GROUP EXTENSIONS AND TWISTED COHOMOLOGY THEORIES

BY
L. L. Larmore AnD E. THOMAS'

Introduction

In this paper we continue the study of group extensions initiated in [7].
The specific problem discussed there was the computation of extensions in the
exact sequence of groups obtained by mapping a space into a principal fibra-
tion sequence. Here we consider the same problem, but in a different cate-
gory—the category of spaces “over and under” a fixed space (see [9], [1]).
This means in particular that the solution to the extension problem is given
in terms of “twisted’ cohomology operations [9], whereas in [7] only ordinary
cohomology operations were needed.

In §1 we discuss the category we will use. In §2 we state our extension
problem, and in §§3-4 we give a general solution. Finally, in §§5-6 we give
applications of our theory—in §5 we compute the (affine) group of immer-
sions of an n manifold in R*", while in §6 we compute the (affine) group of
vector 1-fields on a manifold.

1. The Category X;

Let B be a fixed topological space. We define a category Xz as follows:
an object of Xz is an ordered triple (E, &, ) such that F is a topological space,
é : F — B is a continuous function, and é : B — FE is a section of &, i.e.,
608 =15. Ife= (E, & ¢ and y = (Y, 9, §) are objects, we say that
g:e—yisamapif g: F— Y is a topological map and if §og = é and
go & = g; see McClendon and Becker [9], [1]. We say that two maps in Xp
are homotopic if there exists a homotopy of Xs-maps connecting them. Thus,
we have the concept of homotopy equivalence in Xp .

Let X be any spaceand f : X — Bamap. Ife= (F,6,é)andg: X —F
is a map such that éo g = f, we say that g is an f-map. Two f-maps are f-
homotopic if they are connected by a homotopy of f-maps.

Let [X, f; ¢] be the set of f-homotopy classes of f-maps from X to E. If
A C X is a subspace, let [X, A4, f; €] be the set of rel 4 f-homotopy classes of
f-maps X — E which send A to §(B).

Let (K, ko) be a pointed CW complex, and let ¢ = (F, &, ) be an object
in 5. We define ¢ = (E%, &5, &) as follows: EF is the space of all maps
(with the compact-open topology) ¢ : K — E such that g (k) e &(B) and
8ogis constant. For all beB and k e K, & (b) (k) = &(); for all g e E5 ,
(g) = éog(ky). Let Qe = ¢*and Pe = ¢, where S = S'and I = [0, 1]
with basepoint 0.
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Ife= (E,¢&¢) andy = (Y, 4, 9) are Xp-objects, welete X y = (Z, &, 2),
where Z is the pullback:
Z——FE

| e
v—2-B
and Z and 2 are defined in the obvious way.

If 6 : ¢ — y is a map in the category X5, we define the fiber of 6 to be the
object z = (Z, 2, 2), where Z is the pullback:

Z—Y}
6
E——Y

where ¢ is evaluation at 1. Thatis, Z = {(e,g) eE X Y5 |0(e) = g(1)}.
We leave to the reader the definitions of Z and 2. If z is any Xz-object and

h : ¢ — e any map, we say that —h—> e -—0—> y is a fibration sequence if there
a homotopy equivalence ¢ : ¢ — z (in X5, of course) such that the following
triangle is homotopy commutative:

X

¢ h
14

2—> e
where, in both of the above diagrams, p(e, g) = e for all (¢, g) eZ. We
leave to the reader the verification of the following long fibration sequence:

sz m\,ﬂz prﬂe 96 Qy A P e 6 Y.

If f: X — B is any map, where X is a topological space, then [X, f; ]
is a set with a distinguished element, [X, f; Qe] is a group, and [X, f; Q%] is an
Abelian group. If we apply the functor [X, f; ] to a fibration sequence,
we obtain an exact sequence; as the reader can easily verify. (See [6] for a
similar theorem in a slightly more restricted case.)

Let ¢ = (E, ¢, €) be any object of the category Xz, and let (Y, y,) be a
pointed space. We define e /\ Y to be the Xz -object

ENsY,eENY,eNT),

where E /\ Y is the quotient space of £ X Y under the equivalence relation,
(2, yo) ~ (&', yo) whenever éx = &', and (&b, y) ~ (&b, y') for all b ¢ B and
y, ¥ eY. We let [x, y] denote the equivalence class of (x, y) e E X Y,
and let (€N Y)b = [&b, 5] for all beB, and (¢ A Y)[z, y] = éx for all
[, yleENsY.
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If e = (E, ¢ &) is any X5 -object, we write
H*(e; @) = H*(E, §(B); G)

for any group G. We leave it to the reader to verify the following simple
remarks, where F is a field: (Henceforth, we assume that all spaces have
singular homology of finite type.)

Remark 1.1. 1If e and ¢’ are %5 -objects,
H*(e X ¢;F) = H*(e; F) ® » H*(¢/; F).
Remark 1.2. If ¢ is an %5 -object and Y is a pointed space,
H*e NY;F) = H*(e; F) ® » H(Y; F).
2. The problem
Suppose 6 : ¢ — y is any twice deloopable xXp —map, i.e., there exist %y -
objects ¢” and y” and a map 6” such that Q%" = e, Qy” =y, and Q°6” = 6.
Let X be a CW-complex and f : X — E a map. According to §1, we then have
an exact sequence of Abelian groups:
0—— A = Coker Wy —— [X, f; 2] =25 C = Ker gy — 0

where p : z — e is the fiber of 6. Our problem is to evaluate [X, f; 2] as an
extension of C by A.

DeriniTION 2.1. For each positive integer n, let
C, = {xeC|nx = 0}.
Let ®, : C, — A/nA be the homomorphism given by
&, (z) = Ngnpg'z forall zeC,.

According to Theorem 5.1 of [6], it is only necessary to know &, for all n
which are powers of primes in order to solve our problem. If 24 = 0 or
2C = 0, it suffices to know &®; .

3. The general theory
Suppose that ¢ : v — w is any map in the category X5 ; we then have a
long fibration sequence

Qo tid Qw x,u v v 'p,w

where u is the fiber of . Let X be a CW complex, and let f : X — B be a
map. Let
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400 L. L. LARMORE AND E. THOMAS

be any cofibration of pointed CW complexes. We shall assume that L and
K are suspensions, though 7 need not be a suspension. We leave it to the
reader to verify that the following diagram of %z -objects and maps is com-
mutative, and that all rows and columns are fibration sequences (this diagram
is analogous to diagram (2.5) of [7]):

Q"
Q0"
7
x Qu L
Quw Qu
K L
X X
3
(2 L
(3.1) w "y
K L
Y Y
7
v ) v
vSL ’vK/L K vL
0SL OK/L 0K
w w'’ w?
wSK wSL wK/L wK

If we apply the functor [X, f; ]to Diagram (3.1), we obtain a commutative
diagram of groups with exact rows and columns:

r q
X, f; V"2 (X, f; 052
08L oK/ L

r q
(X, f; w22, ¥ (X, Fw 25X, f; w0,

X, f; @'
Q04
X, f; 20225, [X, £; u']
(32) x5 i
X, f; WS 1—25 (X, f; u']
’Y# ﬁ
q 7
L IX, f; o 1—25 X, f; 0]
0%
q
R IX, f; w5
We define maps

® : Ker vy n Ker 65 — [X, f; Qw")/Qwi[X, f; Quw™] + Q6g[X, f; "],
& : Ker vy n Ker 0§ — [X, f; w™/w§[X, f; w™] + 641X, f; v**
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as follows: for any « e [X, f; v*] such that vy 2 = 0 and 6§ = 0, let
®(z) = (x4) 'z and ®(2) = (wk) 65" (0§) a.

Now Qw" and w*” are of the same homotopy type in the category s ; we can
identify them in such a manner that the following theorem, analogous to
Theorem 2.5 of [6], holds:

THEOREM 3.2. & = &.

We leave the proof to the reader. Note that if the map 6 is deloopable,
ie., 6 = QY for some ¢, ® = & is a homomorphism.

Remark (added in proof). We take this opportunity to correct an error
(of sign) that occurs in [7]. Namely, Theorem 2.5 should read —®; = &,,
while in Corollary 3.7, a minus sign should be appended to the left hand side
of each equation. The error occurs at the top of page 232 where the fifth
line should read

—¢1 = & (W), ¢ =& (u).

For any integer n > 1 and any group = (where 7 is Abelian if n > 1),
and for any a e H' (B; Aut 7), we say that the %z -object kz(m, n, a) =
(K, k, k) is an Eilenberg MacLane object of type (, n, a) if ks (x, n, @) is of
the homotopy type of an object (K, k, ) where & : K — B is a fibration with
fiber an Eilenberg-MacLane space of type (w, n), and if o classifies the action
of the fundamental group of B on , of that fiber. See Gitler [2] and Siegel [11]
for construction of ks (w, n, a), which we briefly describe as follows. Let K’
be an Eilenberg-MacLane space of type (m, n), and let I' = Aut =, the auto-
morphism group of 7, which acts on K’ in the obvious way. Let W be a I'-free
acyclic complex. Now projection onto the second factor, p : K’ X W — W
induces a fibration

q: K'XW/T—>W/T =K(T,1).

Let f, : B— K (T, 1) be a map which classifies a, and define K and £ by the
pullback diagram
K— K X W/T

ool
B, k(r,1)
Inclusion along the second factor W — K’ X W induces a lifting
K(,1) - K X W/T

which induces the lifting & : B — K.
Now if (X, A) is a CW pair and f : X — B is a map, then

X, 4, 7 kg(m, n, a)] = Hn(X’ 4; W[f*a])’

where #[f*a] is the local system of groups over X, isomorphic to =, classified
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by ffa e H'(X, T). Let v, e H* (K, k(B); wla]) be the fundamental class of
ks (mw, n, @), classified by the identity map.

In the special case that # = Z,, then I' = 0. We write kz(Z,, n) for
kB (Z2 , Ny O).

Let @ be the mod 2 Steenrod algebra; take cohomology with Z, coefficients.
We define an algebra over Z, , H* (B) @, the semi-tensor product (see [8]),
as follows. As a module over Z,, H*(B)-@ = H*(B) ® @. Its multiplica-
tion is the composition

HB) ® @ ® H*B) @ ¢ L2481

H*(B) ® H*(B) ® @ ® @

o ®M gy ea

where A is the composition

y 2@l seee m*B) L9 L s H*B) ®a

2®1 y*B) ®a

e ® H*(B

where p is the comultiplication of @, T exchanges coordinates, and « is the
action of @ on H*(B).

Now if (X, A) isa CW pair and f : X — B is a map, H*(X, A) is a module
over H*(B)-@ in an obvious way; if

reH*(X,A) and b ® 60¢H*(B)-Q,

for be H*(B) and 0 ¢ @, then let (b ® 6)z = (f*b)6z. We leave it to the
reader to verify this action.

Let » > 1 and m > 1 be integers. Let v and 7 be groups; = Abelian if
n > 1, 7 Abelian if m > 1. Let a e H'(B; Aut =) and b e H' (B; Aut 7).
Let

[kB (7": n, a); kB (T) m, b)]
denote [K, k(B), k; ks (r, m, b)], where ks (r, n, a) = (K, k, £). The ele-
ments of
[kB (71', n, a’); kB (T: m, b)]

we call cohomology operations of type (r, n, a; 7, m, b).
Applying the functor @ to any map, we obtain a ‘“‘suspension”

o [kB("r’ b3 a’); kB(T) m’ b)] i [kB(Wy n — 11 a’); kB(T) m — 13 b)]

if n, m > 1. Let 'y denote oy for any ¢.

If = and 7 are Abelian and if % is any integer, let $*[r, a, r, b] denote the set
of stable operations of type (=, a, 7, b) and degree k, defined as the inverse
limit as n approaches « (via o) of [kz (7, n, a); ks (7, n + k, b)].

Finally, we remark that H*(B)-@ can be identified with $*[Z,, Z,], the
algebra of stable operations of type (Z:, 0, Z,, 0) as follows: if » and m are
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integers and b ® 0 ¢ H*(B)-@, let b ® 6 correspond to
(b® ) = (k)0 e H" (K, k(B); Z2) = ks (Z2, n); k5 (Z2, m)]

where ks (Zs, n) = (K, k, k).

We wrote @ = H*(B)-@. Let ¢: @5 — @p be the homomorphism, of
degree —1, given by ¢(b ® 6) = b ® &6, where £ : @ — @ is the Kristensen
map, dual to multiplication by & in the dual algebra [4]. For any ¢ ¢ G,
welet ¥ = ey. [5], [7].

4. The functor P

Henceforth in this paper, all coefficients will be in Z,, unless otherwise
specified.
Consider diagram (3.2) with the cofibration

s 2,84, p T g S @

where S = S' and v is multiplication by 2. Then —® = &, which equals the
homomorphism &, defined in Section 2.

We consider only cases in which » and w are both Eilenberg-MacLane
objects of type (Z:, n) or (Z, n, a), and where 0 is a stable cohomology
operation. P is the real projective plane; for ¢ = 1, 2, let ¢' ¢ H* (P) be the
generator mod 2.

We wish to compute the operation

6" : ks (m, n, a)* — kz(r, m, b)",

where 0 : kg (7, n, a) — kg(r, m, b). We first note the following facts: If
9 and 6’ are two cohomology operations where 8 + 6 is meaningful, then
6+ 6)° = 6" + ¢°. If 6 and ¢ are operations where 6 o §’ is meaningful,
then (90 ¢)" = 670 ¢'*.

Henceforth, let k., denote ks (Zs , n) and let k% (o) denote k5 (Z, n, a) for any
integer n > 1 and any a e H' (B). (Since Aut Z = Z,.) If n > 3, we have
(as in the untwisted case) kn(@)® = kns, and k% = ks X ko, where
product is taken in the category Xz, i.e., over B. The proofs are essentially
identical to those of corresponding theorems in the untwisted case [7]; we
leave them to the reader. The following is the analogue of Theorem 3.6 of
[7]:

TuaeoreM 4.1. Let 0 be a stable cohomology operation.

Casel. 0:k,—kn. Then
(BP)*("m—2 ® 1) =02®14+1® ébn—l, and
E)*A® tma) =1 ® Otny.

Case II. 0 : k, — kii1(a) is the Bokstein homomorphism of the exact se-
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gquence of sheaves
0 — Zla] i(—g Zlal — Zy — 0.

Then (6°)* 1= (8¢ + @)ta2® 1 +1® tny.
Case ITI. 0 : k% (a) — ky is reduction mod 2. Then

6°)* (tns ® 1) =tie and U ® tany) = (Sg" + @) tn_s .

Proof. We do the details of the proof only for Case I. The homotopy
equivalence kn—s X k.1 — k7 can be chosen to be adjoint to an %5 -map
ot (Bn2 X kn_a) N\ P — k, such that

lern=Ln—2®1®62+1®bn_1®el.

We have a commutative diagram of %, -objects and maps

(Fuca X kut) A P32,
jo” AP le
(km—Z X km—-l) /\P fm

which induces a commutative diagram in mod 2 cohomology :

H* (ks X Fot) A P) 27 B* (k)
"*e1 0*
H*((kns X Tomt) A P) I™ H* (k).

We have that 8 = Y 1~ (b; ® ;) for some integer N and some choices of
Yie@ and b; e H*(B) (the index ¢ does not denote degree). Note that
b= > b:®¢;). Now

fn 0 tm = fn Z’L=l (bz ® ‘l’i)'vn
=201 bi®Yi(t:01®€+1® 1y ®e))
=2 (0:® i1 +1®@Yit1®e +1® ity ®€)

On the other hand, fo tm = tns ® 1 ® € + 1 ® ity ® ¢. Comparing

coefficients, we see that
(6°)*(tms ® 1) z:tsl B:i® Witn2®1+1® ¥ t01))

=0(h2®1) +0(1 ® tn),

while (7)) (1 ® tma1) = D1m10:® (1 ® ¥ taey) = 0(1 ® tn), as claimed.

5. Applications to immersions

Let = : B — B’ be a fibration, where the fiber is (r — 1)-connected for
some r. If X is a CW complex of dimension n, and if f : X — B’ is a map,
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let L(X, B, f) be the set of rel f homotopy classes of liftings of f to B. If
n < 2r — 2, then L (X, B, f) naturally has the structure of an affine group,
according to Becker [1].

Let us assume that f has a lifting, g. Then L(X, B, f) is naturally an
Abelian group with identity [g], isomorphic to [X, g, e], where e = (E, ¢, é)
is the X -object, where F is the pullback

E— B

lé lvr
B-",p

and é(b) = (b, b) e E for all b e B. To compute the group structure on
L(X, B, f), we then use McClendon’s techniques [9] to obtaiin a Postnikov
tower for e (in the category s, of course), and hence a spectral sequence
for [X, g, e]. (See also [6], Section 5.)

Consider the fibration = : B — B’, where B = BO, and B’ = BO. Let
¢ be the X -object defined above. Let M be a connected, snooth, n-dimen-
sional manifold, and let » : M — B’ classify the stable normal bundle of M.
The set of regular homotopy classes of immersions of M into R"*" is in one-
to-one correspondence with [M, g¢; e], if ¢ : M — B classifies the normal
bundle of any immersion MC R™*". If n < 2r — 2, [M, g¢; €] is an Abelian
group, which we call the immersion group, Im,.,(M), and which does not
depend on the choice of g (up to isomorphism) [1], [3]. In this section we
shall compute Img, (M) for sufficiently small k. Toward that end, we
construct a Postnikov tower for e. In the range we are considering, four
cases are necessary, corresponding to the equivalence class of » modulo 4.

CaseI. r =1 (4),r > 5. The following diagram is the first two stages
of the Postnikov tower for e (recall that all objects and maps in this diagram
are in the category Xz):

D
krya—>seg
™

o
kr = €1 “"—’kr+2

where a*i,12 W (1 ® S¢* + ws ® 1)1,. Also, k.1 is the fiber of =, e, is the
fiber of @, and p is an equivalence through dimension r + 1;1i.e.,

px 2 [X, h; el > [X, h; 6]

is an isomorphism for any complex X of dimension <r + 1.
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Case II. r = 2 (4), r > 6. The Postnikov tower of e, where p is an
equivalence through dimension r 4 2, begins

D

€

kr+1

EF (wi) X Fray = S——skri

where a*te = 1 ® S 4+ w, ® DN, ® 1 +1® (1 ® 8¢")trpr .
Case III. r =3 (4),r > 3. Then

e

D

krya—ez
o
by = e;—— ks

where a*i,43 = (1 ® S¢’Sq" + (ws + wi) ® S¢')w ; p is an equivalence
through dimension r + 1if r = 3, r + 2if r > 3.
Case IV. r=0 (4),r > 4. Then

D

kr+1"""—’ (23

EF (w1) X Frir = 65— >Torps

where a*i00 = 1 ® 8¢ +w, ® 1), ® 1 +1 ® (w1 ® 1)eppa; pis an
equivalence through dimension r + 1.

We then obtain, via Theorem 4.1, the following (in each case, w; and w;
are the +™ Stiefel-Whitney classes of the tangent bundle and the normal
bundle of M, respectively):

TeEOREM 5.1. Assume n > 4. As above, M is a connected, smooth n-

manifold. Then Imy,_1 (M) 7s as follows.
CaseI. n =1 (4), M orientable. Then
Impu s (M) X H ' (M;2) © Z: ® Zs .
Case II. n =1 (4), M non-orientable. Then
Img, s (M) = H* ™ (M; Zlw\]) ® Zs .
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Case III. n = 2 (4), M orientable. Then
Img (M) = H (M) @ Zs.
Case IV. n = 2 (4), M non-orientable. Then
Imp (M) =K @ Z4,

where K is the kernel of Sq*' : H" (M) — H"(M).
Case V. n = 3 (4), M orientable. Then

Img, (M) =X H (M;Z) @ Zi.
Case VI. n = 3 (4), M non-orientable. Then
Img,—1 (M) = H" (M ; Zlwi]) @ Z..
Case VII. n = 0 (4), and M immerses in R*"". Then
Img, 3 (M) = H*™ (M).

Proof. Cases I and II. We have an exact sequence

e HYEM; Zlwy) @ H™ (M)~ B (M) — Tman_1 (M)
— H" ' (M; Zlwi]) ® H*(M) — 0
where 0 (u, v) = (S¢" + W:)u + ww. In the oriented case, § = 0, and
@ (u,v) = (8" + ) 67w,

according to Theorem 4.1. But S¢* + w, = 0: H* *(M) — H"(M), so

®, = 0, and the extension is trivial. In the unoriented case, Coker § = 0

since wi is the top class for some » ¢ H"™* (M) ; there is no extension problem.
Cases III and IV. We have an exact sequence

S H ) = B — Tmae (M) — H™N (M) — 0
where 6u = (S¢® + w)u = 0. Now for v e H" (M), ® () = Sq'v, and
we are done.
Cases V and VI. We have an exact sequence
s H™N M Zlw) @ H™' (M) ——s H" (M) — Tmagn-y (M)
— H" ' (M; Zw]) ® H*(M) — 0

where 0(u, v) = (S¢® + w.)u + Sq¢'v. In the orientable case, § = 0, and
&, (u,v) = Sq'u +v = vforallu e H" " (M; Z), v e H* (M), and we are done.
In the unoriented case, Coker § = 0 and there is no extension problem.

Case VII has a trivial proof, which we leave to the reader.

Remark. For calculation, it is useful to recall that by duality,
H™(M; Zlw]) = H:(M; Z), 0<i<n
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TrEOREM 5.2. Let M be a connected smooth n-manifold, for n = 1 (4),
n>9. Lety: H" (M) — H" (M) be multiplicationby wi . Then Img,_o (M )
is as follows (provided M < R*™%).

Casel. v =0. ThenImy, (M) =X H" (M) @ Z,.
Case II. v 5 0, butvSq' = 0 : H**(M) — H™"(M). Then

Imgn_g (M) >~ Ker Y ® ZA .
Case III. v Sq¢" £ 0. Then Tmy,_o (M) = H"*(M).
Proof. We have an exact sequence

0

- H™(M) > H" (M) — Img,_s (M) — H (M) — 0

where 6u = S¢’Sq'u + (1, + wi)Sq'v = wiSqu. If x e H" > (M),
@ (z) = (8¢" + M + wi)z = wiz;
we are done.
Examples of manifolds satisfying the three conditions are Py, P, X S,
and Py X S", respectively (where P; = real projective k-space).
Finally, suppose that M is a smooth connected n-manifold, where n = 0 (4),
n > 8, and M immerses in R**. There is no particularly neat way of

expressing the group Ims,_» in general, but the information below is sufficient
to determine it. First of all we have an exact sequence:

s M Zlwn]) © H™ M)~ H™ (M) — Tman s (M)
— H"*(M; Zlwy]) ® H" (M) — 0
where
0(u, v) = (8¢ + W)u + ww
for all w e H" > (M ; Zwi]) and v e H" > (M) : secondly,
@ (2, y) = (S¢" + )8 'z + Sq'px

for all e H" (M ; Z[wy]) such that 2z = 0 and all y e H"*(M). (p = re-
duction modulo 2.)
For completeness’ sake, we mention that if n > 2,

Imy, (M) =2 Z if nis even
=~ 7, if nisodd

and that if n > 1, Img,x (M) = Oforallk > 1. We leave the proofs to the
reader; cf. [3].

These results extend those in [4] and [10]. In [4], only the cardinality of
the immersion group was computed, while in [10] an exact sequence for the
group was constructed, but no extensions were computed.
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6. Applications fo vector fiields

Throughout this section, let 3 be a smooth connected n-dimensional
manifold. Let V*(M) be the set of homotopy classes of k-fields on M.
Now V*(M) is in one-to-one correspondence with the set of rel + homotopy
classes of liftings of 7 to BO,_ :

BOn—k

|

M- Bo,

where 7 classifies the tangent bundle. If n > 2k + 2, V*(M) is an affine
group [1].

Let B = BO,_., and B’ = BO, ; then V*(M) = [M, g; e], where ¢ is the
X5 -object defined in the previous section and g : M — B is any given lifting
of . The techniques of the previous sections can then be applied to compute
[M, g;e]l. Wehave a complete answer only in the case kb = 1.

TuroreM 6.1. If n > 4 and M admits a vector field, then
ViM) = H'(M; Zlwy]) ® H"(M) = H\(M;Z) ® Z,.

Proof. We have a Postnikov tower e, where p is an equivalence through
dimension n:

e

v/

ky——>se3

i (1) = &—>knt1
where a*1,41 = (S¢" + w2) 1. We have an exact sequence
s B X)) —2s HY () — V(M) — B (M Zlws]) — 0

where
bz = (S¢" + wo)z = wi z = wy Sg'z = S¢'Sq'z = 0.

If y e H"(M; X[wy]) and 2y = 0, choose u e H* (M) such that su
Then

By = (8¢ + we)u + Sq'py = wi(wru + py)
= wi(wiu+ (S¢ + w)py) = S¢'Sq'py

Il
<

I
2

we are done.
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