GROUP EXTENSIONS AND TWISTED COHOMOLOGY THEORIES

BY
L. L. Larmore and E. Thomas ${ }^{1}$
\section*{Introduction}

In this paper we continue the study of group extensions initiated in [7]. The specific problem discussed there was the computation of extensions in the exact sequence of groups obtained by mapping a space into a principal fibration sequence. Here we consider the same problem, but in a different cate-gory-the category of spaces "over and under" a fixed space (see [9], [1]). This means in particular that the solution to the extension problem is given in terms of "twisted" cohomology operations [9], whereas in [7] only ordinary cohomology operations were needed.

In §1 we discuss the category we will use. In §2 we state our extension problem, and in §§3-4 we give a general solution. Finally, in §§5-6 we give applications of our theory-in §5 we compute the (affine) group of immersions of an n manifold in $R^{2 n-1}$, while in $\S 6$ we compute the (affine) group of vector 1 -fields on a manifold.

1. The Category X_{B}

Let B be a fixed topological space. We define a category X_{B} as follows: an object of X_{B} is an ordered triple (E, \check{e}, \hat{e}) such that E is a topological space, $\hat{e}: E \rightarrow B$ is a continuous function, and $\check{e}: B \rightarrow E$ is a section of \hat{e}, i.e., $\hat{e} \circ \check{e}=1_{B}$. If $e=(E, \check{e}, \hat{e})$ and $y=(Y, \check{y}, \hat{y})$ are objects, we say that $g: e \rightarrow y$ is a map if $g: E \rightarrow Y$ is a topological map and if $\hat{y} \circ g=\hat{e}$ and $g \circ \check{e}=\check{y}$; see McClendon and Becker [9], [1]. We say that two maps in X_{B} are homotopic if there exists a homotopy of X_{B}-maps connecting them. Thus, we have the concept of homotopy equivalence in X_{B}.

Let X be any space and $f: X \rightarrow B$ a map. If $e=(E$, é, $\hat{e})$ and $g: X \rightarrow E$ is a map such that $\hat{e} \circ g=f$, we say that g is an f-map. Two f-maps are f homotopic if they are connected by a homotopy of f-maps.

Let $[X, f ; e]$ be the set of f-homotopy classes of f-maps from X to E. If $A \subset X$ is a subspace, let $[X, A, f ; e]$ be the set of rel $A f$-homotopy classes of f-maps $X \rightarrow E$ which send A to $\check{e}(B)$.

Let $\left(K, k_{0}\right)$ be a pointed CW complex, and let $e=$ (F, \check{e}, \hat{e}) be an object in X_{B}. We define $e^{K}=\left(E_{B}^{K}, \check{e}^{K}, \hat{e}^{K}\right)$ as follows: E_{B}^{K} is the space of all maps (with the compact-open topology) $g: K \rightarrow E$ such that $g\left(k_{0}\right) \in \check{e}(B)$ and $\hat{e} \circ g$ is constant. For all $b \in B$ and $k \in K, \check{e}^{K}(b)(k)=\check{e}(b)$; for all $g \epsilon E_{B}^{K}$, $\hat{e}^{K}(g)=\hat{e} \circ g\left(k_{0}\right)$. Let $\Omega e=e^{S}$ and $P e=e^{I}$, where $S=S^{1}$ and $I=[0,1]$ with basepoint 0 .

[^0]If $e=(E, \check{e}, \hat{e})$ and $y=(Y, \check{y}, \hat{y})$ are X_{B}-objects, we let $e \times y=(Z, \check{z}, \hat{z})$, where Z is the pullback:

and \check{z} and \hat{z} are defined in the obvious way.
If $\theta: e \rightarrow y$ is a map in the category X_{B}, we define the fiber of θ to be the object $z=(Z, \check{z}, \hat{z})$, where Z is the pullback:

where ε is evaluation at 1. That is, $Z=\left\{(e, g) \in E \times Y_{B}^{I} \mid \theta(e)=g(1)\right\}$. We leave to the reader the definitions of \check{z} and \hat{z}. If x is any x_{B}-object and $h: x \rightarrow e$ any map, we say that $x \xrightarrow{h} e \xrightarrow{\theta} y$ is a fibration sequence if there a homotopy equivalence $\phi: x \rightarrow z$ (in X_{B}, of course) such that the following triangle is homotopy commutative:

where, in both of the above diagrams, $p(e, g)=e$ for all $(e, g) \in Z$. We leave to the reader the verification of the following long fibration sequence:

$$
\Omega^{2} y \xrightarrow{\Omega \lambda} \Omega z \xrightarrow{\Omega p} \Omega e \xrightarrow{\Omega \theta} \Omega y \xrightarrow{\lambda} z \xrightarrow{p} e \xrightarrow{\theta} y .
$$

If $f: X \rightarrow B$ is any map, where X is a topological space, then $[X, f ; e]$ is a set with a distinguished element, $[X, f ; \Omega e]$ is a group, and $\left[X, f ; \Omega^{2} e\right]$ is an Abelian group. If we apply the functor $[X, f ;]$ to a fibration sequence, we obtain an exact sequence; as the reader can easily verify. (See [6] for a similar theorem in a slightly more restricted case.)

Let $e=(E$, ě, $\hat{e})$ be any object of the category \mathscr{X}_{B}, and let $\left(Y, y_{0}\right)$ be a pointed space. We define $e \wedge Y$ to be the \mathfrak{X}_{B}-object

$$
\left(E \wedge_{B} Y, \check{e} \wedge Y, \hat{e} \wedge Y\right)
$$

where $E \wedge_{B} Y$ is the quotient space of $E \times Y$ under the equivalence relation, $\left(x, y_{0}\right) \sim\left(x^{\prime}, y_{0}\right)$ whenever $\hat{e} x=\hat{e} x^{\prime}$, and (ěb, $\left.y\right) \sim\left(e ̌ b, y^{\prime}\right)$ for all $b \in B$ and $y, y^{\prime} \in Y$. We let $[x, y]$ denote the equivalence class of $(x, y) \in E \times Y$, and let $(\check{e} \wedge Y) b=\left[\check{e} b, y_{0}\right]$ for all $b \in B$, and $(\hat{e} \wedge Y)[x, y]=\hat{e} x$ for all $[x, y] \in E \wedge{ }_{B} Y$.

If $e=(E, \check{e}, \hat{e})$ is any \mathscr{X}_{B}-object, we write

$$
H^{*}(e ; G)=H^{*}(E, \check{e}(B) ; G)
$$

for any group G. We leave it to the reader to verify the following simple remarks, where F is a field: (Henceforth, we assume that all spaces have singular homology of finite type.)

Remark 1.1. If e and e^{\prime} are X_{B}-objects,

$$
H^{*}\left(e \times e^{\prime} ; F\right)=H^{*}(e ; F) \otimes_{F} H^{*}\left(e^{\prime} ; F\right)
$$

Remark 1.2. If e is an X_{B}-object and Y is a pointed space,

$$
H^{*}(e \wedge Y ; F)=H^{*}(e ; F) \otimes_{F} H^{*}(Y ; F)
$$

2. The problem

Suppose $\theta: e \rightarrow y$ is any twice deloopable \mathscr{X}_{B}-map, i.e., there exist X_{B} objects $e^{\prime \prime}$ and $y^{\prime \prime}$ and a map $\theta^{\prime \prime}$ such that $\Omega^{2} e^{\prime \prime}=e, \Omega^{2} y^{\prime \prime}=y$, and $\Omega^{2} \theta^{\prime \prime}=\theta$. Let X be a CW-complex and $f: X \rightarrow E$ a map. According to $\S 1$, we then have an exact sequence of Abelian groups:

$$
0 \longrightarrow A=\operatorname{Coker} \Omega \theta_{*} \xrightarrow{\lambda_{*}}[X, f ; z] \xrightarrow{p_{*}} C=\operatorname{Ker} \theta_{*} \longrightarrow 0
$$

where $p: z \rightarrow e$ is the fiber of θ. Our problem is to evaluate $[X, f ; z]$ as an extension of C by A.

Definition 2.1. For each positive integer n, let

$$
C_{n}=\{x \in C \mid n x=0\}
$$

Let $\Phi_{n}: C_{n} \rightarrow A / n A$ be the homomorphism given by

$$
\Phi_{n}(x)=\lambda_{\#}^{-1} n p_{\#}^{-1} x \quad \text { for all } x \in C_{n} .
$$

According to Theorem 5.1 of [6], it is only necessary to know Φ_{n} for all n which are powers of primes in order to solve our problem. If $2 A=0$ or $2 C=0$, it suffices to know Φ_{2}.

3. The general theory

Suppose that $\psi: \imath \rightarrow w$ is any map in the category X_{B}; we then have a long fibration sequence

$$
\Omega v \xrightarrow{\Omega \psi} \Omega w \xrightarrow{\chi} u \xrightarrow{\gamma} v \xrightarrow{\psi} w
$$

where u is the fiber of ψ. Let X be a CW complex, and let $f: X \rightarrow B$ be a map. Let

$$
L \xrightarrow{i} K \xrightarrow{q} K / L \xrightarrow{r} S L \xrightarrow{S i} S K
$$

be any cofibration of pointed CW complexes. We shall assume that L and K are suspensions, though i need not be a suspension. We leave it to the reader to verify that the following diagram of X_{B}-objects and maps is commutative, and that all rows and columns are fibration sequences (this diagram is analogous to diagram (2.5) of [7]):

If we apply the functor $[X, f ; \quad]$ to Diagram (3.1), we obtain a commutative diagram of groups with exact rows and columns:

$$
\begin{aligned}
& {\left[X, f ; v^{S L}\right] \xrightarrow{v_{*}^{r}}\left[X, f ; v^{K / L}\right] \xrightarrow{v_{*}^{q}}} \\
& {\left[X, f ; w^{S K}\right] \xrightarrow{w_{*}^{S i}}\left[X, \stackrel{\theta^{S L}}{\left.f ; w^{S L}\right] \xrightarrow{w_{*}^{r}}\left[X, f ; w^{K / L}\right] \xrightarrow{\mid \theta^{K / L}}}\right.}
\end{aligned}
$$

We define maps
$\Phi: \operatorname{Ker} v_{*}^{i} \cap \operatorname{Ker} \theta_{*}^{K} \rightarrow\left[X, f ; \Omega w^{L}\right] / \Omega w_{*}^{i}\left[X, f ; \Omega w^{K}\right]+\Omega \theta_{*}^{L}\left[X, f ; \Omega v^{L}\right]$,
$\tilde{\Phi}: \operatorname{Ker} v_{\circledast}^{i} \cap \operatorname{Ker} \theta_{\circledast}^{K} \rightarrow\left[X, f ; w^{S L}\right] / w_{\circledast}^{S i}\left[X, f ; w^{S K}\right]+\theta_{\circledast}^{S L}\left[X, f ; v^{S L}\right]$
as follows: for any $x \in\left[X, f ; v^{K}\right]$ such that $v_{*}^{i} x=0$ and $\theta_{*}^{K} x=0$, let

$$
\Phi(x)=\left(\chi_{\#}^{L}\right)^{-1} x \quad \text { and } \quad \tilde{\Phi}(x)=\left(w_{\#}^{r}\right)^{-1} \theta_{\#}^{K / L}\left(v_{\#}^{q}\right)^{-1} x .
$$

Now Ωw^{L} and $w^{S L}$ are of the same homotopy type in the category X_{B}; we can identify them in such a manner that the following theorem, analogous to Theorem 2.5 of [6], holds:

Theorem 3.2. $\Phi=\tilde{\Phi}$.
We leave the proof to the reader. Note that if the map θ is deloopable, i.e., $\theta=\Omega \psi$ for some $\psi, \Phi=\tilde{\Phi}$ is a homomorphism.

Remark (added in proof). We take this opportunity to correct an error (of sign) that occurs in [7]. Namely, Theorem 2.5 should read $-\Phi_{1}=\Phi_{2}$, while in Corollary 3.7, a minus sign should be appended to the left hand side of each equation. The error occurs at the top of page 232 where the fifth line should read

$$
-\phi_{1}=\tilde{\Phi}_{1}(u), \quad \phi_{2}=\tilde{\Phi}_{2}(u)
$$

For any integer $n \geq 1$ and any group π (where π is Abelian if $n>1$), and for any $a \in H^{1}(B$; Aut $\pi)$, we say that the \mathfrak{X}_{B}-object $k_{B}(\pi, n, a)=$ (K, \check{k}, \hat{k}) is an Eilenberg MacLane object of type (π, n, a) if $k_{B}(\pi, n, a)$ is of the homotopy type of an object (K, \breve{k}, \hat{k}) where $\hat{k}: K \rightarrow B$ is a fibration with fiber an Eilenberg-MacLane space of type (π, n), and if a classifies the action of the fundamental group of B on π_{n} of that fiber. See Gitler [2] and Siegel [11] for construction of $k_{B}(\pi, n, a)$, which we briefly describe as follows. Let K^{\prime} be an Eilenberg-MacLane space of type (π, n), and let $\Gamma=$ Aut π, the automorphism group of π, which acts on K^{\prime} in the obvious way. Let W be a Γ-free acyclic complex. Now projection onto the second factor, $p: K^{\prime} \times W \rightarrow W$ induces a fibration

$$
q: K^{\prime} \times W / \Gamma \rightarrow W / \Gamma=K(\Gamma, 1)
$$

Let $f_{a}: B \rightarrow K(\Gamma, 1)$ be a map which classifies a, and define K and \hat{k} by the pullback diagram

Inclusion along the second factor $W \rightarrow K^{\prime} \times W$ induces a lifting

$$
K(\Gamma, 1) \rightarrow K^{\prime} \times W / \Gamma
$$

which induces the lifting $\check{k}: B \rightarrow K$.
Now if (X, A) is a CW pair and $f: X \rightarrow B$ is a map, then

$$
\left[X, A, f ; k_{B}(\pi, n, a)\right]=H^{n}\left(X, A ; \pi\left[f^{*} a\right]\right)
$$

where $\pi\left[f^{*} a\right]$ is the local system of groups over X, isomorphic to π, classified
by $f^{*} a \in H^{1}(X, \Gamma)$. Let $\iota_{n} \in H^{n}(K, k(B) ; \pi[a])$ be the fundamental class of $k_{B}(\pi, n, a)$, classified by the identity map.

In the special case that $\pi=Z_{2}$, then $\Gamma=0$. We write $k_{B}\left(Z_{2}, n\right)$ for $k_{B}\left(Z_{2}, n, 0\right)$.

Let a be the mod 2 Steenrod algebra; take cohomology with Z_{2} coefficients. We define an algebra over $Z_{2}, H^{*}(B) \cdot a$, the semi-tensor product (see [8]), as follows. As a module over $Z_{2}, H^{*}(B) \cdot \mathfrak{Q}=H^{*}(B) \otimes \mathbb{Q}$. Its multiplication is the composition
$H^{*}(B) \otimes a \otimes H^{*}(B) \otimes a \xrightarrow{1 \otimes A \otimes 1} H^{*}(B) \otimes H^{*}(B) \otimes a \otimes a$ $\xrightarrow{\smile \otimes M} H^{*}(B) \otimes \mathbb{a}$
where A is the composition
$\mathfrak{a} \otimes H^{*}(B) \xrightarrow{\mu \otimes 1} \mathfrak{a} \otimes \mathbb{a} \otimes H^{*}(B) \xrightarrow{1 \otimes T} \mathfrak{a} \otimes H^{*}(B) \otimes \mathbb{a}$

$$
\xrightarrow{\alpha \otimes 1} H^{*}(B) \otimes \mathbb{Q}
$$

where μ is the comultiplication of Q, T exchanges coordinates, and α is the action of Q on $H^{*}(B)$.

Now if (X, A) is a CW pair and $f: X \rightarrow B$ is a map, $H^{*}(X, A)$ is a module over $H^{*}(B) \cdot Q$ in an obvious way; if

$$
x \in H^{*}(X, A) \quad \text { and } \quad b \otimes \theta \in H^{*}(B) \cdot a
$$

for $b \in H^{*}(B)$ and $\theta \in \mathbb{Q}$, then let $(b \otimes \theta) x=\left(f^{*} b\right) \theta x$. We leave it to the reader to verify this action.

Let $n \geq 1$ and $m \geq 1$ be integers. Let π and τ be groups; π Abelian if $n>1, \tau$ Abelian if $\bar{m}>1$. Let $a \in H^{1}(B ;$ Aut $\pi)$ and $b \in H^{1}(B$; Aut $\tau)$. Let

$$
\left[k_{B}(\pi, n, a) ; k_{B}(\tau, m, b)\right]
$$

denote $\left[K, \check{k}(B), k ; k_{B}(\tau, m, b)\right]$, where $k_{B}(\pi, n, a)=(K, \check{k}, \hat{k})$. The elements of

$$
\left[k_{B}(\pi, n, a) ; k_{B}(\tau, m, b)\right]
$$

we call cohomology operations of type ($\pi, n, a ; \tau, m, b$).
Applying the functor Ω to any map, we obtain a "suspension"

$$
\sigma:\left[k_{B}(\pi, b, a) ; k_{B}(\tau, m, b)\right] \rightarrow\left[k_{B}(\pi, n-1, a) ; k_{B}(\tau, m-1, b)\right]
$$

if $n, m>1$. Let ${ }^{1} \psi$ denote $\sigma \psi$ for any ψ.
If π and τ are Abelian and if k is any integer, let $s^{k}[\pi, a, \tau, b]$ denote the set of stable operations of type (π, a, τ, b) and degree k, defined as the inverse limit as n approaches ∞ (via σ) of $\left[k_{B}(\pi, n, a) ; k_{B}(\tau, n+k, b)\right]$.

Finally, we remark that $H^{*}(B) \cdot Q$ can be identified with $s^{*}\left[Z_{2}, Z_{2}\right]$, the algebra of stable operations of type $\left(Z_{2}, 0, Z_{2}, 0\right)$ as follows: if n and m are
integers and $b \otimes \theta \epsilon H^{*}(B) \cdot a$, let $b \otimes \theta$ correspond to

$$
(b \otimes \theta) \iota_{n}=\left(k^{*} b\right) \theta \iota_{n} \in H^{m}\left(K, \check{k}(B) ; Z_{2}\right)=\left[k_{B}\left(Z_{2}, n\right) ; k_{B}\left(Z_{2}, m\right)\right]
$$

where $k_{B}\left(Z_{2}, n\right)=(K, \check{k}, \hat{k})$.
We wrote $\mathbb{a}_{B}=H^{*}(B) \cdot \mathbb{Q}$. Let $\varepsilon: \mathbb{Q}_{B} \rightarrow \mathbb{Q}_{B}$ be the homomorphism, of degree -1 , given by $\varepsilon(b \otimes \theta)=b \otimes \varepsilon \theta$, where $\varepsilon: a \rightarrow a$ is the Kristensen map, dual to multiplication by ξ_{1} in the dual algebra [4]. For any $\psi \in \mathbb{Q}_{B}$, we let $\tilde{\psi}=\varepsilon \psi$. [5], [7].

4. The functor P

Henceforth in this paper, all coefficients will be in Z_{2}, unless otherwise specified.

Consider diagram (3.2) with the cofibration

$$
S \xrightarrow{\gamma} S \xrightarrow{q} P \xrightarrow{r} S^{2} \xrightarrow{S \gamma} S^{2}
$$

where $S=S^{1}$ and γ is multiplication by 2 . Then $-\tilde{\Phi}=\Phi$, which equals the homomorphism Φ_{2} defined in Section 2.

We consider only cases in which v and w are both Eilenberg-MacLane objects of type $\left(Z_{2}, n\right)$ or ($\left.Z, n, a\right)$, and where θ is a stable cohomology operation. P is the real projective plane; for $i=1,2$, let $e^{i} \epsilon H^{i}(P)$ be the generator mod 2.

We wish to compute the operation

$$
\theta^{P}: k_{B}(\pi, n, a)^{P} \rightarrow k_{B}(\tau, m, b)^{P}
$$

where $\theta: k_{B}(\pi, n, a) \rightarrow k_{B}(\tau, m, b)$. We first note the following facts: If θ and θ^{\prime} are two cohomology operations where $\theta+\theta^{\prime}$ is meaningful, then $\left(\theta+\theta^{\prime}\right)^{P}=\theta^{P}+{\theta^{\prime}}^{P}$. If θ and θ^{\prime} are operations where $\theta \circ \theta^{\prime}$ is meaningful, then $\left(\theta \circ \theta^{\prime}\right)^{P}=\theta^{P} \circ \theta^{\prime P}$.

Henceforth, let k_{n} denote $k_{B}\left(Z_{2}, n\right)$ and let $k_{n}^{*}(a)$ denote $k_{B}(Z, n, a)$ for any integer $n \geq 1$ and any $a \in H^{1}(B)$. (Since Aut $Z \cong Z_{2}$.) If $n \geq 3$, we have (as in the untwisted case) $k_{n}^{*}(a)^{P}=k_{n-2}$, and $k_{n}^{p}=k_{n-2} \times k_{n-1}$, where product is taken in the category \mathfrak{X}_{B}, i.e., over B. The proofs are essentially identical to those of corresponding theorems in the untwisted case [7]; we leave them to the reader. The following is the analogue of Theorem 3.6 of [7]:

Theorem 4.1. Let θ be a stable cohomology operation.
Case I. $\quad \theta: k_{n} \rightarrow k_{m}$. Then

$$
\begin{aligned}
& \left(\theta^{P}\right)^{*}\left(\iota_{m-2} \otimes 1\right)=\theta \iota_{n-2} \otimes 1+1 \otimes \tilde{\theta}_{\iota_{n-1}}, \quad \text { and } \\
& \quad\left(\theta^{P}\right)^{*}\left(1 \otimes \iota_{m-1}\right)=1 \otimes \theta \iota_{n-1}
\end{aligned}
$$

Case II. $\quad \theta: k_{n} \rightarrow k_{n+1}^{*}(a)$ is the Bokstein homomorphism of the exact se-
quence of sheaves

$$
0 \rightarrow Z[a] \xrightarrow{\times 2} Z[a] \rightarrow Z_{2} \rightarrow 0 .
$$

Then $\left(\theta^{P}\right)^{*} \iota_{n-1}=\left(S q^{1}+a\right) \iota_{n-2} \otimes 1+1 \otimes \iota_{n-1}$.
Case III. $\theta: k_{n}^{*}(a) \rightarrow k_{n}$ is reduction $\bmod 2$. Then

$$
\left(\theta^{P}\right)^{*}\left(\iota_{n-2} \otimes 1\right)=\iota_{n-2} \quad \text { and } \quad\left(\theta^{P}\right)^{*}\left(1 \otimes \iota_{n-1}\right)=\left(S q^{1}+a\right) \iota_{n-2}
$$

Proof. We do the details of the proof only for Case I. The homotopy equivalence $k_{n-2} \times k_{n-1} \rightarrow k_{n}^{p}$ can be chosen to be adjoint to an X_{B}-map $f_{n}:\left(k_{n-2} \times k_{n-1}\right) \wedge P \rightarrow k_{n}$ such that

$$
f_{n}^{*} \iota_{n}=\iota_{n-2} \otimes 1 \otimes e^{2}+1 \otimes \iota_{n-1} \otimes e^{1}
$$

We have a commutative diagram of \mathscr{X}_{B}-objects and maps

which induces a commutative diagram in mod 2 cohomology:

We have that $\theta=\sum_{i=1}^{N}\left(b_{i} \otimes \psi_{i}\right)$ for some integer N and some choices of $\psi_{i} \in \mathbb{Q}$ and $b_{i} \in H^{*}(B)$ (the index i does not denote degree). Note that $\tilde{\theta}=\sum_{i=1}^{N}\left(b_{i} \otimes \tilde{\psi}_{i}\right)$. Now

$$
\begin{aligned}
& f_{n}^{*} \theta^{*} \iota_{m}= f_{n}^{*} \sum_{i=1}^{N}\left(b_{i} \otimes \psi_{i}\right) \iota_{n} \\
&=\sum_{i=1}^{N}\left(b_{i} \otimes \psi_{i}\left(\iota_{n-2} \otimes 1 \otimes e^{2}+1 \otimes \iota_{n-1} \otimes e^{1}\right)\right) \\
&=\sum_{i=1}^{N}\left(b_{i} \otimes\left(\psi_{i} \iota_{n-2} \otimes 1 \otimes e^{2}+1 \otimes \psi_{i} \iota_{n-1} \otimes e^{1}+1 \otimes \tilde{\psi}_{i} \iota_{n-1} \otimes e^{2}\right)\right.
\end{aligned}
$$

On the other hand, $f_{m}^{*} \iota_{m}=\iota_{m-2} \otimes 1 \otimes e^{2}+1 \otimes \iota_{m-1} \otimes e^{1}$. Comparing coefficients, we see that

$$
\begin{aligned}
\left(\theta^{P}\right)^{*}\left(\iota_{m-2} \otimes 1\right) & =\sum_{i=1}^{N}\left(b_{i} \otimes\left(\psi_{i} \iota_{n-2} \otimes 1+1 \otimes \tilde{\psi}_{i} \iota_{n-1}\right)\right) \\
& =\theta\left(\iota_{n-2} \otimes 1\right)+\tilde{\theta}\left(1 \otimes \iota_{n-1}\right)
\end{aligned}
$$

while $\left(\theta^{P}\right)^{*}\left(1 \otimes \iota_{m-1}\right)=\sum_{i=1}^{N} b_{i} \otimes\left(1 \otimes \psi_{i} \iota_{n-1}\right)=\theta\left(1 \otimes \iota_{n-1}\right)$, as claimed.

5. Applications to immersions

Let $\pi: B \rightarrow B^{\prime}$ be a fibration, where the fiber is $(r-1)$-connected for some r. If X is a CW complex of dimension n, and if $f: X \rightarrow B^{\prime}$ is a map,
let $L(X, B, f)$ be the set of rel f homotopy classes of liftings of f to B. If $n \leq 2 r-2$, then $L(X, B, f)$ naturally has the structure of an affine group, according to Becker [1].

Let us assume that f has a lifting, g. Then $L(X, B, f)$ is naturally an Abelian group with identity $[g]$, isomorphic to $[X, g, e]$, where $e=(E, \check{e}, \hat{e})$ is the \mathscr{X}_{B}-object, where E is the pullback

and $\check{e}(b)=(b, b) \in E$ for all $b \in B$. To compute the group structure on $L(X, B, f)$, we then use McClendon's techniques [9] to obtaiin a Postnikov tower for e (in the category X_{B}, of course), and hence a spectral sequence for $[X, g, e]$. (See also [6], Section 5.)

Consider the fibration $\pi: B \rightarrow B^{\prime}$, where $B=B O_{r}$ and $B^{\prime}=B O$. Let e be the X_{B}-object defined above. Let M be a connected, snooth, n-dimensional manifold, and let $\nu: M \rightarrow B^{\prime}$ classify the stable normal bundle of M. The set of regular homotopy classes of immersions of M into R^{n+r} is in one-to-one correspondence with $[M, g ; e]$, if $g: M \rightarrow B$ classifies the normal bundle of any immersion $M \subseteq R^{n+r}$. If $n \leq 2 r-2,[M, g ; e]$ is an Abelian group, which we call the immersion group, $\operatorname{Im}_{n+r}(M)$, and which does not depend on the choice of g (up to isomorphism) [1], [3]. In this section we shall compute $\operatorname{Im}_{2 n-k}(M)$ for sufficiently small k. Toward that end, we construct a Postnikov tower for e. In the range we are considering, four cases are necessary, corresponding to the equivalence class of r modulo 4.

Case I. $\quad r \equiv 1$ (4),$r \geq 5$. The following diagram is the first two stages of the Postnikov tower for e (recall that all objects and maps in this diagram are in the category X_{B}):

where $\alpha^{*}{ }_{\iota_{r+2}} \mathrm{~W}\left(1 \otimes S q^{2}+w_{2} \otimes 1\right) \iota_{r}$. Also, k_{r+1} is the fiber of π, e_{2} is the fiber of α, and p is an equivalence through dimension $r+1$; i.e.,

$$
p_{*}:[X, h ; e] \rightarrow\left[X, h ; e_{2}\right]
$$

is an isomorphism for any complex X of dimension $\leq r+1$.

Case II. $r \equiv 2$ (4), $r \geq 6$. The Postnikov tower of e, where p is an equivalence through dimension $r+2$, begins

where $\alpha^{*} \iota_{r+2}=\left(1 \otimes S q^{2}+w_{2} \otimes 1\right) \iota_{r} \otimes 1+1 \otimes\left(1 \otimes S q^{1}\right) \iota_{r+1}$.
Case III. $\quad r \equiv 3$ (4), $r \geq 3$. Then

where $\alpha^{*} \iota_{r+3}=\left(1 \otimes S q^{2} S q^{1}+\left(w_{2}+w_{1}^{2}\right) \otimes S q^{1}\right) \iota_{r} ; p$ is an equivalence through dimension $r+1$ if $r=3, r+2$ if $r>3$.

Case IV. $r \equiv 0$ (4), $r \geq 4$. Then

where $\alpha^{*} \iota_{r+2}=\left(1 \otimes S q^{2}+w_{2} \otimes 1\right) \iota_{r} \otimes 1+1 \otimes\left(w_{1} \otimes 1\right) \iota_{r+1} ; p$ is an equivalence through dimension $r+1$.

We then obtain, via Theorem 4.1, the following (in each case, w_{i} and \bar{w}_{i} are the $i^{\text {th }}$ Stiefel-Whitney classes of the tangent bundle and the normal bundle of M, respectively):

Theorem 5.1. Assume $n \geq$ 4. As above, M is a connected, smooth n manifold. Then $\operatorname{Im}_{2 n-1}(M)$ is as follows.

Case I. $\quad n \equiv 1(4), M$ orientable. Then

$$
\operatorname{Im}_{2 n-1}(M) \cong H^{n-1}(M ; Z) \oplus Z_{2} \oplus Z_{2}
$$

Case II. $n \equiv 1$ (4), M non-orientable. Then

$$
\operatorname{Im}_{2 n-1}(M) \cong H^{n-1}\left(M ; Z\left[w_{1}\right]\right) \oplus Z_{2}
$$

Case III. $n \equiv 2$ (4), M orientable. Then

$$
\operatorname{Im}_{2 n-1}(M) \cong H^{n-1}(M) \oplus Z_{2}
$$

Case IV. $n \equiv 2$ (4), M non-orientable. Then

$$
\operatorname{Im}_{2 n-1}(M) \cong K \oplus Z_{4}
$$

where K is the kernel of $S q^{1}: H^{n-1}(M) \rightarrow H^{n}(M)$.
Case V. $n \equiv 3$ (4), M orientable. Then

$$
\operatorname{Im}_{2 n-1}(M) \cong H^{n-1}(M ; Z) \oplus Z_{4}
$$

Case VI. $n \equiv 3$ (4), M non-orientable. Then

$$
\operatorname{Im}_{2 n-1}(M) \cong H^{n-1}\left(M ; Z\left[w_{1}\right]\right) \oplus Z_{2}
$$

Case VII. $\quad n \equiv 0$ (4), and M immerses in $R^{2 n-1}$. Then

$$
\operatorname{Im}_{2 n-1}(M) \cong H^{n-1}(M)
$$

Proof. Cases I and II. We have an exact sequence

$$
\begin{aligned}
\cdots \rightarrow H^{n-2}\left(M ; Z\left[w_{1}\right]\right) \oplus H^{n-1}(M) \xrightarrow{\theta} & H^{n}(M) \rightarrow \operatorname{Im}_{2 n-1}(M) \\
& \rightarrow H^{n-1}\left(M ; Z\left[w_{1}\right]\right) \oplus H^{n}(M) \rightarrow 0
\end{aligned}
$$

where $\theta(u, v)=\left(S q^{2}+\bar{w}_{2}\right) u+w_{1} v$. In the oriented case, $\theta=0$, and

$$
\Phi_{2}(u, v)=\left(S q^{2}+\bar{w}_{2}\right) \delta^{-1} u
$$

according to Theorem 4.1. But $S q^{2}+\bar{w}_{2}=0: H^{n-2}(M) \rightarrow H^{n}(M)$, so $\Phi_{2}=0$, and the extension is trivial. In the unoriented case, Coker $\theta=0$ since $w_{1} v$ is the top class for some $v \in H^{n-1}(M)$; there is no extension problem.

Cases III and IV. We have an exact sequence

$$
\cdots \rightarrow H^{n-2}(M) \xrightarrow{\theta} H^{n}(M) \rightarrow \operatorname{Im}_{2 n-1}(M) \rightarrow H^{n-1}(M) \rightarrow 0
$$

where $\theta u=\left(S q^{2}+\bar{w}_{2}\right) u=0$. Now for $v \in H^{n-1}(M), \Phi_{2}(v)=S q^{1} v$, and we are done.

Cases V and VI. We have an exact sequence

$$
\begin{aligned}
\cdots \rightarrow H^{n-2}\left(M ; Z\left[w_{1}\right]\right) \oplus H^{n-1}(M) \xrightarrow{\theta} & H^{n}(M) \rightarrow \operatorname{Im}_{2 n-1}(M) \\
& \rightarrow H^{n-1}\left(M ; Z\left[w_{1}\right]\right) \oplus H^{n}(M) \rightarrow 0
\end{aligned}
$$

where $\theta(u, v)=\left(S q^{2}+\bar{w}_{2}\right) u+S q^{1} v$. In the orientable case, $\theta=0$, and $\Phi_{2}(u, v)=S q^{1} u+v=v$ for all $u \epsilon H^{n-1}(M ; Z), v \in H^{n}(M)$, and we are done. In the unoriented case, Coker $\theta=0$ and there is no extension problem.

Case VII has a trivial proof, which we leave to the reader.
Remark. For calculation, it is useful to recall that by duality,

$$
H^{n-i}\left(M ; Z\left[w_{1}\right]\right) \cong H_{i}(M ; Z), \quad 0 \leq i \leq n
$$

Theorem 5.2. Let M be a connected smooth n-manifold, for $n \equiv 1$ (4), $n \geq 9$. Let $\gamma: H^{n-2}(M) \rightarrow H^{n}(M)$ be multiplication by w_{1}^{2}. Then $\operatorname{Im}_{2 n-2}(M)$ is as follows (provided $M \subseteq R^{2 n-2}$).

Case I. $\quad \gamma=0 . \quad$ Then $\operatorname{Im}_{2 n-2}(M) \cong H^{n-2}(M) \oplus Z_{2}$.
Case II. $\gamma \neq 0$, but $\gamma S q^{1}=0: H^{n-3}(M) \rightarrow H^{n}(M)$. Then

$$
\operatorname{Im}_{2 n-2}(M) \cong \operatorname{Ker} \gamma \oplus Z_{\Delta}
$$

Case III. $\quad \gamma S q^{1} \neq 0$. Then $\operatorname{Im}_{2 n-2}(M) \cong H^{n-2}(M)$.
Proof. We have an exact sequence

$$
\cdots H^{n-3}(M) \xrightarrow{\theta} H^{n}(M) \rightarrow \operatorname{Im}_{2 n-2}(M) \rightarrow H^{n-2}(M) \rightarrow 0
$$

where $\theta u=S q^{2} S q^{1} u+\left(\bar{w}_{2}+w_{1}^{2}\right) S q^{1} u=w_{1}^{2} S q^{1} u$. If $x \epsilon H^{n-2}(M)$,

$$
\Phi_{2}(x)=\left(S q^{2}+\bar{w}_{2}+w_{1}^{2}\right) x=w_{1}^{2} x
$$

we are done.
Examples of manifolds satisfying the three conditions are $P_{13}, P_{12} \times S^{1}$, and $P_{2} \times S^{11}$, respectively (where $P_{k}=$ real projective k-space).

Finally, suppose that M is a smooth connected n-manifold, where $n \equiv 0$ (4), $n \geq 8$, and M immerses in $R^{2 n-2}$. There is no particularly neat way of expressing the group $\operatorname{Im}_{2 n-2}$ in general, but the information below is sufficient to determine it. First of all we have an exact sequence:

$$
\begin{aligned}
\cdots \rightarrow H^{n-3}\left(M ; Z\left[w_{1}\right]\right) \oplus H^{n-2}(M) \xrightarrow{\theta} & H^{n-1}(M) \rightarrow \operatorname{Im}_{2 n-2}(M) \\
& \rightarrow H^{n-2}\left(M ; Z\left[w_{1}\right]\right) \oplus H^{n-1}(M) \rightarrow 0
\end{aligned}
$$

where

$$
\theta(u, v)=\left(S q^{2}+\bar{w}_{2}\right) u+w_{1} v
$$

for all $u \in H^{n-3}\left(M ; Z\left[w_{1}\right]\right)$ and $v \in H^{n-2}(M)$: secondly,

$$
\Phi_{2}(x, y)=\left(S q^{2}+\bar{w}_{2}\right) \delta^{-1} x+S q^{1} \rho x
$$

for all $x \in H^{n-2}\left(M ; Z\left[w_{1}\right]\right)$ such that $2 x=0$ and all $y \in H^{n-1}(M)$. ($\rho=$ reduction modulo 2.)

For completeness' sake, we mention that if $n \geq 2$,

$$
\begin{aligned}
\operatorname{Im}_{2 n}(M) & \cong Z
\end{aligned} \quad \text { if } n \text { is even } 1
$$

and that if $n \geq 1, \operatorname{Im}_{2 n+k}(M)=0$ for all $k \geq 1$. We leave the proofs to the reader; cf. [3].

These results extend those in [4] and [10]. In [4], only the cardinality of the immersion group was computed, while in [10] an exact sequence for the group was constructed, but no extensions were computed.

6. Applications to vector fiields

Throughout this section, let M be a smooth connected n-dimensional manifold. Let $V^{k}(M)$ be the set of homotopy classes of k-fields on M. Now $V^{k}(M)$ is in one-to-one correspondence with the set of rel τ homotopy classes of liftings of τ to $B O_{n-k}$:

where τ classifies the tangent bundle. If $n \geq 2 k+2, V^{k}(M)$ is an affine group [1].

Let $B=B O_{n-k}$, and $B^{\prime}=B O_{n}$; then $V^{k}(M) \cong[M, g ; e]$, where e is the X_{B}-object defined in the previous section and $g: M \rightarrow B$ is any given lifting of τ. The techniques of the previous sections can then be applied to compute [$M, g ; e$]. We have a complete answer only in the case $k=1$.

Theorem 6.1. If $n \geq 4$ and M admits a vector field, then

$$
V^{1}(M)=H^{n-1}\left(M ; Z\left[w_{1}\right]\right) \oplus H^{n}(M)=H_{1}(M ; Z) \oplus Z_{2}
$$

Proof. We have a Postnikov tower e, where p is an equivalence through dimension n :

where $\alpha^{*} \iota_{n+1}=\left(S q^{2}+w_{2}\right) \iota_{n-1}$. We have an exact sequence

$$
\cdots \rightarrow H^{n-2}\left(M ; X\left[w_{1}\right]\right) \xrightarrow{\theta} H^{n}(M) \rightarrow V^{1}(M) \rightarrow H^{n-1}\left(M ; Z\left[w_{1}\right]\right) \rightarrow 0
$$

where

$$
\theta x=\left(S q^{2}+w_{2}\right) x=w_{1}^{2} x=w_{1} S q^{1} x=S q^{1} S q^{1} x=0
$$

If $y \in H^{n-1}\left(M ; X\left[w_{1}\right]\right)$ and $2 y=0$, choose $u \epsilon H^{n-2}(M)$ such that $\delta u=y$. Then

$$
\begin{aligned}
\Phi_{2} y=\left(S q^{2}+w_{2}\right) u+S q^{1} \rho y & =w_{1}\left(w_{1} u+\rho y\right) \\
& =w_{1}\left(w_{1} u+\left(S q^{1}+w_{1}\right) \rho y\right)=S q^{1} S q^{1} \rho y=0
\end{aligned}
$$

we are done.

Bibliography

1. J. C. Becker, Cohomology and the classification of liftings, Trans. Amer. Math. Soc., vol. 133 (1968), pp. 447-475.
2. S. Gitler, Cohomology operations with local coefficients, Amer. J. Math., vol. 85 (1963), pp. 156-188.
3. M. Hirsch, Immersions of manifolds, Trans. Amer. Math. Soc., vol. 93 (1959), pp. 242-276.
4. I. James and P. E. Thomas, On the enumeration of cross-sections, Topology, vol. 5 (1966), pp. 95-114.
5. L. Kristensen, On the cohomology of spaces with two non-vanishing homotopy groups, Math. Scand., vol. 12 (1963), pp. 83-105.
6. L. L. Larmore, Twisted cohomology and the single obstruction to lifting, Pacific J. Math., vol. 41 (1972), pp. 755-769.
7. L. L. Larmore and P. E. Thomas, Group extensions and Postnikov systems, Math. Scand., vol. 30 (1972), pp. 227-248.
8. W. S. Massey and F. P. Peterson, The cohomology structure of certain fiber spaces, I, Topology, vol. 4 (1965) pp. 47-65.
9. J. F. McClendon, Higher order twisted cohomology operations, Invent. Math., vol. 7 (1969), pp. 183-214.
10. -, Obstruction theory in fiber spaces, Math. Zeitschr., vol 120 (1971), pp. 1-17.
11. J. Siegel, Higher order cohomology operations in local coefficient theory, Amer. J. Math., vol. 89 (1967), pp. 909-931.

California State College
Dominiquez, California
University of California
Berkeley, California

[^0]: Received June 26, 1971
 ${ }^{1}$ Research supported by a grant from the National Science Foundation.

