EXTENSIONS OF BRANDT SEMIGROUPS AND APPLICATIONS

BY
R. J. Warne

Clifford gave a general means of finding all possible extensions of a (weakly reductive) semigroup S by a semigroup T with zero [2]. However, as in group theory, it is generally difficult to give an explicit determination of the extensions for special types of semigroups. This has been done for only two cases: (1) S completely simple and T arbitrary. (2) S a group and T a completely 0 -simple semigroup [2]. The first is due to Clifford [1] and the second to Munn [2]. In [3], Warne determined when the extensions of a completely 0 -simple semigroup by a completely 0 -simple semigroup are determined by a partial homomorphism.

The main result of this paper is the determination of all extensions of a Brandt semigroup by an arbitrary semigroup. We first use this theorem to determine when an extension of a Brandt semigroup by a regular 0-bisimple semigroup is given by a partial homomorphism. We then use the theorem to find the number of extensions of a Brandt semigroup by a simple group (with zero) in a certain case.

Let S and T be disjoint semigroups, T having a zero element 0 . A semigroup V will be called an (ideal) extension of S by T if it contains S as an ideal, and if the Rees factor semigroup $V / S[1]$ is isomorphic with T.

Let V be an extension of a semigroup S by a semigroup T with zero; we will use the following notations. If S has a zero, it is denoted by 0 (0 is then automatically the zero of V). The zero of T is denoted by 0^{\prime}. Multiplication in V is denoted by \circ, while multiplication in S or T is denoted simply by juxtaposition. The elements of S are denoted by lower case and the elements of T by capital roman letters. The set of non-zero elements of any semigroup P with zero is denoted by P^{*}.

If V is an extension of S by T (with zero) we say that V is determined by a partial homomorphism if there exists a partial homomorphism $\pi: T^{*} \rightarrow S$ such that for all $A, B \in T^{*}, c, d \in S$

$$
\begin{array}{rlrl}
A \circ B & =A B & \text { if } A B \neq 0^{\prime} \\
& =(A \pi)(B \pi) & & \text { if } A B=0^{\prime} ; \\
A \circ c & =(A \pi) c ; \quad & c \circ A=c(A \pi) ; \quad c \circ d=c d .
\end{array}
$$

When S is a Brandt semigroup we write $S=M^{0}(G ; I, I ; \Delta)$ and let e be the identity of G [2].

[^0]If A is any non-empty set, \mathscr{g}_{A} will denote the full symmetric inverse semigroup on A [2]. We denote multiplication in \mathscr{g}_{A} by juxtaposition. If $\alpha \epsilon \pi_{I}$, the rank of α is the cardinal number of the range of α. If J is any set, $|J|$ denotes its cardinal number.

For all concepts and notations not defined in this paper the reader is referred to [2].

Theorem 1. Let V be an extension of a Brandt semigroup S by an arbitrary semigroup T with zero. Let S be given the Rees representation $S=M^{0}(G ; I, I ; \Delta)$. Then there exists a partial homomorphism $w: A \rightarrow w_{A}$ of T^{*} into \mathfrak{g}_{I}, the full symmetric inverse semigroup on I. Let s_{A} and t_{A} denote the domain and range of w_{A} respectively. If $A B=0^{\prime}$; either $t_{A} \cap s_{B}=\square$ or $t_{A} \cap s_{B}$ is a single element $d_{A, B}$. For each A in T^{*}, there exists a mapping ψ_{A} of s_{A} into the group G such that for $A B \neq 0^{\prime}$
(*)

$$
\left(i \psi_{A}\right)\left(i w_{A} \psi_{B}\right)=i \psi_{A B} \quad \text { for all } \quad i \in s_{A B}
$$

The products in V are given by

$$
\begin{align*}
& \text { (a) } A \circ B=A B \quad \text { if } A B \neq 0^{\prime} \quad \text { in } T, \tag{1}\\
& \text { (b) } A \circ B=0 \quad(\text { in } S) \text { if } A B=0^{\prime} \quad(\text { in } T) \text { and } t_{A} \cap s_{B}=\square, \\
& \text { (c) } A \circ B=\left(\left(d_{A, B} w_{A}^{-1} \psi_{A}\right)\left(d_{A, B} \psi_{B}\right) ; d_{A, B} w_{A}^{-1}, d_{A, B} w_{B}\right) \\
& \text { if } A B=0^{\prime}(\text { in } T) \text { and } t_{A} \cap s_{B}=d_{A, B}
\end{align*}
$$

$$
\begin{array}{rlrl}
(a ; i, j) \circ A= & \left(a\left(j \psi_{A}\right) ; i, j w_{A}\right) & & \text { if } j \epsilon s_{A} \tag{2}\\
& =0 & & \text { if } j \bar{\epsilon} s_{A} \\
& 0 \circ A=0 & \\
A \circ(a ; i, j)= & \left(\left(i w_{A}^{-1} \psi_{A}\right) a ; i w_{A}^{-1}, j\right) & & \text { if } i \epsilon t_{A} \\
= & 0 & \text { if } i \bar{\epsilon} t_{A} \\
& A \circ 0=0 & &
\end{array}
$$

Conversely, let S be a Brandt semigroup and T be a semigroup with zero such that $S \cap T=\square$. If we are given the mappings w and ψ_{A} described above and define product \circ in the class sum of S and $T^{*} b y(1)-(3)$, then V is an extension of S by T.

Proof. Let V be an extension of $S=M^{0}(G ; I, I ; \Delta)$ by a semigroup T with zero. Let

$$
s_{A}=\{i \epsilon I \mid(a ; k, i) \circ A \neq 0 \text { for all } k \in I, a \in G\}
$$

If $i \in s_{A},(e ; i, i) \circ A=(z ; k, l), z \in G, k, l \in I$.
Thus

$$
(e ; i, i) \circ A=(e ; i, i)(z ; k, l)
$$

and $i=k$, i.e., $(e ; i, i) \circ A=(z ; i, 1)$. Hence we may write

$$
(e ; i, i) \circ A=\left(i \psi_{A} ; i, i w_{A}\right)
$$

where w_{A} maps s_{A} into I and ψ_{A} maps s_{A} into G. Now, if $j \epsilon s_{A}$, $(a ; i, j) \circ A=((a ; i, j) \circ(e ; j, j)) \circ A=(a ; i, j)((e, j, j) \circ A)$

$$
=(a ; i, j)\left(j \psi_{A} ; j, j w_{A}\right)=\left(a\left(j \psi_{A}\right) ; i, j w_{A}\right)
$$

We note that 0 is the zero of V. Hence, this yields (2).
Let A in T^{*} and let

$$
t_{A}=\{i \epsilon I \mid A \circ(a ; i, j) \neq 0 \text { for all } j \in I, a \epsilon G\}
$$

Similarly as above, we obtain

$$
\begin{align*}
A \circ(a ; i, j)= & \left(\left(i \phi_{A}\right) a ; i \gamma_{A}, j\right) & \text { if } i \epsilon t_{A} \\
= & 0 & \text { if } i \bar{\epsilon} t_{A} \\
& A \circ 0=0, &
\end{align*}
$$

where γ_{A} maps t_{A} into I and ϕ_{A} maps t_{A} into G.
Let $i \in s_{A}$ and let $j=i w_{A}$. Then

$$
((e ; i, i) \circ A) \circ(e ; j, i)=\left(i \psi_{A} ; i, i w_{A}\right) \circ(e ; j, i)=\left(i \psi_{A} ; i, i\right)
$$

Hence

$$
(e ; i, i) \circ(A \circ(e ; j, i))=\left(i \psi_{A} ; i, i\right)
$$

which implies that $j \in t_{A}$. Similarly

$$
\left(i \psi_{A} ; i, i\right)=(e ; i, i) \circ\left(j \phi_{A} ; j \gamma_{A}, i\right)
$$

which implies that $j \gamma_{A}=i$. After multiplying we obtain $i \psi_{A}=j \phi_{A} . \quad$ Summarizing, $i \in s_{A}$ and $j=i w_{A}$ implies $j \epsilon t_{A}, j \gamma_{A}=i, i \psi_{A}=j \phi_{A}=i w_{A} \phi_{A}$.

The range of w_{A} is t_{A} and $i w_{A} \gamma_{A}=i$. Similarly, $j \epsilon t_{A}$ and $j \gamma_{A}=i$ implies that $i \epsilon s_{A}$ and $i w_{A}=j$. Hence the range of γ_{A} is s_{A} and $j \gamma_{A} w_{A}=j$. Thus w_{A} and γ_{A} are mutually inverse 1-1 mappings of s_{A} onto t_{A} and t_{A} onto s_{A} respectively. Consequently we may write $\gamma_{A}=w_{A}^{-1}$, and, if $j \epsilon t_{A}$, we will write $j \phi_{A}=j w_{A}^{-1} \psi_{A}$. Hence (3^{\prime}) reduced to (3).

Suppose that $A, B \in T^{*}$ and $A B \neq 0^{\prime}$. We have $i \epsilon s_{A}$ and $i w_{A} \in s_{B}$ if and only if $i \in\left(t_{A} \cap s_{B}\right) w_{A}^{-1}$, where $\left(t_{A} \cap s_{B}\right) w_{A}^{-1}$ is the domain of $w_{A} w_{B}$ (multiplication in $\left.\mathfrak{g}_{I}\right)$. We obtain

$$
((e ; i, i) \circ A) \circ B=\left(i \psi_{A} ; i, i w_{A}\right) \circ B=\left(\left(i \psi_{A}\right)\left(i w_{A} \psi_{B}\right) ; i, i w_{A} w_{B}\right)
$$

and

$$
(e ; i, i) \circ A \circ B=\left(\left(i \psi_{A B}\right) ; i, i w_{A B}\right)
$$

Hence $i \epsilon\left(t_{A} \cap s_{B}\right) w_{A}^{-1}$ if and only if $i \in s_{A B}$. In this case $i w_{A B}=i w_{A} w_{B}$. This means $w_{A B}=w_{A} w_{B}$ (in \mathfrak{g}_{I}). Thus $w: A \rightarrow w_{A}$ is a partial homomor-
phism of T^{*} into \mathscr{G}_{I}. If $A B \neq 0^{\prime}$ and $i \in s_{A B}, i \psi_{A B}=i \psi_{A} i w_{A} \psi_{B}$. (*) is satisfied.

Suppose that $A, B \in T^{*}$ and $A B=0^{\prime}$. Then $A \circ B \in S$. Suppose that $A \circ B=0$. If $s_{B} \cap t_{A} \neq \square$, there exists $i \epsilon s_{B} \cap t_{A}$ and $j=i w_{A}^{-1}$ implies that $j \in s_{A}$ and $j w_{A} \in s_{B}$. Hence $((e ; j, j) \circ A) \circ B \neq 0$ contradicting the fact that $(e ; j, j) \circ(A \circ B)=0$. Thus, $s_{B} \cap t_{A}=\square$. Next suppose that $A \circ B \epsilon S^{*}$. Let $A \circ B=\left(g_{A, B}, i_{A, B}, k_{A, B}\right)$. Then

$$
\begin{gather*}
\left(e ; i_{A, B}, i_{A, B}\right)(A \circ B)=\left(e ; i_{A, B}, i_{A, B}\right)\left(g_{A, B} ; i_{A, B}, k_{A, B}\right) \tag{4}\\
=\left(g_{A, B} ; i_{A, B}, k_{A, B}\right) \\
\left.\left(e ; i_{A, B}, i_{A, B}\right) \circ A\right) \circ B=\left(\left(i_{A, B} \psi_{A}\right) ; i_{A, B}, i_{A, B} w_{A}\right) \circ B \\
=\left(\left(i_{A, B} \psi_{A}\right)\left(i_{A, B} w_{A} \psi_{B}\right) ; i_{A, B}, i_{A, B} w_{A} w_{B}\right) .
\end{gather*}
$$

Consequently $i_{A, B} \in s_{A}, i_{A, B} w_{A} \in s_{B}$, i.e., $i_{A, B} w_{A} \in s_{B} \cap t_{A}$. Suppose that $i \in s_{B} \cap t_{A}$. If $j=i w_{A}^{-1}$, then $j w_{A} \in s_{B}$ and $j \in s_{A}$. Hence

$$
\begin{aligned}
((e ; j, j) \circ A) \circ B=\left(\left(j \psi_{A}\right)\right. & \left.; j, j w_{A}\right) \circ B=\left(\left(j \psi_{A}\right)\left(j w_{A} \psi_{B}\right) ; j, j w_{A} w_{B}\right) \\
& =(e ; j, j)(A \circ B)=(e ; j, j)\left(g_{A, B} ; i_{A, B}, k_{A, B}\right)
\end{aligned}
$$

Thus $j=i_{A, B}$ and $i=j w_{A}=i_{A, B} w_{A}$ so that $s_{B} \cap t_{A}=i_{A, B} w_{A}$. Therefore $A B=0^{\prime}$ implies that either $s_{B} \cap t_{A}=\square$ or $s_{B} \cap t_{A}$ contains a single element. More specifically $A \circ B=0($ in $S)$ implies that $s_{B} \cap t_{A}=\square$ while $A \circ B$ in S^{*} implies that $s_{B} \cap t_{A}=d_{A, B}$. In particular (1) has also been established. For if $A B=0^{\prime}$ and $s_{B} \cap t_{A}=\square$ then $A \circ B=0$ and if $A B=0^{\prime}$ and $s_{B} \cap t_{A}$ $=d_{A, B}$, then by (4) and (4)

$$
g_{A, B}=\left(i_{A, B} \psi_{A}\right)\left(i_{A, B} w_{A} \psi_{B}\right) \quad \text { and } \quad k_{A, B}=i_{A, B} w_{A} w_{B}
$$

Since $d_{A, B}=i_{A, B} w_{A}$,

$$
d_{A, B} w_{A}^{-1}=i_{A, B} \quad \text { and } \quad k_{A, B}=d_{A, B} w_{A}^{-1} w_{A} w_{B}=d_{A, B} w_{B}
$$

and $(1)(c)$ is established.
We next establish the converse. It is only necessary to verify the associative law.

Case I. $T^{*} T^{*} S$. First suppose that A, B in T^{*} and $A B \neq 0^{\prime}$ (in T). Note that $i \epsilon t_{A B}$ if and only if $i \epsilon t_{B}$ and $i w_{B}^{-1} \in t_{A}$. Thus either $(A B) \circ(a ; i, j)$ and $A \circ(B \circ(a ; i, j))$ are both equal to 0 or both are different from 0 . We consider the latter case.

$$
\begin{aligned}
(A B) \circ(a ; i, j) & =\left(\left(i w_{A B}^{-1} \psi_{A B}\right) a ; i w_{A B}^{-1}, j\right) \\
A \circ(B \circ(a ; i, j)) & =A \circ\left(\left(i w_{B}^{-1} \psi_{B}\right) a ; i w_{B}^{-1}, j\right) \\
& =\left(\left(i w_{B}^{-1} w_{A}^{-1} \psi_{A}\right)\left(i w_{B}^{-1} \psi_{B}\right) a ; i w_{B}^{-1} w_{A}^{-1}, j\right)
\end{aligned}
$$

We have $i w_{B}^{-1} w_{A}^{-1}=i w_{A B}^{-1}$ since w is a partial homomorphism. If $i \in t_{A B}$,
$i w_{A B}^{-1} \in s_{A B}$ and by ($*$), we obtain

$$
\left(i w_{A B}^{-1} \psi_{A}\right)\left(i w_{A B}^{-1} w_{A} \psi_{B}\right)=i w_{A B}^{-1} \psi_{A B} .
$$

Consequently

$$
\left(i w_{B}^{-1} w_{A}^{-1} \psi_{A}\right)\left(i w_{B}^{-1} \psi_{B}\right)=i w_{A B}^{-1} \psi_{A B} .
$$

Hence $(A B) \circ(a ; i, j)=A \circ(B \circ(a ; i, j))$ if $A B \neq 0^{\prime}$ (in $\left.T\right)$.
Next, we suppose that $A B=0^{\prime}$. If $s_{B} \cap t_{A}=\square,(A \circ B) \circ(a ; i, j)=0$. In addition $A \circ(B \circ(a ; i, j))=0$ since $i \epsilon t_{B}$ and $i w_{B}^{-1} \epsilon t_{A}$ would imply that $i \in t_{A B}$, i.e., $i w_{B}^{-1} \in t_{A} \cap s_{B}$.

Suppose that $A B=0^{\prime}$ and $s_{B} \cap t_{A}=d_{A, B} . \quad$ Then

$$
(A \circ B) \circ(a ; i, j)=\left(\left(d_{A, B} w_{A}^{-1} \psi_{A}\right)\left(d_{A, B} \psi_{B}\right) ; d_{A, B} w_{A}^{-1}, d_{A, B} w_{B}\right)(a ; i, j)
$$

Now $d_{A, B} w_{B}=i$ iff $i \epsilon t_{B}$ and $i w_{B}^{-1} \epsilon t_{A}$. Hence $(A \circ B) \circ(a ; i, j)$ and $A \circ(B \circ(a ; i, j))$ are both equal to zero or both are not equal to zero. In the latter case

$$
\begin{aligned}
(A \circ B) \circ(a ; i, j) & =\left(\left(d_{A, B} w_{A}^{-1} \psi_{A}\right)\left(d_{A, B} \psi_{B}\right) a ; d_{A, B} w_{A}^{-1}, j\right) \\
A \circ(B \circ(a ; i, j)) & =A \circ\left(\left(i w_{B}^{-1} \psi_{B}\right) a ; i w_{B}^{-1}, j\right) \\
& =\left(\left(i w_{B}^{-1} w_{A}^{-1} \psi_{A}\right)\left(i w_{B}^{-1} \psi_{B}\right) a ; i w_{B}^{-1} w_{A}^{-1}, j\right)
\end{aligned}
$$

Since $d_{A, B} w_{A}^{-1}=i w_{B}^{-1} w_{A}^{-1}$ and $d_{A, B}=i w_{B}^{-1}$, we obtain

$$
(A \circ B) \circ(a ; i, j)=A \circ(B \circ(a ; i, j))
$$

Case II. $S T^{*} T^{*}$; this case is treated similarly as Case I.
Case III. $S T^{*} S$. We have

$$
\begin{aligned}
& ((a ; i, j) \circ A) \circ(b ; k, 1)=\left(a\left(j \psi_{A}\right) ; i, j w_{A}\right)(b ; k, l) \text { if } j \epsilon s_{A} \\
& \quad\left(a\left(j \psi_{A}\right) ; i, j w_{A}\right)(b ; k, l)=\left(a\left(j \psi_{A}\right) b ; i, l\right) \quad \text { if } k=j w_{A}
\end{aligned}
$$

i.e.,

$$
((a ; i, j) \circ A)(b ; k, l) \neq 0 \text { if and only if } j \in s_{A} \text { and } k=j w_{A}
$$

Similarly $(a ; i, j)(A \circ(b ; k, l)) \neq 0$ if and only if $k \in t_{A}$ and $j=k w_{A}^{-1}$.
Now $j \epsilon s_{A}$ and $k=j w_{A}$ if and only if $k \epsilon t_{A}$ and $k w_{A}^{-1}=j$. Hence

$$
((a ; i, j) \circ A)(b ; k, l) \text { and }(a ; i, j)(A \circ(b ; k, l))
$$

are both equal to zero or both are different from zero. In the latter case,

$$
\begin{aligned}
((a ; i, j) \circ A)(b ; k, l)= & \left(a\left(j \psi_{A}\right) b ; i, l\right) \\
& =\left(a\left(k w_{A}^{-1} \psi_{A}\right) b ; i, l\right)=(a ; i, j)(A \circ(b ; k, l))
\end{aligned}
$$

Case IV. SST*. We have

$$
\begin{gather*}
((a ; i, j)(b ; k, l)) \circ A=(a b ; i, l) \circ A \quad \text { if } j=k \tag{5}\\
(a b ; i, l) \circ A=\left((a b)\left(l \psi_{A}\right) ; i, l w_{A}\right) \quad \text { if } l \in s_{A} \tag{6}
\end{gather*}
$$

Consequently

$$
((a ; i, j)(b ; k, l)) \circ A \neq 0 \quad \text { if and only if } j=k \text { and } l \in s_{A} .
$$

Further

$$
\begin{align*}
(a ; i, j)((b ; k, l) \circ A) & =(a ; i, j)\left(b\left(l \psi_{A}\right) ; k, l w_{A}\right) \quad \text { if } l \text { in } s_{A}, \tag{7}\\
(a ; i, j)\left(b\left(l \psi_{A}\right) ; k, l w_{A}\right) & =\left((a b)\left(l \psi_{A}\right) ; i, l w_{A}\right) \quad \text { if } j=k .
\end{align*}
$$

Hence

$$
(a, i, j)(b, k, l) \circ A) \neq 0 \text { if and only if } l \in s_{A} \text { and } j=k
$$

Thus $((a ; i, j)(b ; k, l)) \circ A$ and $(a ; i, j)((b ; k, l) \circ A)$ are either both equal to zero or both are different from zero and in the latter case we have equality by (5), (6), (8) and (7).

Case V. T ${ }^{*}$ SS; this case is treated similarly as Case IV.
We have verified associativity for $T^{*} T^{*} S, S T^{*} T^{*}, S T^{*} S, S S T^{*}$ and $T^{*} S S$. $T^{*} T^{*} T^{*}$ and $T^{*} S T^{*}$ are a consequence of the established cases by [1, Theorem 1, p. 166].

Remark. An extension of a Brandt semigroup by an arbitrary semigroup always exists [1].

The following general result shows us that an extension of a Brandt semigroup by an inverse semigroup must be an inverse semigroup.

Theorem 2. Let V be an extension of a semigroup S by a semigroup T. Then, V is an inverse semigroup if and only if S and T are inverse semigroups.

Proof. Suppose S and T are inverse semigroups. Since S and T are regular, V is regular. Thus, each principal left ideal and each principal right ideal of V has an idempotent generator [2, Lemma 1.13, p. 27]. Suppose $e V=f V$. Then, $e=f \circ x, f=e \circ y$ where x, y in V. Thus, $f \circ e=f \circ(f \circ x$ $=f \circ x=e, e \circ f=e \circ(e \circ y)=e \circ y=f$. If e, f in $T^{*}, e=f$. If e, f in S, $e=f\left[2\right.$, Th. 1.17, p. 28]. The cases, $e \in S, f \in T^{*}$ and $e \in T^{*}, f \in S$ are impossible. Thus, $e=f$ and every principal right ideal of V has a unique idempotent generator. Similarly, each principal left ideal of V has a unique idempotent generator. Thus V is an inverse semigroup [2, p. 28, Th. 1.17]. Suppose V is an inverse semigroup. Clearly T is regular. If a in S, there exists x in V such that $a \circ x \circ a=a$. Now $a \mathfrak{R} e$ for some $e \in V$. Thus $e=a \circ z$ for z in V. Hence $e \in S$ and $e a=a$. Thus

$$
a=a \circ x \circ a=a \circ x \circ(e \circ a)=a \circ(x \circ e) \circ a=a(x e) a
$$

and S is regular.
It is easily seen that the idempotents in S and in T commute and hence S and T are inverse semigroups [2].

Lemma 1. Let \mathfrak{g}_{F} be the full symmetric inverse semigroup on any set F.

Then if $A, B \in \mathfrak{G}_{F}, A \& B$ if and only if range of $A=$ range of B.
$A \cap B$ if and only if domain of $A=$ domain of B,
$A D B$ if and only if rank of $A=$ rank of B.
We next use Theorem 1 to determine when the extensions of a Brandt semigroup by a regular 0-bisimple semigroup are given by a partial homomorphism.

Theorem 3. An extension V of a Brandt semigroup S by a regular 0 -bisimple semigroup T is given by a partial homomorphism if and only if there exists an idempotent E in T^{*} such that there is at most one idempotent of S^{*} under E.

Proof. Let V be an extension of S by T satisfying the conditions of the theorem. Now, since $A \rightarrow w_{A}$ is a partial homomorphism of T^{*} into \mathfrak{g}_{I}, if $E^{2}=E$ in $T^{*}, w_{E} w_{E}=w_{E}$, i.e. w_{E} is an idempotent of \mathscr{g}_{I}. This means w_{E} is the identity transformation on $s_{E}=t_{E}[2, \mathrm{p} .29]$. Then by (*) of Theorem 1 , we have $i \psi_{E} i \psi_{E}=i \psi_{E}$, i.e., $i \psi_{E}=e$, the identity of G, for all $i \epsilon s_{E}$. Thus by (2) and (3) of Theorem 1, if $i \in s_{E},(e ; i, i)<E$. If $i \bar{\epsilon} s_{E},(e ; i, i) \circ E=0$. Hence either $s_{E}=\square$ or s_{E} is a single element. If $s_{E}=\square$, there exists no idempotent of S^{*} under E. If s_{E} is a single element, there exists precisely one idempotent of S^{*} under E.

Since T is 0 -bisimple, $T^{*} w$ is contained in a single \mathscr{D}-class of \mathscr{g}_{I}. If $A \in T^{*}$, $A D E$ and $\left|s_{A}\right|=\left|s_{E}\right|$ by Lemma 1. Therefore if $s_{E}=\square, s_{A}=\square$ for all $A \in T^{*}$, and if s_{E} is a single element, s_{A} is a single element for all $A \in T^{*}$. Let us first consider the case $s_{A}=\square$ for all $A \in T^{*}$. Clearly $t_{A}=\square$ for all A in T^{*}. Let $A \theta=0$ for all $A \in T^{*}$. Hence by Theorem $1, V$ is given by the partial homomorphism θ of T^{*} into S. In the second case, write $w_{A}=\left(s_{A}, t_{A}\right)$. The multiplication in $T^{*} w$ is then given as follows:

$$
\begin{aligned}
w_{A} w_{B}=\left(s_{A}, t_{A}\right)\left(s_{B}, t_{B}\right) & =\left(s_{A}, t_{B}\right) \quad \text { if } t_{A}=s_{B} \\
& =0\left(\text { in } \mathfrak{g}_{I}\right) \quad \text { if } t_{A} \neq s_{B}
\end{aligned}
$$

With ψ_{A} as in Theorem 1, if $i \in s_{A}$ let $i \psi_{A}=s_{A} \psi_{A}=\chi_{A} . \quad$ By (2), Theorem 1,

$$
\left(e ; s_{A}, s_{A}\right) \circ A=\left(s_{A} \psi_{A} ; s_{A}, s_{A} w_{A}\right)
$$

Using this expression it is easily shown that $A \rightarrow \chi_{A}$ is a mapping of T^{*} into G.

If $i \in s_{A B}\left(A B \neq 0^{\prime}\right), i=s_{A B}=s_{A}$ and $i w_{A}=t_{A}=s_{B}$. Hence $*$ of Theorem 1 becomes, $\chi_{A} \chi_{B}=\chi_{A B}$, i.e. $A \rightarrow \chi_{A}$ is a partial homomorphism of T^{*} into G.

The following statements are consequences of Theorem 1.
If $A B=0^{\prime}$ in T and $s_{B} \cap t_{A}=\square$, i.e. $s_{B} \neq t_{A}$,

$$
\left(\chi_{A} ; s_{A}, t_{A}\right)\left(\chi_{B} ; s_{B}, t_{B}\right)=0=A \circ B
$$

If $A B=0^{\prime}$ and $s_{B} \cap t_{A}=d_{A, B}$, i.e. $t_{A}=s_{B}$, then

$$
\begin{aligned}
A \circ B=\left(\left(d_{A, B} w_{A}^{-1}\right) \psi_{A} d_{A, B} \psi_{B}\right. & \left.; d_{A, B} w_{A}^{-1}, d_{A, B} w_{B}\right)=\left(s_{A} \psi_{A} s_{B} \psi_{B} ; s_{A}, t_{B}\right) \\
= & \left(\chi_{A} \chi_{B} ; s_{A}, t_{B}\right)=\left(\chi_{A} ; s_{A}, t_{A}\right)\left(\chi_{B} ; s_{B}, t_{B}\right) .
\end{aligned}
$$

$$
\begin{aligned}
& \text { If } j=s_{A}, \\
& \begin{array}{l}
(a ; i, j) \circ A=\left(a ;\left(j \psi_{A}\right) ; i, j w_{A}\right)=\left(a\left(s_{A} \psi_{A}\right) ; i, t_{A}\right)=(a ; i, j)\left(\chi_{A} ; s_{A}, t_{A}\right) \\
\text { If } j \neq s_{A}, \quad(a ; i, j) \circ A=0=(a ; i, j)\left(\chi_{A} ; s_{A}, t_{A}\right)
\end{array}
\end{aligned}
$$

Similarly, $A \circ(a ; i, j)=\left(\chi_{A} ; s_{A}, t_{A}\right)(a ; i, j)$.
Now, define $A \theta=\left(\chi_{A} ; s_{A}, t_{A}\right)$. It remains only to show that θ is a partial homomorphism of T^{*} into S.

Since $s_{A B}=s_{A}, s_{B}=t_{A}$, and $t_{A B}=t_{B}$, if $A B \neq 0^{\prime}$;

$$
\begin{aligned}
A \theta B \theta=\left(\chi_{A} ; s_{A}, t_{A}\right)\left(\chi_{B} ;\right. & \left.s_{B}, t_{B}\right) \\
& =\left(\chi_{A} \chi_{B} ; s_{A}, t_{B}\right)=\left(\chi_{A B} ; s_{A B}, t_{A B}\right)=(A B) \theta
\end{aligned}
$$

To establish the converse suppose that V is given by a partial homomorphism θ. Let E be any idempotent of T^{*}. If $e \leq E, e \leq E \theta$ and hence $e=0$ or $e=E \theta$ since S is completely 0 -simple.

We now apply Theorem 1 to give the number of extensions of a finite Brandt semigroup by certain simple groups (with zero). If $|I|=n$ let $D_{i}, i=0$, $1,2, \cdots, n$, denote the \mathfrak{D}-classes of $\mathscr{g}_{I} . \quad D_{i}$ is the collection of elements of rank i (Lemma 1). Let G_{r} be the symmetric group on r symbols.

Theorem 4. If S is a finite Brandt semigroup and T^{*} is a simple group with $\left|T^{*}\right|>\max (|I|,|G|)$, then there are $2^{|I|}$ extensions of S by T.

Proof. Let $n=|I|$. Let w be the homomorphism of T^{*} into \mathscr{G}_{I} of Theorem 1 and suppose $T^{*} w \subseteq D_{r}$ for $r \geq 1$. If w is an isomorphism, $\left|T^{*}\right| \leq\left|G_{r}\right|$ $\leq n!$ [3] contradicting the hypothesis. Thus for any $A \in T^{*}, w_{A}$ is an idempotent of D_{r} and hence is the identity transformation on some set M_{k} of r elements. There are $\binom{n}{r}$ such sets. If we define θ_{i} by $A \theta_{i}=i \psi_{A}, i \in M_{k}$, $A \in T^{*}$, then θ_{i}, for each $i \in M_{k}$, is a homomorphism of T^{*} into G by (*), Theorem 1. Since $\left|T^{*}\right|>|G|$, each θ_{i} is trivial. Thus by (2) and (3) of Theorem 1, there are at most $\binom{n}{r}$ extensions of S by T^{*}, such that $T^{*} w \subseteq D_{r}$. Hence the number of extensions of S by T cannot exceed

$$
\sum_{r=0}^{n}\binom{n}{r}=2^{n}=2^{|I|}
$$

Conversely if we let $i \psi_{A}=e$, the identity of G, for all $A \epsilon T^{*}, i \in I$ and let $T^{*} w$ run through the idempotents of \mathscr{g}_{I} we obtain $2^{|I|}$ extensions of S by T by Theorem 1.

Remark (Added in proof). It is only necessary to assume that $|I|$ is finite in the statement of Theorem 4.

Bibliography

1. A. H. Clifford, Extensions of semigroups. Trans. Amer. Math. Soc., vol. 68 (1950), pp. 165-173.
2. A. H. Clifford and G. B. Preston, The algebraic theory of semigroups, Amer. Math, Soc. Math. Surveys no. 7, 1961.
3. W. D. Munn, The characters of the symmetric inverse semigroup. Proc. Cambridge Philos. Soc., vol. 53 (1957), pp. 13-18.
4. R. J. Warne, Extensions of completely 0 -simple semigroups by completely 0 -simple semigroups, Proc. Amer. Math. Soc., vol. 17 (1966), pp. 524-526.

West Virginia University
Morgantown, West Virginia

[^0]: Received July 27, 1965.
 ${ }^{1}$ A summary of this paper appeared as a research announcement in the Bull. Amer. Math. Soc., vol. 72 (1966), pp. 683-684.

