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ON LOCALLY FINITE GROUPS IN WHICH EVERY
ELEMENT HAS PRIME POWER ORDER

ALBERTO L. DELGADO AND YU-FEN WU

ABSTRACT. A group is called a C P-group if every element of the group
has prime power order. The complete classification of locally finite C' P-
groups is given in this article.

1. Introduction

DEFINITION. A group is called a C'P-group if every element of the group
has prime power order.

This definition is equivalent to the statement that the centralizer of every
nontrivial element is a p-group, for some prime p which depends on the ele-
ment. This is a generalization of groups of prime power order. Examples of
C P-groups include p-groups, where p is a prime, and Tarski groups, which
are simple groups whose proper subgroups have prime order. This shows how
complicated the structure of infinite C'P-groups can be.

Finite CP-groups were first studied by Higman [3] in 1957. He showed
that a finite solvable C'P-group is a split extension of its Fitting subgroup,
which must clearly be a p-group, by a complement acting fixed-point-freely.
Moreover, the order of a finite solvable CP-group is divisible by at most
two primes. In the same article, Higman studied the structure of finite in-
solvable C'P-groups and showed that such a group has a non-abelian simple
section which largely determines its structure. Suzuki classified finite simple
CP-groups in his celebrated work [7], finding that only eight finite simple
C P-groups exist. Brandl continued this line of inquiry by classifying finite in-
solvable C'P-groups in [2], but his work contained flaws. Finally, Bannuscher
and Tiedt gave the complete classification of finite C' P-groups in [1].

We can visualize this type of group by means of a graph as follows. The
prime graph of a group G is the graph having the prime divisors of the orders
of the elements of G as vertices and an edge between two vertices p and ¢ if
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G has an element of order pg. Then a group is a C'P-group if and only if its
prime graph is totally disconnected.

NoOTATION. Throughout the paper, p and ¢ are two distinct primes, O,(G)
is the maximal normal p-subgroup of a group G, and 7(G) denotes the set of
primes dividing orders of the elements of G.

We can now state our main result.

MAIN THEOREM. Let G be a locally finite group. Then G is a CP-group
with Fitting subgroup P if and only if one of the following holds:

(1) G=P, ie., G is a p-group;

(2) G = Q x P where Q acts on P fized-point-freely and Q is either a
subgroup of a locally quaternion group or of Zg~ where p # q;

(3) G = (H x Q) x P where H acts fized-point-freely on Q, and Q acts
fized-point-freely on P; also HP is a Sylow p-subgroup of G, Q is a
subgroup of Zge, and H is finite cyclic, where p | ¢ — 1;

(4) G is finite almost simple and is isomorphic to PSL(2,q) (¢ = 4,7,
8,9,17), PSL(3,4), Sz(8), Sz(32), or Mp;

(5) P = O2(G) # 1 and G/P is isomorphic to PSL(2,4), PSL(2,8),
Sz(8), or Sz(32). Moreover, P is isomorphic to a direct sum of natural
modules for G/P.

2. Finite C'P-groups

It is obvious that any subgroup of a C'P-group is also a C'P-group. It is
only slightly less obvious that a factor group of a locally finite C'P-group is
a C'P-group, since an element mapping to an element of non-prime power
order would generate a cyclic group of non-prime power order. Therefore any
section of a locally finite C' P-group is also a C P-group.

THEOREM 1 ([3]). Suppose G is a finite solvable C P-group with O,(G) =
P # 1. Then G has one of the following structures:

(1) G is a p-group;

(2) G = Q x P where Q acts on P fized-point-freely and Q is either
generalized quaternion or cyclic;

(3) G = (H x Q) x P where H acts fized-point-freely on Q, and Q acts
fixed-point-freely on P; also HP is a Sylow p-subgroup of G, and H
and @ are cyclic.

In each case, |7(G)| < 2.

NoOTATION. A group as in (1) will be called a 1-step group; a group as
in (2), a 2-step group; and a group as in (3), a 3-step group.
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THEOREM 2 ([3]). Let G be a finite insolvable CP-group. Then G has a
normal series G > N > P = O,(G) > 1, where
(1) G/N is cyclic or generalized quaternion, and, in fact, cyclic if P > 1;
(2) N/P is the unique minimal normal subgroup of G/P, N/P is non-
abelian simple, and when P > 1, p divides |[N/P)|.

THEOREM 3 ([7]). A nonabelian simple CP-group is isomorphic to
PSL(2,q) (¢ =4,7,8,9,17), PSL(3,4), Sz(8), or Sz(32).

THEOREM 4 ([1]). A group G is a finite CP-group if and only if one of
the following holds:
(1) G is a 1-step group;
(2) G is a 2-step group;
(3) G is a 3-step group;
(4) G is isomorphic to PSL(2,q) (¢ = 4,7,8,9,17), PSL(3,4), Sz(8),
Sz(32), or Myp;
(5) G/O2(G) is isomorphic to PSL(2,4), PSL(2,8), Sz(8), or Sz(32).
Moreover, O2(G) is isomorphic to a direct sum of natural modules

for G/O2(Q).
3. Locally finite C'P-groups

First of all, we show that there are no infinite locally finite simple CP-
groups.

THEOREM 5. Let G be a locally finite simple C P-group. Then G is finite.

Proof. First, assume that G is countably infinite. Then by [5, 4.5], G is
the union of a strictly ascending sequence {R,, : n € N} of finite subgroups
satisfying the following property: For each n there is a maximal normal sub-
group M, 11 of R4 satisfying M,,.1 N R, = 1. Thus R,, ~ M, 1R,/ Mp+1,
and so R, is isomorphic to a subgroup of the simple group Ryy1/Mp41.

If R,,41 is solvable for some n, then R, 41/M, 1 has prime order and so
does R,,. Thus the only possible solvable subgroups in {R,} are R; and Ra.
Discarding these solvable subgroups from the set {R,,}, if necessary, we may
assume that all R,’s are insolvable. Since R,, is isomorphic to a subgroup
of a finite simple C'P-group and there are only finitely many finite simple
CP-groups (see Theorem 3), {R,,} is a finite set and G is finite simple.

If G is not countable, then by [5, 4.4], G has a local system of countably
infinite simple subgroups. This, however, was just shown to be impossible. [J

HypoTHESIS. From now until our main result, Theorem 10, we assume
that G is an infinite locally finite C P-group.

We need to introduce the following group.
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DEFINITION. A group is called locally quaternion if it has a presentation
(X,y| X =~ Zyw, a¥ =2 for every z € X,

and y? is the involution of X)
In order to show our main result, we also need the following lemmas.

NOTATION. For k = 1,2, 3, let Fi be the set of finite subgroups of G which
are k-step groups, and let 4y be the set of finite insolvable subgroups of G
with a non-trivial Fitting subgroup. Let 1 < k(G) < 4 be maximal subject to

Fr(a) # 0.
Note that k(G) is well-defined by Theorem 4.

LEMMA 6. Suppose G is locally solvable and let k = k(G). Let Hy and
Hs be in Fy,. Then we have:
(a) m(Fit(H;)) = n(Fit((Hy, Ha))), i = 1,2;
(b) Fit(H,) < Fit((Hy, Ho)), i = 1,2.

Proof. First, note that k € {1,2,3} since G is locally solvable. Let K =
(Hy,Hs). Then K € Fj. If k = 1, the claims are obvious. Put K =
K/Fit(K). Then K is a (k — 1)-step group. If the claims do not hold, then
H; = H; Fit(K)/Fit(K) is a k-step subgroup of K, which is impossible. [

Recall that a group X is almost simple if S C X C Aut(S5), for some simple
group S.

We have a result identical to that of the previous lemma in the case that
G is not locally solvable and k = 4.

LEMMA 7. Suppose G is not locally solvable. Then Fy # 0, and for Hy
and Hy in F4 we have:
(a) m(Fit(H;)) = n(Fit((Hy, Ha))), i = 1,2;
(b) Fit(H;) < Fit({Hy, Hy)), i =1,2.

Proof. Since there are only finitely many types of finite C P-groups, Fy # 0.
Put K = (Hy, Hy). If K is not in Fy, then K is almost simple and parts (4)
and (5) of Theorem 4 show that K ~ PSL(3,4) and H; ~ Hy ~ 2% . Aj;.
This means that G > PSL(3,4) and so G = PSL(3,4) by Theorem 4 and
Theorem 5, which is impossible.

Assume that K € Fy and put K = K/ Fit(K). So K is almost simple. As
Fit(K) N H; < Fit(H;), we see that H;/(H; NFit(K)) is almost simple. Thus
Fit(H;) = Fit(K) N H; and the claims hold. O

LEMMA 8. Fit(G) = O,(G) # 1 for some unique prime p.
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Proof. Let k = k(G), H € Fi, and z € G. Let K = (H, H*). By Lemmas 6
and 7, we have that Fit(H) < Fit(K) = O,(K) for some prime p. Thus
(Op,(HY);y € G) is a p-group and 1 # O,(HY) < O,(G), where HY denotes
the normal closure of H in G. O

THEOREM 9. Let G be a locally finite group and let G have a normal
series G > M > N > 1. If the centralizer Cpr(n) lies in N for each non-
trivial element n of N, then G splits over N.

Proof. Clearly M is a locally finite Frobenius group with complement K,
say, and kernel N. As all complements to NV in M are conjugate in M, by [5,
1.J.2], a Frattini argument gives that Ng(K) is a complement to N. O

Now we are able to prove our main result.

Proof of Main Theorem. By Theorem 4, we may assume that G is an infi-
nite locally finite C'P-group, and we put k = k(G).

If k =1, then (1) holds obviously.

If k = 2, then, for every H € Fy, we have O,(H) < P # 1, by Lemmas 6
and 8. Since O,(H) is the Sylow p-subgroup of H, elements of G not in P
have order relatively prime to p. Thus elements of G\ P act fixed-point-freely
by conjugation on P. By Theorem 9, G splits over P and we may write
G = Q x P. Put G = G/P. Then H is isomorphic to either Zs or to a
generalized quaternion group. Therefore, @ is a subgroup of either Zg~ or of
a locally quaternion group.

If k = 3, then P # 1 by Lemma 6. Put G = G/P, and k = k(G).
Then k = 2. Let F;; = {H < G | H € F3}. By the result of the previous
paragraph, O,(G) # 1, for some prime q # p, G splits over O,4(G) and any
complement to Oy (G) acts fixed-point-freely on O,(G). Now G has a normal
series G > O, ¢(G) > P > 1 and elements of O, ((G) not in P act fixed-point-
freely by conjugation on P. Therefore, by Theorem 9, G splits over P and G
is a 3-step group.

Write G = (H x Q) x P. Since H acts fixed-point-freely on @, and Q
acts fixed-point-freely on P, it follows that () and H are either subgroups
of a locally quaternion group or a subgroup of Zg~ and Z,-, respectively.
Moreover, if Q is locally quaternion, it has a characteristic subgroup of order
2, and so H = 1; in the other case, H is a subgroup of the automorphism
group of Zg~ and hence is finite cyclic of order p™.

If k=4 and H € Fy, then O2(H) < Fit(G) and so p = 2. By Lemma 7,
O2(H) = 1 and H is isomorphic to PSL(2,4), PSL(2,8), Sz(8), or Sz(32).
None of these simple groups contains any of the other ones, so G = H. By
the results of Higman [4] and Martineau [6], (5) holds.
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Conversely, assume that a group in the theorem has an element of order
pq. Then the finite subgroup generated by that element must be contained in
a finite group listed in Theorem 4, which is impossible. U

4. Examples of infinite locally finite solvable C'P-groups

ExaMPLE 1. Let p be an odd prime and V' a 2-dimensional vector space
over an infinite locally finite field F' of characteristic p. Then a Sylow 2-
subgroup, @, of SL(2, F') is locally quaternion and acts fixed-point-freely on
V. Thus G = Q x V is a locally finite 2-step C P-group.

EXAMPLE 2. Let F be the locally finite field which is the direct limit of
finite fields of order 223" " for all k& > 1. By induction, it is easy to see that
3k divides 223" — 1. Thus there is a subgroup H of F* isomorphic to Zg.

Let
o J (X 0 (0 1
H_{<O A1 A€ Hp and z = 1 0]

Then H°® ~ H and z inverts under conjugation each element of H?. If V is a
2-dimensional vector space over F, then G = ({z) x HY) x V is a locally finite
3-step C'P-group.

It is worthwhile mentioning that the class of locally solvable C'P-groups
is contained in that of locally finite C P-groups since C'P-groups are torsion.
Moreover, it is known that a torsion group G has a unique maximal normal
locally solvable subgroup R such that G/R has no non-trivial normal locally
solvable subgroups (see [8]). R is called the locally solvable radical of G and
G/R is said to be locally solvably semisimple. For instance, Tarski groups
are locally solvably semisimple C' P-groups. The structure of infinite locally
solvably semisimple C' P-groups remains to be settled.
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