
GROUP EXTENSIONS AND TWISTED COHOMOLOGY THEORIES

BY

L. L. LARMORE AND E. THOMAS

Introduction

In this pper we continue the study of group extensions initiated in [7].
The specific problem discussed there was the computation of extensions in the
exact sequence of groups obtained by mapping a space into a principal fibra-
tion sequence. Here we consider the same problem, but in different cate-
gorythe ctegory of spaces "over and under" a fixed space (see [9], [1]).
This means in particular that the solution to the extension problem is given
in terms of "twisted" cohomology operations [9], whereas in [7] only ordinary
cohomology operations were needed.

In 1 we discuss the category we will use. In 2 we state our extension
problem, and in 3-4 we give a general solution. Finally, in 5-6 we give
applications of our theoryin 5 we compute the (affine) group of immer-
sions of an n manifold in R2n-1, while in 6 we compute the (affine) group of
vector 1-fields on a manifold.

1. The Category
Let B be a fixed topological space. We define a category ff: as follows"

an object of 9C, is n ordered triple (E, , ) such that E is a topological space,

" E-- B is a continuous function, and g" B --+ E is a section of , i.e.,
og 1,. If e (E, g, ) and y (Y,), $) are objects, we say that
g e -- y is a map if g E -- Y is topological mp and if o g and
g e ?); see McClendon and Becket [9], [1]. We say that two maps in if:,

are homotopic if there exists u homotopy of OCt-maps connecting them. Thus,
we have the concept of homotopy equivalence in if;,.

LetXbeunyspaceandf’X-Bamap. Ire (E,,g) andg’X-+E
is a map such that g g f, we say that g is n f-map. Two f-maps are f-
homotopic if they are connected by a homotopy of f-maps.

Let [X, f; e] be the set of f-homotopy classes of f-maps from X to E. If
A X is a subspace, let [X, A, f; e] be the set of tel A f-homotopy classes of
f-maps X -- E which send A to (B).

Let (K,/0) be a pointed CW complex, and let e (F, , g) be an object
in 9 We define e (E, e as follows" E. is the space of all maps
(with the compact-open topology) g’K E such that g(ko)e(B) and
o g is constant. For all b e B and ]c e K, (b)(]) (b); for all g e E,
K es .1e (g) $og(/c0). Let2e andPe e,whereS andI [0, 1]
with basepoint 0.
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If e (E, , ) and y (Y, , ) are 9B-ob]ects, we let e X y (Z, 5, ),
where Z is the pullback:

Z E

and 5 and are defined in the obvious way.
If 0 e - y is a map in the category g:B, we define the fiber of 0 to be the

object z (Z, 5, ), where Z is the pullback"

Z Y

where e is evaluation at 1. That is, Z (e, g) e E Yl 0 (e) g (1)}.
We leave to the reader the definitions of 5 and . If x is any 9-object and

h 0
h x -- e any map, we say that x --- e -- y is a fibration sequence if there
a homotopy equivalence x -* z (in a:, of course) such that the following
triangle is homotopy commutative"

x

where, in both of the above diagrams, p(e, g) e for all (e, g) e Z. We
leave to the reader the verification of the following long fibration sequence:

If f’X --. B is any map, where X is a topological space, then [X, f; e]
is a set with a distinguished element, IX, f; 2e] is a group, and IX, f; 2e] is an
Abelian group. If we apply the functor IX, f; to a fibration sequence,
we obtain an exact sequence; as the reader can easily verify. (See [6] for a
similar theorem in a slightly more restricted case.)

Let e (E, , $) be any object of the category C., and let (Y, y0) be a
pointed space. We define e/ Y to be the 9,-object

where E/k . Y is the quotient space of E Y under the equivalence relation,
(x, y0) (x, y0) whenever x x, and (gb, y) (b, y’) for all b e B and
y, ye Y. We let Ix, y] denote the equivalence class of (x, y)eE X Y,
and let (g/%Y)b= [gb, y0] for all beB, and (/Y)[x, y] x for all
[x,y]eE /k,Y.
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If e (, , ) is any B-obiect, we write

H* (e; G) H* (E, (B); G)

for any group G. We leave it to the reader to verify the following simple
remarks, where F is a field: (Henceforth, we assume that all spaces have
singular homology of finite type.)

Remark 1.1. If e and e are 9B-objects,

H*(e X e’; F) H*(e; F) (R) H*(e’;F).
Remark 1.2. If e is an 9-object and Y is a pointed space,

H*(e/ Y; F) H*(e; F) (R) H*(Y; F).

2. The problem
Suppose 0" e --+ y is any twice deloopable 9-map, i.e., there exist -objects e" and y" and a map 0" such that e" e, y"

Let X be a CW-complex and f X -- E a map. According to 1, we then have
an exact sequence of Abelian groups:

0A =Cokert0a Pa;[X,f;z] ;C Ker0 ;0

where p z -+ e is the fiber of 0. Our problem is to evaluate IX, f; z] as an
extension of C by A.

DEFINITION 2.1. For each positive integer n, let

c {xCI nx o}.

Let , C,, -- A/nA be the homomorphism given by

(x) lltpix for all x

According to Theorem 5.1 of [6], it is only necessary to know for all n
which are powers of primes in order to solve our problem. If 2A 0 or

2C 0, it suffices to know

3. The general theory
Suppose that v -+ w is any map in the category 9C; we theu have a

long fibration sequence

v- -; w u v- ; w

where u is the fiber of . Let X be a CW complex, and let f X -- B be a

map. Let

L i q K/L
r Si

,,) K -; SL- ,) SK
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be any cofibration of pointed CW complexes. We shall assume that L and
K are suspensions, though i need not be a suspension. We leave it to the
reader to verify that the following diagram of ,-objects and maps is com-
mutative, and that all rows and columns are fibration sequences (this diagram
is analogous to diagram (2.5) of [7])

(3.1)

fw: fw
2w

If we apply the functor IX, f; to Diagram (3.1), we obtain a commutative
diagram of groups with exact rows and columns"

[X, f; v] v v] v)IX, f;

10 I0
IX, ;1 ,o [X, f; ws] wa)[X, ; wg’]

IX, f; e,]

IX, f; awK] aw> IX, f; aw]
(a.) x

v}__) IX, f; vK] v; )[X, f; v1

We define maps

Ker v n Ker O [X, f;

" Ker v} n Ker O [X, f; wSl/w}[X, f; ws] + O}[X, f; va]
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as follows" for any x e [X, f; vK] such that v x 0 and 0 x 0, let

(x) (x)-lx and (x) (w)-10/ (v)-lx.
Now 2wL and wsL are of the same homotopy type in the category 9 we can
identify them in such a manner that the following theorem, analogous to
Theorem 2.5 of [6], holds"

THEOREM 3.2. .
We leave the proof to the reader. Note that if the map 0 is deloopable,

i.e., 0 2k for some k, is a homomorphism.
Remarlc (added in proof). We take this opportunity to correct an error

(of sign) that occurs in [7]. Namely, Theorem 2.5 should read -1 2
while in Corollary 3.7, a minus sign should be appended to the left hand side.
of each equation. The error occurs at the top of page 232 where the fifth
line should read

-+ (u), + . (u).

For any integer n _> 1 and any group r (where r is Abelian if n > 1),
nd for any a e H (B; Aut r), we sy that the 9C -object k 0r, n, a)
(K, , ) is an Eilenberg McLne object of type 0r, n, a) if k0r, n, a) is of
the homotopy type of n object (K, , ) where K B is fibration with
fiber an Eilenberg-MacLne spce of type 0r, n), nd if a classifies the ction
of the fundamental group of B on r of that fiber. See Gitler [2] nd Siegel [11]
for construction of k0r, n, a), which we briefly describe s follows. Let K’
be n Eilenberg-McLne spce of type 0r, n), nd let r Aut r, the uto-
morphism group of r, which acts on K’ in the obvious way. Let W be a F-free
cyclic complex. Now projection onto the second fctor, p K’ X W -+ W
induces a fibmtion

" K’ X w/r w/r K(r, ).

Let fa B - K (F, 1) be a map which classifies a, and define K and/ by the
pullback diagram

K K’X W/r

B f..., K(I’, 1)

Inelusion along he seeond faeor W -- K’ N W induces a lifting

g (I’, 1) -- K’
which induees the lifting B K.
Now if (X, A) is a CW pair and f X B is a map, hen

IX, A, f; k. 0r, n, a)] H (X, A v[f*a]),
where r[f*a] is the local system of groups over X, isomorphic to , classified
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by f*a . H (X, F). Let e H (K, k (B); [a]) be the fundamental class of
kB (, n, a), classified by the identity map.

In the special case that r Z., then F 0. We write kB (Z, n) for. (z, n, 0).
Let a be the mod 2 Steenrod algebra; take cohomology with Z. coefficients.

We define an algebra over Z., H* (B).a, the semi-tensor product (see [8]),
as follows. As a module over Z., H* (B). a H* (B) (R) a. Its multiplica-
tion is the composition

H*(B) (R) a (R) H*(B) (R) a 1 (R) A (R) 1) H*(B) (R) H*(B) (R) ( (R) a

where A is the composition

( (R) H*(B) (R) 1 H* 1 (R) T H*( (R) a (R) (B) ;a (R) (B) (R) (

a(R)l H*(B) (R) a

where t is the comultiplication of a, T exchanges coordinates, and a is the
action of a on H* (B).
Now if (X, A is a CW pair andf" X - B is a map, H* (X, A is a module

over H* (B). ( in an obvious way; if

H*(B) (,xeH*(X,A) and b (R) 0e

Hfor b e (B) and 0 e (, then let (b (R) ) x (f’b) Ox. We leave it to the
reader to verify this action.

Let n >_ 1 and m

_
1 be integers. Let v and r be groups; Abelian if

UH (B; Autn > 1 rAbelianifm > 1 Let ae andbe (B;Aut r).
Let

[/B (, n, a); k,(r, m, b)l

denote [K, (B), k; k,(r, m, b)], where k,(r, n, a) (K, ,/).
ments of

The ele-

[k, (’, n, a); k, (, m, b)]

we call cohomology operations of type (, n, a; r, m, b ).
Applying the functor 2 to any map, we obtain a "suspension"

a [k.(r, b, a); k,(r, m, b)]-- [kB(r, n 1, a); k.(r, m 1, b)]

if n, m > 1. Let k denote for any .
If r and r are Abelian and if k is any integer, let 8*[r, a, r, b] denote the set

of stable operations of type (r, a, r, b) and degree k, defined as the inverse
limit as n approaches oo (via a) of [k. (, n, a); kB (r, n k, b)].

Finally, we remark that H* (B).a can be identified with 8*[Z, Z], the
algebra of stable operations of type (Z., 0, Z, 0) as follows: if n and m are
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Hintegers and b (R) e (B). (, let b (R) 0 correspond to

H’(K, (B); Z) [k.(Z., n); k.(Z m)]

where k. (Z, n) (K, , ).
We wrote a H* (B).a. Let e" a -+ a, be the homomorphism, of

degree -1, given by (b (R) 0) b (R) , where s a --+ ( is the Kristensen
map, dual to multiplication by in the dual algebra [4]. For any e (.,
we let /. [5], [7].

4. The functor P
Henceforth in this paper, all coefficients will be in Z, unless otherwise

specified.
Consider diagram (3.2) with the cofibration

r S S,
where S S and , is multiplication by 2. Then - , which equals the
homomorphism ( defined in Section 2.
We consider only cases in which v and w are both Eilenberg-MacLane

objects of type (Z., n) or (Z, n, a), and where O is a stable cohomology
operation. P is the real projective plane; for i 1, 2, let e e H (P) be the
generator mod 2.
We wish to compute the operation

Oe k. (r, n, a) --+ k.(r, m, b),
where 0" k.(r, n, a) -+ k(r, m, b). We first note the following facts: If
0 and ’ are two cohomology operations where 0 -t- ’ is meaningful, then
(0 -}- 0’) e 0 -t- 0’e. If 0 and 0’ are operations where 0 o 0’ is meaningful,
then (0 o 0’) " 0P o 0’’.

Henceforth, let k denote k. (Z, n) nd let k* (a) denote (Z, n, a) for any
Hinteger n >_ 1 nd ny a (B). (Since Aut Z Z2.) If n _> 3, we hve

(as in the untwisted cse) k*(a) k_, and k /_ /c_, where
product is taken in the ctegory 9., i.e., over B. The proofs are essentially
identical to those of corresponding theorems in the untwisted case [7]; we
leave them to the reder. The following is the analogue of Theorem 3.6 of
[7].

THEOREM 4.1. Let 0 be a stable cohomology operation.

Case I. O" k,---+ k. Then

(0P) * (m--2 ) 1) 0--. (R) 1 "t- 1 (R) 0--, and

(O:) * (i (R) =-i) I (R) 0_i.

Case II. O" , --> k+: (a) is the Bokstein homomorphism of the exact se-
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quence of sheaves

0 ---+ Z[a] X 2
Z[a] -+ Z. --> O.

Then (0’)*_1 (qi ..[_ a)n-2 (R) 1 -- 1 (R) ,-1.

Case III. 0 k* (a) ---+ k, is reduction rood 2. Then

(0e)*(t-2 @ 1) t-2 and

Proof. We do the details of the proof only for Case I. The homotopy
equivalence kn-2 X kn- k can be chosen to be adjoint to an E.-map
f (kn- X kn-) P k. such that

e t-2 1 @ e + 1 @ -1 @ e.
We have a commutative diagram of E.-objects and maps

wch induces a commutative diagram in mod 2 cohomology:

We have that O ZiN----1 (bi (R) ki) for some integer N and some choices of
H*ki e a and b e (B) (the index i does not denote degree). Note that

ZiL1 (bi (R) ff). Now

0 tm fn i1 (bi @ i) tn

(b @ (_ @ 1 @ e + 1 @ tn- @ eX))

i1 (bi (i tn-2 1 @ e + 1 @
_

@ e + 1 @
_

@ e)
On the other hand, ] t t_ @ 1.@ e 1 @ t_ @ e. Comparing
coefficients, we see that

(0e) *(t_@ 1) , (b@ (fft_@ 1 + l@fft,_))

1) +
while (0e) * (1 @ t-x) il bi (1 @ i tn-1) 0(1 @ t=_), as claimed.

5. Applications to immersions

Let r" B B’ be a fibration, where the fiber is (r 1)-connected for
some r. If X is a CW complex of dimension n, and if f" X B’ is a map,
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let L (X, B, f) be the set of rel f homotopy classes of liftings of f to B. If
n <_ 2r 2, then L (X, B, f) naturally has the structure of an affine group,
according to Becker [1].

Let us assume that f has a lifting, g. Then L (X, B, f) is naturally an
Abelian group with identity [g], isomorphic to IX, g, e], where e (E, g, )
is the -object, where E is the pullback

B r B’

and g(b) (b, b)eE for all b eB. To compute the group structure on
L (X, B, f), we then use McClendon’s techniques [9] to obtaiin a Postnikov
tower for e (in the category B, of course), and hence a spectral sequence
for IX, g, e]. (See also [6], Section 5.)

Consider the fibration r B ---+ B’, where B BOr and B’ BO. Let
e be the :B-obiect defined above. Let M be a connected, snooth, n-dimen-
sional manifold, and let M --+ B’ classify the stable normal bundle of M.
The set of regular homotopy classes of immersions of M into Rn+r is in one-
to-one correspondence with [M, g; e], if g’M --+ B classifies the normal
bundle of any immersion M Rn+r. If n < 2r 2, [M, g; e] is an Abelian
group, which we call the immersion group, Imn+r(M), and which does not
depend on the choice of g (up to isomorphism) [1], [3]. In this section we
shall compute Im2n_(M) for sufficiently small k. Toward that end, we
construct a Postnikov tower for e. In the range we are considering, four
cases are necessary, corresponding to the equivalence class of r modulo 4.

Case I. r 1 (4), r > 5. The following diagram is the first two stages
of the Postnikov tower for e (recall that all obiects and maps in this diagram
are in the category 9C)"

where a +2 W (1 (R) Sq -b w2 (R) 1)t. Also, kr+ is the fiber of r, e2 is the
fiber of a, and p is an equivalence through dimension r -t- 1; i.e.,

p# [X, h; e] --+ [X, h; e2]

is an isomorphism for any complex X of dimension <_ r -4- 1.
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Case II. r --- 2 (4), r >_ 6. The Postnikov tower of e, where p is an
equivalence through dimension r + 2, begins

where
CaseIII. r 3 (4),r >_ 3. Then

where a r+3-- (1 (R) SSq + (w + w) (R) Sql)r p is an equivalence
through dimension r -t- 1 if r 3, r T 2 if r > 3.

Case IV. r--- 0 (4),r_> 4. Then

wherea*+2 (1 (R) Sq+ w2 (R) 1)e (R) 1 "1"- 1 (R) (wl (R) 1)r+l;pisan
equivalence through dimension r -t- 1.
We then obtain, via Theorem 4.1, the following (in each case, w and

are the i Stiefel-Whitney classes of the tangent bundle and the normal
bundle of M, respectively)"

THEOREM 5.1. Assume n >_ 4. As above, M is a connected, smooth n-

manifold. Then Im_(M) is as follows.
Case I. n 1 (4), M orientable. Then

Im.n_ (M) Hn- (M; Z) Z @ Z.
Case II. n ------ i (4), M non-orientable. Then

Im2n-1 (M) Hn-i (M; Z[w]) @ Z..
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Case III. n 2 (4), M orientable. Then

Hn-1Imp.,_1 (M) = (M) (R) Z2.

Case IV. n -- 2 (4), M non-orientable. Then

Im,_l(M) K @ Z4
where K is the kernel of Sq H-(M) H (M).

Case V. n 3 (4), M orienMble. Then

Im,_x(M) H"- (M; Z) Za.
Case VI. n 3 (4), M non-orientable. Then

Im2,_l(M) Hn-1 (M; Z[Wl]) @ Z2.

Case VII. n 0 (4), and M immerses in R2n-1. Then

Im,_ (M) = (M).

Proof. Cases I and II. We have an exact sequence

H"-(M; Z[w]) n"-(M) 0 H.(M) Im,_(M)

H"- (M; Z[,]), H" (M) 0

where 0 (u, v) (Sq + @)u + wv. In the oriented case, 0, and, (u, v) (Zq" + ,) -’u,
according to Theorem 4.1. But Sq + O’H"-(M) H"(M), so

0, and the extension is trivial. In the unoriented case, Coker 0
since wv is the top class for some v e (M); there is no extension problem.

Cases III and IV. We have an exact sequence

H"-(M) O H"(M) Im,._(M) H"-(M)0
H- (M), (v) Sqv, andwhere eu (Sq + @)u O. Now for v e

we are done.
Cases V and VI. We have an exact sequence

H"-(M; Z[w]) Hn-(M) O: H (M) Im,_(M)

H"-(M; Z[w]) n" (M) 0

where (u, v) (Sq + @,)u + Sqv. In the orientable case, 0, and
H- Z),v H(u, v) Squ + v v for M1 u e (M; e (M) and we are done.

In the unoriented case, Coker 0 and there is no extension problem.
Cse VII hs tribal proof, which we leave to the reader.

Rark. For cMculation, it is useful to recM1 that by duMity,

H"-(M; Z[,]) H,(M; Z), 0 i 5 n.
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THEOREM 5.2. Let M be a connected smooth n-manifold, for n 1 (4),
n >_ 9. Let. Hn-2 (M) ---> H (M) be multiplication byw Then Im2n_ (M)
is as follows (provided M R’-).

Case I. O. Then Im_ (M) H-(M) Z.
Case II. O, but Tql 0 Hn- (M) H (M). Then

Im_(M) Ker Z.

Case III. Sq O. Then Im_ (M) H- (M).

Proof. We have an exact sequence

Hn- (M)
0 H (M) Im_(M) H-(M) 0

where Ou SqSqu + (2 + W)Sqlu un-2wSqu. Ifxe (M),

:(x) (Sq+ +w)x wx;
we are done.
Examples of manifolds satisfying the three conditions are Pia, P X S1,

and P X S1, respectively (where P real projective/C-space).
Finally, suppose that M is a smooth connected n-manifold, where n 0 (4),

n 8, and M immerses in R-. There is no prticulurly neat way of
expressing the group Im2n-2 in general, but the information below is sufficien.t
to determine it. First of all we have an exact sequence"

U"- (M; Z[wx]) U"-(M) 0 U,_a (M) Im._(M)

H"- (M; Z[w]) Hn-1 (M) 0

where

O(u, v) (Sq + :)u + wv

for all u e H- (M; Z[Wl]) and v e (M) secondly,

e(x, y) (Sq + 2)--lx + qlpx

for all x e H-: (M; Z[w]) such that 2x 0 and all y e H-(M). (p re-
duction modulo 2.)
For completeness’ sake, we mention that if n 2,

Im:(M) Z ifniseven
Z2 ifnisodd

and that if n >_ 1, Im.n+ (M) 0 for all k >_ 1. We leave the proofs to the
reader; cf. [3].

These results extend those in [4] and [10]. In [4], only the cardinality of
the immersion group was computed, while in [10] an exact sequence for the
group was constructed, but no extensions were computed.
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6. Applications to vector fiields

Throughout this section, let M be a smooth connected n-dimensional
manifold. Let V (M) be the set of homotopy classes of k-fields on M.
Now V (M) is in one-to-one correspondence with the set of rel r homotopy
classes of liftings of r to BO,,_k

BO,-k

1
BO,

where r classifies the tangent bundle. If n _> 2/c -t- 2, V (M) is an affine
group [1].

Let B BO,_, and B’ BO, then V (M) --- [M, g; e], where e is the
9.-object defined in the previous section and g M - B is any given lifting
of r. The techniques of the previous sections can then be applied to compute
[M, g; el. We hve a complete answer only in the case k 1.

THEOREM 6.1. If n >_ 4 and M admits a vector field, then

V (i) Un- (/; Z[w]) ( H (M) H(/; Z) @ Z..

Proof. We have a Postnikov tower e, where p is an equivalence through
dimension n"

1- () e----l+,

where a ,,+ (Sq w),_. We have an exact sequence

-- H-(/; X[w])
0 H (i) -+ V H--; (i) -- (M; Z[wl]) -- 0

where
Ox (Sq W w2)x w x wi Sqx SqlSqlx O.

H,-I H,-:If y e (M; X[w]) and 2y O, choose u e (M) such that tu y.
Then,. y Sq + w u -t" Sqlpy w (w u + py

w (wl u + (Sq --t- w)py) SqSqpy 0;
we are done.
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