EXTENSIONS OF BRANDT SEMIGROUPS AND APPLICATIONS!

BY
R. J. WARNE

Clifford gave a general means of finding all possible extensions of a (weakly
reductive) semigroup S by a semigroup T with zero [2]. However, as in group
theory, it is generally difficult to give an explicit determination of the exten-
sions for special types of semigroups. This has been done for only two cases:
(1) S completely simple and T arbitrary. (2) S a group and T a completely
0-simple semigroup [2]. The first is due to Clifford [1] and the second to Munn
[2]. In [3], Warne determined when the extensions of a completely 0-simple
semigroup by a completely 0-simple semigroup are determined by a partial
homomorphism.

The main result of this paper is the determination of all extensions of a
Brandt semigroup by an arbitrary semigroup. We first use this theorem to
determine when an extension of a Brandt semigroup by a regular 0-bisimple
semigroup is given by a partial homomorphism. We then use the theorem to
find the number of extensions of a Brandt semigroup by a simple group (with
zero) in a certain case.

Let 8 and T be disjoint semigroups, 7" having a zero element 0. A semi-
group V will be called an (ideal) extension of S by T if it contains S as an ideal,
and if the Rees factor semigroup V /8 [1] is isomorphic with 7.

Let V be an extension of a semigroup S by a semigroup T with zero; we will
use the following notations. If S has a zero, it is denoted by 0 (0 is then
automatically the zero of V). The zero of T is denoted by 0’. Multiplica-
tion in V is denoted by o, while multiplication in S or T is denoted simply by
juxtaposition. The elements of S are denoted by lower case and the elements
of T by capital roman letters. The set of non-zero elements of any semigroup
P with zero is denoted by P*.

If V is an extension of S by T' (with zero) we say that V is determined by a
partial homomorphism if there exists a partial homomorphism = : T* — §
such that forall A, Be T*, ¢, d e S

AoB = AB if AB =0
= (Am)(Bw) if AB = 0
Aoc = (Am)c; coA = ¢(AT); cod = cd.

When S is a Brandt semigroup we write S = M°(G; I, I; A) and let e be the
identity of G [2].

Received July 27, 1965.
1 A summary of this paper appeared as a research announcement in the Bull. Amer.
Math. Soe., vol. 72 (1966), pp. 683-684.
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If A is any non-empty set, 9, will denote the full symmetric inverse semi-
group on A [2]. We denote multiplication in 94 by juxtaposition. If aew;,
the rank of « is the cardinal number of the range of «. If J is any set, | J |
denotes its cardinal number.

For all concepts and notations not defined in this paper the reader is
referred to [2].

TarOREM 1. Let V be an extension of a Brandt semigroup S by an arbitrary
semigroup T with zero. Let S be given the Rees representation S = M’(G;I,I;A).
Then there exists a partial homomorphismw : A — w4 of T into 9 , the full sym-
metric inverse semigroup on I. Let s, and t, denote the domain and range of
wy respectively. If AB = O'; eithertansg = [0 or t, N sp 18 a single element
dan. Foreach A in T, there exists a mapping ¥4 of s into the group G such
that for AB = 0/

(%) (2a)(ways) = ©Wan for all 1esup.
The products in V are given by
(1) (a) AoB = AB if AB#=0 @ T,

(b) AeB =0 (in S) ¢ AB=0 (in T) and tuinszp= 0,
(¢) AoB = ((daswa'¥s)(da,p¥s); da,swa', da,swp)
if AB = 0, (in T) and tA n s = dA,B .

(2) (a;54,7) o A = (a(j¥a); %, jwa) 4 Jesa
=0 if jesa

0o4 =0
(3) Ao (a;4,§) = ((WiYaa; wi',j) o dets
=0 if véEts

A-0=0

Conversely, let S be a Brandt semigroup and T be a semigroup with zero such
that Sn'T = [O. If we are given the mappings w and ¢4 described above and
define product o in the class sum of S and T™ by (1)—(3), then V is an extension
of Sby T.

Proof. Let V be an extension of 8 = M°(G; I, I; A) by a semigroup T
with zero. Let

sa={tel|(a;k, 7)o A #0 forall kel,aeG}.

Iftess, (e;4,0)0 A = (2;k,1),2zeG, k,lel.
Thus
(e;9,2) o A = (e514,7)(2; k, 1)
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and 7 = k, i.e., (e;%,7) oA = (2;1,1). Hence we may write
(e50,0) o A = (Wa ; 1, wa)
where w4 maps s, into I and ¥, maps s, into G. Now, if jes,,
(a;7,7) o A = ((a5¢,7) ° (e;5,5)) o A = (a;4,7)((e,4,7) o 4)
= (@; %, J)(JWa ; J, Jwa) = (a(G¥a); ¢, jwa).

We note that 0 is the zero of V. Hence, this yields (2).
Let A in T™ and let

ta = {tel|Ao(a;1,7) #0 forall jel,aeGl.

Similarly as above, we obtain

(3 Ao (a;1,7) = ((ipa)a; tva,j) if dels
=0 if set,
AoQ =0,

where v, maps ¢4 into I and ¢, maps ¢, into G.
Let 27es, and let j = 4w, . Then

((e54,8) 0 A) 0 (63,8) = (iba 35, wa) @ (3, 9) = (i 35, 0.
Hence
(e;2,7) o (Ao (e;7,1)) = (Wa;t, 1)
which implies that jet, . Similarly
(Wa57,1) = (€%, 1) ° (joa ;5va, ?)
which implies that jy, = 4. After multiplying we obtain &4 = jé,. Sum-
marizing, 1€ Sy andj = iwA imphesj € tA ,j’YA = i, iIPA = j¢A = ’iwAd)A .
The range of w, is {4 and @way, = 4. Similarly, j e {4 and jy4 = 7 implies
that 7es4 and 7w, = j. Hence the range of v, is s4 and jy,ws = j. Thus
w,4 and v, are mutually inverse 1-1 mappings of s, onto ¢4 and ¢4 onto s, re-
spectively. Consequently we may write v, = wz', and, if j e ¢4 , we will write
jba = jwiws. Hence (3') reduced to (3).
Suppose that A, Be T* and AB = 0/. We have i e s, and 7w, € s if and

only if ¢ € (t, n s5)wyz', where (¢, n sz)wy, is the domain of w4 ws (multiplica-
tion in 9;). We obtain

((e57,0) 0 A) o B = (a5, 1w4) o B = ((Wa)(twa¥s); 7, tws ws)

and
(3; t,8) oA o B = ((Was); %, Was).

Hence i ¢ (t4 n sp)wys if and only if 4esss. In this case twas = @, ws.
This means wss = w4 wp (in 9;). Thus w : A — w, is a partial homomor-
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phism of T into 9;. If AB ¢ O/ and tesup, Wap = Watwas. (%) is
satisfied.

Suppose that A, Be T* and AB = 0'. Then AoBeS. Suppose that
AoB =0. Ifszgnty [, there exists e sz n £4 and j = w;" implies that
jessand jw, esp. Hence ((e;7,7) o 4) o B # 0 contradicting the fact that
(e;7,5)o(AoB) = 0. Thus,spnt, = 0. Next suppose that A o B eS*.
Let AoB = (ga,, %5, ka,s). Then

(4) (€;%4,8,%4,8)(AoB) = (e;%4,8, iA,B)(gA,B 3248, Ka,B)

= (ga,5;%4.8,k4,8),

(4,) (e;%a,8, ?:A,B) ° A) oB = ((iA,B lPA); T4,8 , 24,8 wA) o B

= ((%a,8Y4)(%a,8Wa¥n);%a,8,%,58WsWs).
Consequently 74,5€¢84, T4, Wa€Sp, 1.6., T4,3Wa€e8s N ts. Suppose that
Tesgnty. Ifj = qwys', thenjw,espandjess. Hence
((e;4,5) e A) o B = ((j¥a);J,jwa) e B = ((j¥a)(Jwa¥s);J, jwa ws)

= (€;5,7)(A°B) = (€;5,7)(ga.5 ; %45, ka,5)-

Thusj = 74,5 and 7 = jws = 24,5 W4 50 that ss n ¢4 = 24,5ws. Therefore
AB = (' implies that either s n t, = O or sz n ¢4 contains a single element.
More specifically A o B = 0 (in S) implies that sz nt, = O while A o Bin S*
implies that sz n {, = d4,5. In particular (1) has also been established.
Forif AB = 0’ and sznt, = (Jthen AoB = 0 and if AB = 0 and sz n t,
= d4,5, then by (4) and (4)

ga.5 = (Ta,n ‘PA)(’iA,B ways) and kap = t4,5W4Ws.
Since dA,B = 7:A,B Wa ,
-1 . —1
dapws = tap and kap = dapWi WawWp = da,zws,

and (1)(e¢) is established.
We next establish the converse. It is only necessary to verify the associa-
tive law.

Case 1. T*T*S. First suppose that A, B in T* and AB s 0’ (in T).
Note that ¢ e t,5 if and only if 7 € t5 and 4w e ts . Thus either (AB) o (a; 7, )
and A o (Bo (a;1,j)) are both equal to 0 or both are different from 0. We
consider the latter case.

(AB) o (a;4,j) = ((Was ¥45)a; Wi , j)
Ao (Bo(a;4,5)) = Ao ((w5'¥s)a; ws, j)
= ((tws'wi'¥a)(iws'¥s)a; wswy, j).

We have twz'ws = twyp since w is a partial homomorphism. If 7et45,
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tway € 45 and by (%), we obtain

(in}a ¢A)(iw:}3 W4 l//B) = ’Lw:}; VYap .
Consequently

(twz'wx'Ya) (W5'Ys) = Wis Yas -
Hence (AB) o (a;1,j) = Ao(Bo(a;7,5))if AB # 0’ (in T).
Next, we suppose that AB = 0. Ifszynt, = O, (AoB)o(a;1,j) = 0.
In addition A o (B o (a; 4, j)) = 0 since 7 ¢t and sw5" e t, would imply that
Telap,ie., tWs ety N Sp.
Suppose that AB = 0’ and spnt, = ds,z. Then

(AoB)o(a;%,7) = ((da,s Wa¥a)(das¥s);daswa, dasws)(a;5,]).

Now dasws = 4 iff ety and tws ets. Hence (AoB)o (a;14,j) and
Ao (Bo(a;1, 7)) are both equal to zero or both are not equal to zero. In
the latter case

(AoB)o(a;4,5) = ((da,s Wa'¥a)(da,5¥5)a; das Wi, J)
Ao (Bo(a;1,)) = Ao ((iw5'¥s)a; ws, j)
= ((w5'wa'Ya) (ws'Y 5)a; w5 Wi, §).
Since d4,p wi" = twpw, and ds 5 = w5, we obtain
(AoB)o(a;1,j) = Ao (Bo(a;1,7])).
Case II. ST*T*; this case is treated similarly as Case L.
Case III. ST*S. We have
((a; Bj) o A) o (bs k, 1) = (a(j¥a); %, jwa)(b; k, 1) if jesa
(a(j¥a); 7, Jwa)(bs k, 1) = (a(jpa)b; 4, 1) if k = jwa,

ie.,
((a; 4,5)cA)(b; k, 1) ## 0 if and only if jes, and k = jw, .

Similarly (a;¢,7)(A o (b;k, 1)) # 0if and only if k e £, and j = kwy.
Now j e s, and k = jw, if and only if k € £, and kw,' = j. Hence

((a;%,7) © A)(b; k, 1) and (a;¢,j) (A (b; k, 1))
are both equal to zero or both are different from zero. In the latter case,
((a; 7, 5) o A)(b; k, 1) = (a(j¥a)b; 4, 1)
= (a(kwi'¥a)b; 3, 1) = (a;4,5)(A o (b5 k, 1)).
Case IV. SST*. We have
(5) ((a;2,5)(b; k, 1)) o A = (ab; s, )0 A ifj =k,
(6) (ab; i, 1) 0 A = ((ab)(Wa); %, wa) iflesa.
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Consequently

((a;2,5)(b;k,1))o A0 ifandonlyif j=rkandles,.
Further

(7) (a;%,7)((b;k, 1) o A) = (a;%, ) (b(Wa); k, o) if Lin sa,
(8)  (a;4,5)(b(Wa); k, wa) = ((ab)(Wa); 4, hwa) ifj = k.

Hence
(a, 2, j)(b, k, 1)oA) ¢ 0 if and only if lesy and j = k.

Thus ((a; 7, 7)(b; k, 1)) o A and (a; 4, 7)((b; k, 1) o A) are either both equal
to zero or both are different from zero and in the latter case we have equality
by (5), (6), (8) and (7).

Case V. T*SS; this case is treated similarly as Case IV.

We have verified associativity for T*T*S, ST*T*, ST*S, SST* and T*SS.
T*T*T* and T*ST™ are a consequence of the established cases by [1, Theorem
1, p. 166].

Remark. An extension of a Brandt semigroup by an arbitrary semigroup
always exists [1].

The following general result shows us that an extension of a Brandt semi-
group by an inverse semigroup must be an inverse semigroup.

THEOREM 2. Let V be an extension of a semigroup S by a semigroup T.
Then, V is an inverse semigroup if and only if S and T' are inverse semigroups.

Proof. Suppose S and T are inverse semigroups. Since S and 7' are regu-
lar, V is regular. Thus, each principal left ideal and each principal right
ideal of V has an idempotent generator [2, Lemma 1.13, p. 27]. Suppose
eV = fV. Then,e = fox,f =eocywherex,yin V. Thus,foe = fo(fou
= fox =e¢ eof = eo(eoy) = eoy =f. Ife,finT* e=f Ife fins,
e =f[2,Th.1.17,p. 28]. The cases,eeS,fe T and ee T™, f ¢ S are impossible.
Thus, e = f and every principal right ideal of V has a unique idempotent
generator. Similarly, each principal left ideal of V has a unique idempotent
generator. Thus V is an inverse semigroup {2, p. 28, Th. 1.17]. Suppose V
is an inverse semigroup. Clearly T is regular. If a in S, there exists x in
V such that aoxoa = a. Now aRe for some ee V. Thuse = aoz for 2
inV. HenceeeSand ea = a. Thus

a6 =qaoxoq=aoxo(eca) =ao(xoe)oa = a(xe)a

and S is regular.

It is easily seen that the idempotents in S and in 7' commute and hence S
and T are inverse semigroups [2].

LemMa 1. Let 97 be the full symmetric inverse semigroup on any set F.
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Then if A, Bedyr , A £ B if and only if range of A = range of B.
A ® B if and only if domain of A = domain of B,
A D B if and only if rank of A = rank of B.

We next use Theorem 1 to determine when the extensions of a Brandt semi-
group by a regular 0-bisimple semigroup are given by a partial homomorphism.

TaEOREM 3. An extension V of a Brandt semigroup S by a regular 0-bisimple
semigroup T is given by a partial homomorphism if and only if there exists an
idempotent E in T™ such that there is at most one idempotent of S * under E.

Proof. Let V be an extension of S by 7T satisfying the conditions of the
theorem. Now, since A — w, is a partial homomorphism of T into 4, ,
if B = Ein T, wg wg = wg, i.e. wg is an idempotent of 9; . This means wg
is the identity transformation on sx = tz [2, p. 29]. Then by (*) of Theorem 1,
we have Wz iz = Wz, i.6., Wr = e, the identity of G, for all e sz. Thus
by (2) and (3) of Theorem 1,if 7 ¢ sz, (e;%,7) < E. Ifiésg, (e;2,7) o E =0.
Hence either sz = [0 or sz is a single element. If sy = [, there exists no
idempotent of S* under E. If sz is a single element, there exists precisely one
idempotent of S* under E.

Since T is 0-bisimple, T*w is contained in a single D-class of 9;. If A e T™,
ADE and |ss| = | sg| by Lemma 1. Therefore if sz = [, s, = [ for all
A eT* and if sz is a single element, s, is a single element for all A e T*.
Let us first consider the case s, = [ forall A e T*. Clearly t, = O for all
Ain T*. Let A9 = Oforall A e T*. Hence by Theorem 1, V is given by the
partial homomorphism 6 of 7*into S. In the second case, writew, = (54 ,%4).
The multiplication in T*w is then given as follows:

Wy Wp = (SA y tA)(SB, tB) = (SA s tB) lf tA = 8p
= 0(in 9;) ift, = s5.
With ¢, asin Theorem 1, if tesslet 44 = sas = xa. By (2), Theorem 1,

(€584,81) 0 A = (Saa; 84, 84Wa)-

Using this expression it is easily shown that A — x4 is a mapping of T
into G.

Ifiessp(AB #0'),7 = s, = syand wws = t4 = ss. Hence * of Theorem
1 becomes, x4 Xz = Xas,1.e. A —> x4 i a partial homomorphism of T* into G.

The following statements are consequences of Theorem 1.
IfAB =0"inTand sgnit, = [, 1ie. 83 # 4,

(Xa384,ta)(x5388,t8) =0 = AoB.
IfAB =0"and sznty = dup,ie ts = sz, then
AoB = ((da,s wll)w das¥s; das wI‘, dasws) = (Sa¥ass¥s; Sa, lp)
= (x4 XB;84,t8) = (Xa;84,ta)( X888, 15)
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Ifj = 84,

(a;9,7) o A = (a; (Wa) 5 %, Jwa) = (a(8a¥a); % ta) = (a5 ¢, ))(xa; 84, L)
If] = Sa,
(a59,j) e A = 0= (a;7,7) (xa;84,ts).

Similarly, A o (a;2,7) = (xa;84,ts)(a;1,7).

Now, define A0 = (x4 ;Sa,ta). It remainsonly to show that @ is a partial
homomorphism of T* into S.
Since S4B = 84,8 = tA , and tAB = {3 y lf 44B £ Ol;

A0BO = (x4 ;84,t4)(x5; 85, ls)
= (XaXB;S4a,t8) = (XaB; San,lan) = (AB)S.

To establish the converse suppose that V is given by a partial homomorphism
6. Let E be any idempotent of T*. Ife < E, e < E6 and hence ¢ = 0 or
e = E since S is completely O-simple.

We now apply Theorem 1 to give the number of extensions of a finite Brandt
semigroup by certain simple groups (with zero). If |I| = nlet D;, 7 = 0,
1, 2, .-+, n, denote the D-classes of 9;. D, is the collection of elements of
rank 7 (Lemma 1). Let G, be the symmetric group on r symbols.

THEOREM 4. If S is a finite Brandt semigroup and T™ is a simple group with
| T* | > max(| I |, | G|), then there are 2" extensions of S by T.

Proof. Letn = |I|. Letwbethe homomorphism of T*into g, of Theorem
1 and suppose T*w € D, for r > 1. If w is an isomorphism, | 7% | < | G, |
< n! [3] contradicting the hypothesis. Thus for any A e T*, w, is an idem-
potent of D, and hence is the identity transformation on some set M} of »
elements. There are (;) such sets. If we define 8; by A6; = 4, i¢ My,
A e T*, then 6;, for each ie M, , is a homomorphism of T* into G by (*),
Theorem 1. Since | T*| > |G|, each 6; is trivial. Thus by (2) and (3) of
Theorem 1, there are at most (') extensions of S by T*, such that 7*w C D, .
Hence the number of extensions of S by 7' cannot exceed

= (7) =2 = 2"

Conversely if we let @40, = e, the identity of G, for all A ¢ T, 7¢I and let
T*w run through the idempotents of 9, we obtain 2'"! extensions of S by 7 by
Theorem 1.

Remark (Added in proof). It is only necessary to assume that | 7| is
finite in the statement of Theorem 4.
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