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ON DIRICHLET L-FUNCTIONS AND THE INDEX OF
VISIBLE POINTS

EMRE ALKAN, ANDREW H. LEDOAN, AND ALEXANDRU ZAHARESCU

Abstract. We investigate the value distribution of the index of visible
points with congruence constraints by estimating all moments of the
index twisted by an arbitrary Dirichlet character with respect to a fixed
modulus.

1. Introduction and statement of results

Surprising connections between various questions in number theory and
problems in mathematical physics have been discovered in the past few decades
by a number of authors. These connections have made it possible to employ
powerful methods and ideas from number theory, such as spacings between
Farey fractions pioneered in [10], [11], and [13], and furthered recently in [1],
[2], [3], and [15], where estimates for Kloosterman sums are being used. For
example, Boca, Gologan, and one of the authors [5], [6] recently solved a
problem raised by Sinai on the free path length of the linear trajectory of a
two-dimensional Euclidean billiard generated by the free motion of a billiard
ball, subject to elastic reflections on the boundary of the unit square [0, 1]2

with small pockets of size ε removed at the four corners. The billiard problem
has the mass point moving from the origin along a geodesic line in [0, 1]2 with
constant speed and angle, until it collides with the boundary. At a smooth
boundary point, the billiard ball reflects so that the tangential component of
its velocity remains the same, while the normal component changes its sign.
The trajectory between two such reflections is specular, and the motion ends
when the billiard ball reaches one of the corner pockets. The method used in
[5], [6] is number theoretical in nature, and it exploits the connection between
billiards in [0, 1]2 and visible points in the plane, which in turn are related to
Farey fractions. This further links the problem to the distribution of inverses
in residue classes, in which the Kloosterman machinery [9] is used in a decisive
way and ultimately solves the problem. The distribution is sensitive to the
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initial position of the particles, which in [5], [6] is fixed at the origin. If one
fixes the initial position at an arbitrary rational point, the billiard problem is
intimately related to the distribution of visible points with congruence con-
straints. An integer point P is said to be visible from a fixed point P0 if the
open line segment (P0P ) does not contain any integer point. Thus visibility
of P from the origin is equivalent to the condition that its coordinates are
relatively prime, whereas visibility from a more general fixed rational point
P0 naturally brings congruence constraints into the problem. A notion that
plays an important role in the study of the local distribution of Farey fractions
is that of the Farey index, recently introduced and studied by Hall and Shiu
in [12], and furthered in [4]. In relation to these works, it would be interesting
to investigate the distribution of the index of visible points with congruence
constraints. We introduce some notation.

The Farey sequence F
Q

of order Q is the ascending sequence of fractions in
the unit interval (0, 1] whose denominators do not exceed Q, i.e., 1/Q = γ1 <
γ2 < · · · < γNQ

= 1. Thus the fraction γi = b/s belongs to F
Q

if b and s are
relatively prime and 0 < b ≤ s ≤ Q. The number NQ of terms in F

Q
is given

by NQ = ϕ(1) + ϕ(2) + · · ·+ ϕ(Q) and it is well known (see Theorem 330, p.
268, in [14]) that

NQ =
3Q2

π2
+ O(Q log Q).

The essential property of F
Q
, from which all the other properties follow, is

that rb− as = 1 for any two consecutive fractions a/r and b/s. Now for any
three consecutive Farey fractions, say,

γi−1 =
a

r
< γi =

b

s
< γi+1 =

c

t
,

the ratio
ν(γi) :=

r + t

s
=

a + c

b
is an integer called the index of the fraction γi = b/s. In particular we have
ν(γ1) = 1 and ν(γNQ

) = 2Q. As an example, the indices of F7 are indicated
in the following table:

γi
1
7

1
6

1
5

1
4

2
7

1
3

2
5

3
7

1
2

4
7

3
5

2
3

5
7

3
4

4
5

5
6

6
7 1

ν(γi) 1 2 2 3 1 4 2 1 7 1 2 4 1 3 2 2 1 14

In the language of visible points, the index of a visible point (s, b) that lies
inside or on the sides of the triangle with vertices (0, 0), (Q, 0), and (Q,Q),
is meant to be the index of the Farey fraction b/s, and it has the following
geometric interpretation: If we arrange the visible points that belong to the
triangle in increasing order with respect to the slope of the ray from the
origin (rotated counterclockwise) passing through them, then for any three
consecutive visible points (r, a), (s, b), and (t, c), the index of the point (s, b)
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is two times the area of the triangle joining the points (r, a) and (t, c) to the
origin. (See [7], pp. 208–212, and [14], pp. 23–37.) In this way, the index is
intrinsically related to the position of consecutive visible points.

In [12], the relation

(1.1) ν(γi) =
[
Q + r

s

]
is obtained, from which[

2Q + 1
s

]
− 1 ≤ ν(γi) ≤

[
2Q

s

]
.

Hence if s | 2Q + 1, then ν(γi) = [2Q/s]. Otherwise, the index may take
the two values [2Q/s] and [2Q/s] − 1. From these observations, Hall and
Shiu introduced the concept of Farey deficiency, which is the number δ(s) of
Farey fractions γi with denominator s such that ν(γi) = [2Q/s] − 1. Their
investigation of the frequency of the two values of the index led them to the
very remarkable facts ∑

γi∈F
Q

ν(γi) = 3NQ − 1

and
Q∑

s=1

δ(s) = Q(2Q + 1)−N2Q − 2NQ + 1,

in addition to the asymptotic formula

(1.2)
∑

γi∈F
Q

ν(γi)2 =
24Q2

π2

(
log 2Q− ζ ′(2)

ζ(2)
− 17

8
+ 2γ

)
+ O(Q(log Q)2),

where ζ is the Riemann zeta-function and γ is Euler’s constant.
In the present paper, we study the value distribution of the index of visible

points which satisfy congruence constraints. In order to achieve this goal, we
estimate all moments of the index twisted by an arbitrary Dirichlet character
χ with respect to a fixed modulus k. We consider, for any positive integer l,
any modulus k, any Dirichlet character χ modulo k, and any large positive
integer Q, the lth moment

(1.3) Ml(χ,Q) :=
∑

γi=
b
s∈F

Q

χ(s)ν(γi)l.

Let p denote a prime number. We can summarize our results as follows.

Theorem 1.1. Fix a positive integer k and a Dirichlet character χ modulo
k. Then for all large positive integers Q, we have:
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(i)

M1(χ,Q) =


Ok(Q log Q) if χ 6= χ0,
3Q2ϕ(k)

2kL(2, χ0)
+ Ok(Q log Q) if χ = χ0.

(ii)

M2(χ,Q) =



4Q2L(1, χ)
L(2, χ)

+ Ok(Q(log Q)2) if χ 6= χ0,

24Q2

π2

(
log 2Q− ζ ′(2)

ζ(2)
− 3

2
+ 2γ +

∑
p|k

p log p

p2 − 1

)
×

∏
p|k

p

p + 1
− 5Q2ϕ(k)

2kL(2, χ0)
+ Ok(Q4/3(log Q)5/3) if χ = χ0.

(iii)

M3(χ,Q) =
8Q3L(2, χ)

L(3, χ)
+ O(Q2 log Q).

(iv) For any l ≥ 4,

Ml(χ,Q) =
2lQlL(l − 1, χ)

L(l, χ)
+ O(Ql−1).

As a corollary, we obtain asymptotic formulas for the moments of the index
of Farey fractions γi = b/s with denominator s in an arithmetic progression.
For any s ≡ u (mod k), we consider the lth moment

(1.4) Ml(u, k,Q) :=
∑

γi=
b
s∈F

Q

s≡u (mod k)

ν(γi)l.

Corollary 1.2. Fix positive integers k and u with gcd(u, k) = 1. Then
for all large positive integers Q, we have:

(i)

M1(u, k,Q) =
3Q2

2kL(2, χ0)
+ Ok(Q log Q).

(ii)

M2(u, k,Q) =
24Q2

π2ϕ(k)

(
log 2Q− ζ ′(2)

ζ(2)
− 3

2
+ 2γ +

∑
p|k

p log p

p2 − 1

) ∏
p|k

p

p + 1

− 5Q2

2kL(2, χ0)
+

4Q2

ϕ(k)

∑
χ6=χ0

χ(u)L(1, χ)
L(2, χ)

+ Ok(Q4/3(log Q)5/3).
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(iii)

M3(u, k,Q) =
8Q3

ϕ(k)

∑
χ

χ(u)L(2, χ)
L(3, χ)

+ O(Q2 log Q).

(iv) For any l ≥ 4,

Ml(u, k,Q) =
2lQl

ϕ(k)

∑
χ

χ(u)L(l − 1, χ)
L(l, χ)

+ O(Ql−1).

It should be remarked that the asymptotics above indicate that higher
moments are biased toward some arithmetic progressions. For example, if
s ≡ 1 (mod 4) and s ≡ 3 (mod 4), then

lim
Q→∞

M1(3, 4, Q)
M1(1, 4, Q)

= 1 and lim
Q→∞

M2(3, 4, Q)
M2(1, 4, Q)

= 1;

but

lim
Q→∞

M3(3, 4, Q)
M3(1, 4, Q)

=
L(2,χ0)
L(3,χ0)

− L(2,χ)
L(3,χ)

L(2,χ0)
L(3,χ0)

+ L(2,χ)
L(3,χ)

= 0.107456 . . . ,

where χ0 and χ are the principal and non-principal Dirichlet characters mod-
ulo 4.

2. The first moment

In this section we prove part (i) of Theorem 1.1. Our starting point is
formula (2.1) from [12]:

(2.1) T (s) :=
∑

γi=
b
s∈F

Q

ν(γi) =
2
s

Q∑
r=Q−s+1
(r,s)=1

r = 2
∑
d|s

µ(d)
[
Q

d

]
− ϕ(s) + ε(s),

where ε(1) = 1 and ε(s) = 0 for s > 1. We have

M1(χ,Q) =
∑
s≤Q

χ(s)T (s)(2.2)

= 2
∑
s≤Q

χ(s)
∑
d|s

µ(d)
[
Q

d

]
−

∑
s≤Q

χ(s)ϕ(s) + 1.
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Suppose that χ 6= χ0. Using [y] = y + O(1), interchanging summations,
and employing the Pólya-Vinogradov inequality,∑

s≤Q

χ(s)
∑
d|s

µ(d)
[
Q

d

]
=

∑
s≤Q

χ(s)
∑
d|s

µ(d)
(

Q

d
+ O(1)

)
(2.3)

= Q
∑
d≤Q

µ(d)
d

∑
s≤Q
d|s

χ(s) + O

(∑
s≤Q

τ(s)
)

= Q
∑
d≤Q

χ(d)µ(d)
d

∑
l≤[Q

d ]
χ(l) + O(Q log Q).

= O(
√

k log k ·Q log Q).

(Assuming the Generalized Riemann Hypothesis, one can use the sharper
version of the Pólya-Vinogradov inequality provided in [17].) Next, using
ϕ(n) =

∑
d|n

µ(d)n
d and rearranging, we get∑
s≤Q

χ(s)ϕ(s) =
∑
d≤Q

µ(d)
d

∑
s≤Q
d|s

χ(s)s(2.4)

=
∑
d≤Q

χ(d)µ(d)
∑

l≤[Q
d ]

χ(l)l

=
∑
d≤Q

χ(d)µ(d)
∑

j≤[Q
d ]

∑
j≤l≤[Q

d ]
χ(l).

Applying the Pólya-Vinogradov inequality to the inner-most sum on the far
right side, we see that∑

s≤Q

χ(s)ϕ(s) �
√

k log k ·Q log Q,

and inserting this and (2.3) into (2.2) finishes the case χ 6= χ0.
Now suppose that χ = χ0. Using

(2.5)
∑
n≤x

χ0(n) =
ϕ(k)x

k
+ O(τ(k)),

we get∑
s≤Q

χ0(s)
∑
d|s

µ(d)
[
Q

d

]
=

Q2ϕ(k)
k

∑
d≤Q

χ0(d)µ(d)
d2

+ O(τ(k)Q log Q),

and since ∑
d≤Q

χ0(d)µ(d)
d2

=
∞∑

d=1

χ0(d)µ(d)
d2

+ Ok

(
1
Q

)
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and
∞∑

d=1

χ0(d)µ(d)
d2

=
∏
p

(
1− χ0(p)

p2

)
=

∏
p-k

(
1− 1

p2

)
=

1
L(2, χ0)

,

we have

(2.6)
∑
s≤Q

χ0(s)
∑
d|s

µ(d)
[
Q

d

]
=

Q2ϕ(k)
kL(2, χ0)

+ O(τ(k)Q log Q).

The inner-most sum on the far right side of (2.4) is treated in the same
way. Using ∑

j≤l≤[Q
d ]

χ0(l) =
ϕ(k)

k

([
Q

d

]
−j

)
+ O(τ(k)),

we see that∑
s≤Q

χ0(s)ϕ(s) =
ϕ(k)

k

∑
d≤Q

χ0(d)µ(d)
(

Q2

d2
+ O

(
Q

d

))

− ϕ(k)
k

∑
d≤Q

χ0(d)µ(d)
∑

j≤[Q
d ]

j + O

(
τ(k)

∑
d≤Q

∑
j≤[Q

d ]
1
)

=
Q2ϕ(k)

kL(2, χ0)
+ O(Q log Q)− ϕ(k)

2k

∑
d≤Q

χ0(d)µ(d)

×
(

Q2

d2
+ O

(
Q

d

))
+ O(τ(k)Q log Q)

=
Q2ϕ(k)

2kL(2, χ0)
+ O(τ(k)Q log Q),

and inserting this and (2.6) into (2.2) finishes the case χ = χ0.

3. Estimates for the deficiency

In this section we provide asymptotic formulas for the deficiency.

Theorem 3.1. Fix a positive integer k and a Dirichlet character χ modulo
k. Then for all large positive integers Q, we have:

Q∑
s=1

χ(s)δ(s) =



O(
√

k log k ·Q(log Q)2) if χ 6= χ0,
2Q2∏

p|k(1 + 1/p)
− 3Q2ϕ(k)

kL(2, χ0)

+O

(
k2ω(k)Q4/3(log Q)5/3

ϕ(k)

)
if χ = χ0.
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Proof. Let s(γi) = s. Since ν(γi) takes at most two values, [2Q/s] and
[2Q/s]− 1, with the lower value δ(s) times, we have

(3.1) T (s) = (ϕ(s)− δ(s))
[
2Q

s

]
+ δ(s)

([
2Q

s

]
− 1

)
= ϕ(s)

[
2Q

s

]
− δ(s).

Hence

(3.2)
∑
s≤Q

χ(s)δ(s) =
∑
s≤Q

χ(s)ϕ(s)
[
2Q

s

]
−

∑
s≤Q

χ(s)T (s).

Now,∑
s≤Q

χ(s)ϕ(s)
[
2Q

s

]
=

∑
d≤Q

µ(d)
d

∑
s≤Q
d|s

χ(s)s
[
2Q

s

]
=

∑
d≤Q

χ(d)µ(d)Sχ

(
2Q

d

)
,

where

Sχ(y) :=
∑

l≤[ y
2 ]

χ(l)l
[
y

l

]
.

We apply Abel summation to the sum Sχ(y). Define A(n) :=
∑

m≤n χ(m).
Let b(m) = m [y/m] if m ≤ [y/2], and let b(m) = 0 if m ≥ [y/2] + 1. Then

Sχ(y) =
∑

n≤[ y
2 ]

χ(n)b(n) =
∑

n≤[ y
2 ]

(A(n)−A(n− 1))b(n)

=
∑

n≤[ y
2 ]

A(n)b(n)−
∑

n≤[ y
2 ]−1

A(n)b(n + 1)

=
∑

n≤[ y
2 ]

A(n)(b(n)− b(n + 1))

and

|b(n)− b(n + 1)| ≤ y

n + 1
+ n

([
y

n

]
−

[
y

n + 1

])
.

Suppose that χ 6= χ0. By the Pólya-Vinogradov inequality A(n) �
√

k log k

and Sχ(y) �
√

k log k · y log y. Hence

(3.3)
∑
s≤Q

χ(s)ϕ(s)
[
2Q

s

]
�
√

k log k ·Q(log Q)2,

and inserting this into (3.2) and applying Theorem 1.1 (i) finishes the case
χ 6= χ0.

Next, since [2Q/s] = 1 throughout the range Q < s ≤ 2Q, extending the
range from 1 ≤ s ≤ Q to 1 ≤ s ≤ 2Q gives us∑

s≤Q

χ(s)ϕ(s)
[
2Q

s

]
=

∑
s≤2Q

χ(s)ϕ(s)
[
2Q

s

]
−

∑
Q<s≤2Q

χ(s)ϕ(s),
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where ∑
Q<s≤2Q

χ(s)ϕ(s) =
∑

d≤2Q

µ(d)
d

∑
Q<s≤2Q

d|s

χ(s)s(3.4)

=
∑

d≤2Q

χ(d)µ(d)
∑

[Q
d ]+1≤l≤[ 2Q

d ]
χ(l)l

=
∑

d≤2Q

χ(d)µ(d)
∑

j≤[ 2Q
d ]

∑
max([Q

d ]+1,j)≤l≤[ 2Q
d ]

χ(l).

Suppose that χ = χ0. Applying (2.5) to the inner-most sum on the far
right side of (3.4), we see that the sum

∑
Q<s≤2Q χ(s)ϕ(s) is∑

d≤2Q

χ0(d)µ(d)
∑

j≤[ 2Q
d ]

(
ϕ(k)

k

([
2Q

d

]
−max

([
Q

d

]
+ 1, j

))
+ O(τ(k))

)

=
2Qϕ(k)

k

∑
d≤2Q

χ0(d)µ(d)
d

(
2Q

d
+ O(1)

)
+ O(Q log Q)

− ϕ(k)
k

∑
d≤2Q

χ0(d)µ(d)
( ∑

[Q
d ]+1≤j≤[ 2Q

d ]
j +

∑
j≤[Q

d ]

([
Q

d

]
+ 1

))
+ O(τ(k)Q log Q)

=
4Q2ϕ(k)

k

∑
d≤2Q

χ0(d)µ(d)
d2

− ϕ(k)
k

∑
d≤2Q

χ0(d)µ(d)
(

5Q2

2d2
+ O

(
Q

d

))
+ O(τ(k)Q log Q)

=
3Q2ϕ(k)

2kL(2, χ0)
+ O(τ(k)Q log Q).

Hence

(3.5)
∑

Q<s≤2Q

χ(s)ϕ(s) =
3Q2ϕ(k)

2kL(2, χ0)
+ O(τ(k)Q log Q).

Combining all estimates in (3.2) and applying Theorem 1.1 (i), we obtain∑
s≤Q

χ0(s)δ(s) =
∑

s≤2Q

χ0(s)ϕ(s)
[
2Q

s

]
− 3Q2ϕ(k)

kL(2, χ0)
+ O(τ(k)Q log Q).(3.6)

The sum on the right side is∑
s≤2Q

χ0(s)ϕ(s)
∑

n≤2Q
s|n

1 =
∑

n≤2Q

∑
s|n

χ0(s)ϕ(s) =
∑

n≤2Q

gχ0(n),(3.7)
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where
gχ0(n) =

∑
m|n

χ0(m)ϕ(m)

satisfies |gχ0(n)| ≤ n.
Let the letters s, σ, t, and T be the usual symbols used in the theory of

the Riemann zeta-function. We write

Gk(s) =
∞∑

n=1

χ0(n)ϕ(n)
ns

=
∞∑

n=1
(n,k)=1

ϕ(n)
ns

=
ζ(s− 1)

ζ(s)

∏
p|k

1− 1
ps−1

1− 1
ps

.

Then the Dirichlet series for gχ0 = χ0ϕ ∗ 1 is

G(s) =
∞∑

n=1

gχ0(n)
ns

= ζ(s)Gk(s) = ζ(s− 1)
∏
p|k

1− 1
ps−1

1− 1
ps

,

where ∣∣∣∣∣∏
p|k

1− 1
ps−1

1− 1
ps

∣∣∣∣∣ ≤ k2ω(k)

ϕ(k)

uniformly for σ ≥ 1. Employing Perron’s formula∑
n≤x

f(n) =
1

2πi

∫ α+iT

α−iT

xsF (s)
s

ds + R(T ),

where F (s) is the Dirichlet series for f(n) and

|R(T )| ≤ xα

T

∞∑
n=1

|f(n)|
nα

∣∣log x
n

∣∣ ,
we put x = 2Q + 1/2 and sum over n ≤ 2Q, so that∑

n≤2Q

gχ0(n) =
1

2πi

∫ α+iT

α−iT

(2Q + 1
2 )sG(s)
s

ds + R(T )(3.8)

and

|R(T )| � Qα

T

∞∑
n=1

n1−α∣∣∣log 2Q+ 1
2

n

∣∣∣ .
Let α = 2 + 1/ log Q. Following the arguments given in [8] (see pp. 106–

107), we decompose the sum above into three subsums extended over the
following sets of n: n ≤ Q, Q < n ≤ 3Q, and n > 3Q. For values of n which
satisfy n ≤ Q or n > 3Q it is immediately clear that∣∣∣∣log

2Q + 1
2

n

∣∣∣∣ > log
3
2
.
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Hence the first and last subsums are � 1/(α− 2). For values of n which
satisfy Q < n ≤ 3Q the middle subsum is

� Q1−α
∑

−Q<m≤Q

1∣∣∣log 2Q+ 1
2

2Q+m

∣∣∣ � Q2−α
∑

−Q<m≤Q

1∣∣m− 1
2

∣∣ � Q2−α log Q.

Therefore

|R(T )| � Qα

T

(
1

α− 2
+ Q2−α log Q

)
� Q2 log Q

T
.

To evaluate the integral in (3.8), we deform the contour, as explained in
[19]. We shift the portion |t| ≤ T of this path of integration to the left of the
line Re(s) = α, thereby replacing it by a rectangular path joining the points
1 ± iT and α ± iT . Since the integrand is holomorphic on and within this
contour, we have by Cauchy’s residue theorem

1
2πi

∫ α+iT

α−iT

(2Q + 1
2 )sG(s)
s

ds =
(2Q + 1

2 )2

2
∏

p|k(1 + 1/p)
+

3∑
j=1

Ij .

The main contribution is due to the residue of the simple pole at the point
s = 2. The integrals I1 and I3 are along the horizontal segments [α−iT, 1−iT ]
and [1+iT, α+iT ], respectively, and the integral I2 is over the vertical segment
[1− iT, 1 + iT ].

We proceed to estimate the integral along our modified contour. Since
|ζ(s)| � T (1−σ)/2 log T if 0 ≤ σ ≤ 1, and � log T if 1 ≤ σ ≤ 2 (see Theorem
1.9, p. 25, in [16]), we see that

|I1|, |I3| �
k2ω(k)

ϕ(k)

∫ α

1

|(2Q + 1
2 )σ+iT ||ζ(σ − 1 + iT )|
|σ + iT |

dσ

� k2ω(k)(QT 1/2 log T + Q2 log T )
ϕ(k)T

.

Next, we have

|I2| �
k2ω(k)

ϕ(k)

∫ T

−T

|(2Q)1+it||ζ(it)|
|1 + it|

dt � k2ω(k)QT 1/2(log T )2

ϕ(k)
.

Collecting all estimates and choosing T = Q2/3/(log Q)2/3, we obtain∑
n≤2Q

gχ0(n) =
2Q2∏

p|k(1 + 1/p)
+ O

(
k2ω(k)Q4/3(log Q)5/3

ϕ(k)

)
,

and the required result follows by inserting this into (3.6). �
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4. The second moment

In this section we prove part (ii) of Theorem 1.1. We have

χ(s)
∑

γi=
b
s∈F

Q

ν(γi)2 = χ(s)ϕ(s)
[
2Q

s

]2

− χ(s)δ(s)
(

2
[
2Q

s

]
− 1

)
.

Then
M2(χ,Q) = Xχ(Q)− 2Yχ(Q) +

∑
s≤Q

χ(s)δ(s),

where

Xχ(Q) :=
∑
s≤Q

χ(s)ϕ(s)
[
2Q

s

]2

and Yχ(Q) :=
∑
s≤Q

χ(s)δ(s)
[
2Q

s

]
.

As in the proof of Theorem 3.1, we extend the range from 1 ≤ s ≤ Q to
1 ≤ s ≤ 2Q to obtain

Xχ(Q) =
∑

s≤2Q

χ(s)ϕ(s)
[
2Q

s

]2

−
∑

Q<s≤2Q

χ(s)ϕ(s).

Suppose that χ 6= χ0. Applying the Pólya-Vinogradov inequality to the far
right side of (3.4), we obtain

(4.1)
∑

Q<s≤2Q

χ(s)ϕ(s) �
√

k log k ·Q log Q

and

Xχ(Q) =
∑

s≤2Q

χ(s)ϕ(s)
[
2Q

s

]2

+ O(
√

k log k ·Q log Q).

By (3.3), the sum above is

(4.2)
∑

s≤2Q

χ(s)ϕ(s)
[
2Q

s

]([
2Q

s

]
+ 1

)
+ O(

√
k log k ·Q(log Q)2).

Let

fχ(n) :=
∑
s|n

χ(s)ϕ(s)
s

.

Then the sum in (4.2) becomes

(4.3) 2
∑

s≤2Q

χ(s)ϕ(s)
s

∑
n≤2Q

s|n

n = 2
∑

n≤2Q

nfχ(n).

Hence
Xχ(Q) = 2

∑
n≤2Q

nfχ(n) + O(
√

k log k ·Q(log Q)2),
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and by Theorem 3.1

M2(χ,Q) = 2
∑

n≤2Q

nfχ(n)− 2Yχ(Q) + O(
√

k log k ·Q(log Q)2).

We now consider the sum Yχ(Q). By (2.1) and (3.1)

δ(s) = ϕ(s)
[
2Q

s

]
− T (s) = ϕ(s)

([
2Q

s

]
+ 1

)
− 2

∑
d|s

µ(d)
[
Q

d

]
−ε(s).

Hence

δ(s) = ϕ(s)
([

2Q

s

]
+ 1

)
− 2Qϕ(s)

s
+ O(τ(s))

and, since ∑
s≤Q

τ(s)
s
� (log Q)2,

we get

Yχ(Q) =
∑
s≤Q

χ(s)ϕ(s)
[
2Q

s

]([
2Q

s

]
+ 1

)
− 2Q

∑
s≤Q

χ(s)ϕ(s)
s

[
2Q

s

]
(4.4)

+ O(Q(log Q)2).

Extending the range of these sums from s ≤ Q to s ≤ 2Q and applying (4.1)
and (4.3), we find that the first sum on the right side of (4.4) is∑

s≤2Q

χ(s)ϕ(s)
[
2Q

s

]([
2Q

s

]
+ 1

)
− 2

∑
Q<s≤2Q

χ(s)ϕ(s)

= 2
∑

n≤2Q

nfχ(n) + O(
√

k log k ·Q log Q)

and the second sum there is∑
s≤2Q

χ(s)ϕ(s)
s

[
2Q

s

]
−

∑
Q<s≤2Q

χ(s)ϕ(s)
s

.

Now, ∑
s≤2Q

χ(s)ϕ(s)
s

[
2Q

s

]
=

∑
s≤2Q

χ(s)ϕ(s)
s

∑
n≤2Q

s|n

1 =
∑

n≤2Q

fχ(n)

and, by the Pólya-Vinogradov inequality,∑
Q<s≤2Q

χ(s)ϕ(s)
s

=
∑

Q<s≤2Q

χ(s)
s

∑
d|s

µ(d)s
d

=
∑

d≤2Q

µ(d)
d

∑
Q<s≤2Q

d|s

χ(s)

�
√

k log k · log Q.
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Hence
Yχ(Q) = 2

∑
n≤2Q

(n−Q)fχ(n) + O(Q(log Q)2)

and

(4.5) M2(χ,Q) = 2
∑

n≤2Q

(2Q− n)fχ(n) + O(
√

k log k ·Q(log Q)2),

and it remains to examine the sum here.
The Dirichlet series for fχ(n) is given by

∞∑
n=1

fχ(n)
ns

=
ζ(s)L(s, χ)
L(s + 1, χ)

.

Employing

1
2πi

∫ α+i∞

α−i∞

xs+1

s(s + 1)
ds = max(x− 1, 0), x > 0,

and noting that the Dirichlet series converges absolutely on Re(s) = 2, we see
that by term by term integration∑

n≤2Q

(2Q− n)fχ(n) =
∞∑

n=1

max
(

2Q

n
− 1, 0

)
nfχ(n)

=
1

2πi

∫ 2+i∞

2−i∞

(2Q)s+1ζ(s)L(s, χ)
s(s + 1)L(s + 1, χ)

ds.

The integrand has a simple pole at the points s = 0 and s = 1. We deform
the path of integration from 2 − iT to 2 + iT to the union of line segments
s = 2 + it (|t| ≥ T ), s = σ ± iT (0 < σ ≤ 2), s = it (−T ≤ t ≤ T ), and
a cut to the right avoiding the point s = 0, so as to go horizontally from
2 − iT to −iT , vertically from −iT to −iρ, around a semicircle γ0 of radius
ρ = 1/ log Q circling the point 0, vertically from iρ to iT , and horizontally
from iT to 2 + iT . Hence, by Cauchy’s residue theorem∑

n≤2Q

(2Q− n)fχ(n) =
2Q2L(1, χ)

L(2, χ)
+

7∑
j=1

Ij .

The integrals I1 and I7 are along the vertical segments (2− i∞, 2− iT ] and
[2 + iT, 2 + i∞), respectively, on which σ = 2. The integrand is �k Q3/t2

and

|I1|, |I7| �k

∫ ∞

T

Q3

t2
dt �k

Q3

T
.

The integrals I2 and I6 are along the horizontal segments [2− iT,−iT ] and
[iT, 2 + iT ], respectively, on which s = σ ± iT . We have |ζ(s)| � T (1/2)+ε,
|L(s, χ)| �k T (1/2)+ε, and |L(s + 1, χ)| �k 1/ log T (see [18]), so that

|I2|, |I6| �k Q3T−1+3ε.
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The integral I4 is along the curve γ0. Since the factors in the integrand are
bounded, we have

|I4| �k Q

∫
γ0

|ds|
|s|

�k Q log Q · length(γ0) �k Q.

The integrals I3 and I5 are along the vertical segments [−iT,−iρ] and
[iρ, iT ], respectively. We employ the (asymmetric) functional equations for
ζ(s) and L(s, χ) on the line σ = 0. For all s we have

ζ(s) = ζ(1− s)2sπs−1Γ(1− s) sin
πs

2
.

Now any character χ modulo k is induced by a primitive character χ∗ modulo
d, for some d | k, and for all s we have in the notation (12) of [8] (p. 71)
a := a(χ∗) = 0 if χ∗(−1) = 1, and a = 1 if χ∗(−1) = −1:

iaL(s, χ∗) = τ(χ∗)L(1− s, χ∗)2sπs−1k−sΓ(1− s) sin
π(s + a)

2
,

where τ(χ∗) is the Gaussian sum associated with χ∗ and |τ(χ∗)| =
√

k.
Putting σ = 0 and noting χ∗ = χ∗, we obtain

|ζ(it)| �
∣∣∣∣Γ(1− it) sin

itπ

2

∣∣∣∣|ζ(1 + it)|,(4.6)

|L(it, χ∗)| �k

∣∣∣∣Γ(1− it) sin
itπ

2

∣∣∣∣|L(1− it, χ∗)|.

Using

L(s, χ∗) = L(s, χ)
∏
p|k

(
1− χ∗(p)

ps

)−1

,

we get

|L(it, χ)| ≤ 2ω(k)|L(it, χ∗)| �k

∣∣∣∣Γ(1− it) sin
itπ

2

∣∣∣∣|L(1− it, χ∗)|,

|L(1− it, χ∗)| �k |L(1− it, χ)|,
so that

|L(it, χ)| �k

∣∣∣∣Γ(1− it) sin
itπ

2

∣∣∣∣|L(1− it, χ)|.

We distinguish between two cases. If a = 0, then the formulas

Γ(1 + z) = zΓ(z),

|Γ(z)| =
√

π

ξ sinhπξ
(z = iξ, ξ 6= 0 real)

(see Problem 7, p. 259, in [21]) give us∣∣∣∣Γ(1− it) sin
itπ

2

∣∣∣∣ =

√
|t|π
2

tanh
|t|π
2
� min(|t|,

√
|t|).
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Then noting that |L(1− it, χ)| = |L(1 + it, χ)|, the integrand is

�k

Q|Γ(1− it) sin itπ
2 |

2|ζ(1 + it)|
|t|(|t|+ 1)

�k
Qmin(t2, |t|)|ζ(1 + it)|

|t|(|t|+ 1)

and

|I3|, |I5| �k Q max
ρ≤t≤T

|ζ(1 + it)|
(
1 +

∫ T

1

dt

t

)
�k Q(log T + log Q) log T.

Collecting all estimates and choosing T = Q3, we obtain∑
n≤2Q

(2Q− n)fχ(n) =
2Q2L(1, χ)

L(2, χ)
+ Ok(Q(log Q)2),

and the required result follows by inserting this into (4.5).
If a = 1, then

|L(it, χ)| �k

∣∣∣∣Γ(1− it) sin
(1 + it)π

2

∣∣∣∣|L(1− it, χ)|,∣∣∣∣Γ(1− it) sin
(1 + it)π

2

∣∣∣∣ =

√
|t|π
2

coth
|t|π
2
� max(1,

√
|t|).

The integrand is

�k

Q|Γ(1− it) sin itπ
2 ||Γ(1− it) sin (1+it)π

2 ||ζ(1 + it)|
|t|(|t|+ 1)

�k
Qmin(|t|,

√
|t|) max(1,

√
|t|)|ζ(1 + it)|

|t|(|t|+ 1)

and again

|I3|, |I5| �k Q(log T )2 �k Q(log Q)2.

This finishes the case χ 6= χ0.
Now suppose that χ = χ0. By Theorem 3.1

M2(χ0, Q) = Xχ0(Q)− 2Yχ0(Q) +
2Q2∏

p|k(1 + 1/p)
− 3Q2ϕ(k)

kL(2, χ0)

+ O

(
k2ω(k)Q4/3(log Q)5/3

ϕ(k)

)
.

By (3.5)

Xχ0(Q) =
∑

s≤2Q

χ0(s)ϕ(s)
[
2Q

s

]2

− 3Q2ϕ(k)
2kL(2, χ0)

+ O(τ(k)Q log Q).
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By (3.7) and (4.3), the sum above is∑
s≤2Q

χ0(s)ϕ(s)
[
2Q

s

]([
2Q

s

]
+ 1

)
−

∑
s≤2Q

χ0(s)ϕ(s)
[
2Q

s

]

= 2
∑

n≤2Q

nfχ0(n)− 2Q2∏
p|k(1 + 1/p)

+ O

(
k2ω(k)Q4/3(log Q)5/3

ϕ(k)

)
.

Hence

Xχ0(Q) = 2
∑

n≤2Q

nfχ0(n)− 2Q2∏
p|k(1 + 1/p)

− 3Q2ϕ(k)
2kL(2, χ0)

+ O

(
k2ω(k)Q4/3(log Q)5/3

ϕ(k)

)
.

To treat the sum Yχ0 in (4.4) we extend the range from 1 ≤ s ≤ Q to
1 ≤ s ≤ 2Q and apply (3.5) and (4.3), to see that∑

s≤Q

χ0(s)ϕ(s)
[
2Q

s

]([
2Q

s

]
+ 1

)

=
∑

s≤2Q

χ0(s)ϕ(s)
[
2Q

s

]([
2Q

s

]
+ 1

)
− 2

∑
Q<s≤2Q

χ0(s)ϕ(s)

= 2
∑

n≤2Q

nfχ0(n)− 3Q2ϕ(k)
kL(2, χ0)

+ O(τ(k)Q log Q).

Further,∑
s≤Q

χ0(s)ϕ(s)
s

[
2Q

s

]
=

∑
s≤2Q

χ0(s)ϕ(s)
s

[
2Q

s

]
−

∑
Q<s≤2Q

χ0(s)ϕ(s)
s

=
∑

n≤2Q

fχ0(n)−
∑

Q<s≤2Q

χ0(s)ϕ(s)
s

,

where∑
Q<s≤2Q

χ0(s)ϕ(s)
s

=
∑

Q<s≤2Q

χ0(s)
∑
d|s

µ(d)
d

=
∑

d≤2Q

χ0(d)µ(d)
d

∑
Q
d <l≤[ 2Q

d ]
χ0(l)

=
∑

d≤2Q

χ0(d)µ(d)
d

(
ϕ(k)

k

([
2Q

d

]
− Q

d

)
+ O(τ(k))

)

=
Qϕ(k)

kL(2, χ0)
+ O(τ(k) log Q).
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Hence

Yχ0(Q) = 2
∑

n≤2Q

(n−Q)fχ0(n)− Q2ϕ(k)
kL(2, χ0)

+ O(Q(log Q)2)

and, altogether,

M2(χ0, Q) = 2
∑

n≤2Q

(2Q− n)fχ0(n)− 5Q2ϕ(k)
2kL(2, χ0)

(4.7)

+ O

(
k2ω(k)Q4/3(log Q)5/3

ϕ(k)

)
.

The Dirichlet series for fχ0(n) is

∞∑
n=1

fχ0(n)
ns

=
ζ(s)2

ζ(s + 1)

∏
p|k

1− 1
ps

1− 1
ps+1

,

where ∣∣∣∣∏
p|k

1− 1
ps

1− 1
ps+1

∣∣∣∣ ≤ k2ω(k)

ϕ(k)

uniformly for σ ≥ 0, so that∑
n≤2Q

(2Q− n)fχ0(n) =
1

2πi

∫ 2+i∞

2−i∞

(2Q)s+1ζ(s)2

s(s + 1)ζ(s + 1)

∏
p|k

1− 1
ps

1− 1
ps+1

ds.

We now take the path of integration to be the infinite broken line that goes
horizontally from 2− iT to −iT , vertically from −iT to iT , and horizontally
from iT to 2+ iT . We can integrate through the point s = 0 because the pole
at s = 0 is removed by the zero of 1

ζ(s+1) . By Cauchy’s residue theorem the

integral above is
∑5

j=1 Ij plus the residue left by the double pole at s = 1,
which is given by

12Q2

π2

(
log 2Q− ζ ′(2)

ζ(2)
− 3

2
+ 2γ +

∑
p|k

p log p

p2 − 1

) ∏
p|k

p

p + 1
.

The integrals I1 and I5 are along the vertical segments (2− i∞, 2− iT ] and
[2 + iT, 2 + i∞), respectively, on which σ = 2. The integrand is � k2ω(k)Q3

ϕ(k)t2

and

|I1|, |I5| �
k2ω(k)Q3

ϕ(k)

∫ ∞

T

dt

t2
� k2ω(k)Q3

ϕ(k)T
.

The integrals I2 and I4 are along the horizontal segments [2− iT,−iT ] and
[iT, 2 + iT ], respectively, on which s = σ + it. We have |ζ(s)| � T (1/2)+ε and
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|ζ(s + 1)| � 1
log T (see [18]), so that

|I2|, |I4| �
k2ω(k)Q3T−1+3ε

ϕ(k)
.

The integral I3 is along the vertical segment [−iT, iT ], on which σ = 0. We
employ (4.6) and |ζ(1− it)| = |ζ(1 + it)| to see that the integrand is

� k2ω(k)Qmin(t2, |t|)|ζ(1 + it)|
ϕ(k)|t|(|t|+ 1)

and

|I3| �
k2ω(k)Q

ϕ(k)

(
1 +

∫ T

1

|ζ(1 + it)|
t

dt

)
� k2ω(k)Q(log T )2

ϕ(k)
.

Collecting all estimates and selecting T = Q3, we obtain∑
n≤2Q

(2Q− n)fχ0(n) =
12Q2

π2

(
log 2Q− ζ ′(2)

ζ(2)
− 3

2
+ 2γ +

∑
p|k

p log p

p2 − 1

)

×
∏
p|k

p

p + 1
+ O

(
k2ω(k)Q(log Q)2

ϕ(k)

)
,

and inserting this into (4.7) proves part (ii) of Theorem 1.1.

5. Higher moments

In this section we prove parts (iii) and (iv) of Theorem 1.1. We apply (1.1)
and the binomial theorem to (1.3) to see that

Ml(χ,Q) =
∑
s≤Q

χ(s)
∑

γi=
b
s∈F

Q

ν(γi)l(5.1)

=
∑
s≤Q

χ(s)
∑

Q−s<r≤Q
(r,s)=1

[
Q + r

s

]l

=
∑
s≤Q

χ(s)
∑

Q−s<r≤Q
(r,s)=1

((
Q + r

s

)l

+ O

((
Q + r

s

)l−1))

=
∑
s≤Q

χ(s)
∑

Q−s<r≤Q
(r,s)=1

(
Q + r

s

)l

+ O(Ml−1(1, Q)),

where

Ml−1(1, Q) =
∑
s≤Q

∑
Q−s<r≤Q

(r,s)=1

[
Q + r

s

]l−1
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with 1 being the trivial character: 1(n) = 1, for all n ≥ 1. Note that

∞∑
s=1

χ(s)ϕ(s)
sl

=
∞∑

d=1

µ(d)
d

∞∑
s=1
d|s

χ(s)
sl−1

=
∞∑

d=1

χ(d)µ(d)
dl

∞∑
m=1

χ(m)
ml−1

=
L(l − 1, χ)

L(l, χ)
.

Next, we observe that

∑
s≤Q

∣∣∣∣ ∑
Q−s<r≤Q

((
Q + r

s

)l

−
(

2Q

s

)l)∣∣∣∣ ≤ ∑
s≤Q

∑
Q−s<r≤Q

(2Q)l − (Q + r)l

sl

�l

∑
s≤Q

(Q− r)Ql−1

sl−1

�l

∑
s≤Q

Ql−1

sl−2
,

which is �l Q2 log Q if l = 3, and �l Ql−1 if l ≥ 4. It follows that

M3(χ,Q) =
8Q3L(2, χ)

L(3, χ)
+ O(Q2 log Q) +M2(1, Q)

=
8Q3L(2, χ)

L(3, χ)
+ O(Q2 log Q)

using part (ii) of Theorem 1.1. This proves part (iii) of Theorem 1.1. For
l ≥ 4 we have

Ml(χ,Q) = 2lQl
∞∑

s=1

χ(s)ϕ(s)
sl

+ O(Ql−1) + O(Ml−1(1, Q))

=
2lQlL(l − 1, χ)

L(l, χ)
+ O(Ql−1).

This proves part (iv) of Theorem 1.1.

6. Proof of Corollary 1.2

In this section we prove Corollary 1.2. In view of the identity

1
ϕ(k)

∑
χ

χ(us) =
{

1 if s ≡ u (mod k),
0 otherwise
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and uu ≡ 1 (mod k), we have by (1.4)

Ml(u, k,Q) =
1

ϕ(k)

∑
γi=

b
s∈F

Q

ν(γi)l
∑

χ

χ(us)

=
1

ϕ(k)

∑
χ

χ(u)
∑

γi=
b
s∈F

Q

χ(s)ν(γi)l

=
1

ϕ(k)

∑
χ

χ(u)Ml(χ,Q).

Noting χ0(u) = 1 and χ(u) = χ(u), we record that if l = 1 then Theorem 1.1
yields

M1(u, k,Q) =
3Q2

2kL(2, χ0)
+ O

(
τ(k)Q log Q

ϕ(k)

)
+ O

( ∑
χ6=χ0

√
k log k ·Q log Q

ϕ(k)

)

=
3Q2

2kL(2, χ0)
+ Ok(Q log Q).

If l = 2, then Theorem 1.1 gives us

M2(u, k,Q) =
24Q2

π2ϕ(k)

(
log 2Q− ζ ′(2)

ζ(2)
− 3

2
+ 2γ +

∑
p|k

p log p

p2 − 1

) ∏
p|k

p

p + 1

− 5Q2

2kL(2, χ0)
+ O

(
k2ω(k)Q4/3(log Q)5/3

ϕ(k)2

)
+

4Q2

ϕ(k)

∑
χ6=χ0

χ(u)L(1, χ)
L(2, χ)

+ O

( ∑
χ6=χ0

√
k log k ·Q(log Q)2

ϕ(k)

)

=
24Q2

π2ϕ(k)

(
log 2Q− ζ ′(2)

ζ(2)
− 3

2
+ 2γ +

∑
p|k

p log p

p2 − 1

) ∏
p|k

p

p + 1

− 5Q2

2kL(2, χ0)
+

4Q2

ϕ(k)

∑
χ6=χ0

χ(u)L(1, χ)
L(2, χ)

+ Ok(Q4/3(log Q)5/3).

The asymptotic formulas for M3(u, k,Q) and Ml(u, k,Q) for l ≥ 4 are ob-
tained in a similar way. The details are left to the reader.
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