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Abstract: Statistical models incorporating change points are common in prac-
tice, especially in the area of biomedicine. This approach is appealing in that
a specific parameter is introduced to account for the abrupt change in the
response variable relating to a particular independent variable of interest. The
statistical challenge one encounters is that the likelihood function is not dif-
ferentiable with respect to this change point parameter. Consequently, the
conventional asymptotic properties for the maximum likelihood estimators fail
to hold in this situation. In this paper, we propose an estimating procedure for
estimating the change point along with other regression coefficients under the
generalized linear model framework. We show that the proposed estimators
enjoy the conventional asymptotic properties including consistency and nor-
mality. Simulation work we conducted suggests that it performs well for the
situations considered. We applied the proposed method to a case-control study
aimed to examine the relationship between the risk of myocardial infarction
and alcohol intake.

1. Introduction

The problems of detecting abrupt changes at unknown points and estimating the
locations of changes are known as the change point problem. The change point
problem occurs frequently in medical research. For example, cancer incidence rates
remain relatively stable for people at a younger age, but change drastically after a
certain age threshold (MacNeill and Mao [13]). The data obtained from a group of
preschool boys indicates that their weight/height ratio relates to their age in one
way before a certain age but that the functional relation of the two changes after-
wards (Gallant [8]). Another example arises from a study of the risk of myocardial
infarction(MI), which showed a sharp decrease in risk at low alcohol intakes and
a dramatic increase after reaching a certain amount of daily alcohol consumption
(Pastor and Guallar [16]). Although these examples each have distinctive features of
their own, the common theme here is that the relationship of the response variables
and a covariate of interest is subject to an abrupt change at a certain threshold.
Very often, scientists are interested in the threshold for clinical or preventive pur-
poses. The change point model is useful in that it purposely includes a parameter
to capture the notion of threshold.
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In this paper, we focus on the estimation of the change point in the so-called
broken-line regression models, where the regression function is assumed to be con-
tinuous at the point of change. Estimation for these type of models with normally
distributed responses has been developed by various authors. Sprent [18] was among
the first to discuss the estimation of the piecewise linear models. His interest in
this type of model is based on the observation that a biologist would often postu-
late a two-phase linear model over some alternatives such as the quadratic model
largely on intuitive grounds. Hinkley [10] considered the same two-phase straight
line model and derived the maximum likelihood estimator (MLE) of the change
point by its marginal likelihood function and presented the asymptotic distribution
of the estimator. Feder [7] studied the model in a more general framework and
proved the consistency of the least-squares estimators of the regression coefficients
and the change point. The estimators are asymptotically normal for some special
cases including models with all linear segments. Bhattacharya [2, 3] presented the
asymptotic properties of the change point and regression coefficient estimators using
a local log likelihood process approach. Through this approach, he showed the dis-
tinctive features of the asymptotic properties of the change point with and without
the continuity constraint at the point of change.

A major difficulty in estimating the change point as a parameter for regression
models is the nonsmoothness of the likelihood function with respect to the change
point considered as a parameter. Many authors tried to circumvent this problem
by using various smooth transitions between the two linear regimes, or using other
types of the function such as the quadratic function in one of the segments separated
by the change point. This technique was mostly used for the model with normally
distributed response variables. Gallant and Fuller [9] discussed such a model and
used a modified Gauss-Newton method to obtain the least squared estimates. The
simulation studies showed that the estimates obtained by this method work well,
but no asymptotic properties were presented in their work. Bacon and Watts [1]
proposed a model which can accommodate a smooth transition as well as an abrupt
change with a Bayesian estimation procedure to determine the parameter values. To
the best of our knowledge, with the exception of normal distributions, there is very
little research being done where the response variables are categorical. Furthermore,
the asymptotic properties of the estimators are virtually unavailable.

In Section 2, we propose an estimation procedure for the change point and the
corresponding regression coefficients in the framework of generalized linear mod-
els, and present the asymptotic properties of the proposed estimators. We discuss
in Section 3 some extensions of the estimation procedure to more general models
involving a change point. Section 4 discusses the choice of the bandwidth parame-
ter and the smoothing function for the proposed estimation procedure. Section 5
presents the simulation results to assess the finite sample performance of the pro-
posed method. In Section 6, we apply the proposed method to a data example from
the EURopean study on Antioxidant, Myocardial Infarction, and breast Cancer
(EURAMIC, Kardinaal et al. [12]) followed by discussion in Section 7. The proofs
of the propositions are given in the Appendices.

2. Proposed estimation procedure for the change point

Our approach is closely related to the density estimation, whereas the cumulative
distribution function (CDF) is estimated by the empirical distribution function
(EDF), but the density function cannot be estimated by the derivative of CDF,
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which in essence is a step function (Rao [17]). In density estimation, a kernel func-
tion (usually a known density function itself) is introduced to solve this problem by
making the EDF smooth and differentiable everywhere. The proposed estimation
procedure is directly motivated by the approach adopted by Horowitz [11] and in
the Econometrics literature. In particular, Manski [14] showed that the maximum
score estimator of the coefficient vector of a binary response model is consistent un-
der a weak distributional assumption. However, the asymptotic distribution of the
maximum score estimator was not presented since the objective function it maxi-
mizes is a step function. Horowitz [11] used a smooth version of the same objective
function to make it continuous and differentiable. The procedure produced an es-
timator that not only converges more rapidly but also has a tractable asymptotic
distribution.

For a sequence of random variables Yi, i = 1, . . . , n, having probability (density)
function of the form

(2.1) f(yi; θ) = c(yi)exp(θyi − b(θ)), c ≥ 0

with the natural link function, we consider the following model incorporating the
unknown change point τ as

(2.2) θ = g(μ) = β0 + β1x + β2(x − τ)+,

where a+ = aI(a > 0) and I(a > 0) is the indicator function, and β2 �= 0 for
identifiability of τ (Davies [5]). Here β0 and β1 are the intercept and the slope
relating the response variable Y , through the link function g, to the covariate x
for x ≤ τ, and β2 is the difference in slopes for the segments before and after the
change point τ . With the traditional likelihood approach, the likelihood function
is not differentiable with respect to the change point τ . Specifically, the indicator
function I(x > τ) is not differentiable with respect to τ . Consequently, one of the
regularity conditions for the usual asymptotic theory, namely, a certain degree of
smoothness of the objective function with respect to the parameters, is violated. To
circumvent this critical problem, define a continuous function K(·) which satisfies

1. |K(u)| < M for some M, 0 < M < ∞ and u ∈ (−∞,∞).
2. lim

u→−∞
K(u) = 0 and lim

u→∞
K(u) = 1.

We propose to estimate the change point τ as well as the regression coefficients
β0, β1 and β2 by maximizing the following objective function:

Qn(β, τ) =
n∑

i=1

[yi{β0 + β1xi + β2(xi − τ)K(
xi − τ

hn
)}

− b(β0 + β1xi + β2(xi − τ)K(
xi − τ

hn
))]

=
n∑

i=1

qi(β, τ),

where {hn : n = 1, 2, . . .} is a sequence of positive numbers satisfying lim
n→∞

hn = 0.

Here K(·) is analogous to a cumulative distribution function rather than a den-
sity function, the latter being more commonly used in problems such as density
estimation.
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Note that the difference between this objective function Qn and the otherwise
usual log-likelihood function is that the indicator function I(x > τ) in the likelihood
function is replaced by the smoothing function K((x − τ)/hn). It is clear that the
objective function Qn is twice differentiable with respect to all parameters, and
with some suitable conditions on the distribution for x, K((x − τ)/hn) converges
to I(x > τ) uniformly as n → ∞. As shown below, these two factors play key roles
in the asymptotic behavior of the estimates which maximize Qn.

Define

δ = (β, τ) = (β0, β1, β2, τ),

Sn(δ) = 	Qn(δ) = (
∂Qn(β, τ)

∂β0
,
∂Qn(β, τ)

∂β1
,
∂Qn(β, τ)

∂β2
,
∂Qn(β, τ)

∂τ
)t,

Σn(β, τ) = covβ,τSn(β, τ)

and

Jn(β, τ) = −	Sn(δ).

Note that we use the conditions imposed on the limiting configuration of the
covariate X, similar to those of Bhattacharya [3]. Suppose that there is a function
F with α = F (τ0), for x1 ≤ x2 · · · ,≤ xnα ≤ τ ≤ xnα+1 ≤ · · · ≤ xn, and as n → ∞,

(2.3) (nα)−1
nα∑
i=1

(
1 xi

xi x2
i

)
→

(
1 μ1

μ1 μ2
1 + σ2

1

)
,

(2.4) (n − nα)−1
n∑

i=nα+1

(
1 xi

xi x2
i

)
→

(
1 μ2

μ2 μ2
2 + σ2

2

)
.

Following Fahrmeir and Kaufmann [6], to ensure the asymptotic normality of δ̂,
some additional assumptions are needed. Specifically, define a neighborhood of true
parameter values δ0 = (β0

0 , β0
1 , β0

2 , τ0) as

Nn(ω) = {δ : ||(Σ1/2
n )t(δ − δ0)|| ≤ ω}, n = 1, 2, . . . ,

where ω > 0, Σn is simplified for Σn(δ0), and Σ1/2
n is defined as the square root of

positive definite matrix Σn such that Σn = Σ1/2
n (Σ1/2

n )t. The conditions are

(I) limn→∞
1
nΣn = Σ, where Σ is finite and positive definite.

(II) For all ω > 0, max
δ∈Nn(ω)

||Vn(δ) − I|| → 0 in probability under both measures

Pδ0 and Pδn with δn = δ0 + ω(Σ−1/2
n )tλ, where Vn(δ) = Σ−1/2

n Jn(δ)(Σ−1/2
n )t

and λ′λ = 1.
(III) g(·) is twice continuously differentiable g(·), g′(·) and g′′(·) are bounded.

Proposition 1 (Asymptotic normality). Let δ̂ = (β̂, τ̂) be the estimators which
maximize the objective function Qn(β, τ) and δ0 be the true value of δ, then under
some regularity conditions and given that

(i) Xi is assumed to be bounded, where i = 1, . . . , n;
(ii) lim

n→∞
P (|Xn − τ | < ε) = 0 for some ε > 0; and

(iii) lim
n→∞

1
n

n∑
i=1

E{logf(Yi; β, τ, xi); β0, τ0} < ∞



On estimating the change point 309

the normed estimator for δ is asymptotically normal, i.e.,

Σn
−1/2Jn(β̂0 − β0

0 , β̂1 − β0
1 , β̂2 − β0

2 , τ̂ − τ0)t D∼ N(0, I4).

Or equivalently, by the results of Lemma B.1 in Appendix B.

√
n(β̂0 − β0

0 , β̂1 − β0
1 , β̂2 − β0

2 , τ̂ − τ0)t D∼ N(0, Σ−1).

Proof of Proposition 1 is given in the Appendices.

3. Some extensions

The model (2.2) discussed so far involves two straight lines, which is characterized in
the literature as broken line regression or joint point models. Straight line describes
the abrupt change mechanism more distinctively than other types of models. As
discussed in the introductory section, some authors (e.g., Pastor and Guallar [16];
Gallant [8]) used a quadratic-linear or linear-quadratic model to characterize the
change point. For example, a linear-quadratic model is expressed as

(3.1) g(μi) = β0 + β1xi + β2(xi − τ)2I(xi ≥ τ).

A quadratic-linear model can be expressed similarly by changing the indicator func-
tion to I(xi < τ). The advantage of this type of model, specifically, is that for
estimation purposes the likelihood function has the first derivative with respect
to the change point. Thus the Fisher information can be derived as the covari-
ance of the score function. However, the usual asymptotic properties still cannot
go through.

Since both linear-linear and linear-quadratic (or quadratic-linear) models face
the same non-differentiability problem in τ , the approach proposed in section 2 can
be easily adopted and extended to the latter situation.
Corollary 1. Replacing the term xi − τ by (xi − τ)2 in Qn, and with the regularity
conditions tailored to such a replacement, the resulting estimators of (β0, β1, β2, τ)
for model (3.1) are consistent and asymptotically normal.

The proof is similar to that of the linear-linear model and is omitted. In model
(2.2), we have assumed that there is only one independent variable, which involves
the change point. This method can be easily extended to situations where adjust-
ment for additional independent variables is needed. Specifically, suppose there are
k additional variables z1, . . . , zk, the systematic component part of a generalized
linear model can be modified as

g(μi) = β0 + β1xi + β2(xi − τ)+ + γ1z1 + · · · + γkzk.

The asymptotic properties of the estimators for γ and δ are similar to those in
model (2.2) without additional independent variables and are thus omitted.

4. Computational issues

The estimation of the parameters (β0, β1, β2, τ) involves the value of the bandwidth
parameter hn. For a smoothed maximum estimator of a binary response model,
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Horowitz [11] suggested choosing bandwidth hn ∝ n−1/(2m+1), where m is the
order of the kernel K ′(·) defined as the integer satisfying the following

(4.1)
∫ ∞

−∞
viK ′(v)dv =

{
0, if i < m,
d(nonzero), if i = m.

In our asymptotic analysis, with K(·) appearing as a single term in some of
the elements of the hessian matrix, the form of hn does not appear to affect the
asymptotic properties of the estimators as long as hn → 0 when n → ∞ and meets
the restriction as follows.

A sufficient condition for the uniform convergence of K((xi−τ)/hn) → I(xi > τ),
is (xi − τ)/hn → ±∞ for all i = 1, . . . , n. Generally, in order to satisfy the above
conditions, we need to have hn << min(|xi − xj |, 1 ≤ i, j ≤ n). Specifically, in the
iteration procedure to estimate the parameters, hn needs to be small enough so
that the negative hessian matrices are positive definite.

It is recognized in the density estimation literature that the choice of the smooth-
ing function does not affect the asymptotic properties of the density estimator. In
the simulation that follows, we are listing the results where K(·) is chosen as the
cumulative distribution function of the standard normal distribution. We have also
conducted the simulation with K(·) as the cumulative distribution function of the
exponential distribution. Results concerning the distribution of the estimators and
the actual estimated values are very similar for the two different K(·). However, for
the same n, hn can be chosen as a function of n that approaches 0 in a slower rate
with K(·) being the exponential cumulative distribution function for the algorithm
to converge. This is consistent with the conditions (a) and (b) in Lemma B.1, i.e.,
{(x−τ)/hn}K ′((x−τ)/hn) → 0 and {(x−τ)/hn}2K ′′((x−τ)/hn) → 0 as n → ∞.
Note that x − τ is bounded. This is equivalent to requiring hn to converge to 0 in
a relatively slower rate than K ′(∞) and K ′′(∞). Since the exponential density at
the tail converges to 0 at a slower rate than the normal density, the corresponding
hn can be chosen this way as well.

We have found in our simulations that the objective function Qn when evaluated
at the true values β0

0 , β0
1 , β0

2 , a function of τ , is rather flat around the true change
point value τ0. In dealing with this issue, aside from having a small tolerance level
(10−5 at most) for convergence, another crucial issue in actually carrying out the
estimation algorithm is to choose the initial values of the parameters β0, β1, β2

and τ . In our simulations in section 5 and the example in section 6, for the data
generated, we first made some graphs of nonparametric models such as the LOESS
model, then we chose a number of τi, i = 1, . . . , I, which on the graph are near the
potential change point. Next we consider the GLM models. With the fixed change
point valued at τi, the corresponding β(τi) values were then obtained using ordinary
GLM fitting software. τp = arg maxτi Qn(β(τi), τi) is chosen as the initial estimate
for τ , and β(τp) as the initial values for β = (β0, β1, β2).

After replacing the indicator function in the likelihood function with the smooth-
ing function K(·), the model can be categorized as having nonlinear parameters.
For easy calculation, according to section 11.4 in McCullagh and Nelder [15], model
(2.2) can be approximated by

g(μi) = β0 + β1xi + β2ui + cvi,

where u = (x − τ0)K(x−τ0
hn

), v = −{K(x−τ0
hn

) + x−τ0
hn

K ′(x−τ0
hn

)} and τ0 is an initial
value of τ , which supposedly is close to true τ .
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After this approximation, the coefficient estimates as well as their covariance
matrix can be easily obtained by regular software. The estimated τ is then τ̂ =
τ0 − ĉ/β̂2, and the approximate standard error by the delta method is
{(1/β̂2,−ĉ/β̂2

2)cov(ĉ, β̂2)(1/β̂2,−ĉ/β̂2
2)t)}1/2. As illustrated in our simulations, the

value of the standard error obtained by this approach is similar to the one obtained
by the formula supplied in Proposition 1. Hence, from a practical viewpoint, the
proposed method is readily implemented in software packages such as SAS and R.

5. Simulation studies

Simulation studies were conducted to examine the finite sample performance of
the proposed estimating procedure. Specifically, normal data with identity link and
binary data with logit link incorporating a change point were considered in the
simulations.

For the general linear model, we assume that the response variable is normally
distributed with constant variance σ2 = 1, and that the independent variable X fol-
lows a uniform distribution with a range of [−2, 2]. We generated the data according
to

μ(x) = E(Y |x) = 2 + 3x − 5(x − 0.5)+.

In this model, the change point in which the relationship between Y and x changes
is set at τ = 0.5. For each of the 1000 replications, we generated a sample of n=500
independent observations from the distribution N(μ(x), 1). The mean, median and
standard deviation of δ̂ proposed in section 2 as well as their average standard
errors calculated based on Proposition 1 are presented in Table 1. As discussed in
Section 4, results of the estimated values as well as the precision of the estimates are
not sensitive to the choice of the smoothing function. The smoothing function used
in this simulation is K(u) = 1/(2π)1/2

∫ u

−∞ e−t2/2dt, and the smoothing parameter
hn is set to be n−2. The average s.e. by Delta method in the table is referring to the
standard error obtained via the formula discussed in section 4. Note that the mean
and median of the estimates are very close to the true values. This, along with the
fact that the average standard errors are very similar to the corresponding sample
standard deviation of the estimates suggests that our estimators converge to the
true values and the normal approximation for the distribution of the estimators is
valid.

The empirical coverage probabilities for δ, which in this simulation are the pro-
portion of the 95% confidence intervals (calculated by the usual estimate ±1.96se)

Table 1

Estimates of the change point and the β′s from 1000 simulated samples of 500 observations for
normal response variable with identity link

Parameters β0 β1 β2 τ
True Value 2 3 −5 0.5
Mean 1.980 2.983 −4.977 0.503
Median 1.978 2.983 −4.972 0.505
S.D. 0.074 0.076 0.208 0.039
Average s.e. by Proposition 1 0.082 0.078 0.188 0.037
Average s.e. by Delta method 0.076 0.074 0.202 0.040
Empirical coverage probability(%)
of normal CI 95.9 95.4 92.8 94.2
Empirical coverage probability
of bootstrapped CI (%) 92.6 93.3 93.0 94.4
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Fig 1. Q-Q plots of the sampling distribution of the estimates from Table 1.

for the 100 random samples containing δ, by and large, are close to the nominal
95% level. In addition, the bootstrapped confidence intervals are also obtained fol-
lowing the bootstrap resampling scheme suggested by Boukai [4]. For each of the
random samples (Xi, Yi), i = 1, . . . , n, first the change point τ as well as other
parameters were estimated according to the proposed estimation procedure. The
bootstrapping resample (X∗

i , Y ∗
i ), i = 1, . . . , n was then generated in such a way

that (X∗
i , Y ∗

i ), i ≤ [τ̂ ] are from (Xi, Yi), i ≤ [τ̂ ], and the rest (X∗
i , Y ∗

i ), [τ̂ ] < i ≤ n
are from (Xi, Yi), [τ̂ ] < i ≤ n, where [a] is defined as the nearest integer to a. We
obtained 1000 such resamples for each of the 1000 original random samples, and
then the empirical 95% bootstrap confidence interval was obtained following the
application of the proposed estimation procedure to these resamples. The propor-
tions of these 1000 bootstrap confidence intervals containing the true parameter
values of δ are listed in Table 1 as the coverage probabilities of the bootstrapped
CI’s, which are reasonably close to the coverage probabilities of the normal CI and
hence the nominal 95% level.

The Q-Q plots for the estimated β and the change point τ in Figure 1 also
show that the sampling distributions of these estimators are close to the normal
distributions. Results in Table 1 and Figure 1 suggest that the asymptotic normality
of the estimators is well supported by the findings via this simulation.

For the logistic regression, we generated the regressor X from a uniform distrib-
ution U(−2, 2), and the binary response variable Y according to

pr(Y = 1|x) = 1/[1 + exp{−(2 + 3x − 5(x − 0.5)+)}].

As in the normal response case, we also generated a random sample of 500 from
this model with 1000 replications. The smoothing parameter used here is hn = n−3.
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Table 2

Estimates of the change point and the β′s from 1000 simulated samples of 500 observations for
the binary response variable with logit link

Parameters β0 β1 β2 τ
True Value 2 3 −5 0.5
Mean 2.029 3.036 −5.058 0.490
Median 2.014 3.023 −5.037 0.487
S.D. 0.282 0.333 0.647 0.146
Average s.e. by Proposition 1 0.273 0.322 0.668 0.145
Average s.e. by Delta method 0.280 0.329 0.642 0.154
Empirical coverage probability(%)
of normal CI 94.9 95.5 95.3 96.0
Empirical coverage probability
of bootstrapped CI (%) 93.0 94.5 93.8 94.9

Fig 2. Q-Q plots of the sampling distribution of the estimates from Table 2.

Results as shown in Table 2 and Figure 2 suggest that similar conclusions can be
obtained for binary data as well.

6. An example: The EURAMIC study

In this section, we applied, as an illustration, the proposed estimating method in
Section 2 to the data from the EURAMIC study (EURopean study on Antioxidants,
Myocardial Infarction, and Breast Cancer). The EURAMIC study (Kardinaal et al.
[12]) is an international case-control study conducted in eight European countries
and Israel, which was designed primarily to evaluate the association of antioxidants
with the risk of developing a first myocardial infarction (MI) in men aged older
than 70. Our example focuses on the portion of the data involving the dose-response
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Table 3

Parameter estimates and their standard error estimates (when available) and 95% confidence
intervals relating alcohol intake to the risk of MI in the EURAMIC study

Parameter β0 β1 β2 τ
(s.e.)
(95% C.I.)
Pastor and Guallar [16] 0.008 0.009 13.118

(0.000, 0.021) (0.001, 0.084) (4.679, 50.062)
−11.64 0.008 0.009 13.10

Proposed method (1.49) (0.004) (0.007) (4.68)
(−14.57,−8.71) (0.0002, 0.016) (−0.005, 0.022) (3.94, 22.27)

of alcohol intake and risk of myocardial infarction. For comparison purposes, we
used the same sample as in Pastor and Guallar [16], who entertained the change
point model. In this sample, there are 330 cases who had a confirmed diagnosis of
first acute MI and 441 controls who were obtained through several random sample
schemes. The primary risk factor is alcohol intake during the year before the study
took place. It is well-recognized in the literature that the risk of MI as a function
of alcohol intake is J-shaped. To capture this phenomenon, Pastor and Guallar [16]
have fitted a quadratic-linear model to relate the risk of MI, in logit scale, to alcohol
intake, adjusting for other covariates including age, smoking status, waist-hip ratio,
history of diabetes, history of hypertension, family history of coronary disease and
the dummy variables identifying the medical centers where the data were obtained.

Table 3 shows the estimates and their confidence intervals reported by Pastor
and Guallar [16]. The approach they took is likelihood ratio-based using the original
likelihood which has only the continuous first derivative with regard to τ . In their
approach, the authors estimated the regression coefficients and τ by maximizing
the likelihood function without smoothing. Recognizing the breakdown of the con-
ventional asymptotic results, they computed the likelihood ratio-based confidence
intervals for τ and other parameters.

Also presented in Table 3 are results using the proposed estimating method. Here
K(·) is chosen to be the cumulative distribution function of the standard normal
random variable, and hn = n−3, where n = 771, the total sample size for this
data set. Both approaches give rise to very similar point estimates for the change
point τ as well as the β coefficients. Specifically, the threshold for which the risk of
MI changes its direction is estimated at 13.1(±4.68) grams per day. However, the
confidence intervals of τ are rather different from each other. While the approach
by Pastor and Guallar [16] did not completely address the problem resulting from
the nonsmoothness of the likelihood function with respect to the change point
parameter, our estimated confidence interval for τ (τ̂ ± 1.96s.e.) is based on a valid
asymptotic theory and, at least for this example, provides a much tighter interval for
investigators to pinpoint the point where the well-known protective alcohol intake
effect may be reversed.

7. Discussion

Many approaches have been suggested to capture the phenomenon of abrupt change
in relating the response variable to a particular independent variable. These include
non-parametric smoothing and transforming or categorizing the continuous inde-
pendent variables, etc. Like other approaches, the change point model is unlikely
to fully capture the underlying mechanism. This approach, however, is appealing
in that a specific parameter, τ in this case, is introduced to quantify the scientific
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objective of interest. In the alcohol intake and risk of MI example discussed above,
by estimating the threshold for alcohol intake where the risk of MI is apparently
heightened and the direction altered, the clinician is in a position to inform pa-
tients at risk the maximum allowable level of daily alcohol consumption. In fact,
clinical advice as such is given daily to patients at risk for various diseases. There-
fore, obtaining more precise estimates for these threshold values via the change
point models rather than giving a simple cutoff point via conventional wisdom or
experience would have significant clinical implications for health care practice.

On the other hand, the introduction of the change point parameter into the
statistical model brings intriguing theoretical difficulties in both detection and es-
timation of such phenomenon. Our primary objective in this paper is to provide
an estimate for the change point with desirable asymptotic properties under the
GLM framework. The consistency and the asymptotic normality of the proposed
estimators, whose variance can be easily estimated, enhances the opportunity for
researchers to make statistical inference on the change point parameter.

Our approach of using the modified objective function eliminates the nonsmooth-
ness problem with the change point parameter in the likelihood function. Similar
modification can be applied to the situation where only the first two moments of the
response variable is available, and the full knowledge of the probabilistic mechanism
is absent. This work will be reported elsewhere.

Appendix A: Proof of consistency

First, we state the consistency of the estimators, which is needed in the proof
asymptotic normality, as
Proposition A.1 (Consistency). Let δ̂ = (β̂, τ̂) be the estimators which maxi-
mize the objective function Qn(β, τ) and δ0 be the true value of δ, then under some
regularity conditions and given (i),(ii) and (iii), δ̂ converges in probability to δ0,
i.e., δ̂

P→ δ0 = (β0, τ0).
To show the consistency of the estimators maximizing the objective function

Qn(β, τ), we need the following lemma.
Lemma A.1. For a sequence of random variables Yi satisfying (2.2), with the same
conditions as in Proposition A.1,

(A) sup
(β,τ)

1
n
|Qn(β, τ) − ln(β, τ)| P→ 0.

Proof. First, under the condition lim
n→∞

P (|Xn − τ | < ε) = 0, ε > 0, there exists a

N > 0, s.t. for n > N, P (|Xn − τ | < ε) < η, for any η > 0. K(xi−τ
hn

) → I(xi > τ)
uniformly for i > N . In addition, if |Xi − τ | ≥ ε and K(·) satisfies equation (4.1),
it can be easily shown

(A.1) K(
xi − τ

hn
) = I(xi > τ) + o(hm

n ).

Note that b′(·) = g−1(·),

D =
1
n

(Qn(β, τ) − ln(β, τ))

=
1
n

n∑
i=1

(Yi − g−1(θ∗))β2(xi − τ)(K(
xi − τ

hn
) − I(xi > τ)),
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where |θ∗i − (β0 + β1 + β2(xi − τ)+)| < |β2(K(xi−τ
hn

) − I(xi > τ))|.

D =
1
n

N∑
i=1

(Yi − g−1(θ∗))β2(xi − τ)(K(
xi − τ

hn
) − I(xi > τ))I(|xi − τ | < ε)

+
1
n

n∑
i=N+1

(Yi − g−1(θ∗))β2(xi − τ)(K(
xi − τ

hn
) − I(xi > τ))I(|xi − τ | < ε)

+
1
n

n∑
i=1

(Yi − g−1(θ∗))β2(xi − τ)(K(
xi − τ

hn
) − I(xi > τ))I(|xi − τ | ≥ ε).

Since var(Yi) < ∞, by the weak law of large numbers,

1
n

n∑
i=1

[Yi − E(Yi)]
P→ lim

n→∞

1
n

n∑
i=1

E[Yi − E(Yi)] < ∞.

With some constant C > 0, combining this with the condition P (|Xn − τ | < ε) → 0
as n → ∞,

sup
(β,τ)

1
n
|Qn(β, τ) − ln(β, τ)| ≤ sup

(β,τ)

1
n
|

N∑
i=1

[Yi − g−1(θ∗)]| · 2C · 1

+ sup
(β,τ)

1
n
|

n∑
i=N+1

[Yi − g−1(θ∗)]| · 2C · η

+ sup
(β,τ)

1
n
|

n∑
i=1

[Yi − g−1(θ∗)]| · C · o(hm
n ) · 1.

Since N is finite, the first term converges to 0 as n → ∞, and η can be made
arbitrarily small, hence we have

sup
(β,τ)

1
n
|Qn(β, τ) − ln(β, τ)| P→ 0.

Proof of Proposition A.1. The log likelihood function for the observed Y ′s is

ln(β, τ) =
n∑

i=1

logf(Yi; β, τ, xi)

=
n∑

i=1

[Yi{β0 + β1xi + β2(xi − τ)+}

− b(β0 + β1xi + β2(xi − τ)+) + logc(Yi)].

By the weak law of large numbers, 1
n

∑n
i=1[logf(Yi; β, τ, xi)−E{logf(Yi; β, τ, xi); β0,

τ0}] p→ 0.
Let

l0(β, τ) = lim
n→∞

1
n

n∑
i=1

E{logf(Yi; β, τ, xi); β0, τ0}.
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By Jensen’s inequality, and since

E{ exp(Y (β0 + β1x + β2(x − τ)+) − b(β0 + β1x + β2(x − τ)+) + c(Y ))
exp(Y (β0

0 + β0
1x + β0

2(x − τ0)+) − b(β0
0 + β0

1x + β0
2(x − τ0)+) + c(Y ))

;

β0, τ0} = 1,

then

E{−log(
exp(Y (β0 + β1x + β2(x − τ)+) − b(β0 + β1x + β2(x − τ)+) + c(Y ))

exp(Y (β0
0 + β0

1x + β0
2(x − τ0)+) − b(β0

0 + β0
1x + β0

2(x − τ0)+) + c(Y ))
);

β0, τ0}
> 0.

Hence we have:

(B) l0(β, τ) maximizes at the true parameter values (β0, τ0).
(C) If X ′s are bounded, and (β, τ) ∈ is a compact set, it follows that since Y (β0 +

β1X + β2(x − τ)+) − b(β0 + β1x + β2(x − τ)+) ≤ M |Y | + N and E[|Y |] < ∞,
similarly, as in the proof for consistency of maximum likelihood estimator, we
have

(D) sup
(β,τ)

| 1
n

ln(β, τ) − l0(β, τ)| P→ 0.

(E) l0(β, τ) is continuous in (β, τ).

By (A), (D) and the triangle inequality,

sup
(β,τ)

| 1
n

Qn(β, τ) − l0(β, τ)| ≤ sup
(β,τ)

| 1
n

(Qn(β, τ) − ln(β, τ))|

+ sup
(β,τ)

| 1
n

ln(β, τ) − l0(β, τ)| P→ 0

This implies that Qn(β, τ) satisfies the hypothesis of Theorem 4.1.1 of Amemiya
(1985). Hence we have δ̂

P→ δ0.

Appendix B: Proof of asymptotic normality

In this appendix, we prove Proposition 1. We first introduce the expressions of
Hessian matrix elements and some lemmas needed to prove Proposition 1. Aside
from the conditions stated in the lemmas, the same regularity conditions as in
Proposition 1 are implied as well.

For notational purposes, let θi = β0 + β1xi + β2(xi − τ)K(xi−τ
hn

), then

Sn(δ) =
n∑

i=1

∂qi(δ)
∂θi

∂θi

∂δ

and

Jn(δ) = −
n∑

i=1

{∂2qi(δ)
∂θ2

i

∂θi

∂δ
(
∂θi

∂δ
)t +

∂qi(δ)
∂θi

∂2θi

∂δ2
},

where
∂qi(δ)
∂θi

= yi − g−1(θi),
∂2qi(δ)

∂θ2
i

= −(g−1)′(θi),
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∂θi

∂δ
= (1, xi, (xi − τ)K(

xi − τ

hn
),−β2(K(

xi − τ

hn
) +

xi − τ

hn
K ′(

xi − τ

hn
)))t,

and the nonzero elements of the matrix ∂2θi

∂δ2 are

∂2θi

∂δ2
[3, 4] =

∂2θi

∂δ2
[4, 3] = −{K(

xi − τ

hn
) +

xi − τ

hn
K ′(

xi − τ

hn
)},

∂2θi

∂δ2
[4, 4] = β2{

2
hn

K ′(
xi − τ

hn
) +

xi − τ

h2
n

K ′′(
xi − τ

hn
)}.

Lemma B.1. Suppose that

(a) supu K ′(u) ≤ M < ∞, and |u|K ′(u) → 0 as |u| → ∞,
(b) supuK ′′(u) ≤ M < ∞, and u2K ′′(u) → 0 as |u| → ∞,

and under conditions (I), (II) and (III), matrix 1
nJn converges element-wise in

probability to

lim
n→∞

1
n

Σn = Σ.

Proof. Note that there are basically three different types of terms that need to be
considered in both matrices Jn/n and Σn/n. First, 1

n

∑n
i=1(g

−1)′(θi)xk
i K(xi−τ

hn
) for

k = 0, 1, 2. Under the conditions (i), (ii) and condition (III) on the link function g(·)
along with equations (2.3) and (2.4), the above terms converge to finite numbers
as n → ∞, with the same arguments in proof of Lemma A.1.

Similarly, by condition (a) and the similar argument in Lemma A.1, as n → ∞,
the term

1
n

n∑
i=1

(g−1)′(θi)
xi − τ

hn
K ′(

xi − τ

hn
) → 0.

Lastly, note that for the natural link function, most elements of matrices Σn

and Jn are identical and free of Y ′s except elements Jn[3, 4], Jn[4, 3] and Jn[4, 4],
which are ∂2Qn(β, τ)/∂β2∂τ, ∂2Qn(β, τ)/∂τ∂β2 and ∂2Qn(β, τ)/∂τ2, respectively.
Both the terms in ∂2Qn(β, τ)/∂β2∂τ and in ∂2Qn(β, τ)/∂τ2 involving Y ′s can be
shown to approach 0 as n → ∞. Therefore, 1

nΣn and 1
nJn converge to the same

matrix Σ.

Lemma B.2. Under conditions (I) and (II), the normed estimating function is
asymptotically normal,

Σ−1/2
n Sn

D∼ N(0, I4).

Proof. For fixed ω > 0 and the unit vector λ,λ′λ = 1, we have the sequence
δn = δ0 + ω(Σ−1/2

n )tλ ∈ Nn(ω). The Taylor expansion of the objective function is

Qn(δn) = Qn(δ0) + (δn − δ0)′Sn − (δn − δ0)′Jn(δ̃n)(δn − δ0)/2,

||δ̃ − δ0|| < ||δn − δ0||.

Taking exponential and rearranging,

exp{(λ′Vn(δ̃n)λω2/2) + Qn(δn)} = exp{(ωλ′Σ−1/2
n Sn) + Qn(δ0)}.

Hence,

exp{(λ′Vn(δ̃n)λω2/2)}exp{Qn(δn)}
exp{ln(δn)} Ln(δn)

(B.1)
= exp{(ωλ′Σ−1/2

n Sn)}exp{Qn(δ0)}
exp{ln(δ0)} Ln(δ0),
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where Ln(·) denotes the likelihood function of Y. By Lemma A.1, sup
(β,τ)

1
n
|Qn(δ) −

ln(δ)| → 0, and by condition (II), we have for any ε > 0, there exists n1 > 0, such
that for n ≥ n1,

|exp(λ′Vn(δ̃n)λω2/2) − exp(ω2/2)| < ε,

hence

|E[exp(λ′Vn(δ̃n)λω2/2)] − exp(ω2/2)|
≤ E[|exp(λ′Vn(δ̃n)λω2/2) − exp(ω2/2)|] < ε.

The expectation of the left side of (B.1) converges to the moment-generating func-
tion of the standard normal. It follows that the expectation of the right side of (B.1)
also converges to exp(ω2/2). Thus, λ′Σ−1/2

n Sn is asymptotically standard normal,
that is

Σ−1/2
n Sn

D∼ N(0, I4).

Finally, proof of Proposition 1 completes with

0 = Sn(δ̂) = Sn − Jn(δ∗)(δ̂ − δ0), ||δ∗ − δ0|| < ||δ̂ − δ0||,

Lemma B.1 along with condition (II), and consistency of δ̂ stated in Proposition A.1.
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