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Clifford gave a general means of finding all possible extensions of a (weakly
reductive) semigroup S by a semigroup T with zero [2]. However, as in group
theory, it is generally difficult to give an explicit determination of the exten-
sions for special types of semigroups. This has been done for only two cases:
(1) S completely simple and T arbitrary. (2) S a group and T a completely
0-simple semigroup [2]. The first is due to Clifford [1] and the second to Munn
[2]. In [3], Warne determined when the extensions of a completely 0-simple
semigroup by a completely 0-simple semigroup are determined by a partial
homomorphism.
The main result of this paper is the determination of all extensions of a

Brandt semigroup by an arbitrary semigroup. We first use this theorem to
determine when an extension of a Brandt semigroup by a regular 0-bisimple
semigroup is given by a partial homomorphism. We then use the theorem to
find the number of extensions of a Brandt semigroup by a simple group (with
zero) in a certain case.

Let S and T be disjoint semigroups, T having a zero element 0. A semi-
group V will be called an (ideal) extension of S by T if it contains S as an ideal,
and if the Rees factor semigroup V/S [1] is isomorphic with T.

Let V be an extension of a semigroup S by a semigroup T with zero; we will
use the following notations. If S has a zero, it is denoted by 0 (0 is then
automatically the zero of V). The zero of T is denoted by 0’. Multiplica-
tion in V is denoted by o, while multiplication in S or T is denoted simply by
iuxtaposition. The elements of S are denoted by lower case and the elements
of T by capital roman letters. The set of non-zero elements of any semigroup
P with zero is denoted by P*.

If V is an extension of S by T (with zero) we say that V is determined by a
partial homomorphism if there exists a partial homomorphism T* -- S
such that for all A, B T*, c, d e S

AoB =AB

(A-)(B-)

Aoc (A)c;

if AB O

if AB 0’;

coA c(A); cod cd.

When S is a Brandt semigroup we write S M(G; I, I; A) and let e be the
identity of G [2].
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If A is any non-empty set, a will denote the full symmetric inverse semi-
group on A [2]. We denote multiplication in a by juxtaposition. If a e,
the rank of a is the cardinal number of the range of a. If J is any set, J
denotes its cardinal number.
For all concepts and notations not defined in this paper the reader is

referred to [2].

THEOREM 1. Let V be an extension of a Brandt semigroup S by an arbitrary
semigroup T with zero. Let S be given the Rees representation S M(G; I, I; A).
Then there exists a partial homomorphism w A wa of T* into x the full sym-
metric inverse semigroup on I. Let sa and ta denote the domain and range of
wa respectively. If AB 0t; either t n sB [] or t sB is a single element
d,, For each A in T*, there exists a mapping b of sa into the group G such
that for AB 0

(,) (ibA)(iwab) ib for all i

The products in V are given by

(1) (a) AoB =AB if AB O’ in T,

(b)

(c)

A oB 0 (in S) if AB=O’ (in T) and

A B (d., WIA)(dA,B bB); dA. W;1, dA,B WB)

(2)

(3)

tA f] SB []

if AB O’ (in T) and ta s, da,.

(a; i, j) A (a(jba) i, jwa)

=0

0oA =0

A (a; i, j) ((iw-l)a; iw-, j)

=0

AoO=O

if j e SA

if js

if i e ta

if it

Conversely, let S be a Brandt semigroup and T be a semigroup with zero such
that S c T [:]. If we are given the mappings w and b described above and
define product in the class sum of S and T* by 1 )-(3), then V is an extension

of SbyT.

Proof. Let V be an extension of S M(G; I, I; A) by a semigroup T
with zero. Let

SA {iell(a;lc, i) oAO forall ]ceI, aeG}.

IfiesA, (e;i,i) oA (z;,l),zeG,,leI.
Thus

(e; i, i) o A (e; i, i)(z;/, l)
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and i /, i.e., (e; i, i) o A (z; i, 1). Hence we may write

(e; i, i) o A (it i, iwA)

where wA maps s into I and maps s into G. Now, if j s,

(a; i,j) A ((a; i,j) o (e;j,j)) o A (a; i, j) e, j, j) o A)

(a; i,j)(j. ;j, jw) (a(j); i, jwA).

We note that 0 is the zero of V. Hence, this yields (2).
Let A in T* and let

t liIIAo(a;i,j) 0 forall jI,aGI.

Similarly as above, we obtain

(3’) A o (a;i,j) ((i)a;i,j) if itt

0 if itt

AoO=O,

where 7 maps t into I and a maps ta into G.
Letisandletj iw. Then

((e; i, i) o A) o (e;j, i) (ia i, iwt) o (e;j, i) (ibt i, i).

Hence
(e; i, i) o (A (e; j, i)) (ibA i, i)

which implies that j t. Similarly

(iba ;i, i) (e; i, i) o (j ;jT, i)

which implies that jTa i. After multiplying we obtain iA ja. Sum-
marizing, i s and j iwa implies j ta, jTa i, ih j iwOA.
The range of wA is ta and iwa7a i. Similarly, j t and jTA i implies

that i s and iw. j. Hence the range of 7a is s and j’wt j. Thus
w and ,A are mutually inverse 1-1 mappings of s onto t and t onto s re-
spectively. Consequently we may write 7 w1, and, if j tA, we will write

3wt bt. Hence (3’) reduced to (3).
T* 0’.Suppose that A, B and AB We have i s and iw. sB if and

only if i (t n s,)w-1, where (t n s,)w is the domain of wA w, (multiplica-
tion in ). We obtain

((e; i, i) o A) o S (ia i, iw) B ((i.)(iwt ,); i, iwA w,)

and
(e; i, i) o A o S ((i,) i, iw,).

Hence i (ta f s,)w if and only if i s.. In this case iw, iwt w,.
This means wA, w w. (in 9). Thus w A - w is a partial homomor-
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phismof T’into at. IfAB # O’ andiesaB,iAB iaiwakn. (.) is
satisfied.
Suppose that A, BeT* and AB 0’. Then AoBeS. Suppose that

A B 0. If sn n ta # [:], there exists i e sB n ta and j iw implies that
j e sa and jwa sB. Hence (e; j, j) o A) o B # 0 contradicting the fact that
(e;j,j) o(AoB) 0. Thus, sBnta [:]. Next suppose thatAoBeS*.
Let A o B (ga,B, ia.B,/ca,B). Then

(4)
(e; ia,B, ia.)(A B) (e; ia.n, ia.)(ga,B ia,n, ]ca.R)

(.,. ,., ,.),

(4’)
(e; ia.., ia,.) oA) oB ((ia.-ka); ia.,, ia.,wa)oB

((ia,B Ca)(ia.n wa bn) ia.,, ia.B wa
Consequently ia.. e sa, ia.. wa e s., i.e., ia,. wa e sn a ta.
i e sn n ta. If j iw-1, then jwa e s, and j e sa. Hence

Suppose that

((e;j,j) A) B ((jba);j, jwa) B ((j.)(jwa hn);j, jwa

(e;j, j)(A B) (e; j, j)(ga,, ia.n,

Thus j ia,. and i jwa i.,. w so that s. n t ia,B wa. Therefore
AB 0’ implies that either s. n ta [:] or s. n t contains a single element.
More specifically A o B 0 (in S) implies that s n t [:] while A o B in S*
implies that sn n ta da,n. In particular (1) has also been established.
For ifAB O’andsnt [::]thenAoB 0andifAB O’andsnta

da,., then by (4) and (4’)
ga.. (i.. ka)(ia.. wa k-) and k,. ia.. w w..

Since da,n ia,B wa,

d.w i. and ]A,B dA,n W wA w dA,B W

and 1 (c) is established.
We next establish the converse.

tive law.
It is only necessary to verify the associa-

Case I. T*T*S. First suppose that A, B in T* and AB # O’ (in T).
Note that i e tar if and only if i e tn and iw- ta. Thus either (AB) (a; i, j)
and A o (B (a; i, j)) are both equal to 0 or both are different from 0. We
consider the latter case.

AB o a; i,j) (. -1 -1zwan kaB)a; zwan, j)

A o (B (a; i, j)) A ((iw-lbn)a; iw’1, j)
((iv;wl)(iv;.)a; ivo;’v, j).

We have iw-lw iw- since w is a partial homomorphism. If i e tab,
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zw e saB and by (.), we obtain

w)(ww.) iw
Consequently

iw;w (iw;,) iw
Hence (AB) o (a; i, j) n o (B o (a; i, j)) if AB O’ (in T).
Next, wesupposethtAB 0’. Ifs.at , (AoB) o(a; i,j) 0.
Ia additio A o (B (a; i, j)) 0 since i e t, and iwle t would imply that
i e t., i.e., iw e t

Suppose that AB O’ aad s. t d,. Then

(A o B) (a; i,j) ((d,. w)(d,. .) d,. w, d,. w.)(a; i,j).

Now d,.w i iff let. and iwet. Hence (AB) o(a;i,j) and
A (B (a; i, j)) re both equal to zero or both are not equal to zero. In
the latter case

(A B) o (a; i. j) ((d.. w)(d.. .)a; d... w;. j)

A o (B o a; i, j) A ((iw)a; iw, j)

((iww)(iw;)a; iw;w, j).

Since d,. w iww and d,. iw, we obtain

(A oB) o (a; i,j) A o (B (a; i,j)).

Case II ST*T* this case is treated similarly as Case I.

Case III. ST*S. We huve

((a; i,j)o A)o (b; k, 1) (a(jk); i, jw.)(b; t, l) if j es

(a(jb) i, jw) (b; to, l) (a(jb)b; i, l) if t jw,

((a; i,j) oA)(b; t, l) 0 if and only if jes and k jw.

Similarly (a; i, j)(A (b; k, l) 0 if and only if/ e t and j /w1.
Now j e s and jw if and only if/ e t and/w j. Hence

((a; i,j) A)(b; k, l) and (a; i,j)(A (b;/, 1))

are both equal to zero or both are different from zero. In the latter case,

((a; i, j)oA)(b; k, l) (a(jb)b; i, l)

(a(kwb)b; i, l) (a; i, j)(A o (b;/, 1)).

Case IV. SST*. We have

(5) ((a; i, j)(b; k, 1))oA (ab;i, 1) oA ifj k,

(6) (ab; i, l) o A ((ab)(l); i, lw) if le s.
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Consequently

((a;i,j)(b; to, 1) A 0
Further

(7)

(S)

Hence

if and only if j= kandlesA.

(a; i,j)((b; t, l) A) (a; i,j)(b(lbA); k, lw.,) if in sa,

(a; i,j)(b(lb); k, lw.,) ((ab)(l,.,); i, lw.,) ifj /.

(a, i,j)(b, 1, 1) oA) 0 if and only if lesx andj k.

Thus ((a; i,j)(b; t, 1)) o A and (a; i,j)((b; 1, l) o A) are either both equal
to zero or both are different from zero and in the latter case we have equality
by (5), (6), (8) and (7).

Case V. T*SS; this case is treated similarly as Case IV.

We have verified associativity for T*T*S, ST*T*, ST*S, SST* and T*SS.
T*T*T* and T’ST* are a consequence of the established cases by [1, Theorem
1, p. 166].

Remartc. An extension of a Brandt semigroup by an arbitrary semigroup
always exists [1].

The following general result shows us that an extension of a Brandt semi-
group by an inverse semigroup must be an inverse semigroup.

THEOREM 2. Let V be an extension of a semigroup S by a semigroup T.
Then, V is an inverse semigroup if and only if S and T are inverse semigroups.

Proof. Suppose S and T are inverse semigroups. Since S and T are regu-
lar, V is regular. Thus, each principal left ideal and each principal right
ideal of V has an idempotent generator [2, Lemma 1.13, p. 27]. Suppose
eV =fV. Then, e =fox, f= eoywherex, yinV. Thus, foe =fo(fox

fox e, eof eo(eoy) eoy f. Ife, finT*,e=f. Ire, finS,
Te f [2, Th. 1.17, p. 28] The cases, e S, f e and e e T f e S are impossible.

Thus, e f and every principal right ideal of V has a unique idempotent
generator. Similarly, each principal left ideal of V has a unique idempotent
generator. Thus V is an inverse semigroup [2, p. 28, Th. 1.17]. Suppose V
is an inverse semigroup. Clearly T is regular. If a in S, there exists x in
Vsuchthataoxoa a. NowaReforsomeeeV. Thuse aozforz
inV. HenceeeSandea a. Thus

a aoxoa aoxo(eoa) ao(xoe) oa a(xe)a

and S is regular.
It is easily seen that the idempotents in S and in T commute and hence S

and T are inverse semigroups [2].

LEMMA 1. Let gF be the full symmetric inverse semigroup on any set F.
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Then if A, B e A B if and only if range of A range of B.

A 6 B if and only if domain of A domain of B,
A ) B if and only if rank of A rank of B.

We next use Theorem 1 to determine when the extensions of a Braadt semi-
group by a regular 0-bisimple semigroup are given by a partial homomorphism.

THEOREM 3. An extension V of a Brandt semigroup S by a regular O-bisimple
semigroup T is given by a partial homomorphism if and only if there exists an
idempotent E in T* such that there is at most one idempotent of S* under E.

Proof. Let V be u extension of S by T stisfying the conditions of the
theorem. Now, since A w is partial homomorphism of T* into 9,
if E E in T* ww w, i.e. w is a idempotent of. This mes w
is the identity transformation ou s t [2, p. 29]. Then by (,) of Theorem 1,
we have ii i, i.e., i e, the identity of G, for all i e s. Thus
by (2) and (3) of Theorem 1, if i e s, (e; i, i) < E. If i s, (e; i, i) o E 0.
Hence either s or s is single elemeut. If s , there exists no
idempotent of S* under E. If s is a single element, there exists precisely one
idempotent of S* under E.

Since T is 0-bisple, T*w is contained ia single -class of . If A e T*
ADEand]s [s]byLemmal. Therefore if s ,s for all
A e T*, and if s is single element, s is single element for all A e T*.

T*.Let us first consider the case s for all A e Clearly t for all
T"A in T* Let AO 0 for all A e Hence by Theorem 1, V is give by the

partial homomorphism 0 of T* into S. In the second case, writew (s, t).
The multiplication in T*w is then given as follows"

w w, (s t)(s,, t) (s t) ift s

0(in) ift s..

With as in Theorem 1, if i e s let i s x By (2), Theorem 1

(e; s, s) A (s ; s, s w).
Using this expression it is esily shown that A x is a mapping of T*
into G.

If i e s,(AB 0’), i s, s and iwa t s, Hence of Theorem
1 becomes, x x- x,, i.e. A x is a partial homomorphism of T* into G.

The following statements re consequences of Theorem 1.
IfAB 0inTands.nt ,i.e.s, t,

(x ;s, t)(x, ;s,, t.) 0 A B.

If AB O’ and s. t d,,, i.e. t s., then

A B ((d,, wl) d,, , d,, w, d,, w,) (s s. , s,
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If j sa

(a; i,j) oA (a; (jCa) ;i, jw) (a(s a); i, ta) (a; i,j)(xa;s, ta).

Ifj s,
(a; i,j) o A 0 (a; i,j) (x ;s, ta).

Similarly, A (a; i, j) (a ;s, ta)(a; i, j).

Now, define A0 x s, t). It remains only to show that 0 is a partial
homomorphism of T* into S.

Since s s, s, t, and ta t,, if AB 0’;

AOBO (xa SA tA)(X. SB,

(xa x, ;sa, t,) (XA, ;Sa,, tap) (AB)O.

To establish the converse suppose that V is given by a partial homomorphism
0. Let E be any idempotent of T*. Ife <_ E,e <_ EOandhencee 0or
e EO since S is completely 0-simple.
We now apply Theorem 1 to give the number of extensions of a finite Brandt

semigroup by certain simple groups (with zero). If ]I] n let D;, i 0,
1, 2, n, denote the D-classes of 9. D is the collection of elements of
rank i (Lemma 1). Let Gr be the symmetric group on r symbols.

THEOREM 4. If S is a finite Brandt semigroup and T* is a simple group with
T*[ > max(]/I, G I), then there are 2 I’l extensions of S by T.

Proof. Let n I [. Let w be the homomorphism of T* into Oz of Theorem
1 and suppose T*w Dr for r >_ 1. If w is an isomorphism, T*] _<
_< n! [3] contradicting the hypothesis. Thus for any A e T*, wa is an idem-
potent of Dr and hence is the identity transformation on some set M of r
elements. There are () such sets. If we define 0 by AO iba, i e M,
A e T*, then 0, for each i e M, is a homomorphism of T* into G by (,),
Theorem 1. Since T*[ > GI, each 0 is trivial. Thus by (2) and (3) of
Theorem 1, there are at most () extensions of S by T*, such that T* w
Hence the number of extensions of S by T cannot exceed

Conversely if we let ibA e, the identity of G, for all A e T*, i e I and let
T*w run through the idempotents of 9z we obtain 2 I*I extensions of S by T by
Theorem 1.

Remark (Added in proof). It is only necessary to assume that [I[ is
finite in the statement of Theorem 4.
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