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Brownian motion on disconnected sets,

basic hypergeometric functions, and some

continued fractions of Ramanujan
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University of California, Berkeley

Abstract: Motivated by Lévy’s characterization of Brownian motion on the
line, we propose an analogue of Brownian motion that has as its state space
an arbitrary closed subset of the line that is unbounded above and below: such
a process will be a martingale, will have the identity function as its quadratic
variation process, and will be “continuous” in the sense that its sample paths
don’t skip over points. We show that there is a unique such process, which
turns out to be automatically a reversible Feller-Dynkin Markov process. We
find its generator, which is a natural generalization of the operator f �→ 1

2
f ′′.

We then consider the special case where the state space is the self-similar
set {±qk : k ∈ Z} ∪ {0} for some q > 1. Using the scaling properties of the
process, we represent the Laplace transforms of various hitting times as certain
continued fractions that appear in Ramanujan’s “lost” notebook and evaluate
these continued fractions in terms of basic hypergeometric functions (that is,
q-analogues of classical hypergeometric functions). The process has 0 as a
regular instantaneous point, and hence its sample paths can be decomposed
into a Poisson process of excursions from 0 using the associated continuous
local time. Using the reversibility of the process with respect to the natural
measure on the state space, we find the entrance laws of the corresponding
Itô excursion measure and the Laplace exponent of the inverse local time –
both again in terms of basic hypergeometric functions. By combining these
ingredients, we obtain explicit formulae for the resolvent of the process. We
also compute the moments of the process in closed form. Some of our results
involve q-analogues of classical distributions such as the Poisson distribution
that have appeared elsewhere in the literature.

1. Introduction

Let T be an arbitrary closed subset of R. There is a well-developed theory of dif-
ferentiation, integration, and differential equations on T (sometimes refered to as
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the time scale calculus) that simultaneously generalizes the familiar Newtonian cal-
culus when T = R and the theory of difference operators and difference equations
when T = Z (as well as the somewhat less familiar theory of q-differences and q-
difference equations when T is {qk : k ∈ Z} for some q > 1). The time scale calculus
is described in [6], where there is also discussion of the application of time scale
dynamic equations to systems that evolve via a mixture of discrete and continuous
mechanisms.

Our first aim in this paper is to investigate a possible analogue of Brownian
motion with state space an arbitrary closed subset of R. A celebrated theorem
of Lévy says that Brownian motion on R is the unique R-valued stochastic process
(ξt)t∈R+ such that:

(I) ξ has continuous sample paths,
(II) ξ is a martingale,

(III) (ξ2
t − t)t∈R+ is a martingale.

A similar set of properties characterizes continuous time symmetric simple random
walk on Z with unit jump rate: we just need to replace condition (I) by the analogous
hypothesis that ξ does not skip over points, that is, that all jumps are of size ±1.
Note that for both R and Z the Markovianity of ξ is not assumed and comes as a
consequence of the hypotheses.

We show in Section 2 that on an arbitrary T that is unbounded above and below
there exists a unique (in distribution) càdlàg process ξ that satisfies conditions (II)
and (III) plus the appropriate analogue of (I) or the “skip-free” property of simple
random walk. Namely:

(I’) for states x < y < z in T and times 0 ≤ r < t < ∞, if either ξr = x and ξt = z
or ξr = z and ξt = x, then ξs = y for some time s between r and t.

Moreover, we demonstrate that this process is a reversible Feller-Dynkin Markov
process with a generator that we explicitly compute. The proof of existence is via
an explicit construction as a time change of standard Brownian motion. The proof
of uniqueness (which was suggested to us by Pat Fitzsimmons) relies on a result of
Chacon and Jamison, as extended by Walsh, that says, informally, if a stochastic
process has the hitting distributions of a strong Markov process, then it is a time
change of that Markov process.

As well as establishing the existence and uniqueness of the Brownian motion on
T in Section 2, we give its generator, which is a natural analogue of the standard
Brownian generator f �→ 1

2f ′′. Note that a simple consequence of (II) and (III)
is that ξ has the same covariance structure as Brownian motion on R, that is
Ex[ξsξt] − Ex[ξs]Ex[ξt] = s ∧ t for all x ∈ T.

The assumption that the state space T is unbounded above and below is neces-
sary. To see this, first note that T cannot be bounded above and below, because
this would imply that if ξ0 = x, then limt→∞ E[ξ2

t − t] = −∞ �= x2, contradicting
property (III). Assume now that T is unbounded above and bounded below with
inf T = a > −∞. Suppose ξ0 = x. Choose b ∈ T with x < b. Put T = inf{t ≥ 0 :
ξt /∈ [a, b)}. Note by the right-continuity of ξ and property (I’) that ξT = b on the
event {T < ∞}. By properties (I’) and (III), E[t∧T ] = E[ξ2

t∧T ]−x2 ≤ a2 ∨ b2 −x2,
and so T is indeed almost surely finite. By properties (I’) and (II), (ξt∧T )t∈R+ is a
bounded martingale with ξt∧T = b for t ≥ T almost surely, but this leads to the
contradiction b = limt→∞ E[ξt∧T ] = x. The proof that T cannot be bounded above
and unbounded below is similar.
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The process ξ is constructed as a time-change of standard Brownian motion, a
class of processes described in Itô and McKean [34], and that has been studied vari-
ously as “gap diffusions” [44], “quasidiffusions” [7, 46–50, 55], and (one-dimensional)
“generalized diffusions” [65–68]. The process ξ that we study is a quasidiffusion, so
results on quasidiffusions apply in this context – but it is a distinguished quasidif-
fusion among the many possible quasidiffusions taking values in T. Quasidiffusions
can exhibit behavior considerably different from that of ξ – for instance, Feller and
McKean [22] described a quasidiffusion that has all of R as its state space, but
spends all its time in Q . These processes (with killing and appropriate boundary
conditions) were shown by Löbus [54], extending work by Feller [15, 18, 20] to be
the only Markov processes taking values in R whose generators are in some sense
local, and satisfy a certain maximum principle. Various authors [47, 48, 51] have
given beautiful spectral representations of quasidiffusions using Krĕın’s theory of
strings [13, 19, 41].

It is natural to ask about further properties of the Brownian motion on T. In
the present paper we pursue this matter in a particularly nice special case, when
T = Tq := {±qk : k ∈ Z} ∪ {0} for some q > 1. In this case, the process ξ started
at x has the same distribution as the process ( 1

qk ξq2kt)t∈R+ when ξ is started at
qkx for k ∈ Z. This Brownian-like scaling property enables us to compute explicitly
the Laplace transforms of hitting times and the resolvent of ξ in terms of certain
continued fractions that appear in the “lost” notebook of Ramanujan. We can, in
turn, evaluate these continued fractions in terms of basic hypergeometric functions
(where, for the sake of the uninitiated reader, we stress that “basic” means that
such functions are the analogues of the classical hypergeometric functions to some
“base” – that is, the q-series analogue of those functions). We recall that, in general,
a q-analogue of a mathematical construct is a family of constructs parameterized
by q such that each generalizes the known construct and reduces in some sense to
the known construct in the limit “q → 1”. This notion ranges from the very simple,
such as (qn − 1)/(q − 1) being the q-analogue of the positive integer n, through to
the very deep, such as certain quantum groups (which are not actually groups in the
usual sense) being the “q-deformations” of appropriate classical groups [9, 35, 40].

For a very readable introduction to q-calculus see [36], and for its relation with
q-series, see the tutorial [45], or the more extensive books [30] or [2]. What we need
for our purposes is given in Section 11.

The interplay between q-calculus (that is, q-difference operators, q-integration,
and q-difference equations), q-series (particularly basic hypergeometric functions),
and probability has been explored in a number of settings both theoretical and
applied. The recent paper [4] studies the connection between q-calculus and the
exponential functional of a Poisson process

Iq :=
∫ ∞

0

qNt dt, q < 1,

where Nt is the simple homogeneous Poisson counting process on the real line. A
purely analytic treatment of the distribution of Iq using q-calculus is given in [3]. It
is interesting to note that the same functional seems to have arisen in a number of
applied probability settings as well, for example, in genetics [10] and in transmis-
sion control protocols on communication networks [11]. In [42] the Euler and Heine
distributions, q-analogues of the Poisson distribution, are studied: distributional
properties are derived and some statistical applications (such as fitting these dis-
tributions to data) are explored. These analogues have arisen in contexts as varied
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as prior distributions for stopping time strategies when drilling for oil and studies
of parasite distributions, see the references in [42]. The q-analogue of the Pascal
distribution has also been studied in the applied context, see [43]. The properties
of q-analogues of various classical discrete distributions are also surveyed in [52].
Both Iq and the Euler distribution appear in Section 6, where they come together
to form the distribution of a hitting time.

Probabilistic methods have also been used to derive various results from q-
calculus. A number of identities (including the q-binomial theorem and two of
Euler’s fundamental partition identities) are derived in [59] by considering processes
involving Bernoulli trials with variable success probabilities. Several other identities
(for example, product expansions of q-hypergeometric functions and the Rogers–
Ramanujan identities) are obtained in [58] using extensions of Blomqvist’s absorp-
tion process. Some properties of q-random mappings are explored in [57]: in partic-
ular, the limiting probability that a q-random mapping does not have a fixed point
is expressed via a q-analogue of the exponential function. Connections between q-
series and random matrices over a finite field (resp. over a local field other than R

or C) are investigated in [27–29] (resp. [1, 14]).

2. Brownian motion on a general unbounded closed subset of R

2.1. Existence

Let T be a closed subset of R that is unbounded above and below (that is, bilaterally
unbounded). We now show existence of a Feller-Dynkin Markov process satisfying
conditions (I’), (II) and (III) by explicitly constructing such a process as a time-
change of Brownian motion. Let (Bt)t∈R+ be standard Brownian motion on R and
let �a

t be its local time at the point a ∈ R up to time t ≥ 0. We choose a jointly
continuous version of � and we adopt the normalization of local time that makes
� a family of occupation densities for the Brownian motion; that is,

∫ t

0
f(Bs) ds =∫

R
f(a)�a

t da for all bounded Borel functions f . Equivalently, for each a the process
(�a

t )t∈R+ is the unique continuous non-decreasing process such that (|Bt − a| −
�a
t )t∈R+ is a martingale.

We introduce the following notation from [6]. For a point x ∈ T set

ρ(x) := sup{y ∈ T : y < x}, σ(x) := inf{y ∈ T : y > x}.

If ρ(x) �= x say that x is left-scattered, otherwise x is left-dense, and similarly
if σ(x) �= x say that x is right scattered, otherwise x is right-dense. Denote by
Tss, Tsd, Tds and Tdd the left and right scattered, left-scattered right-dense, left-
dense right-scattered and left and right dense subsets of T, respectively.

Define a Radon measure on R by μ := 1T · m +
∑

x∈(T\Tdd)
σ(x)−ρ(x)

2 δx, where

m is Lebesgue measure. Observe for any x ∈ T that σ(x)−ρ(x)
2 is the length of the

interval of points in R that are closer to x than to any other point of T. Thus μ is
the push-forward of m by the m-a.e. well-defined map that takes a point in R to
the nearest point of T. Note that the support of μ is all of T. Define the continuous
additive functional

Aμ
u :=

∫
R

�a
u μ(da)

and let θμ
t be its right continuous inverse, that is,

θμ
t := inf{u : Aμ

u > t}.
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By the time change of Bt with respect to the measure μ ([34], §5, or [60], III.21)
we mean the process ξt := Bθμ

t
. It is easily seen that ξ has T as its state space,

and if B0 = x ∈ T then ξ0 = x also. Moreover, it is not hard to show that ξ is a
Feller-Dynkin Markov process on T.

We will need the generator of ξ. For that purpose, we introduce the following
notation. Write

C0(T) := {f : T → R : f is continuous on T and tends to 0 at infinity}.

Define a linear operator G on C0(T) as follows. For x ∈ T, set yx,r := ρ(x − r) and
zx,r := σ(x + r). Put

(Gf)(x)

:= lim
r↓0

(
zx,r − x

zx,r − yx,r
f(yx,r) +

x − yx,r

zx,r − yx,r
f(zx,r) − f(x)

) /
((x − yx,r)(zx,r − x))

= lim
r↓0

(
f(yx,r)

(x − yx,r)(zx,r − yx,r)
− f(x)

(x − yx,r)(zx,r − x)
+

f(zx,r)
(zx,r − x)(zx,r − yx,r)

)

= lim
r↓0

(
f(yx,r) − f(x)

(x − yx,r)(zx,r − yx,r)
+

f(zx,r) − f(x)
(zx,r − x)(zx,r − yx,r)

)

on the domain Dom(G) consisting of those functions f ∈ C0(T) for which the limits
exist for all x ∈ T and define a function in C0(T).

Note that G is a natural analogue of the standard Brownian generator f �→ 1
2f ′′

and coincides with this latter operator when T = R. Note also that if f is the
restriction to T of a function that is in C2

0 (R), then f ∈ Dom(G) and

(Gf)(x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

f(ρ(x))
(x−ρ(x))(σ(x)−ρ(x)) −

f(x)
(x−ρ(x))(σ(x)−x) + f(σ(x))

(σ(x)−x)(σ(x)−ρ(x)) , x ∈ Tss,
f(ρ(x))−f(x)

(x−ρ(x))2 + f ′(x)
x−ρ(x) , x ∈ Tsd,

− f ′(x)
σ(x)−x + f(σ(x))−f(x)

(σ(x)−x)2 , x ∈ Tds,
1
2f ′′(x), x ∈ Tdd.

Proposition 2.1. The time change ξ of standard Brownian motion B with respect
to the measure μ is a Feller-Dynkin Markov process on T that satisfies conditions
(I’), (II) and (III). The generator of ξ is (G, Dom(G)).

Proof. We have already noted that ξ is a Feller-Dynkin Markov process. Given
x ∈ T, write Px for the distribution of ξ for the initial condition ξ0 = x, and denote
the corresponding expectation by Ex. Under any Px the property (I’) is clear from
the fact that the support of μ is all of T. Before establishing properties (II) and
(III) under any Px, we first show that the generator of ξ is (G, Dom(G)).

Write (H, Dom(H)) for the generator of ξ. We begin by showing that (H,
Dom(H)) = (G, Dom(G)). For x ∈ T and r > 0, set Tx,r := inf{t : d(ξt, x) > r}.
By Dynkin’s characteristic operator theorem [60], III, 12.2, f ∈ Dom(H), if and
only if

(2.1) lim
r↓0

Ex[f(ξTx,r )] − f(x)
Ex[Tx,r]

exists at every x ∈ T and defines a function in C0(T), in which case this function
is Hf .
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Set yx,r := ρ(x − r) and zx,r := σ(x + r). Because the support of μ is all of T,

θμ
Tx,r

= inf{t ∈ R+ : Bt ∈ {yx,r, zx,r}} =: Ux,r.

Thus
Px{ξTx,r = yx,r} =

zx,r − x

zx,r − yx,r

and
Px{ξTx,r = zx,r} =

x − yx,r

zx,r − yx,r
.

Consequently,

Ex[f(ξTx,r )] =
zx,r − x

zx,r − yx,r
f(yx,r) +

x − yx,r

zx,r − yx,r
f(zx,r).

Hence it is enough to show for all x ∈ T and r > 0 that

(2.2) Ex[Tx,r] = (x − yx,r)(zx,r − x).

Now
Tx,r =

∫
R

�a
Ux,r

μ(da) =
∫

(yx,r,zx,r)

�a
Ux,r

μ(da), Px-a.s.,

and in particular,

Ex[Tx,r] =
∫

(yx,r,zx,r)

Ex[�a
Ux,r

] μ(da)

=
∫

(yx,r,x]

2(a − yx,r)(zx,r − x)
zx,r − yx,r

μ(da)

+
∫

(x,zx,r)

2(x − yx,r)(zx,r − a)
zx,r − yx,r

μ(da)

=
2

zx,r − yx,r

(
(zx,r − x)

∫
(yx,r,x]

(a − yx,r)μ(da)

+ (x − yx,r)
∫

(x,zx,r)

(zx,r − a)μ(da)
)

.

(2.3)

But, as we now show, for any points u, v ∈ T, u < v,∫
(u,v)

μ(da) = v − u − σ(u) − u

2
− v − ρ(v)

2
,(2.4)

∫
(u,v)

a μ(da) =
v2

2
− u2

2
− u

σ(u) − u

2
− v

v − ρ(v)
2

(2.5)

(note the similarity to Lebesgue integration up to boundary effects). Substituting
this into (2.3) gives (2.2) after some algebra.

Let us prove the identities (2.4) and (2.5). For simplicity, we prove them in the
special case when Tds ∩ (u, v) = ∅. The proof of the general case is similar. Fix
u, v ∈ T, u < v. Since T is closed, we can write (u, ρ(v)) \T as a countable union of
disjoint (non-empty) open intervals {(an, bn) : n ∈ N}. We note that for any such
interval (an, bn] ⊆ (u, v) and∫

(an,bn]

μ(da) =
σ(bn) − an

2
= bn − an − σ(an) − an

2
+

σ(bn) − bn

2
.
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Summing up over all these intervals the boundary effects cancel telescopically (since
Tds ∩ (u, v) = ∅) and, since σ(an) = bn, we get

∑
n

∫
(an,bn]

μ(da) =
∑

n

(bn − an) − σ(u) − u

2
− v − ρ(v)

2

=
∫
⋃

n
(an,bn]

dm − σ(u) − u

2
− v − ρ(v)

2
,

where again m is Lebesgue measure. Identity (2.4) now follows since (u, v) =⋃
n(an, bn] ∪ ((u, v) ∩ Tdd) and, by the definition of μ,∫

(u,v)

μ(da) =
∫

(u,v)∩Tdd

μ(da) +
∫
⋃

n
(an,bn]

μ(da)

=
∫

(u,v)

dm − σ(u) − u

2
− v − ρ(v)

2
.

To prove identity (2.5), we note similarly that for any n ∈ N∫
(an,bn]

a μ(da) = bn
σ(bn) − an

2
=

b2
n

2
− a2

n

2
− an

σ(an) − an

2
+ bn

σ(bn) − bn

2
,

so that again

∑
n

∫
(an,bn]

a μ(da) =
∑

n

(
b2
n

2
− a2

n

2

)
− u

σ(u) − u

2
− v

v − ρ(v)
2

=
∫
⋃

n
(an,bn]

a dm − u
σ(u) − u

2
− v

v − ρ(v)
2

,

and (2.5) follows since∫
(u,v)

a μ(da) =
∫

(u,v)∩Tdd

a μ(da) +
∫
⋃

n
(an,bn]

a μ(da)

=
∫

(u,v)

a dm − u
σ(u) − u

2
− v

v − ρ(v)
2

.

By the Markov property of ξ, in order to show (II) and (III) it suffices to show
that Ex[ξt] = x and Ex[ξ2

t ] = x2 + t for all x ∈ T and t ∈ R+. By Dynkin’s formula
[60], III.10, for any f ∈ Dom(G)

(2.6) Mt := f(ξt) −
∫ t

0

(Gf)(ξs)ds

is a martingale (for each starting point). Note that if we formally apply the ex-
pression for Gf to f(x) = x (resp. f(x) = x2), then we get Gf(x) = 0 (resp.
Gf(x) = 1), and this would give properties (II) and (III) if x �→ x and x �→ x2

belonged to the domain of G. Unfortunately, this is not the case, so we must resort
to an approximation argument.

Fix x ∈ T. Given any r > 0, for R > r sufficiently large we have [ρ(x− r), σ(x +
r)] ⊂ (ρ(x−R), σ(x+R)). For any such pair r, R, there are functions g, h ∈ Dom(G)
such that g(w) = w and h(w) = w2 for w ∈ [ρ(x − R), σ(x + R)], and hence
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Gg(w) = 0 and Gh(w) = 1 for w ∈ [ρ(x− r), σ(x + r)]. It follows that (ξt∧Tx,r )t∈R+

and (ξ2
t∧Tx,r

− t ∧ Tx,r)t∈R+ are both martingales under Px.
Hence, if 0 < r′ < r′′, then

Ex[(ξt∧Tx,r′′ − ξt∧Tx,r′ )2] = Ex[ξ2
t∧Tx,r′′ ] − Ex[ξ2

t∧Tx,r′ ]

= Ex[t ∧ Tx,r′′ ] − Ex[t ∧ Tx,r′ ].

Thus ξt∧Tx,r converges to ξt in L2(Px) as r → ∞, and so

Ex[ξt] = lim
r→∞

Ex[ξt∧Tx,r ] = x

and
Ex[ξ2

t ] = lim
r→∞

Ex[ξ2
t∧Tx,r

] = x2 + t,

as required.

Remark . It is more standard, but we believe less natural (and equivalent) to
instead regard the generator an operator on continuous functions of R that are
linear outside the support of μ. Such a generator has the natural interpretation
1
2

d
dμ

d
dx . These operators appear in relation to diffusion processes in Itô and McKean

[34], §§5.1-5.3, and were studied further by Feller [15–21] (where the support of μ
is connected), Löbus [54, 55], and Freiberg [24–26] (where μ is atomless).

2.2. Uniqueness

We next establish a uniqueness result that complements the existence result of
Proposition 2.1.

We will apply the following result, which is a slight variant of Corollary 3.5 of
[64] extending results of [8]. We make the assumption that the Markov process
X is a right process and that the process Y is defined on a space satisfying the
usual conditions to avoid listing Walsh’s assumptions. We also state the result in
terms of bounded rather than finite stopping times, but this is readily seen to be
sufficient. The result says, roughly speaking, that if a process has the same state-
dependent hitting distributions as some strong Markov process, then the process is
a time-change of that Markov process. (For example, a consequence of the result
is the celebrated result of Dubins and Schwarz that any continuous martingale is a
time change of Brownian motion, from which Lévy’s characterization of Brownian
motion that we mentioned in the Introduction is an immediate corollary.)

Theorem 2.1. Let X = (Ω,F ,Ft, Xt, θt,Px) be a Borel right process with Lusin
state space E. Assume that the paths of X are càdlàg and that X has no traps
or holding points. Let Y be a càdlàg process with state space E that is defined on
a complete probability space (Σ,G,Q) equipped with a filtration (Gt)t∈R+ satisfying
the usual conditions. Assume Y0 = x0 for some x0 ∈ E and that almost surely
the sample paths of Y are not constant over any time interval. Given a Borel set
B ⊆ E, put SB := inf{t ≥ 0 : Xt ∈ B} and define the corresponding hitting kernel
by πB(x, A) := Px{XSB

∈ A} for x ∈ E and A ⊂ E Borel. Given a bounded
(Gt)t∈R+–stopping time T , put τ = inf{t ≥ T : Yt ∈ B}. Suppose that

Q{Yτ ∈ A | GT } = πB(YT , A)

for all bounded (Gt)t∈R+-stopping times T and all Borel sets A and B. Then there ex-
ists a perfect continuous additive functional for X with continuous inverse (Tt)t∈R+

such that (YTt)t∈R+ has the same distribution as (Xt)t∈R+ under Px
0 .
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Proposition 2.2. Let ζ be a càdlàg T-valued process such that ζ0 = z ∈ T. Suppose
that ζ satisfies the counterparts of properties (I’), (II) and (III) with ξ replaced by
ζ. Then ζ possesses the same distribution as the particular Feller-Dynkin process ξ
of Proposition 2.1 has under Pz.

Proof. We wish to apply Theorem 2.1. Unfortunately, the process ξ has holding
points unless T = R. We adapt an artifice presented in Remark 1 after Theorem
3.4 in [64] to circumvent this difficulty.

Without loss of generality, we may suppose that ζ is defined on a complete
probability space (Σ,G,Q), that this probability space is equipped with a filtration
(Gt)t∈R+ satisfying the usual conditions, and that (ζt)t∈R+ and (ζ2

t −t)t∈R+ are both
martingales with respect to (Gt)t∈R+ . We will use Q[·] to denote expectation with
respect to the probability measure Q.

We first show that the sample paths of ζ do not get trapped forever in any
state. Given a, b ∈ T with a < x < b, put R = inf{t ≥ 0 : ζt /∈ (a, b)}. By the
counterpart of property (I’), ζt∧R ∈ [a, b] and hence, by the counterpart of property
(III), Q[t ∧ R] = Q[ζ2

t∧R] − x2 ≤ a2 ∨ b2 − x2. Thus Q[R] < ∞ and, in particular,
Q{R < ∞} = 1. Since this is true for all a and b, it follows that almost surely there
does not exist a time s ∈ R+ and a state y ∈ T such that ζt = y for all t ≥ s.

Let S be a finite (Gt)t∈R+ stopping time, and put T := inf{t > S : ζt �= ζS}. It
follows from the above that T < ∞ almost surely. Moreover, by the counterparts of
properties (I’) and (II) for ζ and the right-continuity of paths, ζT ∈ {ρ(ζS), σ(ζS)}
almost surely with

Q{ζT = ρ(ζS) | GS} =
σ(ζS) − ζS

σ(ζS) − ρ(ζS)

and

Q{ζT = σ(ζS) | GS} =
ζS − ρ(ζS)

σ(ζS) − ρ(ζS)
on the event {ζS ∈ T\Tdd}. Thus ζT = ζS almost surely on the event {ζS ∈ T\Tss}
and hence, by the counterpart of property (III), S = T almost surely on the event
{ζS ∈ T\Tss}. On the other hand, it is certainly the case that S < T almost surely
on the event {ζS ∈ Tss}.

We next claim that, conditional on GS , the random variable T − S is exponen-
tially distributed with expectation (ζS − ρ(ζS))(σ(ζS)− ζS) (where the exponential
distribution with expectation 0 is of course just the point mass at 0). This must
be so, of course, if ζ has the same distribution as ξ, and it is the key to adapting
Theorem 2.1 to our setting in which the processes involved do have holding points.
To see the claim, define a function Ψ : T × T → R by

Ψ(x, y) :=

{
(y−ρ(x))(σ(x)−y)
(x−ρ(x))(σ(x)−x) , x ∈ Tss,

0, x ∈ T \ Tss.

Note that for each fixed x the function Ψ(x, ·) is quadratic. It follows from coun-
terparts of properties (II) and (III) for ζ that the process

Mt := 1{ζS ∈ Tss}
[
Ψ(ζS , ζ(S+t)∧T ) +

t ∧ (T − S)
(ζS − ρ(ζS))(σ(ζS) − ζS)

]
, t ∈ R+,

is a martingale with respect to the filtration (GS+t)t∈R+ . Note that

Mt = 1{ζS ∈ Tss}
[
1{T − S > t} +

∫ t

0

1{T − S > u}
(ζS − ρ(ζS))(σ(ζS) − ζS)

du

]
.
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Hence

1{ζS ∈ Tss} (Q{T − S > t | GS} − 1) = −
∫ t

0

1{ζS ∈ Tss}Q{T − S > u | GS}
(ζS − ρ(ζS))(σ(ζS) − ζS)

du,

and so

1{ζS ∈ Tss}Q{T − S > t | GS} = 1{ζS ∈ Tss} exp
(
− t

(ζS − ρ(ζS))(σ(ζS) − ζS)

)
,

as claimed.
We now apply the device from [64] mentioned above to “embellish” the process

ξ in order to produce a Feller-Dynkin process without traps or holding points. Set
T̄ := (Tss × R) ∪ ((T \ Tss) × {0}) ⊆ T × R. Put U := inf{t > 0 : ξt �= ξ0} and
Ct := t − sup{s < t : ξs �= ξt}, with the convention sup ∅ = 0. That is, Ct is the
“age” of ξ in the current state at time t. There is a Feller-Dynkin process (ξ̄t, P̄

(x,u))
with state-space T̄ such that under P̄(x,u) the process ξ̄ has the same distribution
as the process

(ξt, u + t), 0 ≤ t < U,

(ξt, Ct), t ≥ U,

under Px.
Fix a Borel set B ⊆ T̄, write T̄B := inf{t ∈ R+ : ξ̄t ∈ B} for the first hitting

time of B by ξ̄, and denote by π̄B the corresponding hitting kernel. That is,

π̄B((x, u), A) := P̄(x,u){ξ̄T̄B
∈ A}

for (x, u) ∈ T̄ and A a Borel subset of T̄. It is not hard to see that T̄B is finite P(x,u)-
almost surely for all (x, u) ∈ T̄, and hence π̄B((x, u), ·) is a probability measure
concentrated on the closure of B for all (x, u) ∈ T̄.

Let (Dt)t∈R+ be the analogue of (Ct)t∈R+ for ζ. That is, Dt := t−sup{s < t : ζs �=
ζt}. Given a finite (Gt)t∈R+ stopping time S̄, put T̄ := inf{t ≥ S̄ : (ζt, Dt) ∈ B}.
From what we have shown above, it follows by a straightforward but slightly tedious
argument that if B is a finite set, then

(2.7) Q{(ζT̄ , DT̄ ) ∈ A | GS} = π̄B((ζS̄ , DS̄), A)

(in particular, T̄ is finite Q-almost surely). If B is arbitrary, then taking a countable
dense subset of B and writing it as an increasing union of finite sets shows that
(2.7) still holds.

Theorem 2.1 gives that there is a continuous increasing process (Tt)t∈R+ such
that each Tt is a (Gt)t∈R+ stopping time, T0 = 0, and ((ζTt , DTt))t∈R+ has the same
distribution as ξ̄ under P̄(z,0), (recall that ζ0 = z). In particular, (ζTt)t∈R+ has the
same distribution as ξ under Px. Since property (III) holds for ξ and its counterpart
holds for ζ, we have that (ζ2

Tt
− t)t∈R+ is a martingale and (ζ2

Tt
− Tt)t∈R+ is a

local martingale. Thus (Tt − t)t∈R+ is a continuous local martingale with bounded
variation, and hence Tt = t for all t ∈ R+, as required.

We note that, by a proof similar to that of Proposition 2.2, one can show any
cádlág T-valued process with properties (I’) and (II) is a time-change of a process
with the distribution of the process ξ constructed in Proposition 2.1. It may be
necessary to introduce extra randomness in the time-change to convert the holding
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times of the process at points in Tss into exponential random variables, and it may
also be necessary to introduce extra randomness to “complete” the sample paths
of the copy of ξ – as the original process may “run out of steam” and not require
an entire sample path of a copy of ξ to produce it (the most extreme example is a
process that stays constant at its starting point). This observation is the analogue
of the result of Dubins and Schwarz that any continuous martingale on the line is
a time-change of some Brownian motion.

2.3. Reversibility

Extensions of the following result will hold more generally: under suitable hypothe-
ses, a time-change of a Markov process that is reversible under some measure will
be reversible under an appropriate new measure. Since we don’t know of a suitable
general reference, we provide the straightforward proof in our setting where the
Markov process is Brownian motion.

Lemma 2.1. The process ξ of Proposition 2.1 is reversible with respect to the
measure μ. In particular, μ is a stationary measure for ξ.

Proof. We have to show for all λ > 0 and all non-negative Borel functions f and g
that∫

T

f(x) Ex

[∫ ∞

0

e−λtg(ξt) dt

]
μ(dx) =

∫
T

g(x) Ex

[∫ ∞

0

e−λtf(ξt) dt

]
μ(dx).

Now recalling Aμ is the inverse of θμ,∫
T

f(x) Ex

[∫ ∞

0

e−λtg(ξt) dt

]
μ(dx) =

∫
T

f(x) Ex

[∫ ∞

0

e−λtg(Bθμ
t
) dt

]
μ(dx)

=
∫

T

f(x) Ex

[∫ ∞

0

e−λAμ
s g(Bs) dAμ

s

]
μ(dx)

=
∫

T

∫
T

f(x) Ex

[∫ ∞

0

e
−λ

∫
T

�a
s μ(da)

d�y
s

]
g(y)μ(dy)μ(dx).

It follows from the reversibility of B with respect to Lebesgue measure that for
any γ > 0 and any non-negative bounded continuous functions F , G and H,∫

R

∫
R

F (x) Ex

[∫ ∞

0

e
−(γs+λ

∫
T

�a
s H(a) m(da))

d�y
s

]
G(y)m(dy)m(dx)

=
∫

R

F (x) Ex

[∫ ∞

0

e
−(γs+λ

∫ s

0
H(Bu) du)

G(Bs) ds

]
m(dx)

=
∫

R

G(y) Ey

[∫ ∞

0

e
−(γs+λ

∫ s

0
H(Bu) du)

F (Bs) ds

]
m(dy)

=
∫

R

∫
R

G(y) Ey

[∫ ∞

0

e
−(γs+λ

∫
T

�a
s H(a) m(da))

d�x
s

]
F (x)m(dx)m(dy).

Thus (noting that each side is jointly continuous in x and y),

Ex

[∫ ∞

0

e
−(γs+λ

∫
T

�a
s H(a) m(da))

d�y
s

]
= Ey

[∫ ∞

0

e
−(γs+λ

∫
T

�a
s H(a) m(da))

d�x
s

]

for all x, y ∈ R.
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Writing μ as the vague limit of a sequence of Radon measures that have bounded
density with respect m and applying dominated convergence gives

Ex

[∫ ∞

0

e
−(γs+λ

∫
T

�a
s μ(da))

d�y
s

]
= Ey

[∫ ∞

0

e
−(γs+λ

∫
T

�a
s μ(da))

d�x
s

]

for all x, y ∈ R. Hence, by monotone convergence,

Ex

[∫ ∞

0

e
−λ

∫
T

�a
s μ(da)

d�y
s

]
= Ey

[∫ ∞

0

e
−λ

∫
T

�a
s μ(da)

d�x
s

]

for all x, y ∈ R. This suffices to establish the result.

3. Hitting times of bilateral birth-and-death processes

In order to compute certain hitting time distributions for ξ, we recall and develop
some of the connections between Laplace transforms of hitting times for a birth-and-
death process and continued fractions. See Section 12 for some relevant background
and notation for continued fractions.

The connection between birth-and-death processes and continued fractions has
already been explored, for instance, in [23, 31]. The role of continued fractions in
this setting is to pick out the correct solutions of the (generalized) Sturm-Liouville
equations [63], whose relationship to quasidiffusions in general is well-laid out in
[51].

Suppose that Z is a bilateral birth-and-death process. That is, Z is a continuous
time Markov chain on the integers Z that only makes ±1 jumps. We assume for
concreteness that Z is killed if it reaches ±∞ in finite time, although this assumption
does not feature in the recurrences we derive in this section. Write βn (resp. δn) for
the rate of jumping to state n + 1 (resp. n − 1) from state n.

For n ∈ Z, let τn = inf{t ≥ 0 : Zt = n} be the hitting time of n, with the usual
convention that the infimum of the empty set is +∞. Set

H↓
n(λ) := En[e−λτn−1 ],

H↑
n(λ) := En[e−λτn+1 ],

Hn,m(λ) := En[e−λτm ].

Note that
Hn,m(λ) = H↑

n(λ)H↑
n+1(λ) · · ·H↑

m−1(λ), m > n,

and
Hn,m(λ) = H↓

n(λ)H↓
n−1(λ) · · ·H↓

m+1(λ), m < n,

and so the fundamental objects to consider are H↓
n and H↑

n.
Conditioning on the direction of the first jump, we get the recurrence

H↓
n(λ) = En

[
e−λτn−11τn−1<τn+1 + e−λτn+11τn+1<τn−1En+1

[
e−λτn−1

]]
,

=
δn

δn + βn + λ
+

βn

δn + βn + λ
H↓

n+1(λ)H↓
n(λ),

which, putting ρn := δn

βn
, can be rearranged as a pair of recurrences

H↓
n(λ) =

ρn

1 + ρn + λ
βn

− H↓
n+1(λ)

,(3.1)

H↓
n+1(λ) = 1 + ρn +

λ

βn
− ρn

H↓
n(λ)

.(3.2)
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This leads to two families of terminating continued fractions that connect the
Laplace transforms H↓

n for different values of n, namely,

H↓
n(λ) =

ρn

1 + ρn + λ
βn

−
ρn+1

1 + ρn+1 + λ
βn+1

− . . . − H↓
n+m+1

and

H↓
n(λ) = 1 + ρn−1 +

λ

βn−1
−

ρn−1

1 + ρn−2 + λ
βn−2

− . . . − ρn−m−1

H↓
n−m−1

.

By exchanging δn and βn we get similar relations for H↑
n,

H↑
n(λ) =

1

1 + ρn + λ
βn

− ρnH↑
n−1(λ)

,

ρnH↑
n−1(λ) = 1 + ρn +

λ

βn
− 1

H↑
n(λ)

.

If we define

sn(z) :=
−ρn

1 + ρn + λ
βn

+ z
and ŝn(z) :=

−ρ−1
n

1 + ρ−1
n + λ

δn
+ z

,

then we can write the resulting four continued fraction recurrences as

−H↓
n(λ) = sn ◦ sn+1 ◦ · · · ◦ sn+m−1(−H↓

n+m(λ)),(3.3)

− 1

H↓
n(λ)

= ŝn−1 ◦ ŝn−2 ◦ · · · ◦ ŝn−m(− 1

H↓
n−m(λ)

),(3.4)

− 1

H↑
n(λ)

= sn+1 ◦ sn+2 ◦ · · · ◦ sn+m(− 1

H↑
n+m(λ)

),(3.5)

−H↑
n(λ) = ŝn ◦ ŝn−1 ◦ · · · ◦ ŝn−m+1(−H↑

n−m(λ)).(3.6)

In the context of a unilateral birth-and-death chain (that is, the analogue of
our process Z on the state space N), the context considered in [23, 31], there is
theory giving conditions under which such continued fractions converge and their
classical values give the corresponding Laplace transform. In the bilateral case, not
all of the above continued fraction expansions can converge to the classical values,
because that would imply, for instance, that H↓

n(λ) = (H↑
n−1(λ))−1, but two Laplace

transforms of sub-probability measures can only be the reciprocals of each other if
both are identically 1, which is certainly not the case here.

In the next section we consider bilateral chains arising from instances of our
process ξ on T and discuss circumstances in which Laplace transforms of hitting
times are indeed given by their putative continued fraction representations.

4. Hitting times on a scattered subset of T

Suppose in this section that for some a ∈ T the infinite set T ∩ (a,+∞) is discrete
with a as an accumulation point. Write T∩ (a,+∞) = {tn : n ∈ Z} with tn < tn+1

for all n ∈ Z, and define Z : T∩ (a,+∞) → Z by Z(tn) := n. Then the image under
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Z of ξ killed when it exits (a,+∞) is a bilateral birth-and-death process that can
“reach −∞ in finite time and be killed there”.

From Proposition 2.2, the jump rates of Z are

δn =
1

(tn − tn−1)(tn+1 − tn−1)
and βn =

1
(tn+1 − tn)(tn+1 − tn−1)

,(4.1)

and so ρn =
(tn+1 − tn)
(tn − tn−1)

.(4.2)

The convergence properties of the continued fraction expansions given in (3.3)–
(3.6) can sometimes be determined by the behavior of T∩ (a,+∞) in the neighbor-
hood of its endpoint a. We refer the reader to Section 12 for a review of the theory
of limit-periodic continued fractions that we use.

It is clear from the construction of ξ as a time change of Brownian motion that
inf{t > 0 : ξt = a} = 0, Pa-a.s. and inf{t > 0 : ξt �= a} = 0, Pa-a.s. That is, a is a
regular instantaneous point for ξ. Thus

(4.3) lim
n→∞

P−n[e−λτ−n−1 ] = 1

and

(4.4) lim
n→∞

P−n[e−λτ−n+1 | τ−n+1 < ∞] = 1.

Note that β−n → ∞ as n → ∞. Suppose further that ρ−n → ρ ∈ (1,∞) as
n → ∞, Then ŝn−m → ŝ∗ as m → ∞, where ŝ∗(z) := −ρ−1

1+ρ−1+z , a transformation
with attractive fixed point −ρ−1 and repulsive fixed point −1. It follows from (4.3)
that limn→∞ H↓

−n(λ) = 1. So, by Theorem 12.1, H↓
−n is not equal to the classical

value of the non-terminating continued fraction corresponding to (3.4). Also, by
(4.3),

H↑
−n(λ) := E−n[e−λτ−n+1 ]

= P−n{τ−n+1 < ∞}E−n[e−λτ−n+1 | τ−n+1 < ∞]

=
(t−n − a)

(t−n+1 − a)
E−n[e−λτ−n+1 | τ−n+1 < ∞]

→ 1
ρ

as n → ∞.

Thus, Theorem 12.1, applied with indices reversed, implies that the continued
fraction expansion in (3.6) converges to the classical value. So, for each n ∈ Z,
H↑

n = − limm→∞ ŝn ◦ · · · ◦ ŝn−m(0) = Ũn/Ũn+1, where {Ũk} is the minimal solution
in the negative direction to

(4.5) Uk−1 = (1 + ρ−1
k +

λ

δk
)Uk − ρ−1

k Uk+1.

In particular, this says that the Laplace transform of the upwards hitting times for
the process killed at a are given by a simple formula in terms of the {Ũm},

Hn,n+m(λ) =
m−1∏
k=0

H↑
n+k(λ) =

Ũn+m+1

Ũn+1

, m > 0.
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Suppose now that βn and δn converge to 0 as n → ∞ in such a way that ρn → ρ ∈
(1,∞). An equivalence transformation of continued fractions relate the continued
fraction implied by the recurrence (3.3) and the continued fraction implied by the
equivalent recurrence

(4.6) −βn−1H
↓
n(λ) =

−βn−1δn

βn + δn + λ − βnH↓
n+1(λ)

.

Since βn and δn tend to zero as n → ∞, the limiting transformation is singular and
the fixed points tend to zero and −λ. Since 0 < H↓

n(λ) < 1, limn→∞ βn−1H
↓
n(λ) = 0

for all λ > 0, which is the attractive fixed point of the transformation. Theorem
12.1 implies that the continued fraction converges to the classical value, which is
given by the ratio of the minimal solution in the positive direction of the recurrence

(4.7) Vk+1 = (βk + δk + λ)Vk − βk−1δkVk−1.

However, U0 := V0 and

Uk :=

{
Vk/

∏k−1
i=0 βi, k > 0,

Vk

∏−1
i=k βi, k < 0,

defines a one-one correspondence between solutions to (4.7) and solutions to

(4.8) Uk+1 = (1 + ρk +
λ

βk
)Uk − ρkUk−1.

Note the sequence U is not the same as in (4.5). Since this correspondence maps
minimal solutions to minimal solutions, if we denote by {Ũk} the minimal solution
in the positive direction to (4.8), then

H↓
n(λ) =

Ũn

Ũn−1

and

Hn,n−m(λ) =
m−1∏
k=0

H↓
n−k(λ) =

Ũn−m−1

Ũn−1

, m > 0.

5. Introducing the process on Tq

Note: For the remainder of the paper, we restrict attention to the state
space T = Tq := {qn : n ∈ Z} ∪ {−qn : n ∈ Z} ∪ {0} for some q > 1.

In this case the measure μ defining the time change that produces ξ from Brown-
ian motion is given by μ = μq, where μq({qn}) = (qn+1 − qn−1)/2, μq({−qn}) =
μq({qn}), and μq({0}) = 0. Let ξ̂ denote the Markov process on Tq ∩ (0,∞) = {qk :
k ∈ Z} with distribution starting at x which is that of ξ started at x and killed
when it first reaches 0.

By Proposition 2.2 the generator G of ξ is defined for all f ∈ C0(Tq) for which
the following is well-defined and defines a function in C0(Tq),

(5.1) (Gf)(x) :=

⎧⎨
⎩

1
cq

(
f(qx)

x2 + qf(q−1x)
x2 − (1+q)f(x)

x2

)
, x ∈ Tq \ {0}

limn→∞
1
2

f(q−n)+f(−q−n)−2f(0)
q−2n , x = 0,
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where cq := q−1(q − 1)2(1 + q). In particular, when our process is at any point
x �= 0, it waits for an exponential time with rate proportional to x−2 and then
jumps further from 0 with probability 1/(1 + q) or closer to 0 with probability
q/(1 + q).

We first reinforce our claim that the process ξ on Tq is a reasonable q-analogue of
Brownian motion by showing that ξ converges to Brownian motion as the parameter
q goes to 1.

Proposition 5.1. For each q let xq ∈ Tq be such that xq → x as q ↓ 1. Then the
distribution of ξ started at xq converges as q ↓ 1 (with respect to the usual Skorohod
topology on the space of real-valued càdlàg paths) to the distribution of Brownian
motion started at x.

Proof. Let (Bt)t∈R+ be a standard Brownian motion with B0 = 0 and let �a
t denote

the jointly continuous local time process of B.
Set

Aμq

u :=
∫

R

�a−xq
u μq(da)

and
θμq

t := inf{u : Aμq

u > t}.

Then the process (xq + B(θμq

t ))t∈R+ has the distribution of ξ under Pxq .
Since μq converges vaguely to the Lebesgue measure m on R as q ↓ 1, we have

lim
q↓1

Aμq

u =
∫

R

�a−x
u m(da) = u

uniformly on compact intervals almost surely, and hence

lim
q↓1

θμq

t = t

uniformly on compact intervals almost surely. Thus xq + B(θμq

t ) converges to x +
Bt uniformly on compact intervals (and hence in the Skorohod topology) almost
surely.

The following lemma shows that ξ obeys a scaling property similar to that of
Brownian motion.

Lemma 5.1. The distribution of the process (ξt)t∈R+ under Px is the same as that
of (1

q ξq2t)t∈R+ under Pqx. A similar result holds for the killed process ξ̂.

Proof. The claim for the process ξ is immediate by checking that properties (I’),
(II) and (III) hold for (1

q ξq2t)t∈R+ . Alternatively, one can verify that the generators
of the two processes agree, or use the time-change construction of ξ from Brownian
motion and the scaling properties of Brownian motion. The claim for the killed
process follows immediately.

Perhaps the easiest things to calculate about the distribution of ξ are the mo-
ments of ξt. Formally applying the formula for the generator of ξ from Proposition
2.2 to the function f(x) = xk gives Gf(x) = q1−k

cq
(1 − qk)(1 − qk−1)xk−2. As for

the particular cases of k = 1, 2 considered in the proof of Proposition 2.1, we can
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use Dynkin’s formula (2.6) and an approximation argument to get the recursion
formula

Ex[ξk
t ] = xk +

∫ t

0

Ex(Gxk)(ξs) ds = xk +
∫ t

0

q1−k

cq
(1 − qk)(1 − qk−1)Ex[ξk−2

s ] ds,

and hence, using the notation introduced in Section 11,

Ex[ξk
t ] =

k∑
m=0

2|(k−m)

c
− k−m

2
q

(q; q)k

(q; q)m
q

m2−k2

4
t

k−m
2(

k−m
2

)
!
xm.

where we mean that the sum goes over all 0 ≤ m ≤ k with the same parity as k.
The formula shows that, say for x = 0, the kth (even) moments grow like

q
k2
4 (1+o(1))t

k
2 . This rate of growth is too fast to guarantee that the moments charac-

terize the distribution of ξt. Note that some well known distributions have moments
with this rate of growth, for example, the standard log-normal distribution has kth

moment e
k2
2 , as does the discrete measure which assigns mass proportional to e

−k2

2

at the points ek, k ∈ Z, [12], 2.3e.
From Proposition 5.1 we would expect informally that the moments of ξt should

converge to those of a Brownian motion at time t as q ↓ 1. Recall that cq =
q−1(q − 1)2(1 + q) and observe that limq↓1(q − 1)−�(q; q)� = (−1)��!. Therefore, if
we take xq ∈ Tq with limq↓1 xq = x ∈ R, then we have

lim
q↓1

Exq [ξk
t ] =

k∑
m=0

2|(k−m)

k!
m!(k − m)!

(
1
2

) k−m
2 (k − m)!(

k−m
2

)
!
t

k−m
2 xm.

We recognize the expression on the right hand side as being indeed the kth moment
of a Gaussian random variable with mean x and variance t.

6. Hitting time distributions for Tq

We once again stress that for the remainder of the paper we are considering the
process ξ on the state space Tq.

The general considerations of Section 4 apply to Tq ∩ (0,∞). In the notation of
that section, tn = qn for n ∈ Z. The death and birth rates for the corresponding
bilateral birth-and-death process on Z are, respectively, q−2n+1

cq
and q−2n

cq
, where we

recall that cq = q−1(q − 1)2(1 + q).
To avoid the constant appearance of factors of cq in our results, rather than work

with ξ and its counterpart ξ̂ killed at 0, we will work with the linearly time-changed
processes X = ξ(cq·) and X̂ = ξ̂(cq·). Of course, conclusions for X and X̂ can be
easily translated into conclusions for ξ and ξ̂.

The corresponding bilateral birth-and-death process on Z has death and birth
rates δn = q−2n+1 and βn = q−2n. In the notation of Section 4, ρ = ρn = q and

sn(z) =
−q

(1 + q) + λq2n + z
.

Moreover, we have τn = inf{t ∈ R+ : X̂t = qn}. Note, by the scaling properties in
Lemma 5.1, that H↓

0 (λ) = H↓
n(q−2nλ), and H↑

0 (λ) = H↑
n(q−2nλ). Moreover, recall

that
Hn,n−m(λ) = H↓

n(λ)H↓
n−1(λ) · · ·H↓

n−m+1(λ)
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and
Hn,n+m(λ) = H↑

n(λ)H↑
n+1(λ) · · ·H↑

n+m−1(λ),

so to compute Hn,n−m(λ) and Hn,n+m it suffices to compute H↓
0 (λ) and H↑

0 (λ).
From Section 4 we have

H↓
0 (λ) =

q

1 + q + λ −
q

1 + q + λq2 −
q

1 + q + λq4 − . . .

,(6.1)

H↑
0 (λ) =

1

1 + q + λ −
q

1 + q + λq−2 −
q

1 + q + λq−4 − . . .

.(6.2)

Closed-form expressions for continued fractions of this form are listed in Ra-
manujan’s “lost” notebook (see the discussion in [5]), and evaluations for various
ranges of the parameters (although not all the values we need) can be found in
[5, 32, 33] (although in the last several parameter restrictions are omitted).

Theorem 6.1. (i) The Laplace transform of the time to go from 1 to q−1 for both
X and X̂ is

H↓
0 (λ) =

q

λ

0φ1(−; 0; q−1; 1
λq )

0φ1(−; 0; q−1; 1
λq−1 )

.

An alternative expression is

H↓
0 (λ) =

1
(λq−1 + 1)

1φ1(0;− 1
λq ; q−2;− 1

λq2 )

1φ1(0;− 1
λq−1 ; q−2;− 1

λq )
.

(ii) The Laplace transform of the time to go from 1 to q for X̂ is

H↑
0 (λ) =

1
(q + λ)

1φ1(0;−λq−3; q−2; q−3)
1φ1(0;−λq−1; q−2; q−3)

.

Proof. (i) Consider the first expression. Since the continued fraction (6.1) converges,
by Lemma 12.1 and equation (4.6), the value of q−2nH↓

n(λ) is given by the ratio of
consecutive terms of the minimal solution to

Wn+1 = ((1 + q)q−2n + λ)Wn − q−4n+3Wn−1.

This recurrence is found in [32] (but with their q as our q−1), and the minimal
solution is shown to be

Ũn(λ) := q−2n(n−1)

(
1
qλ

)n

0φ1(−; 0; q−1;
1

λq2n+1
).

For the second expression, we evaluate (6.1) as follows. Set

rn(λ) := 1φ1(0;− 1
λ

q−2n−1; q−2;− 1
λ

q−2n−2)eq−2(−λq2n−1),(6.3)

hn(λ) := −q−2n+2 rn(λ)
rn−1(λ)

= − q−4n+3

(λ + q−2n+1)
1φ1(0;− 1

λq−2n−1; q−2;− 1
λq−2n−2)

1φ1(0;− 1
λq−2n+1; q−2;− 1

λq−2n)
.

(6.4)
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Then, from equation (17) in [5] ,

(6.5) hn =
−q−4n+3

(1 + q)q−2n + λ + hn+1
.

This transformation tends to a singular transformation as n → ∞ and the fixed
points tend to x = 0 and y = −λ. By (6.4), q4nhn → q3

λ as n → ∞, so hn → 0, and
convergence to the classical value holds. However, the continued fraction coming
from (6.5) is related by an equivalence transformation to the continued fraction
coming from the relation

q2(n−1)hn =
−q

1 + q + λq2n + q2nhn+1
.

This is exactly what is needed to evaluate (6.1), and hence

H↓
n(λ) = −q2(n−1)hn(λ) =

rn(λ)
rn−1(λ)

.

Note that this also shows that q−n(n−1)rn(λ) is a minimal solution in the positive
direction to the recurrence

Un+1(λ) = ((1 + q)q−2n + λ)Un(λ) − q−4n+3Un−1(λ),

and is hence equal to Ũn above up to a constant multiple.
(ii) Define

r′n(λ) = q−n
1φ1(0;−λq2n−3; q−2; q−3)/eq−2(−λq2n−3),

gn(λ) =
r′−n+1

r′−n

= −1
q
(1 + λq−2n−1) 1φ1(0;−λq−2n−1; q−2; q−3)

1φ1(0;−λq−2n−3); q−2; q−3)
.

Equation (13) in [5] simplifies to

(6.6) gn(λ) =
−q

1 + q + λq−2n + gn+1(λ)
.

The fixed points of the limiting transformation are −1 and −q, and

lim
n→∞

gn(λ) = −1
q

1φ1(0; 0; q−2; q−1)
1φ1(0; 0; q−2; q−1)

= −1
q
.

Hence, by Theorem 12.1, gn(λ) is equal to the classical value of the continued
fraction implied by (6.6), and r′n is a minimal solution in the negative direction to
the recursion

Un+1 = (1 +
1
q

+ λq2n−1)Un − 1
q
Un−1.

Let τ−∞ denote the death time of X̂. Equivalently, τ−∞ is the first hitting time
of 0 by X. Write Hn,−∞(λ) := Eqn

[e−λτ−∞ ].
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Corollary 6.1. The Laplace transforms of various hitting times for X̂ are given
by

Hn,n−m(λ) =
qm2−2mn

λm

0φ1(−; 0; q−1; 1
λq2n+1 )

0φ1(−; 0; q−1; 1
λq2(n−m)−1 )

=
1

(−λq2n−1; q−2)m

1φ1(0;− 1
λq2n+1 ; q−2;− 1

λq2n+2 )

1φ1(0;− 1
λq2n−1 q2m; q−2;− 1

λq2n q2m)
,

Hn,−∞(λ) = 1φ1(0;− 1
λq2n+1

; q−2;− 1
λq2n+2

)eq−2(−λq2n−1)/eq−2(
1
q
),

and

Hn,n+m(λ) =
1

qm(−λq2n+2m−3; q−2)m

1φ1(0;−λq2n−3; q−2; q−3)
1φ1(0;−λq2n+2m−3; q−2; q−3)

.

Proof. The only result that requires proof is that for Hn,−∞(λ). However, by (11.2)

lim
n→∞ 1φ1(0;− 1

λ
q−2n−1; q−2;− 1

λ
q−2n−2) = 1φ0(0;−; q−2;

1
q
) = eq−2(

1
q
).

We can apply known identities to obtain alternatives to the expressions for the
Laplace transforms in Theorem 6.1 and Corollary 6.1. For example, equation (13)
in [5] gives

H↑
0 (λ) = 1 − 1φ1(0;−q−1λ; q−2; q−1)

1φ1(0;−q−1λ; q−2; q−3)
.

Similarly, equation (17) in [5] gives

H↓
0 (λ) =

q

q + λ
1φ1(0;− 1

qλ ;q−2;− 1
λ )

1φ1(0;− 1
qλ ;q−2;− 1

q2λ
)

.

The relation

(w; q)∞ 1φ1(0;w; q; c) = (c; q)∞ 1φ1(0; c; q; w)

follows from (III.1) in [30] upon sending b → 0, letting a = w/z, and sending z → 0.
Similarly, the recurrence

1φ1(0;−λqk−4; q−2; q−3)

=
(− 1

λqk−2 ; q−2)∞
(− 1

λqk−1 ; q−2)∞
1φ1(0;−λqk−3; q−2; q−1)

−
(− 1

λqk−2 , q−1, q−1; q−2)∞
(− 1

λqk−1 ,−λqk−2,−λqk−3; q−2)∞
1φ1(0;− 1

λqk
; q−2;− 1

λqk+1
)

comes from (III.31) in [30] by sending b → 0, letting a = w/z, and sending a → 0.
Both of these identities can be used to obtain alternative formulae for H↓

0 and H↑
0 .
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We can invert the Laplace transform H0,−∞ in Corollary 6.1 to obtain the dis-
tribution of the time τ−∞ for X to hit 0 starting from qn. Note first of all that

1
(−λq2n−1; q−2)∞

=
∞∏

i=0

1
1 + λq2n−1q−2i

=
∞∏

i=0

q2i−2n+1

q2i−2n+1 + λ
.

Similarly,

1φ1(0;− 1
λq2n+1

; q−2;− 1
λq2n+2

)

=
∞∑

k=0

[
(λq2n+2)kqk(k−1)(− 1

λq2n+1
; q−2)k(q−2; q−2)k

]−1

=
∞∑

k=0

k−1∏
l=0

[
q−2(l+n)−1

(q−2(l+n)−1 + λ)

]
q−k

(q−2; q−2)k
.

Thus under Pqn

the killing time τ−∞ has the same distribution as the random
variable

q2n

(
0∑

i=−∞
q2i−1Ti +

N∑
i=1

q2i−1Ti

)
= q2n

N∑
i=−∞

q2i−1Ti

where the Ti are independent rate 1 exponentials and N is distributed according
to a q-analogue of the Poisson distribution [42], namely,

P{N = k} =
1

eq−2(1
q )

q−k

(q−2; q−2)k
, k ≥ 0.

It follows that under Pqn

the distribution of τ−∞ is also that of the random
variable

q2n+2N−1
∞∑

i=0

q−2iTi.

A partial fraction expansion of the Laplace transform shows that a convolution of
exponential distributions, where the ith has rate αi, has density

t �→
∑

i

αie
−αit

∏
j �=i

αj

αj − αi
.

Hence
∑∞

j=0 q−2jTj has density

f(t) :=
∞∑

j=0

q2je−q−2jt

j−1∏
k=0

(
1

1 − q−2(k−j)

) ∞∏
k=j+1

(
1

1 − q−2(k−j)

)

=
1

(q−2; q−2)∞

∞∑
j=0

q2je−q2jt

(q2; q2)j

= eq−2(−q−2)
∞∑

j=0

(−1)jq−j(j−1)e−q2jt

(q−2; q−2)j
.

(6.7)

We note in passing that the random variable
∑∞

j=0 q−2jTj has the same distribution
as the exponential functional of the Poisson process Iq−2 investigated in [4] (see also
[3]).

The following result is now immediate.
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Proposition 6.1. Under Pqn

, the hitting time of 0 for X has density

1
eq−2(1

q )

∞∑
m=0

q−m

(q−2; q−2)m
q2(m+n)+1f(tq2(n+m)+1), t > 0,

where f(t) is defined in (6.7).
Recall that for Brownian motion started at 1, the hitting time of 0 has the

stable(1
2 ) density

1√
2πt3

exp
(
− 1

2t

)
, t > 0.

It follows from Proposition 5.1 that the distribution of cqq
2N

∑∞
i=0 q−2iTi converges

to this stable distribution as q ↓ 1. From Lai’s strong law of large numbers for
Abelian summation [53] we have that

lim
q↓1

∞∑
i=0

(1 − q−2)q−2iTi = E[T0] = 1, a.s.

and so cq(1 − q−2)−1q2N also converges to the same stable distribution. Taking
logarithms, we obtain the following result.

Proposition 6.2. As q ↓ 1, the distribution of the random variable

2(log q)N + log(q − 1)

converges to the distribution with density

1√
2π

exp
(
−1

2
(x + exp(−x))

)
, −∞ < x < ∞.

7. Excursion theory for Tq

Recall that X = ξ(cq·) under Px has the same distribution as (B(θcqt))t∈R+ , where
B is a Brownian motion started at x with local time process �, θ is the right-
continuous inverse of the continuous additive functional At =

∫
�a
t μ(da), and μq

is the measure supported on Tq that is defined by μq({qn}) = (qn+1 − qn−1)/2,
μq({−qn}) = μ({qn}), and μq({0}) = 0.

Recall also that 0 is a regular instantaneous point for X. Thus X has a continuous
local time L at 0 that is unique up to constant multiples. We can (and will) take
Lt = �0θcqt

. The inverse of the local time is a subordinator (that is, an increasing
Lévy process). Also, there is a corresponding Itô decomposition with respect to the
local time of the path of X into a Poisson process of excursions from 0. In this
section we determine both the distribution of the subordinator (by giving its Lévy
exponent) and the intensity measure of the Poisson process of excursions.

We begin with the following result, which is immediate from Lemma 2.1.

Lemma 7.1. The process X is reversible with respect to the measure μq. In par-
ticular, μq is a stationary measure for X.

We use the excursion theory set-up described in Section VI.8 of [61], which we
now briefly review to fix notation. Adjoin an extra cemetery state ∂ to Tq. An
excursion from 0 is a càdlàg function f : R+ → Tq ∪ {∂} such that f(0) = 0 and
f(t) = ∂ for t ≥ ζ, where ζ := inf{t > 0 : f(t) = ∂ or f(t−) = 0} > 0. Write U for
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the space of excursion paths from 0. Using the local time L, we can decompose that
paths of X under Px into a Poisson point process on R+×U with intensity measure
of the form m ⊗ n, where m is Lebesgue measure and n is a σ-finite measure on
U called the Itô excursion measure. The measure n is time-homogeneous Markov
with transition dynamics those of X killed on hitting 0 (and then being sent to ∂).
Thus n is completely described by the family of entrance laws nt, t > 0, where

nt(Γ) := n({f ∈ U : f(t) ∈ Γ}), Γ ⊂ Tq.

Let Rλ denote the λ-resolvent of X for λ > 0. That is,

Rλ(x,Γ) :=
∫ ∞

0

e−λtPx{Xt ∈ Γ} dt

for x ∈ Tq and Γ ⊆ Tq. In order to identify n, we begin with the following general
excursion theory identity (see equation (50.3) in Section VI.8 of [61]).

(7.1) κλ

∫ ∞

0

e−λtnt({y}) dt = Rλ(0, {y})

where

(7.2) κλ := E0

[∫ ∞

0

e−λs dLs

]
.

Now, setting Tx := inf{t ∈ R+ : Xt = x}, x ∈ Tq,

Rλ(0, {y}) = lim
x→0

Rλ(x, {y})

= lim
x→0

μq({y})
μq({x})Rλ(y, {x})

= lim
x→0

μq({y})
μq({x})Ey

[
e−λTx

]
Rλ(x, {x})

= lim
x→0

μq({y})
μq({x})Ey

[
e−λTx

] Rλ(0, {x})
E0 [e−λTx ]

= μq({y})Ey
[
e−λT0

]
lim
x→0

Rλ(0, {x})
μq({x})

= μq({y}) 1
cq

Ey
[
e−λT0

]
lim
x→0

E0

[∫ ∞

0

e
− λ

cq
As d�x

s

]

= μq({y})Ey
[
e−λT0

] 1
cq

E0

[∫ ∞

0

e
− λ

cq
As d�0s

]

= μq({y})Ey
[
e−λT0

]
E0

[∫ ∞

0

e−λt d�0θcqt

]
,

where we used Lemma 7.1 in the second and sixth lines, and a change of variable
in the final line.

Thus, ∫ ∞

0

e−λtnt({y}) dt = μq({y})Ey
[
e−λT0

]
,

so that

nt({y}) = μq({y})Py {T0 ∈ dt}
dt

.

Now Eqn [
e−λT0

]
= Hn,−∞(λ), and so we obtain the following from Corollary

6.1.
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Proposition 7.1. The family of entrance laws (nt)t>0 is characterized by

∫ ∞

0

e−λtnt({qn}) dt

=
1
2
qn−1(q2 − 1) 1φ1

(
0;− 1

λq2n+1
; q−2;− 1

λq2n+2

)
eq−2(−λq2n−1)

/
eq−2

(
1
q

)

and nt({−qn}) = nt({qn}), n ∈ Z.
Let γ denote the right-continuous inverse of the local time L, so that γ is a

subordinator. Thus E0[e−λγt ] = e−tψ(λ) for some Laplace exponent ψ.

Proposition 7.2. The distribution of the subordinator γ is characterized by

ψ(λ) =
λ (q2 − 1) (− 1

λ ,−λq−2; q−2)∞
q (−λ

q ,− 1
λq ; q−2)∞

=
λ (q2 − 1) eq−2(−λ

q )eq−2(− 1
λq )

q eq−2(− 1
λ )eq−2(−λq−2)

.

Proof. We note the relationship

κλ = E0

[∫ ∞

0

e−λs dLs

]
= E0

[∫ ∞

0

e−λγt dt

]

=
∫ ∞

0

e−tψ(λ) dt =
1

ψ(λ)
.

Hence, from equation (7.1),

ψ(λ) = λ

∫ ∞

0

e−λtnt(Tq \ {0}) dt = 2λ

∫ ∞

0

e−λtnt(Tq ∩ (0,∞)) dt

= 2λ
∑
n∈Z

1
2
qn−1(q2 − 1) 1φ1

(
0;− 1

λq2n+1
; q−2;− 1

λq2n+2

)

× eq−2(−λq2n−1)
/

eq−2

(
1
q

)
.

Using the following identity to simplify the sum,

(−λq2n−1; q−2)∞ = (−λ

q
; q−2)∞(−λq2n−1; q−2)n

= (−λ

q
; q−2)∞(− 1

qλ
; q−2)n qn2

λn,

we can write part of the above as

∑
n∈Z

qn
1φ1(0;− 1

λq2n+1 ; q−2;− 1
λq2n+2 )

(−λq2n−1; q−2)∞

=
1

(−λ
q ; q−2)∞

∑
n∈Z

q−n(n−1)λ−n

(− 1
qλ ; q−2)n

1φ1(0;− 1
λq2n+1

; q−2;− 1
λq2n+2

)

=
1

(−λ
q ; q−2)∞

∑
n∈Z, k≥0

q−n(n−1)−k(k−1)−k(2n+2)λ−n−k

(− 1
qλ ; q−2)n(− q−2n

λq ; q−2)k(q−2; q−2)k
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and by changing indices we get

∑
n∈Z, k≥0

q−n(n−1)−k(k−1)−k(2n+2)λ−n−k

(− 1
qλ ; q−2)n(− q−2n

λq ; q−2)k(q−2; q−2)k

=
∑
m∈Z

q−m(m−1)λ−m

(− 1
λq ; q−2)m

∑
k≥0

q−2k

(q−2; q−2)k

= 0ψ1(−;− 1
λq

; q−2;− 1
λ

)eq−2(q−2).

Recall that eq−2(z) = 1/(z; q−2)∞. Moreover, using equation (11.3), we can
rewrite the 0ψ1 as a product,

0ψ1(−;− 1
λq

; q−2;− 1
λ

) =
(q−2,− 1

λ ,−λq−2; q−2)∞
(− 1

λq , 1
q ; q−2)∞

.

The result now follows.

It follows from the scaling property Lemma 5.1 and the uniqueness of the local
time at 0 up to a constant multiple that (Lq2t)t∈R+ has the same distribution
under P0 as a constant multiple of L. Consequently, the exponent ψ must satisfy
the scaling relation ψ(q−2λ) = cψ(λ) for some constant c. Note from the formula
in Proposition 7.2 that, indeed,

ψ(q−2λ) = q−2 (1 + 1
λq2)(1 + λq−2)−1

(1 + λ
q )−1(1 + 1

λq q2)
ψ(λ) = q−1ψ(λ).

8. Resolvent of the killed process on Tq ∩ (0, ∞)

Let R̂λ denote the resolvent of the process X̂ on Tq ∩ (0,∞) killed at 0. Recall
that X̂ goes from qn to qn−1 at rate q−2n+1 and from qn to qn+1 at rate q−2n.
Thus the exit time from qn is exponentially distributed with rate q−2n+1 + q−2n,
the probability of exiting to qn−1 is q

q+1 , and the probability of exiting to qn+1 is
1

q+1 . Moreover, Eqn−1
[e−λTn ] = H↑

n−1(λ) and Eqn+1
[e−λTn ] = H↓

n+1(λ). From the
strong Markov property we get the recurrence

R̂λ(qn, {qn})

=
1

λ + q−2n+1 + q−2n
+ R̂λ(qn, {qn})

×
(

q−2n+1 + q−2n

λ + q−2n+1 + q−2n

q

q + 1
H↑

n−1(λ) +
q−2n+1 + q−2n

λ + q−2n+1 + q−2n

1
q + 1

H↓
n+1(λ)

)
,

so that

R̂λ(qn, {qn})

=
{

λ + (q−2n+1 + q−2n)
[
1 −

(
q

q + 1
H↑

n−1(λ) +
1

q + 1
H↓

n+1(λ)
)]}−1

.

Substitute any of the explicit formulae for H↑
n−1 and H↓

n+1 from Section 6 to get
an expression for the on-diagonal terms of the resolvent in terms of basic hyperge-
ometric functions.
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To obtain the off-diagonal terms, use the observation

R̂λ(qm, {qn}) = Eqm [
e−λTqn

]
R̂λ(qn, {qn}) = Hm,n(λ)R̂λ(qn, {qn})

and then substitute in explicit formulae for Hm,n(λ) from Section 6 to get expres-
sions in terms of basic hypergeometric functions.

Ideally, one would like to invert the Laplace transform implicit in the resolvent
to obtain expressions for the transition probabilities Px{X̂t = y}. We have not been
able to do this.

9. Resolvent for Tq

Recall that Rλ is the resolvent of the process X. The resolvents Rλ and R̂λ are
related by the equations

Rλ(x, {y}) =

⎧⎪⎨
⎪⎩

R̂λ(x, {y}) + Ex
[
e−λT0

]
Rλ(0, {y}), x, y ∈ R+,

Ex
[
e−λT0

]
Rλ(0, {y}), x ≥ 0, y < 0,

Rλ(−x, {−y}), x < 0.

Recall equation (7.1), which says that Rλ(0, {y}) = κλ

∫ ∞
0

e−λtnt({y}) dt. We
know from the proof of Proposition 7.2 that κλ = 1

ψ(λ) and the statement of Propo-
sition 7.2 gives a simple expression for ψ(λ) as a ratio of infinite products. Proposi-
tion 7.1 gives an expression for

∫ ∞
0

e−λtnt({y}) dt in terms of basic hypergeometric
functions. Again noting that Eqm [

e−λTqn
]

= Hm,n(λ), we substitute in explicit
formulae for Hm,n(λ) from Section 6 to get expressions for Rλ(x, {y}) in terms of
basic hypergeometric functions.

10. A remark on spectral representations

An alternative approach to finding explicit formulae for the quantities of interest
would be to find a spectral representation for the generator. This is well-described
for general quasidiffusions by Küchler and Salminen [51], who build on the spectral
theory of strings [13, 41, 63]. Once one has found solutions to the Sturm-Liouville
equation Gu = −λu with appropriate boundary conditions, and the orthogonalizing
(spectral) measure, one can write down explicit formulae.

One possible method for carrying this out is to use the well-known spectral
representation of transition probabilities of a unilateral birth-and-death process,
for which the appropriate eigenfunctions are a family of orthogonal polynomials
(see, for example, [37–39, 62]). If we kill X at q−n for some n ∈ Z to obtain a
process on {q−n+1, q−n+2, . . .}, then the corresponding unilateral birth-and-death
process has a specialization of the associated continuous dual q-Hahn polynomials
as its related family of orthogonal polynomials [32]. However, we have not been able
to “take limits as n → ∞” in the resulting spectral representation of the transition
probabilities to obtain similar formulae for X̂.

Note that our expression for the density of the hitting time to zero of Proposition
6.1 appears to be close to a spectral decomposition – compare to Theorem 3.1 in
[51], which gives the density as

1
π

∫
R

e−λ2tC(x; λ)ρ(dλ)
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where C is a particular solution to the Sturm-Liouville equation and ρ is the spectral
measure. However, to put our expression in this form, the two summations need to
be exchanged, which is not straightforward.

11. Background on basic hypergeometric functions

For the sake of completeness and to establish notation, we review some of the facts
we need about basic hypergeometric functions (otherwise known as q-hypergeometric
functions). For a good tutorial, see the article [45] or the books [2, 30]. In order to
make the notation in our review coincide with what is common in the literature,
take 0 < q < 1 in this section (this q usually corresponds to q−2 in the rest of
the paper).

Define the q-shifted factorial by

(z; q)n :=
n−1∏
k=0

(1 − zqk) for n ∈ N, z ∈ C,

(z; q)∞ :=
∞∏

k=0

(1 − zqk) for |z| < 1.

The definition of (z; q)n may be extended consistently by setting

(z; q)k =
(z; q)∞

(zqk; q)∞
for k ∈ Z, z ∈ C.

It will be convenient to use the notation

(a1, a2, . . . , ar; q)k = (a1; q)k(a2; q)k . . . (ar; q)k.

The q–hypergeometric series are indexed by nonnegative integers r and s, and
for any {ai} ⊂ C, {bj} ⊂ C \ {q−k}k≥0 are defined by the series

rφs(a1, . . . , ar; b1, . . . , bs; q; z) :=
∞∑

k=0

(a1, . . . , ar; q)k((−1)kq
k(k−1)

2 )1+s−rzk

(b1, . . . , bs, q; q)k
.

Note the factor (q; q)k on the bottom, which is not present in the definition used
by some authors. The series converges for all z if r ≤ s, on |z| < 1 if r = s + 1, and
only at z = 0 if r > s + 1. Using the property that

lim
a→∞

(a; q)n

an
= (−1)nq

n(n−1)
2 ,

we get the following useful limit relationships

lim
a→∞r+1φs(a, a1, . . . , ar; b1, . . . , bs; q;

z

a
) =rφs(a1, . . . , ar; b1, . . . , bs; q; z),(11.1)

lim
b→∞rφs+1(a1, . . . , ar; b, b1, . . . , bs; q; bz) =rφs(a1, . . . , ar; b1, . . . , bs; q; z),(11.2)

as long as the limits stay within the range on which the series converge.
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Theorem 11.1 (The q-binomial theorem).

1φ0(a;−; q; z) =
(az; q)∞
(z; q)∞

if |z| < 1, |q| < 1, a ∈ C.

There are (at least) two commonly used q–analogues of the exponential function.

eq(z) := 1φ0(0;−; q; z) =
1

(z; q)∞
=

∞∑
k=0

zk

(q; q)k
, for |z| < 1,

and

Eq(z) := 0φ0(−;−; q;−z) =
1

eq(−z)
= (−z; q)∞

=
∞∑

k=0

qk(k−1)/2(−z)k

(q; q)k
, for z ∈ C.

The bilateral q-hypergeometric series also appear in our results. They are defined
by

rψs(a1, . . . , ar; b1, . . . , bs; q; z) :=
∞∑

k=−∞

(a1, . . . , ar; q)k((−1)kq
k(k−1)

2 )s−rzk

(b1, . . . , bs; q)k
.

The sum converges for ⎧⎨
⎩

∣∣∣ b1···bs

a1···ar

∣∣∣ < |z|, if s > r,∣∣∣ b1···bs

a1···ar

∣∣∣ < |z| < 1, if s = r,

and diverges otherwise.
We use the following extension of the Jacobi triple product identity (see equation

(1.49) of [45])

(11.3) 0ψ1(−; c; q; z) :=
∞∑

k=−∞

(−1)kqk(k−1)/2zk

(c; q)k
=

(q, z, q/z; q)∞
(c, c/z; q)∞

, |z| > |c|.

12. Background on recurrence relations and continued fractions

For nonzero complex numbers an and bn, n ∈ Z, consider the three–term recurrence
relation

(12.1) Un+1 = bnUn − anUn−1.

Its connection to continued fractions can be seen immediately by rearranging to get

Un

Un−1
=

an

bn − Un+1
Un

.

In other words, the sequence Wn = Un/Un−1 solves the recurrence

(12.2) WnWn+1 = bnWn − an.
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Iterating this recurrence, we get that for any k ≥ 0,

−Wn =
− an

bn −
an+1

bn+1 −
an+2

bn+2 − . . . − an+k

bn+k−Wn+k

.

We refer to this expression as the continued fraction expansion associated with the
recurrence (12.2).

A solution (Ũn)n∈Z to (12.1) is said to be a minimal solution if, for all linearly
independent solutions Vn, limn→∞ |Ũn|/|Vn| = 0. The minimal solution to (12.1),
if it exists, is unique up to a constant multiple [56].

For clarity, define the linear fractional transformations

sn(z) =
−an

bn + z
,

and write their compositions as Sn
m = sm+1 ◦ sm+2 ◦ · · · ◦ sn and Sn = Sn

0 . The
classical approximants to the nonterminating continued fraction (sometimes written
K[−an

bn
]) are given by

−a1

b1 + −a2

b2+
−a3

...+−an
bn

= Sn(0).

If we let Pn and Qn be two solutions to (12.1) with initial conditions P−1 = 1,
P0 = 0, Q−1 = 0, and Q0 = 1, then it is easy to see that

Sn(z) =
Pn + zPn−1

Qn + zQn−1
.

The continued fraction K[−an

bn
] is said to converge if Sn(0) converges to a (finite)

limit as n tends to infinity. If this limit exists, it is called the classical value of
the continued fraction. However, this is a bit arbitrary, because it can happen, for
instance, that for all sequences (wn)n∈N that stay away from zero, Sn(wn) converges
to the same limit, different from the limit of Sn(0). The problem is easy to see:
suppose that an → a∗ and bn → b∗ as n → ∞, so that sn → s∗. Each sn has a pair
of fixed points that converge to the fixed points x and y of s∗ – suppose |x| < |y|, so
that x is attractive and y is repulsive. One might imagine that as long as wn stays
away from the repulsive fixed point of s∗, then limn→∞ Sn

m(wn) must converge to
x as m → ∞, in which case

lim
n→∞

Sn(wn) = lim
n→∞, n≥m

Sm ◦ Sn
m(wn), ∀m ≥ 0, so

= lim
m→∞

(
lim

n→∞, n≥m
Sm ◦ Sn

m(wn)
)

= lim
m→∞

Sm(x).

Note that just by setting wn = S−1
n (z), we can get Sn(wn) converging to any limit

in C we’d like – but to do this, the wn we choose must converge to the repulsive
fixed point. The precise sense in which wn must “stay away” from the repulsive
fixed point is given in the Theorem 12.1 below.
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The case in which an → a∗ and bn → b∗, where if a∗ = 0 then b∗ �= 0, is
called the limit 1-periodic case. Moreover, if the fixed points of s∗ are distinct and
have different moduli the continued fraction is of loxodromic type. All the continued
fractions we deal with fall into this category. The following combines Theorem 4
in Chapter II and Theorem 28 in Chapter III of [56]. Here d(·, ·) is the spherical
metric on C̄.

Theorem 12.1. Let K[−an

bn
] be limit 1-periodic of loxodromic type.

(i) There exists an f ∈ C̄ such that for every sequence (wn)n∈N for which{
lim infn→∞ d(wn, S−1

n (∞)) > 0, when f �= ∞,

lim infn→∞ d(wn, S−1
n (0)) > 0, when f = ∞,

we have Sn(wn) → f . In particular, Sn(0) → f .
(ii) Let V0 ∈ C and Vn = S−1

n (V0) for n > 0. Consider V0 ∈ C and Vn = S−1
n (V0)

for n > 0. Write s∗ = limn→∞ sn and suppose that s∗ has fixed points x, y with
|x| < |y|, so that x is attractive and y is repulsive for s∗.

• If V0 = f , then limn→∞ Vn = x. Moreover, if f �= ∞, then V0 = Ũ0/Ũ−1,
where Ũn is a minimal solution to (12.1).

• Otherwise, limn→∞ Vn = y.

For a proof, see [56]. This implies the following lemma, which we also use to
introduce some more notation. Note that the relation −Wn = S−1

n (−W0) for n > 0
is exactly the relationship implied by (12.2). Note also that this gives explicitly
the value of the continued fraction, if it converges to a finite value, in terms of the
minimal solution to the associated recurrence relation, a result known as Pincherle’s
theorem [56].

Lemma 12.1. Suppose that (Wn)n∈Z solves (12.2) and that the limits

β± := lim
n→∞

1
2

(
bn ±

√
b2
n − 4an

)
,

exist, are finite, and the branches of the square root are chosen so that |β−| < |β+|.
If limn→∞ Wn �= −β+, then limn→∞ Wn = −β−, and for any fixed m ∈ Z, the
sequence Un defined by

Un :=

⎧⎪⎨
⎪⎩

∏n
k=m+1 Wk, n > m,

1, n = m,(∏m
k=n+1 Wk

)−1
, n < m,

is a minimal solution to (12.1).

Proof. Since β− is the limit of the attractive fixed points of the corresponding
transformations, and β+ is the repulsive fixed point, Theorem 12.1 says that Wn is
equal to the classical value of the continued fraction

an

bn −
an+1

bn+1 −
an+2

bn+2 − . . .
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if and only if limk→∞ d(−Wn+k, β+) > 0, so a minimal solution Ũn exists, and
Wn = Ũn

Ũn−1
. By definition, Un = Ũn

Ũm
for all n ∈ Z. This proves the lemma.

Two continued fractions are said to be related by an equivalence transformation
if their sequences of approximants are the same. For example, let ck, k ∈ Z, be
nonzero complex numbers. Since for all n ≥ 0,

a0

b0 +
a1

b1 + .. . + an

bn+wn

=
c0a0

c0b0 +
c0c1a1

c1b1 + .. . + cn−1cnan

cnbn+cnwn

,

we say that the continued fraction expansions on either side are related by an
equivalence transformation.

Note that since we allow the indices in (12.1) and (12.2) to take values in Z,
by reversing indices we get another recurrence, another continued fraction, another
minimal solution, etc. When we need to distinguish, we will refer to, say, Ũn as
a minimal solution to (12.1) in the positive direction if the above definition holds,
and a minimal solution to (12.1) in the negative direction if limn→∞ Ũ−n/V−n = 0
for some (and hence any) other linearly independent solution Vn.

Acknowledgments. We thank Jim Pitman for many useful suggestions, and
thank Pat Fitzsimmons for suggesting to us that the results of Chacon and Jamison
as extended by Walsh could be used to prove Proposition 2.2, thereby strengthening
considerably the uniqueness result in an earlier version of the paper.
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[47] Küchler, U. (1985). Quasidiffusions, sojourn times and spectral measures.
C. R. Acad. Bulgare Sci. 38 1445–1448.
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[51] Küchler, U. and Salminen, P. (1989). On spectral measures of strings
and excursions of quasi diffusions. In Séminaire de Probabilités XXIII. Lecture
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