CHARACTER SUMS OVER INTEGERS WITH RESTRICTED g-ARY DIGITS

WILLIAM D. BANKS, ALESSANDRO CONFLITTI, AND IGOR E. SHPARLINSKI

Abstract

We establish upper bounds for multiplicative character sums and exponential sums over sets of integers that are described by various properties of their digits in a fixed base $g \geq 2$. Our main tools are the Weil and Vinogradov bounds for character sums and exponential sums. Our results can be applied to study the distribution of quadratic non-residues and primitive roots among these sets of integers.

1. Introduction

Arithmetic properties of integers characterized by their digits in various bases have been studied in many papers; see [2], [3], [5], [6], [7], [8], [9], [10], [11], [12], [13], [17], and [18], and the references therein. In this paper, using a very general technique, we give nontrivial bounds for short character sums over integers satisfying certain digit properties.

More precisely, let $g \geq 2$ be a fixed base and consider the base g representation of an integer $n \geq 0$:

$$
n=\sum_{j \geq 0} a_{j}(n) g^{j}, \quad 0 \leq a_{j}(n) \leq g-1
$$

Let $\sigma_{g}(n)$ denote the sum of the base g digits of n; that is,

$$
\sigma_{g}(n)=\sum_{j \geq 0} a_{j}(n)
$$

For any subset $\mathcal{D} \subset\{0, \ldots, g-1\}$ with $\# \mathcal{D} \geq 2$ and any integer $r \geq 1$, let

$$
\mathcal{F}_{\mathcal{D}}(r)=\left\{0 \leq n<g^{r} \mid a_{j}(n) \in \mathcal{D}, 0 \leq j \leq r-1\right\} .
$$

In other words, $\mathcal{F}_{\mathcal{D}}(r)$ is the set of integers with r digits (in base g), all of which lie in the set \mathcal{D}.

[^0]For any integers $0 \leq \ell<q$ such that $\operatorname{gcd}(q, g-1)=1$, and for any integer $r \geq 1$, we also define

$$
\mathcal{E}_{\ell, q}(r)=\left\{0 \leq n<g^{r} \mid \sigma_{g}(n) \equiv \ell \quad(\bmod q)\right\}
$$

Thus, $\mathcal{E}_{\ell, q}(r)$ is the set of integers with r digits (in base g) such that the sum of the digits satisfies the congruence condition $\sigma_{g}(n) \equiv \ell(\bmod q)$.

Finally, for any integers $0 \leq s \leq(g-1) r$, let

$$
\mathcal{G}_{s}(r)=\left\{0 \leq n<g^{r} \mid \sigma_{g}(n)=s\right\} .
$$

Then $\mathcal{G}_{s}(r)$ is the set of integers with r digits (in base g) such that the sum of the digits is equal to s.

Let p be a fixed prime number. In this paper, we establish nontrivial bounds for certain sums of the form

$$
S_{\mathcal{D}}(r, \chi, f)=\sum_{n \in \mathcal{F}_{\mathcal{D}}(r)} \chi(f(n)), \quad S_{\ell, q}(r, \chi, f)=\sum_{n \in \mathcal{E}_{\ell, q}(r)} \chi(f(n)),
$$

and

$$
S_{s}(r, \chi, f)=\sum_{n \in \mathcal{G}_{s}(r)} \chi(f(n))
$$

where χ is a non-principal multiplicative character for the finite field \mathbb{F}_{p} with p elements, and $f(X)$ is a polynomial in $\mathbb{F}_{p}[X]$. Our results are based on the Weil bound for incomplete character sums [22].

Using similar techniques, we also obtain nontrivial bounds for exponential sums of the form

$$
T_{\mathcal{D}}(r, f)=\sum_{n \in \mathcal{F}_{\mathcal{D}}(r)} \mathbf{e}_{p}(f(n)), \quad T_{\ell, q}(r, f)=\sum_{n \in \mathcal{E}_{\ell, q}(r)} \mathbf{e}_{p}(f(n)),
$$

and

$$
T_{s}(r, f)=\sum_{n \in \mathcal{G}_{s}(r)} \mathbf{e}_{p}(f(n))
$$

where $\mathbf{e}_{p}(z)=e^{2 \pi i z / p}$. Moreover, in this case, using the Vinogradov-type bound from [16], we are able to estimate much shorter sums for certain choices of parameters.

In [9], the sums

$$
V_{s}(r, c, \vartheta)=\sum_{n \in \mathcal{G}_{s}(r)} \mathbf{e}_{p}\left(c \vartheta^{n}\right)
$$

have been estimated; here, using bounds from [15], [16], or [20] for exponential sums with exponential functions, we also estimate the related sums

$$
V_{\mathcal{D}}(r, c, \vartheta)=\sum_{n \in \mathcal{F}_{\mathcal{D}}(r)} \mathbf{e}_{p}\left(c \vartheta^{n}\right) \quad \text { and } \quad V_{\ell, q}(r, c, \vartheta)=\sum_{n \in \mathcal{E}_{\ell, q}(r)} \mathbf{e}_{p}\left(c \vartheta^{n}\right)
$$

In order to simplify our calculations and the formulation of our main results, we consider only the case where the prime p is greater than g^{r}; however, our methods and results can be extended to cover smaller values of p. Moreover,
we remark that the most challenging and interesting problem is to obtain nontrivial bounds when the value of g^{r} is as small as possible relative to p, that is, when the sums are as short as possible.

For our bounds to be nontrivial, the sets $\mathcal{F}_{\mathcal{D}}(r), \mathcal{E}_{\ell, q}(r)$ and $\mathcal{G}_{s}(r)$ must be of sufficiently large cardinality. We remark that, trivially, $\# \mathcal{F}_{\mathcal{D}}(r)=(\# \mathcal{D})^{r}$, and $\# \mathcal{E}_{\ell, q}(r)$ is given by Lemma 5 (see $\S 2$). The problem of estimating $\# \mathcal{G}_{s}(r)$ is more complicated. Some asymptotic formulas have been given in [18], but they are too technically complicated to be presented here. Nevertheless, we remark that since

$$
\sum_{s=0}^{(g-1) r} \# \mathcal{G}_{s}(r)=g^{r}
$$

"on average" the value of $\# \mathcal{G}_{s}(r)$ is at least $g^{r-1} r^{-1}$. Of course, the largest values of $\# \mathcal{G}_{s}(r)$ occur for the "middle values" where $s \approx(g-1) r / 2$.

We repeatedly use that $\bar{\chi}(z)=\chi\left(z^{p-2}\right)$ for $z \in \mathbb{F}_{p}^{*}$ and a multiplicative character χ.

Throughout the paper, the implied constants in the symbols " O " and "<" can depend on g, on a certain integer parameter ν in the Theorem 1, and occasionally, when the sets $\mathcal{E}_{\ell, q}(r)$ are involved, on q as well. We recall that the expressions $A \ll B$ and $A=O(B)$ are each equivalent to the statement that $|A| \leq c B$ for some constant c. As usual, $\log z$ denotes the natural logarithm of z.

Acknowledgement. The first two authors would like to thank Macquarie University for its hospitality during the preparation of this paper. This work was supported in part by NSF grant DMS-0070628 (W. Banks) and by ARC grant A00000184 (I. Shparlinski).

2. Preparations

Here we collect several auxiliary statements.
The following two statements follow immediately from the Weil bound and are well-known; see [22]. The first one is essentially Theorem 2 of [19], and the second one is obtained using similar techniques.

Lemma 1. For any multiplicative character χ modulo p of order $m \geq 2$, any integers M and K with $1 \leq K<p$, and any polynomial $F(X) \in \mathbb{F}_{p}[X]$ with d distinct roots (of arbitrary multiplicity) such that $F(X)$ is not the m-th power of a rational function, we have

$$
\left|\sum_{n=M+1}^{M+K} \chi(F(n))\right| \ll d p^{1 / 2} \log p
$$

Lemma 2. For any polynomial $F(X) \in \mathbb{F}_{p}[X]$ of degree $d \geq 2$ and any integers M and K with $1 \leq K<p$, we have

$$
\max _{\operatorname{gcd}(a, p)=1}\left|\sum_{n=M+1}^{M+K} \mathbf{e}_{p}(a F(n))\right| \ll d p^{1 / 2} \log p
$$

The following result is a special case of Theorem 17 from [16].
Lemma 3. For any polynomial $F(X) \in \mathbb{F}_{p}[X]$ of degree $d>2$ and any integers M and K with $p^{1 /(d-1)} \leq K<p$, we have

$$
\max _{\operatorname{gcd}(a, p)=1}\left|\sum_{n=M+1}^{M+K} \mathbf{e}_{p}(a F(n))\right| \ll e^{3 d} K^{1-1 / 9 d^{2} \log d}
$$

The following result can be found in [15], [16], or [20]. In some cases, stronger bounds can be found in [14], but they do not seem to be useful for our purposes.

Lemma 4. Let $\lambda \in \mathbb{F}_{p}^{*}$ be an element of multiplicative order T. For any $c \in \mathbb{F}_{p}^{*}$ and any integer $H \leq T$, the bound

$$
\left|\sum_{u=1}^{H} \mathbf{e}_{p}\left(c \lambda^{u}\right)\right| \ll p^{1 / 2} \log p
$$

holds.
Finally, we need the following statement from [10].
LEMMA 5. For any integers $0 \leq \ell<q$ such that $\operatorname{gcd}(q, g-1)=1$, there is a constant $\rho<1$, depending only on g and q, such that

$$
\# \mathcal{E}_{\ell, q}(r)=\frac{g^{r}}{q}+O\left(g^{\rho r}\right)
$$

3. Multiplicative character sums with polynomials

Theorem 1. For any integer $r \geq 1$ with $g^{r}<p$, any multiplicative character χ modulo p of order $m \geq 2$, and any polynomial $f(X) \in \mathbb{F}_{p}[X]$ that is not the m-th power of a rational function, we have

$$
\left|S_{\mathcal{D}}(r, \chi, f)\right| \ll \# \mathcal{F}_{\mathcal{D}}(r)^{1-\alpha / 2(1+\alpha \nu)}\left(d p^{1 / 2} \log p\right)^{(1+\alpha(\nu-1)) / 2 \nu(1+\alpha \nu)}
$$

where $d=\operatorname{deg} f, 0<\alpha \leq 1$ is the real number such that $\# \mathcal{D}=g^{\alpha}$, and ν is an arbitrary positive integer if $f(X)$ is irreducible over \mathbb{F}_{p}, and $\nu=1$ otherwise.

Proof. Put $K=g^{r-k}$, where $0 \leq k \leq r$ will be chosen later. For every $n \in \mathcal{F}_{\mathcal{D}}(r)$, write $n=a g^{k}+b$ with $0 \leq a<g^{r-k}$ and $0 \leq b<g^{k}$; then

$$
S_{\mathcal{D}}(r, \chi, f)=\sum_{a \in \mathcal{F}_{\mathcal{D}}(r-k)} \sum_{b \in \mathcal{F}_{\mathcal{D}}(k)} \chi\left(f\left(a g^{k}+b\right)\right) .
$$

By the Hölder inequality, we have

$$
\begin{aligned}
&\left|S_{\mathcal{D}}(r, \chi, f)\right|^{2 \nu} \leq \# \mathcal{F}_{\mathcal{D}}(r-k)^{2 \nu-1} \sum_{a=0}^{K-1} \mid\left.\sum_{b \in \mathcal{F}_{\mathcal{D}}(k)} \chi\left(f\left(a g^{k}+b\right)\right)\right|^{2 \nu} \\
&=\# \mathcal{F}_{\mathcal{D}}(r-k)^{2 \nu-1} \sum_{a=0}^{K-1} \sum_{\substack{b_{1}, \ldots, b_{\nu} \in \mathcal{F}_{\mathcal{D}}(k) \\
c_{1}, \ldots, c_{\nu} \in \mathcal{F}_{\mathcal{D}}(k)}} \prod_{j=1}^{\nu} \chi\left(f\left(a g^{k}+b_{j}\right)\right) \bar{\chi}\left(f\left(a g^{k}+c_{j}\right)\right) \\
&=\# \mathcal{F}_{\mathcal{D}}(r-k)^{2 \nu-1} \sum_{\substack{b_{1}, \ldots, b_{\nu} \in \mathcal{F}_{\mathcal{D}}(k) \\
c_{1}, \ldots, c_{\nu} \in \mathcal{F}_{\mathcal{D}}(k)}} \\
& \times\left|\sum_{a=0}^{K-1} \prod_{j=1}^{\nu} \chi\left(f\left(a g^{k}+b_{j}\right) f\left(a g^{k}+c_{j}\right)^{p-2}\right)\right|
\end{aligned}
$$

If $f(X)$ is irreducible, then for any $\beta, \gamma \in \mathbb{F}_{p}$ with $\beta \neq \gamma$, the polynomials $f\left(g^{k} X+\beta\right)$ and $f\left(g^{k} X+\gamma\right)$ are irreducible as well, hence relatively prime. In particular, these polynomials have no common roots. Now let $\left(b_{1}, \ldots, b_{\nu}\right)$ and $\left(c_{1}, \ldots, c_{\nu}\right)$ be two ν-tuples in $\mathcal{F}_{\mathcal{D}}(k)^{\nu}$. After applying a permutation to one of these ν-tuples (if necessary), for some integer $\mu, 0 \leq \mu \leq \nu$, we have that $b_{i} \neq c_{j}$ for all $1 \leq i, j \leq \mu$, and $b_{i}=c_{i}$ for $\mu+1 \leq i \leq \nu$. Consequently,

$$
\prod_{j=1}^{\nu} f\left(g^{k} X+b_{j}\right) f\left(g^{k} X+c_{j}\right)^{p-2}=\prod_{j=1}^{\mu} f\left(g^{k} X+b_{j}\right) f\left(g^{k} X+c_{j}\right)^{p-2}
$$

Now we see that this function is the m-th power of a rational function if and only if $\mu \equiv 0(\bmod m)$ and every value that occurs in the sequence b_{1}, \ldots, b_{μ} or in the sequence c_{1}, \ldots, c_{μ} occurs with a multiplicity that is divisible by m (we recall that $m \mid p-1$ and thus $p-2 \equiv 1(\bmod m)$). In other words, both sequences can be separated into μ / m constant subsequences with m terms each. Thus, there are at most $O\left(\# \mathcal{F}_{\mathcal{D}}(k)^{2 \mu / m}\right)=O\left(\# \mathcal{F}_{\mathcal{D}}(k)^{\mu}\right)$ possibilities. We also have at most $O\left(\# \mathcal{F}_{\mathcal{D}}(k)^{\nu-\mu}\right)$ possibilities for the remaining elements $b_{i}=c_{i}, \mu+1 \leq i \leq \nu$. This shows that there are at most $O\left(\# \mathcal{F}_{\mathcal{D}}(k)^{\nu}\right)$ pairs of ν-tuples $\left(b_{1}, \ldots, b_{\nu}\right)$ and $\left(c_{1}, \ldots, c_{\nu}\right)$ such that

$$
\begin{equation*}
F_{k}(X)=\prod_{j=1}^{\nu} f\left(g^{k} X+b_{j}\right) f\left(g^{k} X+c_{j}\right)^{p-2} \tag{1}
\end{equation*}
$$

is the m-th power of a rational function.

Similarly, when $\nu=1$, the same statement holds for an arbitrary polynomial $f(X)$ that is not the m-th power of a rational function. To verify this, it is enough to examine the roots and poles of $f\left(g^{k} X+b\right) / f\left(g^{k} X+c\right)$. Indeed, we can assume that the multiplicities of all roots of f are at most $m-1$. Therefore in the representation $f\left(g^{k} X+b\right) / f\left(g^{k} X+c\right)=g(X) / h(X)$ with relatively prime $g(X)$ and $h(X)$, the multiplicities of roots of g and h are at most $m-1$. On the other hand, it is obvious that $f\left(g^{k} X+b\right) / f\left(g^{k} X+c\right)$ is not a constant, and thus is not the m-th power of a rational function.

Thus, we can apply Lemma 1 when the function (1) is not the m-th power of a rational function. For the remaining $O\left(\# \mathcal{F}_{\mathcal{D}}(k)^{\nu}\right)$ pairs of ν-tuples $\left(b_{1}, \ldots, b_{\nu}\right)$ and $\left(c_{1}, \ldots, c_{\nu}\right)$ we apply the trivial bound. Therefore, we obtain that

$$
\begin{aligned}
\sum_{\substack{b_{1}, \ldots, b_{\nu} \in \mathcal{F}_{\mathcal{D}}(k) \\
c_{1}, \ldots, c_{\nu} \in \mathcal{F}_{\mathcal{D}}(k)}} \mid \sum_{a=0}^{K-1} \prod_{j=1}^{\nu} \chi & \left(f\left(a g^{k}+b_{j}\right) f\left(a g^{k}+c_{j}\right)^{p-2}\right) \mid \\
& \ll \# \mathcal{F}_{\mathcal{D}}(k)^{\nu} K+\# \mathcal{F}_{\mathcal{D}}(k)^{2 \nu} d p^{1 / 2} \log p
\end{aligned}
$$

Hence

$$
\begin{equation*}
\left|S_{\mathcal{D}}(r, \chi, f)\right|^{2 \nu} \ll \# \mathcal{F}_{\mathcal{D}}(r-k)^{2 \nu-1} \# \mathcal{F}_{\mathcal{D}}(k)^{\nu}\left(g^{r-k}+\# \mathcal{F}_{\mathcal{D}}(k)^{\nu} d p^{1 / 2} \log p\right) \tag{2}
\end{equation*}
$$

Since $\# \mathcal{F}_{\mathcal{D}}(k)=(\# \mathcal{D})^{k}=g^{\alpha k}$, by defining k so that

$$
g^{k-1} \leq g^{r /(1+\alpha \nu)}\left(d p^{1 / 2} \log p\right)^{-1 /(1+\alpha \nu)}<g^{k}
$$

(which balances both terms in (2)), it follows that

$$
\begin{aligned}
\left|S_{\mathcal{D}}(r, \chi, f)\right|^{2 \nu} & \ll \# \mathcal{F}_{\mathcal{D}}(r-k)^{2 \nu-1} \# \mathcal{F}_{\mathcal{D}}(k)^{2 \nu} d p^{1 / 2} \log p \\
& =\# \mathcal{F}_{\mathcal{D}}(r)^{2 \nu} g^{-\alpha(r-k)} d p^{1 / 2} \log p \\
& \ll \# \mathcal{F}_{\mathcal{D}}(r)^{2 \nu} g^{-\alpha^{2} \nu r /(1+\alpha \nu)}\left(d p^{1 / 2} \log p\right)^{(1+\alpha(\nu-1)) /(1+\alpha \nu)}
\end{aligned}
$$

Recalling that $\# \mathcal{F}_{\mathcal{D}}(r)=g^{\alpha r}$, the result follows.
We see that if d is constant, then for any polynomial $f(X)$ the bound of Theorem 1 is nontrivial provided that $\# \mathcal{F}_{\mathcal{D}}(r) \geq\left(p^{1 / 2} \log ^{2} p\right)^{1 / \alpha}$, with p sufficiently large.

Moreover, if d is constant and $f(X)$ is irreducible (for example, for any linear polynomial), then for any $\varepsilon>0$ and ν sufficiently large, the bound of Theorem 1 is nontrivial provided that $\# \mathcal{F}_{\mathcal{D}}(r) \geq p^{1 / 2+\varepsilon}$, with p sufficiently large.

Theorem 2. Fix q and ℓ with $0 \leq \ell<q$ and such that $\operatorname{gcd}(q, g-1)=1$. For any integer $r \geq 1$ with $g^{r}<p$, any multiplicative character χ modulo p of order $m \geq 2$, and any polynomial $f(X) \in \mathbb{F}_{p}[X]$ of degree d such that $f(X)$ is not the m-th power of a rational function, we have

$$
\left|S_{\ell, q}(r, \chi, f)\right| \ll \# \mathcal{E}_{\ell, q}(r)\left(\frac{\# \mathcal{E}_{\ell, q}(r)}{d p^{1 / 2} \log p}\right)^{-1 / 4}
$$

Proof. As in Theorem 1, put $K=g^{r-k}$, where $0 \leq k \leq r$. For every $n \in \mathcal{E}_{\ell, q}(r)$, write $n=a g^{k}+b$ with $0 \leq a<g^{r-k}$ and $0 \leq b<g^{k}$; then

$$
S_{\ell, q}(r, \chi, f)=\sum_{j=0}^{q-1} \sum_{a \in \mathcal{E}_{\ell-j, q}(r-k)} \sum_{b \in \mathcal{E}_{j, q}(k)} \chi\left(f\left(a g^{k}+b\right)\right) .
$$

By the Cauchy inequality, we have

$$
\begin{aligned}
& \left|S_{\ell, q}(r, \chi, f)\right|^{2} \leq q \sum_{j=0}^{q-1} \# \mathcal{E}_{\ell-j, q}(r-k) \sum_{a=0}^{K-1}\left|\sum_{b \in \mathcal{E}_{j, q}(k)} \chi\left(f\left(a g^{k}+b\right)\right)\right|^{2} \\
& \quad=q \sum_{j=0}^{q-1} \# \mathcal{E}_{\ell-j, q}(r-k) \sum_{a=0}^{K-1} \sum_{b_{1}, b_{2} \in \mathcal{E}_{j, q}(k)} \chi\left(f\left(a g^{k}+b_{1}\right)\right) \bar{\chi}\left(f\left(a g^{k}+b_{2}\right)\right) \\
& \quad \leq q \sum_{j=0}^{q-1} \# \mathcal{E}_{\ell-j, q}(r-k) \sum_{b_{1}, b_{2} \in \mathcal{E}_{j, q}(k)}\left|\sum_{a=0}^{K-1} \chi\left(f\left(g^{k} X+b_{1}\right) f\left(g^{k} X+b_{2}\right)^{p-2}\right)\right| .
\end{aligned}
$$

It is easy to see that if $b_{1} \not \equiv b_{2}(\bmod p)$, and $f(X)$ is not the m-th power of a rational function, then

$$
F_{k}(X)=f\left(g^{k} X+b_{1}\right) f\left(g^{k} X+b_{2}\right)^{p-2}
$$

cannot be the m-th power of a rational function (again, for this, it is enough to examine the roots and poles of $\left.f\left(g^{k} X+b_{1}\right) / f\left(g^{k} X+b_{2}\right)\right)$. Thus, we can apply Lemma 1 when $b_{1} \not \equiv b_{2}(\bmod p)$, and we use the trivial bound when $b_{1} \equiv b_{2}(\bmod p) ;$ we obtain that

$$
\begin{aligned}
& \sum_{b_{1, b_{2} \in \mathcal{E}_{j, q}(k)}}\left|\sum_{a=0}^{K-1} \chi\left(f\left(a g^{k}+b_{1}\right)\right) \bar{\chi}\left(f\left(a g^{k}+b_{2}\right)\right)\right| \\
& \quad=\# \mathcal{E}_{j, q}(k) K+\sum_{\substack{\left.b_{1}, b_{2} \in \mathcal{E}_{j, q}(k)\right) \\
b_{1} \neq b_{2}}}\left|\sum_{a=0}^{K-1} \chi\left(f\left(a g^{k}+b_{1}\right) f\left(a g^{k}+b_{2}\right)^{p-2}\right)\right| \\
& \quad \ll \# \mathcal{E}_{j, q}(k) K+\# \mathcal{E}_{j, q}(k)^{2} d p^{1 / 2} \log p \\
& \quad \leq \# \mathcal{E}_{j, q}(k)\left(g^{r-k}+g^{k} d p^{1 / 2} \log p\right) .
\end{aligned}
$$

Since

$$
\sum_{j=0}^{q-1} \# \mathcal{E}_{\ell-j, q}(r-k) \# \mathcal{E}_{j, q}(k)=\# \mathcal{E}_{\ell, q}(r),
$$

this gives

$$
\begin{equation*}
\left|S_{\ell, q}(r, \chi, f)\right|^{2} \ll \# \mathcal{E}_{\ell, q}(r)\left(g^{r-k}+g^{k} d p^{1 / 2} \log p\right) . \tag{3}
\end{equation*}
$$

Defining k so that

$$
g^{k-1} \leq\left(\frac{g^{r}}{d p^{1 / 2} \log p}\right)^{1 / 2}<g^{k}
$$

(which balances the two terms in (3)), it follows that

$$
\left|S_{\ell, q}(r, \chi, f)\right|^{2} \ll \# \mathcal{E}_{\ell, q}(r) d^{1 / 2} g^{r / 2} p^{1 / 4} \log ^{1 / 2} p
$$

Recalling Lemma 5, we derive the result.

We see that if d is constant, the bound of Theorem 2 is nontrivial provided that $\# \mathcal{E}_{\ell, q}(r) \geq p^{1 / 2} \log ^{2} p$, with p sufficiently large.

TheOrem 3. For any integers $1 \leq s \leq(g-1) r$ with $g^{r}<p$, any multiplicative character χ modulo p of order $m \geq 2$, and any polynomial $f(X) \in \mathbb{F}_{p}[X]$ of degree d such that $f(X)$ is not the m-th power of a rational function, we have

$$
\left|S_{s}(r, \chi, f)\right| \ll \# \mathcal{G}_{s}(r)^{1 / 2} s^{1 / 2} g^{r / 4} d^{1 / 4} p^{1 / 8} \log ^{1 / 4} p
$$

Proof. As in Theorem 2, put $K=g^{r-k}$ where $0 \leq k \leq r$ will be chosen later. For every $n \in \mathcal{G}_{s}(r)$, write $n=a g^{k}+b$ with $0 \leq a<g^{r-k}$ and $0 \leq b<g^{k}$; then

$$
S_{s}(r, \chi, f)=\sum_{j=0}^{s} \sum_{a \in \mathcal{G}_{s-j}(r-k)} \sum_{b \in \mathcal{G}_{j}(k)} \chi\left(f\left(a g^{k}+b\right)\right) .
$$

By the Cauchy inequality, we have

$$
\begin{aligned}
&\left|S_{s}(r, \chi, f)\right|^{2} \leq(s+1) \sum_{j=0}^{s} \# \mathcal{G}_{s-j}(r-k) \sum_{a=0}^{K-1}\left|\sum_{b \in \mathcal{G}_{j}(k)} \chi\left(f\left(a g^{k}+b\right)\right)\right|^{2} \\
&=(s+1) \sum_{j=0}^{s} \# \mathcal{G}_{s-j}(r-k) \sum_{a=0}^{K-1} \\
& \leq \sum_{b_{1}, b_{2} \in \mathcal{G}_{j}(k)} \chi\left(f\left(a g^{k}+b_{1}\right)\right) \bar{\chi}\left(f\left(a g^{k}+b_{2}\right)\right) \\
& \leq(s+1) \sum_{j=0}^{s} \# \mathcal{G}_{s-j}(r-k) \\
& \sum_{b_{1}, b_{2} \in \mathcal{G}_{j}(k)}\left|\sum_{a=0}^{K-1} \chi\left(f\left(a g^{k}+b_{1}\right)\right) \bar{\chi}\left(f\left(a g^{k}+b_{2}\right)\right)\right|
\end{aligned}
$$

As in the proof of Theorem 2, we can estimate

$$
\begin{aligned}
\sum_{b_{1}, b_{2} \in \mathcal{G}_{j}(k)} & \left|\sum_{a=0}^{K-1} \chi\left(f\left(a g^{k}+b_{1}\right)\right) \bar{\chi}\left(f\left(a g^{k}+b_{2}\right)\right)\right| \\
& =\# \mathcal{G}_{j}(k) K+\sum_{\substack{\left.b_{1}, b_{2} \in \mathcal{G}_{j}(k)\right) \\
b_{1} \neq b_{2}}}\left|\sum_{a=0}^{K-1} \chi\left(f\left(a g^{k}+b_{1}\right) f\left(a g^{k}+b_{2}\right)^{p-2}\right)\right| \\
& \ll \# \mathcal{G}_{j}(k)\left(K+\# \mathcal{G}_{j}(k) d p^{1 / 2} \log p\right) .
\end{aligned}
$$

Since

$$
\sum_{j=0}^{s} \# \mathcal{G}_{s-j}(r-k) \# \mathcal{G}_{j}(k)=\# \mathcal{G}_{s}(r)
$$

and $\# \mathcal{G}_{j}(k) \leq g^{k}$ for $0 \leq j \leq s$, this gives

$$
\left|S_{s}(r, \chi, f)\right|^{2} \ll \# \mathcal{G}_{s}(r) s\left(g^{r-k}+g^{k} d p^{1 / 2} \log p\right)
$$

Defining k so that

$$
g^{k} \leq\left(\frac{g^{r}}{d p^{1 / 2} \log p}\right)^{1 / 2}<g^{k+1}
$$

we obtain

$$
\left|S_{s}(r, \chi, f)\right|^{2} \ll \# \mathcal{G}_{s}(r) s\left(g^{r} d p^{1 / 2} \log p\right)^{1 / 2}
$$

and the result follows.

Taking into account that $s \leq(g-1) r=O(\log p)$, we see that if d is constant, the bound of Theorem 3 is nontrivial provided that $\# \mathcal{G}_{s}(r) \geq g^{r / 2} p^{1 / 4} \log ^{2} p$, with p sufficiently large.

4. Exponential sums with polynomials

TheOrem 4. For any integer $r \geq 1$ with $g^{r}<p$ and any polynomial $f(X) \in \mathbb{F}_{p}[X]$ of degree $d \geq 3$, we have

$$
\left|T_{\mathcal{D}}(r, f)\right| \ll \# \mathcal{F}_{\mathcal{D}}(r)^{1-\alpha / 2(1+\alpha)}\left(d p^{1 / 2} \log p\right)^{1 / 2(1+\alpha)}
$$

where $0<\alpha \leq 1$ is the real number such that $\# \mathcal{D}=g^{\alpha}$.
Proof. As in Theorem 1, put $K=g^{r-k}$, where $0 \leq k \leq r$. For every $n \in \mathcal{F}_{\mathcal{D}}(r)$, write $n=a g^{k}+b$ with $0 \leq a<g^{r-k}$ and $0 \leq b<g^{k}$; then

$$
T_{\mathcal{D}}(r, f)=\sum_{a \in \mathcal{F}_{\mathcal{D}}(r-k)} \sum_{b \in \mathcal{F}_{\mathcal{D}}(k)} \mathbf{e}_{p}\left(f\left(a g^{k}+b\right)\right) .
$$

By the Cauchy inequality, we have

$$
\begin{aligned}
\left|T_{\mathcal{D}}(r, f)\right|^{2} & \leq \# \mathcal{F}_{\mathcal{D}}(r-k) \sum_{a=0}^{K-1}\left|\sum_{b \in \mathcal{F}_{\mathcal{D}}(k)} \mathbf{e}_{p}\left(f\left(a g^{k}+b\right)\right)\right|^{2} \\
& =\# \mathcal{F}_{\mathcal{D}}(r-k) \sum_{a=0}^{K-1} \sum_{b_{1}, b_{2} \in \mathcal{F}_{\mathcal{D}}(k)} \mathbf{e}_{p}\left(f\left(a g^{k}+b_{1}\right)-f\left(a g^{k}+b_{2}\right)\right) \\
& \leq \# \mathcal{F}_{\mathcal{D}}(r-k) \sum_{b_{1}, b_{2} \in \mathcal{F}_{\mathcal{D}}(k)}\left|\sum_{a=0}^{K-1} \mathbf{e}_{p}\left(f\left(a g^{k}+b_{1}\right)-f\left(a g^{k}+b_{2}\right)\right)\right|
\end{aligned}
$$

If $b_{1} \not \equiv b_{2}(\bmod p)$, then

$$
F(X)=f\left(g^{k} X+b_{1}\right)-f\left(g^{k} X+b_{2}\right)
$$

is a polynomial of degree $d-1 \geq 2$. Thus, we can apply Lemma 2 when $b_{1} \not \equiv b_{2}(\bmod p)$, and we use the trivial bound when $b_{1} \equiv b_{2}(\bmod p)$; we obtain that

$$
\begin{aligned}
& \sum_{b_{1}, b_{2} \in \mathcal{F}_{\mathcal{D}}(k)}\left|\sum_{a=0}^{K-1} \mathbf{e}_{p}\left(f\left(a g^{k}+b_{1}\right)-f\left(a g^{k}+b_{2}\right)\right)\right| \\
& \ll \# \mathcal{F}_{\mathcal{D}}(k) K+\# \mathcal{F}_{\mathcal{D}}(k)^{2} d p^{1 / 2} \log p
\end{aligned}
$$

Since $\# \mathcal{F}_{\mathcal{D}}(k)=(\# \mathcal{D})^{k}=g^{\alpha k}$, it follows that

$$
\begin{equation*}
\left|T_{\mathcal{D}}(r, f)\right|^{2} \ll \# \mathcal{F}_{\mathcal{D}}(r)\left(g^{r-k}+g^{\alpha k} d p^{1 / 2} \log p\right) \tag{4}
\end{equation*}
$$

Defining k so that

$$
g^{k-1} \leq g^{r /(1+\alpha)}\left(d p^{1 / 2} \log p\right)^{-1 /(1+\alpha)}<g^{k}
$$

(which balances both terms in (4)), it follows that

$$
\left|T_{\mathcal{D}}(r, f)\right|^{2} \ll \# \mathcal{F}_{\mathcal{D}}(r) g^{\alpha r /(1+\alpha)}\left(d p^{1 / 2} \log p\right)^{1 /(1+\alpha)}
$$

Recalling that $\# \mathcal{F}_{\mathcal{D}}(r)=g^{\alpha r}$, the result follows.
We see that if d is constant, the bound of Theorem 4 is nontrivial provided that $\# \mathcal{F}_{\mathcal{D}}(r) \geq\left(p^{1 / 2} \log ^{2} p\right)^{1 / \alpha}$, with p sufficiently large.

For smaller sets, we can use Lemma 3 instead of Lemma 2.
TheOrem 5. For any integers $d \geq 4$ and $r \geq 1$ such that

$$
p^{1 /(d-2)}<g^{r}<p
$$

and for any polynomial $f(X) \in \mathbb{F}_{p}[X]$ of degree d, we have

$$
\left|T_{\mathcal{D}}(r, f)\right| \ll \# \mathcal{F}_{\mathcal{D}}(r)^{1 / 2} e^{3 d / 2} g^{r\left(1 / 2-1 / 36 d^{2} \log d\right)}
$$

Proof. Define k by the inequalities

$$
k<\frac{r}{18 d^{2} \log d} \leq k+1
$$

and put $K=g^{r-k}$. It is easy to verify that

$$
K \geq p^{\left(1-1 / 18 d^{2} \log d\right) /(d-2)}>p^{1 /(d-1)}
$$

Therefore, following the proof of Theorem 4 but using Lemma 3 instead of Lemma 2, we derive that

$$
\left|T_{\mathcal{D}}(r, f)\right|^{2} \ll \# \mathcal{F}_{\mathcal{D}}(r)\left(K+\# \mathcal{F}_{\mathcal{D}}(k) e^{3 d} K^{1-1 / 9 d^{2} \log d}\right)
$$

Clearly, $K \geq g^{r / 2}$. Hence it follows that

$$
\# \mathcal{F}_{\mathcal{D}}(k) \leq g^{k}<g^{r / 18 d^{2} \log d} \leq K^{1 / 9 d^{2} \log d}
$$

and thus $\# \mathcal{F}_{\mathcal{D}}(k) K^{1-1 / 9 d^{2}} \log d \leq K$. Consequently,

$$
\left|T_{\mathcal{D}}(r, f)\right|^{2} \ll \# \mathcal{F}_{\mathcal{D}}(r) e^{3 d} K
$$

and the result follows.
We see that if d is constant, the bound of Theorem 5 is nontrivial provided that $\# \mathcal{F}_{\mathcal{D}}(r) \geq g^{r\left(1-1 / 19 d^{2} \log d\right)}$, with $p^{1 /(d-2)}<g^{r}<p$ and p sufficiently large.

Theorem 6. Fix q and ℓ with $0 \leq \ell<q$ and such that $\operatorname{gcd}(q, g-1)=1$. For any integer $r \geq 1$ with $g^{r}<p$ and any polynomial $f(X) \in \mathbb{F}_{p}[X]$ of degree $d \geq 3$, we have

$$
\left|T_{\ell, q}(r, f)\right| \ll \# \mathcal{E}_{\ell, q}(r)\left(\frac{\# \mathcal{E}_{\ell, q}(r)}{d p^{1 / 2} \log p}\right)^{-1 / 4}
$$

Proof. Again, put $K=g^{r-k}$, where $0 \leq k \leq r$. For every $n \in \mathcal{E}_{\ell, q}(r)$, write $n=a g^{k}+b$ with $0 \leq a<g^{r-k}$ and $0 \leq b<g^{\bar{k}}$; then

$$
T_{\ell, q}(r, f)=\sum_{j=0}^{q-1} \sum_{a \in \mathcal{E}_{\ell-j, q}(r-k)} \sum_{b \in \mathcal{E}_{j, q}(k)} \mathbf{e}_{p}\left(f\left(a g^{k}+b\right)\right) .
$$

By the Cauchy inequality, we have

$$
\begin{aligned}
& \left|T_{\ell, q}(r, f)\right|^{2} \leq q \sum_{j=0}^{q-1} \# \mathcal{E}_{\ell-j, q}(r-k) \sum_{a=0}^{K-1}\left|\sum_{b \in \mathcal{E}_{j, q}(k)} \mathbf{e}_{p}\left(f\left(a g^{k}+b\right)\right)\right|^{2} \\
& \quad=q \sum_{j=0}^{q-1} \# \mathcal{E}_{\ell-j, q}(r-k) \sum_{a=0}^{K-1} \sum_{b_{1}, b_{2} \in \mathcal{E}_{j, q}(k)} \mathbf{e}_{p}\left(f\left(a g^{k}+b_{1}\right)-f\left(a g^{k}+b_{2}\right)\right) \\
& \quad \leq q \sum_{j=0}^{q-1} \# \mathcal{E}_{\ell-j, q}(r-k) \sum_{b_{1}, b_{2} \in \mathcal{E}_{j, q}(k)}\left|\sum_{a=0}^{K-1} \mathbf{e}_{p}\left(f\left(a g^{k}+b_{1}\right)-f\left(a g^{k}+b_{2}\right)\right)\right| .
\end{aligned}
$$

As in the proof of Theorem 4, we can estimate

$$
\begin{aligned}
\sum_{b_{1}, b_{2} \in \mathcal{E}_{j, q}(k)} \mid \sum_{a=0}^{K-1} \mathbf{e}_{p}\left(f \left(a g^{k}\right.\right. & \left.\left.+b_{1}\right)-f\left(a g^{k}+b_{2}\right)\right) \mid \\
& <\neq \mathcal{E}_{j, q}(k) K+\# \mathcal{E}_{j, q}(k)^{2} d p^{1 / 2} \log p \\
& \leq \# \mathcal{E}_{j, q}(k)\left(g^{r-k}+g^{k} d p^{1 / 2} \log p\right)
\end{aligned}
$$

Since

$$
\sum_{j=0}^{q-1} \# \mathcal{E}_{\ell-j, q}(r-k) \# \mathcal{E}_{j, q}(k)=\# \mathcal{E}_{\ell, q}(r)
$$

this gives

$$
\left|T_{\ell, q}(r, f)\right|^{2} \ll \# \mathcal{E}_{\ell, q}(r)\left(g^{r-k}+g^{k} d p^{1 / 2} \log p\right)
$$

and the proof can be completed as in Theorem 2.
We see that if d is constant, the bound of Theorem 6 is nontrivial provided that $\# \mathcal{E}_{\ell, q}(r) \geq p^{1 / 2} \log ^{2} p$, with p sufficiently large.

Similarly, by using Lemma 3 instead of Lemma 2, we obtain the following analogue of Theorem 5 .

Theorem 7. Fix q and ℓ with $0 \leq \ell<q$ and such that $\operatorname{gcd}(q, g-1)=1$. For any integers $d \geq 4$ and $r \geq 1$ with

$$
p^{1 /(d-2)}<g^{r}<p
$$

and any polynomial $f(X) \in \mathbb{F}_{p}[X]$ of degree $d \geq 3$, we have

$$
\left|T_{\ell, q}(r, f)\right| \ll e^{3 d / 2} \# \mathcal{E}_{\ell, q}(r)^{1-1 / 36 d^{2} \log d}
$$

We see that if d is constant, the bound of Theorem 7 is always nontrivial.
Theorem 8. For any integers $1 \leq s \leq(g-1) r$ with $g^{r}<p$ and any polynomial $f(X) \in \mathbb{F}_{p}[X]$ of degree $d \geq 3$, we have

$$
\left|T_{s}(r, f)\right| \ll \# \mathcal{G}_{s}(r)^{1 / 2} s^{1 / 2} g^{r / 4} d^{1 / 4} p^{1 / 8} \log ^{1 / 4} p .
$$

Proof. Put $K=g^{r-k}$, where $0 \leq k \leq r$. For every $n \in \mathcal{G}_{s}(r)$, write $n=a g^{k}+b$ with $0 \leq a<g^{r-k}$ and $0 \leq b<g^{k}$; then

$$
T_{s}(r, f)=\sum_{j=0}^{s} \sum_{a \in \mathcal{G}_{s-j}(r-k)} \sum_{b \in \mathcal{G}_{j}(k)} \mathbf{e}_{p}\left(f\left(a g^{k}+b\right)\right) .
$$

By the Cauchy inequality, we have

$$
\begin{aligned}
\left|T_{s}(r, f)\right|^{2} \leq & (s+1) \sum_{j=0}^{s} \# \mathcal{G}_{s-j}(r-k) \sum_{a=0}^{K-1}\left|\sum_{b \in \mathcal{G}_{j}(k)} \mathbf{e}_{p}\left(f\left(a g^{k}+b\right)\right)\right|^{2} \\
= & (s+1) \sum_{j=0}^{s} \# \mathcal{G}_{s-j}(r-k) \sum_{a=0}^{K-1} \\
& \sum_{b_{1}, b_{2} \in \mathcal{G}_{j}(k)} \mathbf{e}_{p}\left(f\left(a g^{k}+b_{1}\right)-f\left(a g^{k}+b_{2}\right)\right) \\
\leq & (s+1) \sum_{j=0}^{s} \# \mathcal{G}_{s-j}(r-k) \\
& \sum_{b_{1}, b_{2} \in \mathcal{G}_{j}(k)}\left|\sum_{a=0}^{K-1} \mathbf{e}_{p}\left(f\left(a g^{k}+b_{1}\right)-f\left(a g^{k}+b_{2}\right)\right)\right|
\end{aligned}
$$

As in the proof of Theorem 4, we can estimate

$$
\begin{array}{r}
\sum_{b_{1}, b_{2} \in \mathcal{G}_{j}(k)}\left|\sum_{a=0}^{K-1} \mathbf{e}_{p}\left(f\left(a g^{k}+b_{1}\right)-f\left(a g^{k}+b_{2}\right)\right)\right| \\
\ll \# \mathcal{G}_{j}(k)\left(K+\# \mathcal{G}_{j}(k) d p^{1 / 2} \log p\right) .
\end{array}
$$

Since

$$
\sum_{j=0}^{s} \# \mathcal{G}_{s-j}(r-k) \# \mathcal{G}_{j}(k)=\# \mathcal{G}_{s}(r)
$$

and $\# \mathcal{G}_{j}(k) \leq g^{k}$ for $0 \leq j \leq s$, this gives

$$
\left|T_{s}(r, f)\right|^{2} \ll \# \mathcal{G}_{s}(r) s\left(g^{r-k}+g^{k} d p^{1 / 2} \log p\right)
$$

and the proof can be completed as in Theorem 3.
Taking into account that $s \leq(g-1) r=O(\log p)$, we see that if d is constant, the bound of Theorem 8 is nontrivial provided that $\# \mathcal{G}_{s}(r) \geq g^{r / 2} p^{1 / 4} \log ^{2} p$, with p sufficiently large.

Finally, by using Lemma 3 instead of Lemma 2, we obtain the following analogue of Theorems 5 and 7.

Theorem 9. For any integers $d \geq 4$ and $1 \leq s \leq(g-1) r$ such that

$$
p^{1 /(d-2)}<g^{r}<p
$$

and for any polynomial $f(X) \in \mathbb{F}_{p}[X]$ of degree d, we have

$$
\left|T_{s}(r, f)\right| \ll \# \mathcal{G}_{s}(r)^{1 / 2} s^{1 / 2} e^{3 d / 2} g^{r\left(1 / 2-1 / 36 d^{2} \log d\right)}
$$

As before, we see that if d is constant, the bound of Theorem 9 is nontrivial provided that $\# \mathcal{G}_{s}(r) \geq g^{r\left(1-1 / 19 d^{2} \log d\right)}$, with $p^{1 /(d-2)}<g^{r}<p$ and p sufficiently large.

5. Exponential sums with exponential functions

Theorem 10. For any $c \in \mathbb{F}_{p}^{*}$, any $\vartheta \in \mathbb{F}_{p}$ of multiplicative order T, and any integer $r \geq 1$ with $g^{r}<T$, we have

$$
\left|V_{\mathcal{D}}(r, c, \vartheta)\right| \ll \# \mathcal{F}_{\mathcal{D}}(r)^{1-\alpha / 2(1+\alpha)}\left(p^{1 / 2} \log p\right)^{1 / 2(1+\alpha)}
$$

where $0<\alpha \leq 1$ is the real number such that $\# \mathcal{D}=g^{\alpha}$.
Proof. For every $n \in \mathcal{F}_{\mathcal{D}}(r)$, write $n=a g^{k}+b$ with $0 \leq a<g^{r-k}$ and $0 \leq b<g^{k}$, where $0 \leq k \leq r$ will be chosen later; then

$$
V_{\mathcal{D}}(r, c, \vartheta)=\sum_{a \in \mathcal{F}_{\mathcal{D}}(r-k)} \sum_{b \in \mathcal{F}_{\mathcal{D}}(k)} \mathbf{e}_{p}\left(c \vartheta^{a g^{k}+b}\right) .
$$

By the Cauchy inequality, we have

$$
\begin{aligned}
& \left|V_{\mathcal{D}}(r, c, \vartheta)\right|^{2} \leq \# \mathcal{F}_{\mathcal{D}}(k) \sum_{b=0}^{g^{k}-1}\left|\sum_{a \in \mathcal{F}_{\mathcal{D}}(r-k)} \mathbf{e}_{p}\left(c \vartheta^{a g^{k}+b}\right)\right|^{2} \\
& =\# \mathcal{F}_{\mathcal{D}}(k) \sum_{b=0}^{g^{k}-1} \sum_{a_{1}, a_{2} \in \mathcal{F}_{\mathcal{D}}(r-k)} \mathbf{e}_{p}\left(c \vartheta^{b}\left(\vartheta^{a_{1} g^{k}}-\vartheta^{a_{2} g^{k}}\right)\right) \\
& \quad \leq \# \mathcal{F}_{\mathcal{D}}(k) \sum_{a_{1}, a_{2} \in \mathcal{F}_{\mathcal{D}}(r-k)}\left|\sum_{b=0}^{\mid g^{k}-1} \mathbf{e}_{p}\left(c \vartheta^{b}\left(\vartheta^{a_{1} g^{k}}-\vartheta^{a_{2} g^{k}}\right)\right)\right| .
\end{aligned}
$$

If $a_{1}, a_{2} \in \mathcal{F}_{\mathcal{D}}(r-k)$ with $a_{1} \neq a_{2}$, then $\vartheta^{a_{1} g^{k}} \neq \vartheta^{a_{2} g^{k}}$ (since $T>g^{r}$), so we can apply the bound from Lemma 4 ; for $a_{1}=a_{2}$ we use the trivial bound. Thus, we obtain that

$$
\begin{aligned}
\sum_{a_{1}, a_{2} \in \mathcal{F}_{\mathcal{D}}(r-k)} \mid \sum_{b=0}^{g^{k}-1} \mathbf{e}_{p}\left(c \vartheta^{b}\right. & \left.\left(\vartheta^{a_{1} g^{k}}-\vartheta^{a_{2} g^{k}}\right)\right) \mid \\
& \ll \# \mathcal{F}_{\mathcal{D}}(r-k) g^{k}+\# \mathcal{F}_{\mathcal{D}}(r-k)^{2} p^{1 / 2} \log p
\end{aligned}
$$

Since $\# \mathcal{F}_{\mathcal{D}}(k)=(\# \mathcal{D})^{k}=g^{\alpha k}$, it follows that

$$
\begin{equation*}
\left|V_{\mathcal{D}}(r, c, \vartheta)\right|^{2} \ll \# \mathcal{F}_{\mathcal{D}}(r)\left(g^{k}+g^{\alpha(r-k)} p^{1 / 2} \log p\right) \tag{5}
\end{equation*}
$$

Defining k so that

$$
g^{k-1} \leq g^{\alpha r /(1+\alpha)}\left(p^{1 / 2} \log p\right)^{1 /(1+\alpha)}<g^{k}
$$

(which balances both terms in (5)), it follows that

$$
\left|V_{\mathcal{D}}(r, c, \vartheta)\right|^{2} \ll \# \mathcal{F}_{\mathcal{D}}(r) g^{\alpha r /(1+\alpha)}\left(d p^{1 / 2} \log p\right)^{1 /(1+\alpha)}
$$

Recalling that $\# \mathcal{F}_{\mathcal{D}}(r)=g^{\alpha r}$, the result follows.
We see that the bound of Theorem 10 is nontrivial provided that $\# \mathcal{F}_{\mathcal{D}}(r) \geq$ $\left(p^{1 / 2} \log ^{2} p\right)^{1 / \alpha}$, with p sufficiently large.

Theorem 11. Fix q and ℓ with $0 \leq \ell<q$ and such that $\operatorname{gcd}(q, g-1)=1$. For any $c \in \mathbb{F}_{p}^{*}$, any $\vartheta \in \mathbb{F}_{p}$ of multiplicative order T, and any integer $r \geq 1$ with $g^{r}<T$, we have

$$
\left|V_{\ell, q}(r, c, \vartheta)\right| \ll \# \mathcal{E}_{\ell, q}(r)\left(\frac{\# \mathcal{E}_{\ell, q}(r)}{p^{1 / 2} \log p}\right)^{-1 / 4}
$$

Proof. For every $n \in \mathcal{E}_{\ell, q}(r)$, write $n=a g^{k}+b$ with $0 \leq a<g^{r-k}$ and $0 \leq b<g^{k}$, where $0 \leq k \leq r$ will be chosen later; then

$$
V_{\ell, q}(r, c, \vartheta)=\sum_{j=0}^{q-1} \sum_{a \in \mathcal{E}_{j, q}(r-k)} \sum_{b \in \mathcal{E}_{\ell-j, q}(k)} \mathbf{e}_{p}\left(c \vartheta^{a g^{k}+b}\right) .
$$

By the Cauchy inequality, we have

$$
\begin{aligned}
& \left|V_{\ell, q}(r, c, \vartheta)\right|^{2} \leq q \sum_{j=0}^{q-1} \# \mathcal{E}_{\ell-j, q}(k) \sum_{b=0}^{g^{k}-1}\left|\sum_{a \in \mathcal{E}_{j, q}(r-k)} \mathbf{e}_{p}\left(c \vartheta^{a g^{k}+b}\right)\right|^{2} \\
& \quad=q \sum_{j=0}^{q-1} \# \mathcal{E}_{\ell-j, q}(k) \sum_{b=0}^{g^{k}-1} \sum_{a_{1}, a_{2} \in \mathcal{E}_{j, q}(r-k)} \mathbf{e}_{p}\left(c \vartheta^{b}\left(\vartheta^{a_{1} g^{k}}-\vartheta^{a_{2} g^{k}}\right)\right) \\
& \quad \leq q \sum_{j=0}^{q-1} \# \mathcal{E}_{\ell-j, q}(k) \sum_{a_{1}, a_{2} \in \mathcal{E}_{j, q}(r-k)}\left|\sum_{b=0}^{\mid g^{k}-1} \mathbf{e}_{p}\left(c \vartheta^{b}\left(\vartheta^{a_{1} g^{k}}-\vartheta^{a_{2} g^{k}}\right)\right)\right|
\end{aligned}
$$

As in the proof of Theorem 10, we can estimate

$$
\begin{aligned}
\sum_{a_{1}, a_{2} \in \mathcal{E}_{j, q}(r-k)} \mid \sum_{b=0}^{g^{k}-1} \mathbf{e}_{p}\left(c \vartheta^{b}\right. & \left.\left(\vartheta^{a_{1} g^{k}}-\vartheta^{a_{2} g^{k}}\right)\right) \mid \\
& \ll \# \mathcal{E}_{j, q}(r-k) g^{k}+\# \mathcal{E}_{j, q}(r-k)^{2} p^{1 / 2} \log p \\
& \leq \# \mathcal{E}_{j, q}(r-k)\left(g^{k}+g^{r-k} d p^{1 / 2} \log p\right)
\end{aligned}
$$

Since

$$
\sum_{j=0}^{q-1} \# \mathcal{E}_{j, q}(r-k) \# \mathcal{E}_{\ell-j, q}(k)=\# \mathcal{E}_{\ell, q}(r)
$$

this gives

$$
\begin{equation*}
\left|V_{\ell, q}(r, c, \vartheta)\right|^{2} \ll \# \mathcal{E}_{\ell, q}(r)\left(g^{k}+g^{r-k} p^{1 / 2} \log p\right) \tag{6}
\end{equation*}
$$

Defining k so that

$$
g^{k-1} \leq\left(\frac{g^{r}}{p^{1 / 2} \log p}\right)^{1 / 2}<g^{k}
$$

(which balances the two terms in (6)), it follows that

$$
\left|V_{\ell, q}(r, c, \vartheta)\right|^{2} \ll \# \mathcal{E}_{\ell, q}(r) g^{r / 2} p^{1 / 4} \log ^{1 / 2} p
$$

Recalling Lemma 5, we derive the result.
We see that the bound of Theorem 11 is nontrivial provided that $\# \mathcal{E}_{\ell, q}(r) \geq$ $p^{1 / 2} \log ^{2} p$, with p sufficiently large.

6. Remarks

Using standard arguments, one can easily derive from the bounds of Section 3 various results about the distribution of quadratic non-residues and primitive roots in the polynomial values $f(n)$, as n runs over the set $\mathcal{F}_{\mathcal{D}}(r)$, the set $\mathcal{E}_{\ell, q}(r)$, or the set $\mathcal{G}_{s}(r)$. Similarly, the bounds of Sections 4 imply results about the uniformity of distribution of fractional parts $\{f(n) / p\}$ for integers n in $\mathcal{F}_{\mathcal{D}}(r), \mathcal{E}_{\ell, q}(r)$, or $\mathcal{G}_{s}(r)$.

It would be interesting to extend the class of polynomials in which one can take an arbitrary $\nu \geq 1$ in Theorem 1.

Using the full power of the Vinogradov method, one can also estimate exponential sums for polynomials with real coefficients whose values are taken over integers in $\mathcal{F}_{\mathcal{D}}(r), \mathcal{E}_{\ell, q}(r)$, or $\mathcal{G}_{s}(r)$.

We remark that the method of Sections 3,4 , and 5 can be applied to similar sums defined over the residue ring \mathbb{Z}_{m} modulo an arbitrary integer m. In some cases, the Weil bound must be replaced by Hua Loo Keng type bounds (which, unfortunately, are somewhat weaker; see [1] and [21]), but our results based on the Vinogradov bounds do not require any substantial changes.

It would be interesting to obtain analogues of Theorems 2,6 and 7 when q is allowed to grow along with r and p. Some results of this type can be obtained using the methods presented here (with an extra factor of $q^{1 / 2}$ in front of the corresponding upper bounds). However, for a more careful treatment, one needs a variant of Lemma 5 that can be applied when q is allowed to grow with r.

We have already remarked that the sums $V_{s}(r, c, \vartheta)$ have been estimated in [9]. Using the analogue of Lemma 4 for multiplicative characters (see [4] and [23]),

$$
\left|\sum_{u=1}^{H} \chi\left(\lambda^{u}+c\right)\right| \ll p^{1 / 2} \log p
$$

one can easily obtain complete analogues of that result of [9] and of Theorems 10 and 11 for sums of multiplicative characters.

References

[1] T. Cochrane and Z. Y. Zheng, A survey on pure and mixed exponential sums modulo prime powers, Number Theory for the Millennium (Proc. Millennial Conf. Number Theory, Urbana, IL, 2000), Vol. I, A K Peters, Natick, MA, 2002, pp. 273-300.
[2] C. Dartyge and C. Mauduit, Nombres presque premiers dont lécriture en base r ne comporte pas certains chiffres, J. Number Theory 81 (2000), 270-291.
[3] F. M. Dekking, On the distribution of digits in arithmetic sequences, Seminar on number theory 1982-1983 (Talence), Exp. No. 32, Univ. Bordeaux I, Talence, 1983.
[4] E. Dobrowolski and K. S. Williams, An upper bound for the sum $\sum_{n=a+1}^{a+H} f(n)$ for a certain class of functions f, Proc. Amer. Math. Soc. 114 (1992), 29-35.
[5] P. Erdös, C. Mauduit, and A. Sárközy, On arithmetic properties of integers with missing digits I: Distribution in residue classes, J. Number Theory 70 (1998), 99120.
[6] _ On arithmetic properties of integers with missing digits II: Prime factors, Discrete Math. 200 (1999), 149-164.
[7] N. J. Fine, The distribution of the sum of digits $(\bmod p)$, Bull. Amer. Math. Soc. 71 (1965), 651-652.
[8] E. Fouvry and C. Mauduit, Méthodes de crible et fonctions sommes des chiffres, Acta Arith. 77 (1996), 339-351.
[9] J. B. Friedlander and I. E. Shparlinski, On the distribution of Diffie-Hellman triples with sparse exponents, SIAM J. Discr. Math., 14 (2001), 162-169.
[10] A. O. Gelfond, Sur les nombres qui ont des propriétés additives et multiplicatives données, Acta Arith. 13 (1968), 259-265.
[11] A. A. Karatsuba and B. Novak, Arithmetic problems with numbers of special type, Mat. Zametki 66 (1999), 315-317 (in Russian); English translation: Math. Notes 66 (1999), 251-253.
[12] S. Konyagin, Arithmetic properties of integers with missing digits: distribution in residue classes, Periodica Math. Hungar. 42 (2001), 145-162.
[13] S. Konyagin, C. Mauduit, and A. Sárközy, On the number of prime factors of integers characterized by digit properties, Periodica Math. Hungar. 40 (2000), 37-52.
[14] S. V. Konyagin and I. Shparlinski, Character sums with exponential functions and their applications, Cambridge Univ. Press, Cambridge, 1999.
[15] N. M. Korobov, On the distribution of digits in periodic fractions, Mat. Sb. 89 (1972), 654-670 (in Russian).
[16] , Exponential sums and their applications, Kluwer, Dordrecht, 1992.
[17] C. Mauduit and A. Sárközy, On the arithmetic structure of sets characterized by sum of digits properties, J. Number Theory 61 (1996), 25-38.
$[18]$, On the arithmetic structure of the integers whose sum of digits is fixed, Acta Arith. 81 (1997), 145-173.
[19] _ On finite pseudorandom binary sequences 1: Measure of pseudorandomness, the Legendre symbol, Acta Arith. 82 (1997), 365-377.
[20] H. Niederreiter, Quasi-Monte Carlo methods and pseudo-random numbers, Bull. Amer. Math. Soc. 84 (1978), 957-1041.
[21] S. B. Stečkin, An estimate of a complete rational exponential sum, Proc. Math. Inst. Acad. Sci. USSR 143 (1977), 188-207 (in Russian).
[22] A. Weil, Basic number theory, Springer-Verlag, New York, 1974.
[23] H. B. Yu, Estimates of character sums with exponential function, Acta Arith. 97 (2001), 211-218.

William D. Banks, Department of Mathematics, University of Missouri, ColumBIA, MO 65211, USA

E-mail address: bbanks@math.missouri.edu
Alessandro Conflitti, Dipartimento di Matematica, Università degli Studi di Roma "Tor Vergata", Via della Ricerca Scientifica, I-00133 Roma, Italy

E-mail address: conflitt@mat.uniroma2.it
Igor E. Shparlinski, Department of Computing, Macquarie University, Sydney, NSW 2109, Australia

E-mail address: igor@ics.mq.edu.au

[^0]: Received October 31, 2001; received in final form May 15, 2002.
 2000 Mathematics Subject Classification. 11L07, 11L15, 11L40, 11N64.

