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THEOREM (Munkres [10; 8.1]). Let h be any orientation preserving Ck dif-
feomorphism (1 <_ k <_ of R onto itself. Then there is a C diffeomorphism

of R" onto itself which coincides with the identity near the origin and which
coincides with h near infinity.

COROLLARY. If f, g are C diffeomorphisms of R onto itself such that gf- is
orientation preserving, then there is a C diffeomorphism ] of R onto itself which
coincides with f near the origin and which coincides with g near infinity.

Proof. Let h gf- and apply the theorem. Then ] f works.

We call ] a pasting of f and g. Two questions arise: (1) If f and g are close
to each other in some sense, can ] be chosen to be close to f and g? (2) Since
] coincides with f in a neighborhood of the origin, is it also possible to paste in
cases wheref and/or g fail to be differentiable on a subset of a smaller neighbor-
hood of the origin? The method of proof, which Munkres used, does not seem
to be useful for answering these questions, especially the second. We shall
show that the first question has a general affirmative answer, but the notion of
closeness used is not the usual one. These results are described in Section 1.
The second question does not always have an affirmative answer. For tech-
nical reasons, we must restrict ourselves to the case n 4. After this restric-
tion, there is still an obstruction to pasting. These results are described in
Section 2. In the final section, we compare our results with results which have
been obtained on the differentiable Schoenflies problem. This leads to a result
about what can happen to a piecewise differentiable homeomorphism when one
attempts to smooth it by a convolution. An application is also made to
Munkres’ obstruction theory. While we do not bother to restate each of our
results in the context of homeomorphisms of manifolds, which are diffeo-
mor)hisms on the complement of a discrete set, it is clear that these results
apply in that context as well. In particular, every theorem has an analogue
for homeomorphisms of the n-sphere, which have a common fixed point.
The author wishes to express his gratitude for an extremely enlightening

discussion with J. Munkres during the preparation of this paper.

1. Approximating diffeomorphisms

LetM be a complete Riemannian manifold of class C, let C (M) denote the
class of k times continuously differentiable mapping fromM toM (1 _< k _< ),
and let Diff (M) denote the subset of C diffeomorphisms of M onto itself.
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Iff C (M) and e M --, (0, is a given continuous function, then g e C (M)
is called a C metric e-approximation to f provided that

p(f(x), g(x)) < e(x),
IIDf(x) Dg(x) ][ < e(x), ..-, IIDf(x) Dg(x) II < e(x)

for all x in M (the metric p and the various norms are induced by the Rieman-
nian metric [5; Chapter 1] ). The topology of metric approximation on Ck (M)
is metrizable for M compact, but is not even first countable for M noncompact.

For the remainder of this section, we restrict ourselves to the case M R"
with the usual metric. We want to study another notion of approximation
which arises quite naturally in the study of diffeomorphisms. Since Diff (R")
has a group structure, it seems natural to wonder how close g comes to operat-
ing like f. Specifically, we shall say that g is a C operational e-approximation
to f provided that gf-1 is a C metric e-approximation to the identity. Since
the unit ball about the identity linear transformation I consists entirely of
nonsingular linear transformations, it follows immediately that if g e C (R")
is a C operational 1-approximation to f, then g has nonsingular differential
everywhere.

TI-IEOIEM 1.1. /f f Diff (R) and if g C (R’) is a C operational -approximation to f (0 < < 1 ), then there is an h e Diff (Rn) which coincides
with g on any specified neighborhood of the origin, which coincides with f on a
neighborhood of infinity, and which is a C operational e-approximation to f,
where e min 1, 2}.
LEMMA 1.2. Given any k > O, " > 0 and any closed ball B of radius r about

the origin, there is a smooth (C) function a It" [0, 1] such that
a B 1, a[ (R B,) 0 (r’ > r), and such that for m O, 1, k,

q==O

Proof. Let B R -- [0, 1] be smooth function such that t (t) 1 for
_< 0 and f (t) 0 for _> 1. Then there is a constant K such that for all

in t( and for m 0, 1, k, we have

d(t)
d q=l

For 0 < < 1, define .(t) B(at). Then, d(t) d(t)
q=o dtq

<
q-o dt

<_ (t) + - E 1 + K.

Choosez > OsosmallthataK E . Thena(x) ( x [ r) has the
desired properties.
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Proof of 1.1. Consider

(x) a(x)gf-l(x) - [1 a(x)]x

Rwhere a --. R is as in 1.2 where , has been chosen so that (1 -{- )

_
rain 1, 2}. Then ) is a C function which coincides with gf-1 near the origin
and which coincides with the identity near infinity. Our candidate for the
diffeomorphism is h )Tf. We first check that h is an operational e-approxi-
mation to f. Now hf- , and

D(x ) D (x )[gf-l (x x] -- (x )[Dgf- (x I]-- I,

nm-qDm(x) nqa(x) []. (x) x], m >. 1,
q,O

(cf. [1; 1.3]). Thus

D(x ) I ] Da (x g (x x + a (x ] Dg (x I

][D(x) N 1Dqa (x [ D-q[g (x x]
qO

Now gf-(x) x [[, ]1Dgf-(x) Il[, "", D*gf-(x) are all bounded
unifory by , and

qO

for m 1, 2, ..., k by the choice of a. Therefore, h is an operational e-
approximation to f. In particular, h has a nonsingular differential at each
point in R". To conclude the proof, we must show that h e Diff (R’). This
fact follows by the next lemma.

CkLEIM. 1.3. Let f be a homeomorphism of R onto itself and let h (R")
have nonsingular differential at every point and coincide with f in a neighborhood
of infinity. Then h Diffk (R’).

Proof. We must show that h- (y) is a singleton for every y in R’. If
h-1 (y) 0 for some y, then there is a sufficiently large ball about the origin
such that hf- B is a mapping of B into itself which is the identity on the
boundary and which is not onto. This would violate the nonretraction prop-
erty. Now h- (y) is discrete and bounded for every y in R". If h-1 (y)
{x, ..., x}, then since y is a regular value, the degree of h is given by

deg (h) ’1 sgn det Dh (x)

where sgn det Dh (x) :t=1 for every x in R" (cf. [7; 5]). Now since h
coincides with the homeomorphismf near infinity, then deg h =t= 1. Thus if
m > 1, then there must be integers i, j such that det Dh(x) > 0 and
det Dh (xj) < O. But then on any arc from x to xj, there must be a point at
which det Dh vanishes, contrary to hypothesis.
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Ck CCOROLLARY 1.4. /f f e Diff (R) and g e (Rn) is a operational
approximation to f (0 < /t < 1 ), then g e Diffk (Rn).

C CCOROLRV 1.5. If f Diff (Rn) and if g e (R") is a operational -approximation to f (0 < dt < 1 ), then there is an h Diff (R") which coincides
with f on any specified neighborhood of the origin, which coincides with g on a
neighborhood of infinity, and which is a C operational e-approximation to f where
e min 1, 2/i}.

Proof. As in the proof of 1.1, take

(x) a(x)x -q- [1 a(x)Jfg-(x).

Then h ]f is a C operational e-approximation to f which coincides with f
near the origin and which coincides with g near infinity. By 1.4, g is a dif-
feomorphism; so by 1.3, h is a diffeomorphism.

The next theorem shows that the topology of Ck metric approximation and
the topology of C operational approximation are equivalent. However, we
shall see from the proof that even if one kind of approximation is uniform
(constant e), the other kind of approximation will usually be equivalent only
if we allow a variable bound (8 (x) nonconstant). This will cause a mild in-
convenience in Section 3. We wish to thank the referee for showing us that
this notion of equivalence holds when k > 1.

THEOREM 1.6. Let f Diff (R’) and let e R (0, be given and con-
tinuous. Then

(A) there is a continuous function R --> (0, such that if g
is a C metric -approximation to f, then g is a C operational e-approximation to f;

(B) there is a continuous function $ 1 -- (0, such that if g
is a Ck operational S-approximation to f, then g is a C metric e-approximation to f

C CkProof. Assume that g e (R’) is a metric -approximation to f for some
R" (0, ), i.e.

ll g(x) f(x) II < (x), D(g f)(x) < (x), II D(g f)(x) II < (x).

Then by the composite mapping formula [1; 1.4],

II Dr (gf-1 (y y] [I II Dr (g f) o f- (Y)[I

-1 zq Dq(g f)(x)[Dff(y), ..., D’f-(y)]
_< D’f- (Y)11 D"f- (Y) II]
<_ o f- (y)P,(y)

for r 1, ..., k and where P is a positive function of y. Therefore, g is a
C operational e-approximation to f provided that

o f- (y) _< e (y)/(1 q- P (y) q- T P (y))
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Conversely, suppose that g e C(R") is a C operational -approximation to f
for some R" -- (0, ), i.e.

II g.f-* (Y Y < (Y ), Dgf-- (Y III < (Y ), "", ngf- (Y ] < (Y ).

By the composite mapping formula,

D[g (y) y] D (g f) (x)[D (y), ..., D (y)]

W 2 Dq (g f) (x)[D’f- (y), ..., D’f- (y)],
i.e.

D (g f)(x)[D (y), ..., nf- (y)]

D[gf- (y) y] 2 D (g f) (x)[D’f- (y), ..., D" (y)].

Now Dff (y) is nonsingular.

LEMMA 1.7. Let A V X X V R be r-multilinear and symmetrica
let B V V be linear and nonsingular. Then

A A[B, ..., B] B- r.
Proof. We observe that if M R X X R R is r-multilinear and

symmetric and if L" R" R is linear, then M[L, ..., n] [ M L .
For

M[L(x), L(y), ..., L(z)].]] M[Lrn(x), y, ..., nz] J

M[(Lr)r-Lx, y, ..., z]

g ]li[" y,...,z]]] ]lir -
g M i r.

Applying this result to M A[B, ..., B], L B- we obtain

I! A A[BB-, ..., BB-]
] i[U-, ..., B-] AIR, ..., U] II B I]

Remrng to the proof of 1.6, we apply 1.7 to the formula for

D (g f) (x)[n (y), ..., Dff (y)]
and obtain

I]D(g f)(x) ][/]lDf(x)

_< d (y) -F 2 aq[[ D (g f) (x) I! D"f- (x) !! D’tf- (x)

Thus by an easy induction on r, we establish

D’ (g f) (x) -< 8 of(x)Q, (x)
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where Qr is a positive function in x.
tion to f provided that

Therefore, g is a C metric e-approxima-

of(x " . ()/ (1 "]- QI (X ) + "Jr" Qk (Z ).

2. Homeomorphisms which are almost diffeorphisms
We shall now consider the case of homeomorphisms of R" onto itself which

are C diffeomorphisms on some neighborhood of infinity (1 _< /c _< o ).
The following notation will be useful"

B closed ball of radius r about the origin,
S,"- boundary of B,
A" on., B, B [J<_p<,Sp
We shall often write B" for B" S"-1 S-1.1 and for In all cases, the differenti-

able structure is the one inherited from the usual differentiable structure on R".
Our pasting can be described roughly as follows" Given f, g homeomorphisms
of 1" which are diffeomorphisms outside of B, we find r’ > r such that
f(B") is interior to g(B5). We show that the region bounded by f(S’}-)
and g(Sr",-) is a differentiably embedded annulus A. The pasting h of f
and g is defined by taking

h IB =fiB:, h (R"- B:,) g[ (R"- B:,),

and h’A,".,, ---+ A is defined by executing an isotopy between f S-a and
g IS’};- across the annulus. The possible corners along S and S,",-1 are
smoothed.
The smoothing of the corners presents no difficulty. Showing that A is an

annulus is straightforward for n 4 (for n 4, it is equivalent to determining
the uniqueness of the combinatorial structure for R). However, the desired
isotopy may not exist, and hence there is an obstruction to our construction.
This obstruction is measured in terms of the group I’, of smoothings of the
combinatorial manifold S".
We begin the technical treatment of this procedure by recalling the essen-

tial features of the isotopy problem. Now the notion of restriction defines a
homomorphism

p. Diff (B) --+ Diff (S"-1).
Under the C metric approximation topology, the path components of these
spaces are precisely the C regular isotopy classes. The groups of path com-
ponents are denoted by

r0[Diff (S)] and r0[Diff (S-)].
Now ,ro[Diffe (S"-1 )] is abelian and Im (p) is a normal subgroup of Diff (S"-’ )
[10; 1.4 and 1.7]. Also, f Diff (S-) is regularly isotopic to the identity if
nnd only if f is orientation preserving and f e Im (p) [10; 1.6]. Define

r0 [Diff (S"-’)] Diff (S-’)
p. r0 [Diff (B")]-- p [Diff (B")]



By [10; 1.7 and 1.8] these two definitions of I’m are equivalent and independent
of (1

_
/

_
oo ). Thus r is the group of obstructions to extending

diffeomorphisms of S"-1 to diffeomorphisms of B". It is also the group of
obstructions to the existence of a regular isotopy of f e Diffa (S"-1) to the
identity. Finally, for f e Diffa (Sn-l) and orientation preserving we can form
the smooth manifold B us B by identifying the boundaries under f. This
manifold is a topological sphere which is combinatorially equivalent to
However, this manifold is differentiably equivalent to S" if and only if f is
regularly isotopic to the identity. Consequently, I’. also represents the group
of differentiable structures compatible with the usual combinatorial structure
for S. Now it is known that S has a unique combinatorial structure for
n 4 [12], and it is known that 1. 0 for n 12 and n

_
6 ([11] and [4]),

but that I’. is nonzero for n > 6 and n 12 [4]. Thus in the latter range, we
shall encounter obstructions to smoothing.

LEptA 2.1. If f" S-1 R is a Ck embedding and if n 4, then Im (f)
bounds a submanifold which is C diffeomorphic to B’.

Proof. By the Schoenflies theorem (due to Morton Brown [2]) the bounded
complement of Im (f) is a topological n-disk. Since f is a Ca embedding, it is
a Ca manifold. Thus for n 4, it is C diffeomorphic to B" [6; pages 108-110],
[10; 6.3 and 6.7].

COROLLARY 2.2. If f" R R is a homeomorphism which is a diffeomor-
phism on the complement ofB and if n 4, then f determines an element of F,

Proof. By the Cerf-Palais lemma [6; 9.6] there is a C isotopy of R" which
carries f(S-1) onto S, The induced element If] e F. does not depend on
the choice of isotopy.

COROLLARY 2.3 (DIFFERENTIABLE ANNULUS THEOREM). Let

be C embeddings with disjoint images (1

_
/

_
oo ). If n 4, then the sub-

manifold A which is bounded by Im (f) and Im (g) is C diffeomorphic to
S-1 X [0, 1].

Proof. Let Ms (M) denote the n-disk bounded by Im (f) (Ira (g)) which
does not contain Im (g) (Im (f), respectively). Applying the Cerf-Palais
lemma twice, we obtain a Ca isotopy of S which carries Ms and M onto the
distinct polar caps. This isotopy carries A onto the remaining annulus.

Remark. For n 4, the conclusions of 2.2 and 2.3 remain valid under the
hypothesis that Im (f) bounds a standard 4-disk in R.
LEMMA 2.4 (Munkres [10; 6.11]). Let M be a C manifold without boundary

and let W be a neighborhood ofM X 0 in M X [0, 1]. Iff is a Ca embedding of
W into M X [0, 1] such that f (M X O) id, then there is a Ca embedding



PASTING DIFFEOMORPHISMS

" W -+ f(W) such that coincides with the identity on some neighborhood of
M X 0 and coincides with f on some neighborhood of the complement of W.

COROLLARY 2.5. If f, g Diff (M) are regularly isotopic, then the isotopy
It can be chosen so that fi (x (f(x ), t) for 0 <_ < and fi (x (g (x ), t)
for1 < <_ 1, and for all x in M.

COROLLARY 2.6. Suppose that f" I --. I( is a homeomorphism which is a
C diffeomorphism on the neighborhood A,,r,, of S-1 (r’ < r < rpp), and sup-
pose that there is given a tubular neighborhood h" S’-1 X 1 -- I of f(S-)
such that f(Ar",,) Im (h). Then there is a homeomorphism " R’* ---> I
such that

(1) ] coincides with f on a neighborhood of R ,.
(2) ]1 A,., is a C diffeomorphism,
(3) ] (p, h[h-f(r, p r] for P r suciently small

(We use spherical coordinates (p, ) on R, p _> 0, e S-1 ).

Proof. It suffices to construct ]1B. Define

g A,.--- R
by g (p, ) h[h-f(r, ), p r]. Then g is a C embedding of A,,r into
Im (h) and

g-f: A,, ---, A,,
satisfies the hypotheses of 2.4. Thus there is an embedding

" A",, -- A",,r
such that coincides with g-f near S,",- and coincides with the identity neur
S, Then g satisfies (1), (2), and (3). Since g7 coincides with f near
S7 it can be extended to ] by ]iB,", f IB,",
THEOREM 2.7. Let f, g be homeomorphisms of I onto itself such that fg-

is orientation preserving and such that f and g are C diffeomorphisms on the
complement of Br"- If n 4 and if If] [g] in F, then there is a homeomor-
phism h of R onto itself such that

hi B"-, fl S,"_,, h .(R"- S,+,) g[ (R"- BT,+,)

for some r’ > r and e < e, and h is a C diffeomorphism on the complement of

Proof. Choose r > r such that f(B) is interior to g (B,). By 2.2,
and [g] are defined, and there is an isotopy F mapping A,",, into S-1 X [rp, r]
if and only if [f] [g]. By 2.5, this isotopy can be chosen to be constant near
the edges. By 2.3, there is an embedding

’S"- (r-e,r’+e)--*R

such that ]S"- X Jr, r’] maps onto the annular region between f(S7-)
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and g (S;;-1), S’*- X (r e, r + e) is a tubular neighborhood of f(S-1),
and S’-1 X (r’ e, r’ + e) is a tubular neighborhood of g (S71). Apply
2.6 to f at S- and to g at S;- with respect to the tubular neighborhoods.
Define h" R -- R by

hIB: =]IB:, hlA,.r, oF, h (R- Br,) [ (R-- B,,).

Since F, ], are radially constant with respect to the tubular neighborhoods
near S’-1 and - C*St, h is a diffeomorphism except in B’_ where it coincides
with f.
COaOLLAIY 2.8.

to pasting.
If n 12 or n 7 and n 4, then there is no obstruction

Remark. If any such pasting is possible, then by applying the Cerf-Palais
lemma twice as in 2.2, we obtain an isotopy between f S’-1 and g -Consequently, If] [g] is necessary as well as sufficient for pasting.

3. Associated problems
Let ]" S"- --* R be a C embedding (1 _< k _< ). When does there

exist a C embedding f" B" R" which extends ]? This is the differentiable
Schoenflies problem. It has been studied extensively by M. Morse and W.
Huebsch. A survey of their results and an extensive bibliography can be
found in [8]. For our purposes, their main results are the following.

(A) ] always has an extension to a homeomorphismf B" --, R which is a
C diffeomorphism on the complement of the origin [8; 2.1].

(B) A necessary and sufficient condition for ] to have an extension to a
C diffeomorphism f B -- R is that ] be regularly isotopic to id: S- --, R
IS; .2].

Using 2.7 and 2.8, we obtain the following modification of (B)"

THEOREM 3.1. Let ]" S- R’* be a C embedding which preserves orienta-
tion. Suppose that either n 4 or n 4 and ](S) bounds a standard smooth
4-disk in R. Then r, is defined, and ] has an extension to a C diffeomor-
phism f" B’* R" if and only if ] O. In particular for n 12 or n < 7
(n 4) the extension always exists.

Proof. By (A) we form an extensionf of] which is a diffeomorphism except
at 0. We try to apply 2.7 to paste f to the identity on B/ and we are suc-
cessful if and only if 0.

Remark. We can also prove 3.1 by using (B), 2.1, and the Cerf-Palais
lemma. Thus in one sense, 2.7 is a generalization of (B).
The viewpoint of 3.1 also gives insight into Munkres’ obstruction theory for

smoothing piecewise differentiable homeomorphisms. Let f be given as in
(A). Before Munkres’ theory can be applied, it is necessary that a rather
rigid uniformity condition [10; 2.2 and 2.5] be satisfied on a neighborhood of 0.



PASTING DIFFEOMORPHISMS 231

A major consequence of this condition is that f(S-1) bounds a star-like neigh-
borhood of the origin for all sufficiently small r > 0. In particular, this means
that [j] is always defined and is the obstruction to smoothing. As we have
seen, no such restriction is necessary for n 4 and for n 4 all that is needed
is that f(S-) bounds a standard smooth 4-disk (of course, to find a weaker
analytic condition which insures this may be extremely difficult). However,
if it were known that B had a unique differentiable structure, then isolated
singular points of homeomorphisms could be removed without any additional
restriction. Now in casef fails to be a diffeomorphism along some subcomplex
L with dimension > 0, the same ideas apply, except that some mild restriction
on f near L would probably be required, e.g., Munkres’ Lipschitz condition
[10; 2.1], but hopefully that would be all that is required.
Returning to the f in (A), we know that the singularity cannot be removed

when If] 0. What happens if we try to forcer to be smooth, i.e., if we smooth
f by a convolution

f (x) j .f(x / ey)(y) dy

where is a smooth function with support B and (y) dy 1?

THEOREM 3.2. Let f R R be a homeomorphism which is a C diffeomor-
phism on the complement of the origin such that [ O. Thenfor any 1 > r > O,
there is an eo > 0 such that for each 0 < c < eo Df (x) is singular for some x in
B and nonsingular for x in I B

Proof. We show that f can be made to approximate f so well that a proof
similar to 1.1 works. Unfortunately, since f is a C metric approximation to f
(with constant c’) and since in 1.6, (x) cannot be taken to be constant even
though c’ is constant, then we cannot apply 1.1 directly. Let a 1 --* [0, 1]
be a smooth function such that alB: 1 anda[ (R" S:) 0. Then
there is a K > 1 such that

Da (x " a (x ll Df- (x ]l < g

for all x in Ar.l. Choose c0 so small that for 0 <: c < c0, f (y) f(y) ]] < K-1

and II Df(y) Df(y) < g- for all x in f- (Ar.,) [9; 4]. Define

g(x) .(z)f-’(z) +
Then for y f-1 (x) and x in Ar: we have

l[ Dg (x I II
[IDa(x)

<-- IIDa(x)
< K-K.

Thus g coincides with ff- on B, g coincides with the identity on the corn-
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plement of B, and g has nonsingular differential on the complement of B,
i.e., ] gf coincides with fi on B, with f on the complement of B, and ] has
nonsingular differential on the complement of B. If ] has nonsingular
differential at every point, then by 1.3, ] would be a deomorphism which
coincides with ] near infinity, an impossibility. Thus ][B f B must
have a sinlar differential at some point.
We call h" R" R a regular Lipschitz homeomorphism if there are posi-

tive constants k, K such that for all x, y in R",
kx- y h(x)- h(y)[[ gx- y.

This condition is equivalent to requiring that h is a homeomohism and
that h and h- both satisfy uniform Lipschitz conditions. It is easy to verify
that in this case, any smoothing of h by convolution satisfies

[h(x)-- h(y) gx- y.
When attempting to maintain the lower bound, one always seems to en-
counter techcal difficulties. We shall now show that in some dimen-
sions (when F, 0) there is a real obstruction. Thus by the nature of analy-
sis, it seems unlikely that such an inequality can be preseed under con-
volution in any dimension greater than one. We shall now construct an ex-
ample of a regular Lipschitz homeomorphism h" R" R" (n chosen so that
F, 0) such that h fails to satisfy any such lower bound, i.e., if h is a homeo-
morphism, then h: fails to satisfy a Lipschitz condition. Ts failure occurs
not at infinity, but at some point x0 near the origin.

Let f" S"- S"- be a deomorphism with 0. Using chord-length
distance on S"-, there are constants 0 k 1 K such that for every x, y
in S"-

k] x y f(x) f(y)[ K x y ]].
Define h" R R by h (0) 0 and h (x) x If(x/ x ) for x 0. Now
h (S-) S- for every r; so the above inequalities are satisfied by h for
(x,y) (x, 0). Suppose [[y [x > 0. Then

and
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where the second and fourth inequalities follow by comparing the length of
the diagonal of the regular trapezoid

ix, (11 x II/11 y II)y, y, (11 y II/ll II)x}
with the lengths of its edges. Thus we see that h is a regular Lipschitz homeo-
morphism. Using 3.2 and the fact that [hi [f] 0, we conclude that for
any smoothing he, there is a point x0 near the origin where Dh (Xo) is singular.
For v e ker Dh(xo), we can make

h(0 / ,) h(0)II/11 (x0 / ) 0

arbitrarily small by choosing > 0 sufficiently small.

IEFERENCES

1. R. ABRAHAM AND J. I:OBBIN, Transversal mappings and flows, W. A. Benjamin,
New York 1967.

2. M. BROWN, A proof of the generalized Schoenflies theorem, Bull. Amer. Math. Soc.,
vol. 66 (1960), pp. 74-76.

3. J. CERF, Sur los diffeomorphisms de la sphere de dimension trois (I’4 0), Lecture Notes
in Mathematics 53, Springer-Verlag, New York 1968.

4. M. KERVAIRE AND J. IILNOR, Group8 of homotopy spheres:I, Ann. of Math., vol. 77
(1963), pp. 504-537.

5. S. LANG, Introduction to differentiable manifolds, Interscience, New York 1962.
6. J. MILNOR, Lectures on the h-cobordism Theorem, Princeton Mathematical Notes,

Princeton University Press, Princeton, 1965.
7., Topology from the differentiable viewpoint, The University Press of Virginia,

Charlottesville, 1965.
8. M. MoRse., Schoenflies problems, Fund. Math., vol. 50 (1961/62), pp. 319-331.
9. J. MUNKR.S, Elementary differential topology, Annals of Mathematics Studies, no. 54,

Princeton, 1963.
10., Obstructions to the smoothing of piecewise-differentiable homeomorphisms, Ann.

of Math., vol. 72 (1960), pp. 521-554.
11. S. S, Diffeomorphisms of the 2-sphere, Proc. Amer. Math. Sot., vol. 10 (1959),

pp. 621-626.
12. J. STALLINGS, The piecewise-linear structure of euclidean space, Proc. Cambridge

Philos. Soc., vol. 58 (1962), pp. 481-488.

UNiVErSiTY OF COLORDO
BOULDE OOLORDO


