
Internet Mathematics Vol. 2, No. 4: 407-429

Codes for the
World Wide Web
Paolo Boldi and Sebastiano Vigna

Abstract. We introduce a new family of simple, complete instantaneous codes for
positive integers, called ζ codes, which are suitable for integers distributed as a power
law with small exponent (smaller than 2). The main motivation for the introduction
of ζ codes comes from web-graph compression: if nodes are numbered according to
URL lexicographical order, gaps in successor lists are distributed according to a power
law with small exponent. We give estimates of the expected length of ζ codes against
power-law distributions, and compare the results with analogous estimates for the more
classical γ, δ and variable-length block codes.

1. Introduction

Studying web graphs1 is often difficult due to their large size. Recently, several
proposals have been published presenting different approaches to store a web
graph in memory using a limited space, by exploiting both standard and ad hoc
compression techniques.

In particular, the authors of the LINK database [Randall et al. 01] observed
that if we order URLs lexicographically, successor lists (ordered so that they are
monotonically increasing) tend to have small gaps between consecutive succes-
sors. Thus, instead of storing the successors explicitly, we can store their gaps
using standard methods from full-text index construction, where it is customary
to use integer variable-length instantaneous codes that assign shorter represen-
tations to smaller integers (examples of these codes may be found in Section 3).

1Recall that the web graph has web pages as nodes and that y is a successor of x (said
otherwise, there is an arc from x to y) whenever there is a hypertext link in page x pointing
at page y. The transpose of the web graph, instead, has all arcs reversed (i.e., there is an arc
from x to y whenever there is a hypertext link in page y pointing at page x).

© A K Peters, Ltd.
1542-7951/05 $0.50 per page 407

408 Internet Mathematics

WebGraph [Boldi and Vigna 04] is a project that follows this research path:
it is a framework that provides simple methods to manage very large graphs,
specially tailored around web graphs. More precisely, results of this project
currently include the following:

1. A set of simple codes, called ζ codes, which are particularly suitable for
storing web graphs (or, in general, integers with a power-law distribution
in a certain exponent range). This paper defines ζ codes and estimates
their expected length against power-law distributions.

2. Algorithms for compressing web graphs that exploit gap compression and
differential compression (à la LINK [Randall et al. 01]; see also [Adler
and Mitzenmacher 01] for a more in-depth theoretical analysis), interval-
isation and ζ codes to provide a high compression ratio, and algorithms
for accessing a compressed graph without actually decompressing it, using
lazy techniques that delay the decompression until it is actually necessary.
They have been described elsewhere [Boldi and Vigna 04].

3. A complete, commented implementation of the above algorithms in Java,
contained in the package it.unimi.dsi.webgraph. Besides a clearly de-
fined API, the package contains several classes that allow one to modify
(e.g., transpose) or recompress a graph and so to experiment with var-
ious settings. It is distributed as free software under the Gnu GPL at
http://webgraph.dsi.unimi.it/.

4. Data sets for very large graphs (e.g., a billion of links). These are either
derived from public sources (such as WebBase [Hirai et al. 00]) or gathered
with UbiCrawler [Boldi et al. 04].

During the development of WebGraph, the following question arose naturally:
which is the best simple code for gaps? To choose a good way to compress gaps
one has first to establish their distribution, and empirical evidence suggests that
gaps of web graphs are distributed as a power law with an exponent in the range
[1.1, 1.3]. Of course, an optimal code for such a distribution may be obtained
using standard techniques such as Huffman coding, but due to the preposterous
number of codewords (gaps may be as large as the number of nodes, and web
graphs may have billions of nodes), this solution is not feasible: we need a simple
code, that is, a code such that the codeword for x can be computed quickly
without storing a dictionary.

Among the classical codes (see, again, Section 3) Elias’ γ is suitable to encode
integers distributed following power laws of exponent close to two, whereas Elias’
δ is a natural choice when the exponent is close to one [Witten et al. 99]. Other

Boldi and Vigna: Codes for the World Wide Web 409

powerful codes used in full-text indexing, such as Golomb codes, are not useful,
as they are targeted toward exponentially decaying distributions that do not
appear in practice in web graphs.

In other words, we are searching for codes whose intended behaviour lies be-
tween that of γ and of δ, that is, codes suitable for a power law with exponent
between one and two. Variable-length block codes are sometimes used for this
purpose [Randall et al. 01], but they are unsatisfactory from a theoretical and
practical viewpoint because they are not optimal.

Motivated by this observation, we introduce a new class of simple codes, called
ζ codes, designed for power-law distributions with small exponent (less than 1.6).
Then, we compare γ, δ, ζ, and variable-length block codes by estimating their ex-
pected length against power-law distributions. The distributions we consider are
heavy-tailed, so expected lengths give a very useful indication of the performance
of the codes; nonetheless, the reader should not be surprised if experimenting
with less than 109 codewords produces different results, especially with very
small exponents. On the other hand, the web graph grows very quickly, so we
think that estimating the expected length is a good practical measure of fitness.

Finally, we report experimental data obtained within the WebGraph frame-
work that validate our theoretical analysis. We present comparative results
about the number of bits per link necessary to code the WebBase graph [Hi-
rai et al. 00] and a snapshot of the .uk domain of about 18,500,000 pages
crawled by UbiCrawler [Boldi et al. 04]. These data are publicly available at
http://webgraph.dsi.unimi.it/ and can be used to perform experiments within
the WebGraph framework [Boldi and Vigna 04].

2. Power-Law Distributions

We consider the problem of determining a good instantaneous binary code for
positive integers distributed as follows:2

Zα[x] =
1

ζ(α)xα
.

2In the rest of the paper, we use log to denote binary logarithms and ln to denote natural
logarithms; ζ denotes the Riemann zeta function.

410 Internet Mathematics

Figure 1. Distribution of gaps in a 18.5 Mpages snapshot of the .uk domain. The
scale is logarithmic on both axes, and the line displays Z1.21.

Figure 2. Distribution of gaps in the transpose of a 18.5 Mpages snapshot of the
.uk domain. The scale is logarithmic on both axes, and the line displays Z1.20

(modulo a scaling factor).

Boldi and Vigna: Codes for the World Wide Web 411

This is known as the power-law or Zipf 3 distribution with exponent α > 1. The
entropy Hα of Zα is

Hα = −
∞∑

x=1

log
(

1
ζ(α)xα

)
1

ζ(α)xα

=
1

ζ(α)

∞∑
x=1

(log ζ(α) + α log x)
1
xα

=
1

ζ(α)

(∞∑
x=1

log ζ(α)
xα

+ α
∞∑

x=1

log x

xα

)

= log ζ(α) − α

ln 2
ζ ′(α)
ζ(α)

.

Power-law distributions are well known in the web-graph community: many
graph-theoretical parameters, such as indegrees, have been experimentally shown
to have a power law distribution [Broder et al. 00].

Interestingly, the same phenomenon arises when developing techniques for
compressing the web graph. Since the seminal work related to the LINK database
[Randall et al. 01], it is known that by ordering lexicographically the URLs of a
web graph one obtains ordered sequences of successors with small gaps between
adjacent successors; understanding the distribution of such gaps is essential when
choosing a good code for them.

Indeed, gathering compression statistics using WebGraph, we obtained graphs
such as those of Figure 1 and Figure 2, which show gaps strictly following a
power-law distribution with exponent α ≈ 1.2 for the graph, and a slightly
different distribution for the gaps of the transpose. (Note that, however, in both
cases the gap 1 is particularly frequent and lies above the interpolating line.)
This observation is our main motivation for the pursuit of codes suitable for
power-law distributions with α < 2.

3. Introducing ζ Codes

We briefly recall the definitions of common instantaneous codes that we will use
in this paper. Let x be a positive integer4 to be coded, b its binary representation,
and � its length.

3To be precise, the Zipf distribution is an inverse polynomial function of ranks rather than
magnitudes, but in this particular case they coincide.

4To simplify definitions and computations, all codes in this paper (except for minimal binary
codes) represent positive integers only. The Java classes provided by MG4J (a Java package
available at http://mg4j.dsi.unimi.it) and used within the WebGraph framework, however,
provide methods that uniformly code natural numbers. The reader must take care of this fact
when comparing the API documentation and the content of this paper.

412 Internet Mathematics

• Unary code. Write x − 1 zeroes followed by a one.

• Levenstein’s code [Levenstein 68], a.k.a. Elias’ γ code5 [Elias 75].
Write � in unary, followed by the last (least significant) � − 1 digits of b.

• Elias’ δ code [Elias 75]. Write � in γ code, followed by the last (least
significant) � − 1 digits of b.

• Variable-length nibble code. First, pad the binary representation of
x − 1 on the left with zeroes to obtain a string whose length is a multiple
of three. Then, break the string into blocks of three bits, and prefix each
block with a bit, which is zero for all blocks except for the last one. This
code was chosen by the authors of the LINK database [Randall et al. 01]
to compress gaps.

The first few codewords for these codes are given in Table 2.
By Shannon’s theory, each code has an associated implied distribution—the

distribution (proportional to) 2−�x , where �x is the length of the codeword for
x. If the code is complete (i.e., if

∑
x 2−�x = 1), then it is optimal with respect

to its implied distribution (i.e., entropy and expected length coincide).
The implied distribution is the one for which the code is best suited, and it is

in general useful to think of instantaneous integer codes in terms of their implied
distributions. For instance, γ code has �x = 2�log x� + 1 (for integer x > 0) and
implied distribution

2−(2�log x�+1) ≈ 1
2x2

.

Thus, γ code is a good choice for power-law distributions with α ≈ 2. However,
as we remarked in Section 2, the gap distributions found in web graphs have a
significantly smaller exponent. On the other hand, the implied distribution for
δ is

2−(2�log�log x+1��+�log x�+1) ≈ 1
2(log(x + 1))2x

,

which vanishes more slowly than any Zipfian distribution, so we expect δ to be
a good choice only when α is very close to one.

It is useful to notice that the exponent 2 of the implied distribution for γ code
comes from two �log x� contributions: the length of the binary representation
and the length of the unary code that comes before it. There is little we can do
to reduce the former, but it is reasonable to try to reduce the latter.

A very well-known class of codes that uses this idea is the class of variable-
length block codes, an obvious generalisation of variable-length nibble code in

5Note that this code was actually called γ′ by Elias, but it is always called γ in recent
literature.

Boldi and Vigna: Codes for the World Wide Web 413

Interval
Integer [0,2] [0,3] [0,4] [0,5] [0,6]

0 0 00 00 00 00
1 10 01 01 01 010
2 11 10 10 100 011
3 11 110 101 100
4 111 110 101
5 111 110
6 111

Table 1. Sample minimal binary codes.

which the length of each block is an arbitrary integer k (we get back the variable-
length nibble code when k = 3). The implied distribution of a variable-length
block code with block of length k is

2−�(log x)/k�(k+1) ≈ 1
x1+ 1

k

,

so the choice k = 3 is very reasonable,6 since it leads to an implied power-law
distribution with exponent α ≈ 1.3. This fact explains the success of variable-
length nibble code in the LINK database.

Nonetheless, variable-length block codes are not complete, hence not optimal.
Thus, we are going to introduce ζ codes, a family of complete simple codes de-
pending on a parameter k which can be viewed as an optimal version of variable-
length block codes.

First of all, let us fix a minimal binary code for intervals of integers.

Definition 3.1. The minimal binary code of x in the interval [0, z − 1] is defined
as follows: let s = �log z�; if x < 2s − z, then x is coded using the xth binary
word of length s − 1 (in lexicographical order); otherwise, x is coded using the
(x − z + 2s)th binary word of length s.

We remark that this code is simply an optimal (Huffman) code for the uniform
distribution on [0, z − 1]. The purpose of our definition is to fix the code so that
smaller integers get shorter codewords. Examples of minimal binary codes are
shown in Table 1.

6Beware, however, that the approximation introduced by removing the floor/ceiling oper-
ators may be quite rough: this phenomenon cannot be overseen, and it will be particularly
evident in the discussion that follows.

414 Internet Mathematics

Integer γ = ζ1 ζ2 ζ3 ζ4 δ nibble

1 1 10 100 1000 1 1000
2 010 110 1010 10010 0100 1001
3 011 111 1011 10011 0101 1010
4 00100 01000 1100 10100 01100 1011
5 00101 01001 1101 10101 01101 1100
6 00110 01010 1110 10110 01110 1101
7 00111 01011 1111 10111 01111 1110
8 0001000 011000 0100000 11000 00100000 1111
9 0001001 011001 0100001 11001 00100001 00011000
10 0001010 011010 0100010 11010 00100010 00011001
11 0001011 011011 0100011 11011 00100011 00011010
12 0001100 011100 0100100 11100 00100100 00011011
13 0001101 011101 0100101 11101 00100101 00011100
14 0001110 011110 0100110 11110 00100110 00011101
15 0001111 011111 0100111 11111 00100111 00011110
16 000010000 00100000 01010000 010000111 001011001 10000111

Table 2. Sample codes. Note that ζ1 coincides with γ.

We are now ready to give our main definition.

Definition 3.2. Given a fixed positive integer k, the shrinking factor, a positive
integer x in the interval

[
2hk, 2(h+1)k − 1

]
is ζk-coded by writing h + 1 in unary,

followed by a minimal binary code of x−2hk in the interval
[
0, 2(h+1)k − 2hk − 1

]
.

Table 2 shows the first sixteen codewords of some ζ codes and of some other
common codes.

The first 2hk integers in the range
[
2hk, 2(h+1)k − 1

]
are coded using (h + 1)×

(k +1)−1 bits, and the remaining ones are coded using (h+1)(k +1) bits. This
observation yields easily the implied distribution of ζk:

2−�(log x)/k+1�(k+1)+τ(x) ≈ 1 + τ(x)
x1+ 1

k

where

τ(x) =

{
0 if (log x)/k − �(log x)/k� ∈ [0, 1/k)
1 otherwise.

The above distribution is very close to a power law with exponent 1+ 1
k . A sim-

ple computation shows that ζ codes are complete, which makes them optimal for
the above distribution and a fortiori a good candidate for integers distributed
following a power-law with exponent smaller than two. Nonetheless, as we al-
ready remarked, the approximations introduced by removing the floor/ceiling

Boldi and Vigna: Codes for the World Wide Web 415

operators may produce misleading results. Thus, in the rest of the paper, we
attack the problem of giving precise estimates of the performance of γ, δ, ζ, and
variable-length block codes with respect to power laws with small exponent.

4. Preliminaries

The main difficulty in estimating the expected length of a code with respect to a
power-law distribution is that the random variable giving the code length has a
countable number of discontinuities: for instance, the expected length of γ code
is given by

1
ζ(α)

∞∑
x=1

(2�log x� + 1)
1
xα

,

and the floor gets in the way.7 Fortunately, there is a better way to express the
same summation—we can sum the length of all codes with a given unary prefix,
and then sum over all unary prefixes:

∞∑
h=0

(2h + 1)
2h+1−1∑
x=2h

1
ζ(α)xα

.

Of course, we have now the problem of estimating the inner sums, but we shall
use for that purpose Euler’s powerful summation formula, which in our case is
particularly well-behaved.

Recall Euler’s summation formula [Graham et al. 94]:

b−1∑
x=a

f(x) =
∫ b

a

f(x) dx − 1
2
f(x)

∣∣∣∣
b

a

+
m∑

t=1

B2t

(2t)!
f (2t−1)(x)

∣∣∣∣
b

a

+ R2m

where Bi represents the ith Bernoulli number, f (i) denotes the ith derivative of
f , and Ri is a remainder term. This formula holds for functions with enough
derivatives, but the behaviour of the remainder term can vary wildly.

We shall apply this formula to the function f(x) = x−α. Observe that in
this case f (2t)(x) > 0 and f (2t+1)(x) < 0, for all x > 0 and t ≥ 0. This
implies [Graham et al. 94, page 461] that the remainder has the form

R2m = θ2m
B2m+2

(2m + 2)!
f (2m+1)(x)

∣∣∣b
a
,

7It would be tempting to just throw the floor away, but, as in the case of implied distri-
butions, it is not a good idea; using the formulae we present, the reader will be able to check
that this approximation would lead to a very large error.

416 Internet Mathematics

with 0 < θ2m < 1. Now, since B2m+2 is positive iff m is even, we have that R2m

is positive iff m is odd: in other words, remainders have alternating signs. We
conclude that, for every odd m > 0,

∫ b

a

f(x) dx − 1
2
f(x)

∣∣∣∣
b

a

+
m+1∑
t=1

B2t

(2t)!
f (2t−1)(x)

∣∣∣∣
b

a

≤
b−1∑
x=a

f(x) ≤
∫ b

a

f(x) dx − 1
2
f(x)

∣∣∣∣
b

a

+
m∑

t=1

B2t

(2t)!
f (2t−1)(x)

∣∣∣∣
b

a

.

In particular, we can bound the approximation error easily.
Let us consider now a recurring pattern in the following computations: we

have a parameter h, and we have to approximate a summation of x−α between
ch and rch − 1, where r ≥ 1 is independent from h. In this case the (upper
or lower, depending on the summation index) bound used in the last inequality
becomes

∫ rch

ch

x−α dx − 1
2
x−α

∣∣∣∣
rch

ch

+
m∑

t=1

B2t

(2t)!
(−α)(−α − 1) . . . (−α − 2t + 2)x−α−2t+1

∣∣∣∣
rch

ch

=
1 − r1−α

α − 1
ch(1−α)

+
1 − r−α

2
c−hα +

m∑
t=1

B2t

2t

(
α + 2t − 2

2t − 1

) (
1 − r−α−2t+1

)
ch(−α−2t+1).

The latter form is particularly useful in our computations, as it makes it possible
to sum easily over all h ≥ 0, possibly multiplying first by some sequence of
coefficients βh. More explicitly,

∑
h

βh

rch−1∑
x=ch

x−α

≈
∑

h

βh

[
1 − r1−α

α − 1
ch(1−α) +

1 − r−α

2
c−hα

+
m∑

t=1

B2t

2t

(
α + 2t − 2

2t − 1

)(
1 − r−α−2t+1

)
ch(−α−2t+1)

]

=
1 − r1−α

α − 1

∑
h

βh

(
c1−α

)h
+

1 − r−α

2

∑
h

βh

(
c−α

)h

+
m∑

t=1

B2t

2t

(
α + 2t − 2

2t − 1

)(
1 − r−α−2t+1

) ∑
h

βh

(
c−α−2t+1

)h
.

Boldi and Vigna: Codes for the World Wide Web 417

Thus, when c > 1, usually playing a bit with geometric series is enough to get a
closed form for the above summations.

Of course, the main decision to be taken is the value of m, which determines
the gap between the lower and the upper bound. In general, we will use m = 1;
in other words, we compute an upper bound by taking as the last summand in
the estimate the single term

α

12
(
1 − r−α−1

) ∑
h

βh

(
c−α−1

)h
.

In turn, this means that the gap between the upper and the lower bound (which
can be used as an error estimate) is given by

α(α + 1)(α + 2)
720

(
1 − r−α−3

) ∑
h

βh

(
c−α−3

)h
.

We shall estimate this error both absolutely and relative to the lower bound
(which gives an upper bound on the real relative error). Note that by increasing
m one can easily obtain more precise estimates, at the price of more complex
formulae.

5. Estimating γ

We start by evaluating the expected length of the simplest code, Elias’ γ. (We
will obtain again this result for ζ1, but it is useful as a warm-up.) Observing
that integers in the range from 2h to 2h+1 − 1 are represented by 2h + 1 bits, we
have an expected length of

∞∑
h=0

(2h + 1)
2h+1−1∑
x=2h

1
ζ(α)xα

.

Our framework applies with c = r = 2 and βh = 2h+1; since
∑∞

h=0(2h+1)qh =
(1 + q)/(1 − q)2, we obtain

1
ζ(α)

[
1 + 21−α

(α − 1)(1 − 21−α)
+

1 + 2−α

2(1 − 2−α)
+

α
(
1 + 2−α−1

)
12 (1 − 2−α−1)

]
,

with an absolute error of

1
ζ(α)

[
α(α + 1)(α + 2)(1 + 2−α−3)

720(1 − 2−α−3)

]
≤ 0.022 bits if α ≤ 2,

which corresponds to a relative error of 9%.

418 Internet Mathematics

6. Estimating Variable-Length Nibble Code

The variable-length nibble code is slightly irregular because of its redundancies,
but we shall be able to reduce it to a standard treatment. Observing that 1 is
coded with four bits, and that integers in the range from 23h + 1 to 23(h+1) are
represented by 4(h + 1) bits, we have an expected length of

4
ζ(α)

+
∞∑

h=0

4(h + 1)
23(h+1)∑

x=23h+1

1
ζ(α)xα

=

4
ζ(α)

+
∞∑

h=0

4(h + 1)
23(h+1)−1∑

x=23h

1
ζ(α)xα

−
∞∑

h=0

4
8αhζ(α)

.

Our framework applies to the second summation with c = r = 8 and βh =
4(h + 1); since

∑∞
h=0 4(h + 1)qh = 4/(1 − q)2 and the last summation is trivial,

we obtain
4

ζ(α)

[
1 +

1
(α − 1)(1 − 81−α)

+
1

2(1 − 8−α)
+

α

12 (1 − 8−α−1)
+

1
1 − 8−α

]
,

with an absolute error of
1

ζ(α)

[
α(α + 1)(α + 2)
180(1 − 8−α−3)

]
≤ 0.081 bits if α ≤ 2,

which corresponds to a relative error of 9%.

7. Estimating ζk

Observing that integers in the range
[
2hk, 2hk+1 − 1

]
are coded using (h+1)(k+

1) − 1 bits, and integers in the range
[
2hk+1, 2(h+1)k − 1

]
are coded using (h +

1)(k + 1) bits, the expected code length is

∞∑
h=0

⎧⎨
⎩

2hk+1−1∑
x=2hk

[(h + 1)(k + 1) − 1]
1

ζ(α)xα
+

2(h+1)k−1∑
x=2hk+1

[(h + 1)(k + 1)]
1

ζ(α)xα

⎫⎬
⎭

= (k + 1)
∞∑

h=0

2(h+1)k−1∑
x=2hk

(h + 1)
1

ζ(α)xα
−

∞∑
h=0

2hk+1−1∑
x=2hk

1
ζ(α)xα

.

The framework described above applies to the first summation with c = r = 2k

and βh = h + 1; since
∑∞

h=0(h + 1)qh = 1/(1 − q)2, we obtain

k + 1
ζ(α)

[
1

(α − 1)(1 − 2k(1−α))
+

1
2(1 − 2−kα)

+
α

12(1 − 2k(−α−1))

]
.

Boldi and Vigna: Codes for the World Wide Web 419

The absolute error is bounded by

k + 1
ζ(α)

[
α(α + 1)(α + 2)

720(1 − 2k(−α−3))

]
≤ 0.142 bits if α ≤ 2 and k < 7.

For the second summation we apply again our framework with c = 2k, r = 2,
and βh = 1, getting

1
ζ(α)

[
1 − 21−α

(α − 1)(1 − 2k(1−α))
+

1 − 2−α

2(1 − 2−kα)
+

α(1 − 2−α−1)
12(1 − 2k(−α−1))

]
,

with an absolute error of

1
ζ(α)

[
α(α + 1)(α + 2)(1 − 2−α−3)

720(1 − 2k(−α−3))

]
≤ 0.020 bits if α ≤ 2 and k < 7.

The combined absolute errors produce (in the stated range) a relative error of
21%. We note, however, that in the range we will be analysing, that is, α ≤ 1.6,
the relative error reduces to 9%.

8. Estimating δ

We conclude our tour by approximating the expected length of δ code. This case
turns out to be the most difficult one because of the three-level structure of the
code, which is reflected by the triple summation expressing its expected length:

∞∑
h=0

2h+1−1∑
k=2h

(2h + k)
2k−1∑

x=2k−1

1
ζ(α)xα

.

To attack the problem, we first divide the estimate into a part that fits our
framework and a part that needs separate treatment:

∞∑
h=0

2h+1−1∑
k=2h

(2h + k)
2k−1∑

x=2k−1

1
ζ(α)xα

=
∞∑

h=0

2h+1−1∑
k=2h

2h

2k−1∑
x=2k−1

1
ζ(α)xα

+
∞∑

h=0

2h+1−1∑
k=2h

k

2k−1∑
x=2k−1

1
ζ(α)xα

=
∞∑

h=0

2h
22h+1−1−1∑
x=22h−1

1
ζ(α)xα

+
∞∑

h=0

(h + 1)
2h+1−1∑
x=2h

1
ζ(α)xα

.

420 Internet Mathematics

The last sum is by now familiar, and by setting c = r = 2, βh = h + 1, our
framework yields

1
ζ(α)

[
1

(α − 1)(1 − 21−α)
+

1
2(1 − 2−α)

+
1

12 (1 − 2−α−1)

]
, (8.1)

with an absolute error of

1
ζ(α)

[
α(α + 1)(α + 2)
720(1 − 2−α−3)

]
≤ 0.021 bits if α ≤ 2.

The first sum, instead, requires a more careful treatment. By the same argument
as in Section 4, we are interested in evaluating

∫ 22h+1−1

22h−1
x−α dx − 1

2
x−α

∣∣∣∣
22h+1−1

22h−1

− α

12
x−α−1

∣∣∣∣
22h+1−1

22h−1

=
1

α − 1

[(
21−α

)2h−1 − (
21−α

)2h+1−1
]

+
1
2

[(
2−α

)2h−1 − (
2−α

)2h+1−1
]

+
α

12

[(
2−α−1

)2h−1 − (
2−α−1

)2h+1−1
]

=
2α−1

α − 1

[(
21−α

)2h

− (
21−α

)2h+1
]

+ 2α−1

[(
2−α

)2h

− (
2−α

)2h+1
]

+
α2α

6

[(
2−α−1

)2h

− (
2−α−1

)2h+1
]

.

The next summand, which we will use to derive the error bound, is

−α(α + 1)(α + 2)2α

90

[(
2−α−3

)2h

− (
2−α−3

)2h+1
]

.

Now, letting
F (x) =

∑
h≥0

h x2h −
∑
h≥0

h x2h+1
,

we can give, as we did previously, the estimate for the second summation:

1
ζ(α)

[
2α

α − 1
F

(
21−α

)
+ 2αF

(
2−α

)
+

α2α+1

6
F

(
2−α−1

)]
, (8.2)

with its absolute error bound

1
ζ(α)

[
α(α + 1)(α + 2)2α

45
F

(
2−α−3

)]
.

Getting sound numerical data from F (x) is going to be tough. Let us define

f(x) =
∑
h≥0

x2h

Boldi and Vigna: Codes for the World Wide Web 421

and note that

F (x) =
∑
h≥0

h x2h −
∑
h≥0

h x2h+1

= (x2 + 2x4 + 3x8 + . . .) − (x4 + 2x8 + 3x16 + . . .)

= f(x) − x.

The series
∑

h≥0 x2h

is a well-known pathological object, usually found in anal-
ysis textbooks [Rudin 86]. Albeit it can be shown that f(x) cannot have a finite
algebraic expression in the standard transcendental functions (log, sin, cos, etc.),
numerically the following inequalities hold in [0, 1) with a negligible error (γ de-
notes Euler’s constant):

− log(1 − x) +
(

1
2
− γ

ln 2

)
log(1 + x) ≤ f(x) ≤ − log(1 − x) +

(
1
2
− γ

ln 2

)
x.

These inequalities, when x → 1−, still make sense; more precisely, Giuseppe
Molteni [Molteni 04] showed that

lim sup
x→1−

∣∣∣∣ f(x) + log(1 − x) − 1
2

+
γ

ln 2

∣∣∣∣ < 4.5 · 10−6.

All in all, we can upper bound the expected length by plugging into Equa-
tion (8.2) the upper bound for F (x) and adding Equation (8.1); of course, when
bounding the relative error we need lower bounds for the denominator, hence
the need for both inequalities for f(x). The resulting relative error is bounded
by 68% when α ≤ 2, albeit for α < 1.6 it reduces to 27%.

9. Comparing Codes

The usefulness of the formulae described in Table 3 lies in the possibility of
comparing the codes with respect to the value of α, hence choosing the best
code for a specific α.

It is easy to check that variable-length nibble code is in general not a good
candidate because of its redundancy (unless four-bit alignment is a requirement),
as shown in Figure 5. However, its behaviour is close to that of ζ3, which explains
its success in the LINK database.

Figure 3 is in our opinion the best graphical representation of the formulae
of Table 3. It displays three surfaces, representing the expected lengths of γ, δ,
and ζk codes with respect to a power-law distribution with exponent α. For ζk,
the expected length depends of course on k, whereas the other two surfaces have
no dependency on k.

422 Internet Mathematics

Code Expected length (upper bound)

γ
1

ζ(α)

�
1 + 21−α

(α − 1)(1 − 21−α)
+

1 + 2−α

2(1 − 2−α)
+

α
�
1 + 2−α−1

�
12 (1 − 2−α−1)

�

nibble
4

ζ(α)

�
1 +

1

(α − 1)(1 − 81−α)
+

3

2(1 − 8−α)
+

α

12 (1 − 8−α−1)

�

ζk
1

ζ(α)

�
k + 21−α

(α − 1)(1 − 2k(1−α))
+

k + 2−α

2(1 − 2−kα)
+

α(k + 2−α−1)

12(1 − 2k(−α−1))

�

δ

1

ζ(α)

�
1

(α − 1)(1 − 21−α)
+

1

2(1 − 2−α)
+

1

12 (1 − 2−α−1)
+

+
2α

α − 1

�
− log(1 − 21−α) −

�
1

2
+

γ

ln 2

�
21−α

�
+

+2α

�
− log(1 − 2−α) −

�
1

2
+

γ

ln 2

�
2−α

�
+

+
α2α+1

6

�
− log(1 − 2−α−1) −

�
1

2
+

γ

ln 2

�
2−α−1

� 	

Table 3. A table of approximated lengths.

α Code

< 1.06 δ (see remarks)
[1.06, 1.08] ζ6

[1.08, 1.11] ζ5

[1.11, 1.16] ζ4

[1.16, 1.27] ζ3

[1.27, 1.57] ζ2

[1.57, 2] γ=ζ1

Table 4. Suggested ranges for codes.

Boldi and Vigna: Codes for the World Wide Web 423

Figure 3. A three-dimensional graph representing the expected length of γ (dark
gray), δ (light gray), and ζ (medium gray) codes (only the surface corresponding
to ζ codes depends on k). Note that we are looking at the graph from below, so
the horn-shaped visible part of the ζk surface highlights the region where ζ codes
are more efficient than γ or δ codes.

The figure clearly shows that for values of α larger than 1.57, γ code is the
best choice. On the other hand, for all smaller values of α, there is always a k

for which ζk has a better behaviour than δ (look at the horn-shaped part of the
ζk surface that protrudes below the δ and γ surfaces). However, when α is, say,
smaller than 1.05, the advantage is unlikely to show in real applications because
of the limited number of codewords actually used. This situation is summarized
in Table 4, which suggests the right ranges for the first ζ codes, and in Figure 4,
where we compare the redundancy of δ and ζ codes.

Our estimates also prove that the implied distributions given in Section 3 for
ζ codes and variable-length block codes are quite imprecise: for instance, one
would falsely believe that the best ζ code for α ≈ 1.2 = 1 + 1

4 is ζ4, whereas ζ3

is the right one.

424 Internet Mathematics

Figure 4. A graph representing the redundancy, that is, the difference between
expected length and entropy, of δ (thick line) and ζ codes (ζ5 to ζ2, in increasing
order of their minima) when 1 ≤ α ≤ 1.8. Note that δ crosses all other lines.

Figure 5. A graph comparing the expected lengths of γ (continuous line), δ
(dashed line), and variable-length nibble codes (dotted line) when 1.15 ≤ α ≤ 2.
Variable-length nibble code is always worse than δ (outside of this small range
there are no other intersections).

Boldi and Vigna: Codes for the World Wide Web 425

Huffman code ζ codes

α Entropy Exp. length Red. Hα Code Exp. length Red.

1.15 11.37 11.39 0.23% 13.01 ζ4 13.61 4.66%
1.20 9.62 9.66 0.46% 10.20 ζ3 10.57 3.56%
1.25 8.24 8.27 0.37% 8.45 ζ3 8.72 3.21%
1.30 7.16 7.19 0.28% 7.24 ζ2 7.44 2.69%
1.35 6.32 6.34 0.36% 6.35 ζ2 6.47 1.86%
1.40 5.64 5.68 0.63% 5.65 ζ2 5.75 1.65%
1.45 5.10 5.16 1.18% 5.10 ζ2 5.20 1.95%
1.50 4.64 4.70 1.16% 4.64 ζ2 4.77 2.68%
1.55 4.26 4.29 0.82% 4.26 ζ2 4.42 3.79%
1.60 3.93 3.95 0.60% 3.93 ζ1 4.07 3.61%

Table 5. Comparison between Huffman codes (for 109 codewords) and ζ codes.
The entropy column for Huffman codes refers to a truncated power-law. The
expected length for ζ codes is computed using the estimates given in Table 3. In
both cases, the last column shows the relative redundancy.

As we already noticed, Huffman codes are impractical for the compression of
web graphs, due to the large number of codewords.8 Nonetheless, a comparison
with Huffman codes is instructive. Table 5 presents a comparative analysis of
ζ codes with respect to minimum-redundancy Huffman codes (computed using
Moffat and Katajainen’s in-place minimum-redundancy coder [Moffat and Kata-
jainen 95]). For each value of α, we have generated 109 codewords, distributed
as a (truncated) power law with exponent α. The first three columns show the
entropy, the average length of Huffman codes, and the corresponding redundancy
(relative to the entropy). Then, the table shows the theoretical entropy Hα, the
ζ code suitable for that value of α (according to Table 4), its expected length,
and its redundancy (relative to Hα). Note that the theoretical entropy is larger
than the actual entropy and that the difference is significant for small values of
α, because in that case the distribution decreases more slowly and the codewords
after 109 give a nonnegligible contribution.

However, this comparison is of purely theoretical interest, since storing the
coding table for 109 codewords is not feasible (and would exceed by an order of
magnitude the graph size—see [Boldi and Vigna 04]).

8Of course, one could use a hybrid scheme that Huffman-encodes an initial segment of the
integers and then performs some sort of escaping toward a simpler code; some experiments in
this sense has been performed in [Randall et al. 01], but the trade-off between speed and size
was judged unsatisfactory.

426 Internet Mathematics

18.5 Mpages, 300 Mlinks from .uk
Code # bits/node # bits/link

Standard compression
γ 40.19 2.50
δ 37.15 2.31

nibble 36.44 2.26
ζ2 36.24 2.25
ζ3 35.81 2.22
ζ4 36.03 2.24
ζ5 36.70 2.28

No differential compression
γ 139.81 8.69
δ 125.39 7.79

nibble 121.19 7.53
ζ2 120.58 7.49
ζ3 118.47 7.36
ζ4 120.30 7.47
ζ5 124.20 7.72

Gap compression only
γ 134.67 8.37
δ 120.50 7.49

nibble 129.99 8.08
ζ2 119.76 7.44
ζ3 122.54 7.61
ζ4 129.62 8.05
ζ5 138.90 8.63
Transpose, standard compression
γ 35.31 2.19
δ 33.22 2.06

nibble 32.53 2.02
ζ2 31.97 1.99
ζ3 31.88 1.98
ζ4 32.32 2.01
ζ5 33.20 2.06

Transpose, no differential compression
γ 49.27 3.06
δ 46.13 2.87

nibble 44.62 2.77
ζ2 43.80 2.72
ζ3 43.64 2.71
ζ4 44.52 2.77
ζ5 46.10 2.86
Transpose, gap compression only
γ 55.83 3.47
δ 52.87 3.28

nibble 86.78 5.39
ζ2 62.00 3.86
ζ3 73.92 4.59
ζ4 87.03 5.41
ζ5 100.87 6.27

118 Mpages, 1Glinks from WebBase
Code # bits/node # bits/link

Standard compression
γ 29.93 3.47
δ 27.09 3.14

nibble 26.99 3.13
ζ2 26.93 3.12
ζ3 26.57 3.08
ζ4 26.83 3.11
ζ5 27.41 3.17

No differential compression
γ 73.60 8.53
δ 65.52 7.59

nibble 63.83 7.39
ζ2 63.62 7.37
ζ3 62.43 7.23
ζ4 63.43 7.35
ζ5 65.58 7.60

Gap compression only
γ 71.40 8.27
δ 63.46 7.35

nibble 70.06 8.11
ζ2 64.05 7.42
ζ3 65.82 7.62
ζ4 69.97 8.11
ζ5 75.29 8.72
Transpose, standard compression
γ 27.76 3.22
δ 25.60 2.97

nibble 25.37 2.94
ζ2 25.16 2.91
ζ3 24.96 2.89
ζ4 25.32 2.93
ζ5 25.98 3.01

Transpose, no differential compression
γ 39.31 4.55
δ 36.01 4.17

nibble 34.99 4.05
ζ2 34.69 4.02
ζ3 34.29 3.97
ζ4 34.90 4.04
ζ5 36.09 4.18
Transpose, gap compression only
γ 41.00 4.75
δ 37.82 4.38

nibble 53.31 6.18
ζ2 41.76 4.84
ζ3 47.06 5.45
ζ4 53.47 6.19
ζ5 60.47 7.00

Table 6. Comparative compression on an actual web graph. The best code is
shown in boldface.

Boldi and Vigna: Codes for the World Wide Web 427

10. Experimental Results

We conclude by presenting a table of experimental data.9 Table 6 reports the
number of bits per link and per node obtained by compressing two sample graphs
and their transposes using WebGraph.

To make the data completely understandable, we must recall some of the
compression techniques used by WebGraph [Boldi and Vigna 04]. Differential
compression represents the successor list of x by copying part of the list from
some node y < x. The copy is represented by a sequence of suitably-coded
integers representing inclusion-exclusion blocks (copy this number of successors,
skip this number of successors, copy again, etc.).

The rest of the successor list (i.e., the successors of x that are not successors
of y) might also be intervalised. Namely, if intervals of consecutive integers
longer than a given threshold are present, they are converted into a sequence of
pairs formed by the left extreme and by the length of the interval. Finally, the
remaining successors are stored by recording their gaps, using the code shown in
Table 6. For more details, see [Boldi and Vigna 04].

The first group of data in Table 6 is gathered using standard compression, that
is, default values for all parameters, which amounts to using both differential
compression and intervalisation. The second group is obtained by turning off
differential compression but keeping intervalisation. The third group uses just
gap compression, as it happens in the statistics shown in Figures 1 and 2.

The results are quite interesting. The best codes are almost always ζ2 and ζ3,
in agreement with the theory. In three cases, if no intervalisation is applied, δ

turns out to be the better code. This should not surprise the reader: as we noted
in Section 2, the gap of one lies out of the distribution, and the fact that it is
coded by a single bit in δ code explains why the latter performs better. However,
the resulting number of bits per link is much worse than the one obtained using
intervalisation, which records separately subsequences of consecutive integers:
by eliminating the gap of one, the gap distribution gets smoothed, and it fits a
power-law distribution more precisely.

References

[Adler and Mitzenmacher 01] Micah Adler and Michael Mitzenmacher. “Towards
Compressing Web Graphs.” In 2001 Data Compression Conference: March 27–

9The .uk data were gathered using UbiCrawler; the WebBase data refer to the 1/2001
general crawl.

428 Internet Mathematics

29, 2001 in Snowbird, Utah: Proceedings, edited by James A. Storer and Martin
Cohn, pp. 203–212. Los Alamitos, CA: IEEE Press, 2001.

[Boldi and Vigna 04] Paolo Boldi and Sebastiano Vigna. “The WebGraph Framework
I: Compression Techniques.” In Proceedings of the Thirteenth International Confer-
ence on World Wide Web, pp. 595–601. New York: ACM Press, 2004.

[Boldi et al. 04] Paolo Boldi, Bruno Codenotti, Massimo Santini, and Sebastiano Vi-
gna. “UbiCrawler: A Scalable Fully Distributed Web Crawler.” Software: Practice
& Experience 34:8 (2004), 711–726.

[Broder et al. 00] Andrei Broder, Ravi Kumar, Farzin Maghoul, Prabhakar Raghavan,
Sridhar Rajagopalan, Raymie Stata, Andrew Tomkins, and Janet Wiener. “Graph
Structure in the Web: Experiments and Models.” Computer Networks 33:1–6 (2000),
309–320.

[Elias 75] Peter Elias. “Universal Codeword Sets and Representations of the Integers.”
IEEE Transactions on Information Theory 21 (1975), 194–203.

[Graham et al. 94] Ronald L. Graham, Donald E. Knuth, and Oren Patashnik. Con-
crete Mathematics, Second edition. Reading, MA: Addison–Wesley, 1994.

[Hirai et al. 00] Jun Hirai, Sriram Raghavan, Hector Garcia-Molina, and Andreas
Paepcke. “WebBase: A Repository of Web Pages.” Computer Networks 33:1–6
(2000), 277–293.

[Levenstein 68] V. E. Levenstein. “On the Redundancy and Delay of Separable Codes
for the Natural Numbers.” Problems of Cybernetics 20 (1968), 173–179.

[Moffat and Katajainen 95] Alistair Moffat and Jyrki Katajainen. “In-Place Calcu-
lation of Minimum-Redundancy Codes.” In Alogrithms and Data Structures: 4th
International Workshop, WADS ’95, Kingston, Canada August 16–18, 1995: Pro-
ceedings, edited by S. G. Akl, F. Dehne, and J.-R. Sack, pp. 393–402. Lecture Notes
in Computer Science 955. New York: Springer, 1995.

[Molteni 04] Giuseppe Molteni. “On a Class of Lacunary Series.” Preprint, 2004.

[Randall et al. 01] Keith Randall, Raymie Stata, Rajiv Wickremesinghe, and Janet L.
Wiener. “The LINK Database: Fast Access to Graphs of the Web.” Research Report
175, Compaq Systems Research Center, Palo Alto, CA, 2001.

[Rudin 86] Walter Rudin. Real and Complex Analysis, Third edition. New York:
McGraw–Hill, 1986.

[Witten et al. 99] Ian H. Witten, Alistair Moffat, and Timothy C. Bell. Managing
Gigabytes: Compressing and Indexing Documents and Images, Second edition. Los
Altos, CA: Morgan Kaufmann Publishers, 1999.

Boldi and Vigna: Codes for the World Wide Web 429

Paolo Boldi, Dipartimento di Scienze dell’Informazione, Università degli Studi di Mi-
lano, via Comelico 39/41, I-20135 Milano, Italy (boldi@dsi.unimi.it)

Sebastiano Vigna, Dipartimento di Scienze dell’Informazione, Università degli Studi di
Milano, via Comelico 39/41, I-20135 Milano, Italy. (vigna@acm.org)

Received May 17, 2004; accepted December 4, 2004.

