f̄(yc) − 1

2
|.

Then, as n tends to infinity, the maximum discrepancy tends to log 2 .= .301 with
probability tending to 1.

Proof. For almost all f , the maximum is taken on uniquely at the partition S−,
(S−)c as defined in Theorem 5.2. The maximum discrepancy equals

2|S− − 1
2
|,

and the result follows from Theorem 5.2.

Remark. The proof of Theorem 5.2 and its corollary can easily be extended to
cover the j sets of an n set. The argument shows that for most probabilities f , the
variation distance between the least uniform projection and the uniform distribution
is bounded away from zero if j is an appreciable fraction of n.

For the final theorem, a different method of choosing a random probability is
introduced. Let X be a set of cardinality 2n. Fix an integer b. Drop b balls into
2n boxes, and let f(x) be the proportion of balls in the box labeled x. Let Y be
the subsets of X with cardinality n. Clearly, if b is large with respect to n, f(x)
is approximately 1

2n and so for any y ∈ Y, f̄(y) .= 1
2 , even for the y∗ minimizing

f̄(y). At the other extreme, if b is small with respect to n, f̄(y∗) will be close to
zero. For example, if b = n, f̄(y∗) = 0. It will follow from Theorem 5.4 that f̄(y∗)
is approximately zero for v ≤ 2n log 2.

This model for generating a random probability gives insight into the following
problem. If data is generated from a structureless model, random fluctuations may
produce structure that is picked up by a rich enough data analytic procedure.
As b varies in the above model, the random probability converges to a uniform
distribution. The following theorem gives an indication of how large b must be
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Table 15

λ 1 2 3 4 5 6 7 8 9 10
2e−λλm

m!
0.74 0.54 0.44 0.40 0.36 0.32 0.30 0.28 0.26 0.24

for all projections to be close to uniform. Some required notation: For λ < 0, let
pλ(j) = e−λλj

j! denote the Poisson density. Let Pλ(j) =
∑j

i=0 pλ(i). Let m be the
largest integer with Pλ(m) ≤ 1

2 , Pλ(m + 1) > 1
2 . Define θ = θ(λ) by

Pλ(m) + θpλ(m + 1) =
1
2
, so 0 ≤ θ < 1.

When λ is an integer, Ramanujan showed that

θ =
1
3

+ O(
1
λ

) as λ → ∞.

See Cheng [9] for references and extensions of Ramanujan’s results.

Theorem 5.4. Suppose that n and b tend to infinity in such a way that b
2n → λ.

Let y∗ be the n set with smallest value of f̄(y∗). Then

|f̄(y∗) −
1
2
| + |f̄(yc

∗) −
1
2
| =

2e−λλm

m!

(
1 + θ(

λ

m + 1
− 1)

)
+ op(1).

Remarks. For λ ≤ log 2 and m = 0 , the variation distance can be shown to tend
to one. For large λ, e−λλm

m! is roughly 1√
2πλ

; thus for large λ, the variation distance
tends to zero like 1√

λ
. This is not very rapid as Table 15 shows. (Note that for

integer λ, m + 1 = λ, so the asymptotic value of the variation distance is 2 e−λλm

m! .)

Proof. The argument will only be sketched. For b and n large, the number of balls
in the ith box has a limiting Poisson distribution with parameter λ, and different
boxes can be treated as independent. The arguments in Diaconis and Freedman
([15], Section 3) can be used to justify this step.

Thus let X1, X2, . . . be independent Poisson variables with mean λ. With prob-
ability 1, eventually the median of X1, X2, . . . , X2n is m + 1 and the proportion of
Xi, 1 ≤ i ≤ 2n equal to j is pλ(j) + o(1) uniformly for 0 ≤ j ≤ m + 1. Let S− be
the sum of the n smallest Xi, 1 ≤ i ≤ 2n. It follows that S−

2n equals

0pλ(0) + pλ(1) + · · · + mpλ(m) + θ(m + 1)pλ(m + 1) + o(1).

This sum equals
λ

2
− e−λλm

m!

(
1 + θ(

λ

m + 1
− 1)

)
+ o(1).

The identity asserted in the theorem follows from noting that f̄(y∗) is the limiting
value of S−

2λn .

Appendix: Automating the analysis

In Section 2, we used the adjusted second order margins in a graphical, data analytic
fashion to seriate the books of Plato. For some purposes, it may be desirable to have
a more formal ranking procedure. We carry this out in Section A.1. The procedure
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is based on a collection of metrics between probabilities. These are explained in
Section A.2. Finally, in Section A.3, we carry out a fully automated analysis of the
Plato data based on all affine projections, not just first and second order statistics.
We conclude that most methods agree, and suggest that the structures described in
Section 3 are robustly embedded in the Plato data. In this section, we have added
a seventh book, Criticus, to the analysis.

A.1. A metric approach

In our data analysis, the adjusted second order statistics emerged as an informative
summary of the rhyming patterns in Plato’s Republic. As explained in Section 2,
this is a vector of ten numbers (one for each pair of the last five syllables, i.e.(
5
2

)
= 10). For the moment, call this vector pR = (pR

1 , . . . , pR
10) with “R” denoting

Republic. A similar ten-vector can be computed for each of the other books. We
may then use the distance between these vectors and pR to order the books. Books
closest to pR are ranked earlier. We also compute a ranking based on the distance
to pL, the adjusted second order statistics for Plato’s Laws. These two rankings
generally agree, and agree with the conclusions of Section 3.

To proceed, we need to choose a distance between vectors. We have examined
three standard distances between probability vectors: the Hellinger distance H, the
Total Variation distance TV , and the Vasserstein distance V . These are explained
more carefully in Section A.2. The rankings are given in Table 16: R denotes Re-
public, L denotes Laws, · denotes row variable.

Almost the same seriation is obtained when any of the three metrics are used
to compute distances between Republic and the other books. Similarly, almost the
same seriation is obtained when any of the three metrics are used to compute
distances between Laws and the other books. Most clearly, Politicus is closest to
Laws and furthest from the Republic. Timaeus and Sophist, as a pair, are closest
to Republic and furthest from Laws. However, Sophist is both closer to Laws and
to Republic than Timaeus. From these calculations, aside from Politicus, Philebus
is closest to Laws and furthest from Republic. This is then followed by Criticus. All
of this points to the ordering: Republic, {Sophist, Timaeus}, Criticus, Philebus,
{Politicus, Laws}.

This ordering is consistent with the ordering produced data analytically in Sec-
tion 3 and with the ordering based on the exponential model of Cox and Brand-
wood [11]. In Ahn et al. [1], a total of ten books were used for analysis. They found
“roughly three clusters” (618): {Tim., Soph, Crit., Pol. * } { Laws, Phil. }, { Rep,
*,* }. Here ∗ denotes a book not analyzed in our work. Their final ordering based
on a cluster analysis using the Euclidean metric is Republic, Timaeusus, Criticus,
Sophist, Politicus, Philebus, Laws.

Table 16

Ranking of book in row based on distance in column

Book dH(R, ·) dT V (R, ·) dV (R, ·) dH(L, ·) dT V (L, ·) dV (L, ·)
Tim. 2 2 2 5 5 5
Soph. 1 1 1 4 4 4
Pol. 6 5 6 1 1 1
Crit. 3 3 3 3 3 3
Phil. 4 4 4 2 2 2
Laws. 5 6 5 0 0 0
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A.2. Some metrics

Let p = (p1, . . . pn), q = (q1, . . . qn) be probability vectors. Thus p1 ≥ 0 and p1 +
. . . + pn = 1, and the same holds for q. Three widely used metrics are :

Total Variation: dTV (p, q) = 1
2

∑
i |pi − qi|.

Hellinger: dH(p, q) =
∑

i(
√

pi −
√

qi)2.
Vasserstein: dV (p, q) = minX,Y E(d(X, Y )).

where the minimum is over all joint distributions of X and Y with marginals p and
q.

These metrics, their strengths, weaknesses and relations are discussed in Dudley
[21], Villani [48] and Diaconis et al. [20].

In Section A.1, we used these metrics between vectors of positive entries which
did not necessarily have sum one. This was done by forming p̄ =

∑
i pi, q̄ =

∑
i qi,

p̃ = pi

p̄ , q̃ = qi

q̄ . We used the distance between p̃ and q̃ and added a penalty term to
account for differences in mass between the profiles p and q. For total variation, the
penalty was |p̄ − q̄|. We computed and compared two penalty terms for Hellinger:
both |p̄ − q̄| and (

√
p̄ −√

q̄)2.
Thus, the distances between the ten-vector of adjusted second order margins of

Republic and the other books, using Vasserstein is given in Table 17.
For completeness, we note that the Vasserstein metric requires an underlying

distance on a probability space; in our case, this amounts to an underlying distance
between the ten entries in each table. We take these entries to be binary 5-tuples
containing two ones. We use the distance between two of these as the minimum
number of pairwise adjacent switches required to bring one to the other. Thus the
distance between 11000 and 00011 is 6. Further background can be found in Diaco-
nis et al. [20] or Thompson [46]. With this choice specified, the minimization prob-
lem is equivalent to the Monge-Kantorovich Transshipment problem. We computed
distances using the CS-2 code of Andrew Goldberg (www/avglab.org/andrew).

A.3. Using all affine projections

The data analysis of Section 2 used projections into first and second order margins.
The general theory developed later points to all affine projections as a natural base
for analysis. In this section, we complete our analysis of the Plato data by looking
at all affine projections.

In the following, x and z range over all binary 5-tuples. If f(x) is the proportion
of sentences in a fixed book (eg. Republic) with rhyming pattern x, the projection
of f in direction z is ∑

x·z=0

f(x),
∑

x·z=1

f(x).

Table 17

dV for Republic to other books

Book Vass. Dist. Mass diff Total Rank
Laws 109 951 1060 5
Phil. 119 748 867 4
Pol. 112 952 1064 6
Soph. 82 97 179 1
Tim. 41 263 304 2
Crit. 71 675 746 3
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Table 18

(00010) (01100) (11000)
Rep. 1 2 1
Tim. 2 3 2
Soph. 3 4 4
Pol. 4 5 7
Phil. 7 6 3
Laws. 6 7 5
Crit. 5 1 6

To use the information that Republic was written early and Laws was written
late, we find 5-tuples, z, that maximize( ∑

x·z=0

f(x) −
∑

x·z=1

f(x)

)
−

( ∑
x·z=0

g(x) −
∑

x·z=1

g(x)

)
.

where g(x) codes patterns for Laws. The largest three differences occur at z =
(00010), (01100) and (11000). For each of these, we calculated∑

x·z=0

h(x) −
∑

x·z=1

h(x)

for each of the books (where h codes the patterns for a particular book), and
use the linear order of these values to order the books. The rank order resulting
from the three binary 5-tuples, z, with the largest three differences above z =
(00010), (01100) and (11000) are given in Table 18.

The first column thus gives the ranking: Rep., Tim. Soph., Pol., Crit., Laws, Phil.
This is based on the difference between a single syllable (second from the end). It is
close to, but not the same as the ranking based on adjusted second order margins
found above. The other columns differ and show that not ‘any old’ projection gives
the same ranking.

Acknowledgments. This paper is written in tribute to David Freedman with
thanks for his integrity and brilliance.
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