GROUP EXTENSIONS AND TWISTED COHOMOLOGY THEORIES

BY

L. L. LARMORE AND E. THOMAS¹

Introduction

In this paper we continue the study of group extensions initiated in [7]. The specific problem discussed there was the computation of extensions in the exact sequence of groups obtained by mapping a space into a principal fibration sequence. Here we consider the same problem, but in a different category—the category of spaces "over and under" a fixed space (see [9], [1]). This means in particular that the solution to the extension problem is given in terms of "twisted" cohomology operations [9], whereas in [7] only ordinary cohomology operations were needed.

In §1 we discuss the category we will use. In §2 we state our extension problem, and in §§3-4 we give a general solution. Finally, in §§5-6 we give applications of our theory—in §5 we compute the (affine) group of immersions of an n manifold in \mathbb{R}^{2n-1} , while in §6 we compute the (affine) group of vector 1-fields on a manifold.

1. The Category \mathfrak{X}_{B}

Let B be a fixed topological space. We define a category \mathfrak{X}_B as follows: an object of \mathfrak{X}_B is an ordered triple (E, \check{e}, \hat{e}) such that E is a topological space, $\hat{e}: E \to B$ is a continuous function, and $\check{e}: B \to E$ is a section of \hat{e} , i.e., $\hat{e} \circ \check{e} = \mathbf{1}_B$. If $e = (E, \check{e}, \hat{e})$ and $y = (Y, \check{y}, \hat{y})$ are objects, we say that $g: e \to y$ is a map if $g: E \to Y$ is a topological map and if $\hat{y} \circ g = \hat{e}$ and $g \circ \check{e} = \check{y}$; see McClendon and Becker [9], [1]. We say that two maps in \mathfrak{X}_B are homotopic if there exists a homotopy of \mathfrak{X}_B -maps connecting them. Thus, we have the concept of homotopy equivalence in \mathfrak{X}_B .

Let X be any space and $f: X \to B$ a map. If $e = (E, \check{e}, \hat{e})$ and $g: X \to E$ is a map such that $\hat{e} \circ g = f$, we say that g is an f-map. Two f-maps are f-homotopic if they are connected by a homotopy of f-maps.

Let [X, f; e] be the set of f-homotopy classes of f-maps from X to E. If $A \subset X$ is a subspace, let [X, A, f; e] be the set of rel A f-homotopy classes of f-maps $X \to E$ which send A to $\check{e}(B)$.

Let (K, k_0) be a pointed CW complex, and let $e = (F, \check{e}, \hat{e})$ be an object in \mathfrak{X}_B . We define $e^{\kappa} = (E_B^{\kappa}, \check{e}^{\kappa}, \hat{e}^{\kappa})$ as follows: E_B^{κ} is the space of all maps (with the compact-open topology) $g: K \to E$ such that $g(k_0) \in \check{e}(B)$ and $\hat{e} \circ g$ is constant. For all $b \in B$ and $k \in K$, $\check{e}^{\kappa}(b)(k) = \check{e}(b)$; for all $g \in E_B^{\kappa}$, $\hat{e}^{\kappa}(g) = \hat{e} \circ g(k_0)$. Let $\Omega e = e^{s}$ and $Pe = e^{I}$, where $S = S^{I}$ and I = [0, 1]with basepoint 0.

Received June 26, 1971

¹ Research supported by a grant from the National Science Foundation.

If $e = (E, \check{e}, \hat{e})$ and $y = (Y, \check{y}, \hat{y})$ are \mathfrak{X}_B -objects, we let $e \times y = (Z, \check{z}, \hat{z})$, where Z is the pullback:

$$egin{array}{ccc} Z & \longrightarrow & E \ & & & & \downarrow \ & & & Y & \longrightarrow \ & & & & B \end{array}$$

and \hat{z} and \hat{z} are defined in the obvious way.

If $\theta : e \to y$ is a map in the category \mathfrak{X}_B , we define the *fiber* of θ to be the object $z = (Z, \check{z}, \hat{z})$, where Z is the pullback:

where ε is evaluation at 1. That is, $Z = \{(e, g) \in E \times Y_B^I | \theta(e) = g(1)\}$. We leave to the reader the definitions of \check{z} and \hat{z} . If x is any \mathfrak{X}_B -object and $h: x \to e$ any map, we say that $x \xrightarrow{h} e \xrightarrow{\theta} y$ is a fibration sequence if there a homotopy equivalence $\phi: x \to z$ (in \mathfrak{X}_B , of course) such that the following triangle is homotopy commutative:

where, in both of the above diagrams, p(e, g) = e for all $(e, g) \epsilon Z$. We leave to the reader the verification of the following long fibration sequence:

$$\Omega^2 y \xrightarrow{\Omega \lambda} \Omega z \xrightarrow{\Omega p} \Omega e \xrightarrow{\Omega \theta} \Omega y \xrightarrow{\lambda} z \xrightarrow{p} e \xrightarrow{\theta} y.$$

If $f: X \to B$ is any map, where X is a topological space, then [X, f; e] is a set with a distinguished element, $[X, f; \Omega e]$ is a group, and $[X, f; \Omega^2 e]$ is an Abelian group. If we apply the functor [X, f;] to a fibration sequence, we obtain an exact sequence; as the reader can easily verify. (See [6] for a similar theorem in a slightly more restricted case.)

Let $e = (E, \check{e}, \hat{e})$ be any object of the category \mathfrak{X}_B , and let (Y, y_0) be a pointed space. We define $e \wedge Y$ to be the \mathfrak{X}_B -object

$$(E \wedge _{B} Y, \check{e} \wedge Y, \hat{e} \wedge Y),$$

where $E \wedge_B Y$ is the quotient space of $E \times Y$ under the equivalence relation, $(x, y_0) \sim (x', y_0)$ whenever $\hat{e}x = \hat{e}x'$, and $(\check{e}b, y) \sim (\check{e}b, y')$ for all $b \in B$ and $y, y' \in Y$. We let [x, y] denote the equivalence class of $(x, y) \in E \times Y$, and let $(\check{e} \wedge Y)b = [\check{e}b, y_0]$ for all $b \in B$, and $(\hat{e} \wedge Y)[x, y] = \hat{e}x$ for all $[x, y] \in E \wedge_B Y$.

If $e = (E, \check{e}, \hat{e})$ is any \mathfrak{X}_B -object, we write

$$H^{*}(e; G) = H^{*}(E, \check{e}(B); G)$$

for any group G. We leave it to the reader to verify the following simple remarks, where F is a field: (Henceforth, we assume that all spaces have singular homology of finite type.)

Remark 1.1. If e and e' are \mathfrak{X}_B -objects,

$$H^{*}(e \times e'; F) = H^{*}(e; F) \otimes _{F} H^{*}(e'; F).$$

Remark 1.2. If e is an \mathfrak{X}_{B} -object and Y is a pointed space,

 $H^*(e \wedge Y; F) = H^*(e; F) \otimes_{\mathbf{F}} H^*(Y; F).$

2. The problem

Suppose $\theta : e \to y$ is any twice deloopable \mathfrak{X}_B -map, i.e., there exist \mathfrak{X}_B -objects e'' and y'' and a map θ'' such that $\Omega^2 e'' = e$, $\Omega^2 y'' = y$, and $\Omega^2 \theta'' = \theta$. Let X be a CW-complex and $f : X \to E$ a map. According to §1, we then have an exact sequence of Abelian groups:

$$0 \longrightarrow A = \operatorname{Coker} \Omega \theta_{\#} \xrightarrow{\lambda_{\#}} [X, f; z] \xrightarrow{p_{\#}} C = \operatorname{Ker} \theta_{\#} \longrightarrow 0$$

where $p: z \to e$ is the fiber of θ . Our problem is to evaluate [X, f; z] as an extension of C by A.

DEFINITION 2.1. For each positive integer n, let

$$C_n = \{x \in C \mid nx = 0\}$$

Let $\Phi_n: C_n \to A/nA$ be the homomorphism given by

$$\Phi_n(x) = \lambda_{\#}^{-1} n p_{\#}^{-1} x \quad \text{for all } x \in C_n.$$

According to Theorem 5.1 of [6], it is only necessary to know Φ_n for all n which are powers of primes in order to solve our problem. If 2A = 0 or 2C = 0, it suffices to know Φ_2 .

3. The general theory

Suppose that $\psi: \iota \to w$ is any map in the category \mathfrak{X}_B ; we then have a long fibration sequence

$$\Omega v \xrightarrow{\Omega \psi} \Omega w \xrightarrow{\chi} u \xrightarrow{\gamma} v \xrightarrow{\psi} w$$

where u is the fiber of ψ . Let X be a CW complex, and let $f: X \to B$ be a map. Let

$$L \xrightarrow{i} K \xrightarrow{q} K/L \xrightarrow{r} SL \xrightarrow{Si} SK$$

be any cofibration of pointed CW complexes. We shall assume that L and K are suspensions, though i need not be a suspension. We leave it to the reader to verify that the following diagram of \mathfrak{X}_B -objects and maps is commutative, and that all rows and columns are fibration sequences (this diagram is analogous to diagram (2.5) of [7]):

If we apply the functor [X, f;] to Diagram (3.1), we obtain a commutative diagram of groups with exact rows and columns:

We define maps

$$\begin{split} \Phi &: \operatorname{Ker} v_{\$}^{i} \cap \operatorname{Ker} \theta_{\$}^{\mathsf{K}} \to [X, f; \Omega w^{L}] / \Omega w_{\$}^{i}[X, f; \Omega w^{\mathsf{K}}] + \Omega \theta_{\$}^{\mathsf{L}}[X, f; \Omega v^{L}], \\ \tilde{\Phi} &: \operatorname{Ker} v_{\$}^{i} \cap \operatorname{Ker} \theta_{\$}^{\mathsf{K}} \to [X, f; w^{sL}] / w_{\$}^{Si}[X, f; w^{sK}] + \theta_{\$}^{SL}[X, f; v^{sL}] \end{split}$$

as follows: for any $x \in [X, f; v^{\kappa}]$ such that $v_{\#}^{i} x = 0$ and $\theta_{\#}^{\kappa} x = 0$, let

$$\Phi(x) = (\chi_{\$}^{L})^{-1}x \text{ and } \tilde{\Phi}(x) = (w_{\$}^{r})^{-1}\theta_{\$}^{K/L}(v_{\$}^{q})^{-1}x.$$

Now Ωw^L and w^{SL} are of the same homotopy type in the category \mathfrak{X}_B ; we can identify them in such a manner that the following theorem, analogous to Theorem 2.5 of [6], holds:

Theorem 3.2. $\Phi = \tilde{\Phi}$.

We leave the proof to the reader. Note that if the map θ is deloopable, i.e., $\theta = \Omega \psi$ for some ψ , $\Phi = \tilde{\Phi}$ is a homomorphism.

Remark (added in proof). We take this opportunity to correct an error (of sign) that occurs in [7]. Namely, Theorem 2.5 should read $-\Phi_1 = \Phi_2$, while in Corollary 3.7, a minus sign should be appended to the left hand side of each equation. The error occurs at the top of page 232 where the fifth line should read

$$-\phi_1 = \tilde{\Phi}_1$$
 (u), $\phi_2 = \tilde{\Phi}_2$ (u).

For any integer $n \geq 1$ and any group π (where π is Abelian if n > 1), and for any $a \in H^1(B; \operatorname{Aut} \pi)$, we say that the \mathfrak{X}_B -object $k_B(\pi, n, a) =$ (K, \check{k}, \hat{k}) is an Eilenberg MacLane object of type (π, n, a) if $k_B(\pi, n, a)$ is of the homotopy type of an object (K, \check{k}, \hat{k}) where $\hat{k} : K \to B$ is a fibration with fiber an Eilenberg-MacLane space of type (π, n) , and if a classifies the action of the fundamental group of B on π_n of that fiber. See Gitler [2] and Siegel [11] for construction of $k_B(\pi, n, a)$, which we briefly describe as follows. Let K'be an Eilenberg-MacLane space of type (π, n) , and let $\Gamma = \operatorname{Aut} \pi$, the automorphism group of π , which acts on K' in the obvious way. Let W be a Γ -free acyclic complex. Now projection onto the second factor, $p : K' \times W \to W$ induces a fibration

$$q: K' \times W/\Gamma \to W/\Gamma = K(\Gamma, 1).$$

Let $f_a: B \to K(\Gamma, 1)$ be a map which classifies a, and define K and \hat{k} by the pullback diagram

$$\begin{array}{c} K \longrightarrow K' \times W/\mathbf{I} \\ \downarrow \hat{k} \qquad \qquad \downarrow q \\ B \xrightarrow{f_a} K(\Gamma, 1) \end{array}$$

Inclusion along the second factor $W \to K' \times W$ induces a lifting

 $K(\Gamma, 1) \to K' \times W/\Gamma$

which induces the lifting $\check{k} : B \to K$.

Now if (X, A) is a CW pair and $f: X \to B$ is a map, then

$$[X, A, f; k_B(\pi, n, a)] = H^n(X, A; \pi[f^*a]),$$

where $\pi[f^*a]$ is the local system of groups over X, isomorphic to π , classified

by $f^*a \ \epsilon \ H^1(X, \Gamma)$. Let $\iota_n \ \epsilon \ H^n(K, k(B); \pi[a])$ be the fundamental class of $k_B(\pi, n, a)$, classified by the identity map.

In the special case that $\pi = Z_2$, then $\Gamma = 0$. We write $k_B(Z_2, n)$ for $k_B(Z_2, n, 0)$.

Let \mathfrak{A} be the mod 2 Steenrod algebra; take cohomology with Z_2 coefficients. We define an algebra over Z_2 , $H^*(B) \cdot \mathfrak{A}$, the semi-tensor product (see [8]), as follows. As a module over Z_2 , $H^*(B) \cdot \mathfrak{A} = H^*(B) \otimes \mathfrak{A}$. Its multiplication is the composition

$$H^{*}(B) \otimes \mathfrak{a} \otimes H^{*}(B) \otimes \mathfrak{a} \xrightarrow{1 \otimes A \otimes 1} H^{*}(B) \otimes H^{*}(B) \otimes \mathfrak{a} \otimes \mathfrak{a}$$

 $\xrightarrow{\smile \otimes M} H^{*}(B) \otimes \mathfrak{a}$

where A is the composition

$$\mathfrak{a} \otimes H^{*}(B) \xrightarrow{\mu \otimes 1} \mathfrak{a} \otimes \mathfrak{a} \otimes H^{*}(B) \xrightarrow{1 \otimes T} \mathfrak{a} \otimes H^{*}(B) \otimes \mathfrak{a}$$
$$\xrightarrow{\alpha \otimes 1} H^{*}(B) \otimes \mathfrak{a}$$

where μ is the comultiplication of α , T exchanges coordinates, and α is the action of α on $H^*(B)$.

Now if (X, A) is a CW pair and $f: X \to B$ is a map, $H^*(X, A)$ is a module over $H^*(B) \cdot a$ in an obvious way; if

$$x \in H^*(X, A)$$
 and $b \otimes \theta \in H^*(B) \cdot \alpha$,

for $b \in H^*(B)$ and $\theta \in \alpha$, then let $(b \otimes \theta)x = (f^*b)\theta x$. We leave it to the reader to verify this action.

Let $n \ge 1$ and $m \ge 1$ be integers. Let π and τ be groups; π Abelian if n > 1, τ Abelian if m > 1. Let $a \in H^1(B; \text{Aut } \pi)$ and $b \in H^1(B; \text{Aut } \tau)$. Let

 $[k_B(\pi, n, a); k_B(\tau, m, b)]$

denote $[K, \check{k}(B), k; k_B(\tau, m, b)]$, where $k_B(\pi, n, a) = (K, \check{k}, \hat{k})$. The elements of

 $[k_B(\pi, n, a); k_B(\tau, m, b)]$

we call cohomology operations of type $(\pi, n, a; \tau, m, b)$.

Applying the functor Ω to any map, we obtain a "suspension"

$$\sigma: [k_B(\pi, b, a); k_B(\tau, m, b)] \to [k_B(\pi, n - 1, a); k_B(\tau, m - 1, b)]$$

if n, m > 1. Let ${}^{1}\psi$ denote $\sigma\psi$ for any ψ .

If π and τ are Abelian and if k is any integer, let $\mathbb{S}^{k}[\pi, a, \tau, b]$ denote the set of stable operations of type (π, a, τ, b) and degree k, defined as the inverse limit as n approaches ∞ (via σ) of $[k_{B}(\pi, n, a); k_{B}(\tau, n + k, b)]$.

Finally, we remark that $H^*(B) \cdot \alpha$ can be identified with $S^*[Z_2, Z_2]$, the algebra of stable operations of type $(Z_2, 0, Z_2, 0)$ as follows: if *n* and *m* are

integers and $b \otimes \theta \in H^*(B) \cdot \alpha$, let $b \otimes \theta$ correspond to

$$(b \otimes \theta)\iota_{n} = (k^{*}b)\theta\iota_{n} \in H^{m}(K, k(B); Z_{2}) = [k_{B}(Z_{2}, n); k_{B}(Z_{2}, m)]$$

where $k_B(Z_2, n) = (K, \check{k}, \hat{k})$.

We wrote $\alpha_B = H^*(B) \cdot \alpha$. Let $\varepsilon : \alpha_B \to \alpha_B$ be the homomorphism, of degree -1, given by $\varepsilon(b \otimes \theta) = b \otimes \varepsilon\theta$, where $\varepsilon : \alpha \to \alpha$ is the Kristensen map, dual to multiplication by ξ_1 in the dual algebra [4]. For any $\psi \in \alpha_B$, we let $\tilde{\psi} = \varepsilon \psi$. [5], [7].

4. The functor P

Henceforth in this paper, all coefficients will be in \mathbb{Z}_2 , unless otherwise specified.

Consider diagram (3.2) with the cofibration

$$S \xrightarrow{\gamma} S \xrightarrow{q} P \xrightarrow{r} S^2 \xrightarrow{S\gamma} S^2,$$

where $S = S^1$ and γ is multiplication by 2. Then $-\tilde{\Phi} = \Phi$, which equals the homomorphism Φ_2 defined in Section 2.

We consider only cases in which v and w are both Eilenberg-MacLane objects of type (Z_2, n) or (Z, n, a), and where θ is a stable cohomology operation. P is the real projective plane; for i = 1, 2, let $e^i \epsilon H^i(P)$ be the generator mod 2.

We wish to compute the operation

$$\theta^P: k_B(\pi, n, a)^P \to k_B(\tau, m, b)^P,$$

where $\theta : k_B(\pi, n, a) \to k_B(\tau, m, b)$. We first note the following facts: If θ and θ' are two cohomology operations where $\theta + \theta'$ is meaningful, then $(\theta + \theta')^P = \theta^P + {\theta'}^P$. If θ and θ' are operations where $\theta \circ \theta'$ is meaningful, then $(\theta \circ \theta')^P = \theta^P \circ {\theta'}^P$.

Henceforth, let k_n denote $k_B(Z_2, n)$ and let $k_n^*(a)$ denote $k_B(Z, n, a)$ for any integer $n \ge 1$ and any $a \in H^1(B)$. (Since Aut $Z \cong Z_2$.) If $n \ge 3$, we have (as in the untwisted case) $k_n^*(a)^P = k_{n-2}$, and $k_n^p = k_{n-2} \times k_{n-1}$, where product is taken in the category \mathfrak{X}_B , i.e., over B. The proofs are essentially identical to those of corresponding theorems in the untwisted case [7]; we leave them to the reader. The following is the analogue of Theorem 3.6 of [7]:

THEOREM 4.1. Let θ be a stable cohomology operation.

Case I.
$$\theta : k_n \to k_m$$
. Then
 $(\theta^P)^*(\iota_{m-2} \otimes 1) = \theta \iota_{n-2} \otimes 1 + 1 \otimes \tilde{\theta} \iota_{n-1}, \text{ and}$
 $(\theta^P)^*(1 \otimes \iota_{m-1}) = 1 \otimes \theta \iota_{n-1}.$

Case II. $\theta: k_n \to k_{n+1}^*(a)$ is the Bokstein homomorphism of the exact se-

quence of sheaves

$$0 \to Z[a] \xrightarrow{X \ 2} Z[a] \to Z_2 \to 0.$$

Then $(\theta^P)^* \iota_{n-1} = (Sq^1 + a)\iota_{n-2} \otimes 1 + 1 \otimes \iota_{n-1}$. Case III. $\theta : k_n^*(a) \to k_n$ is reduction mod 2. Then

 $(\theta^{P})^{*}(\iota_{n-2} \otimes 1) = \iota_{n-2} \quad and \quad (\theta^{P})^{*}(1 \otimes \iota_{n-1}) = (Sq^{1} + a)\iota_{n-2}.$

Proof. We do the details of the proof only for Case I. The homotopy equivalence $k_{n-2} \times k_{n-1} \to k_n^p$ can be chosen to be adjoint to an \mathfrak{X}_B -map $f_n: (k_{n-2} \times k_{n-1}) \wedge P \to k_n$ such that

$$f_n^* \iota_n = \iota_{n-2} \otimes 1 \otimes e^2 + 1 \otimes \iota_{n-1} \otimes e^1.$$

We have a commutative diagram of \mathfrak{X}_B -objects and maps

$$(k_{n-2} \times k_{n-1}) \land P \xrightarrow{f_n} k_n \\ \downarrow \theta^p \land P \qquad \qquad \downarrow \theta \\ (k_{m-2} \times k_{m-1}) \land P \xrightarrow{f_m} k_m$$

which induces a commutative diagram in mod 2 cohomology:

$$H^{*}((k_{n-2} \times k_{n-1}) \wedge P) \xleftarrow{f_{n}^{*}} H^{*}(k_{n})$$

$$\uparrow (\theta^{p})^{*} \otimes 1 \qquad \uparrow \theta^{*}$$

$$H^{*}((k_{m-2} \times k_{m-1}) \wedge P) \xleftarrow{f_{m}^{*}} H^{*}(k_{m}).$$

We have that $\theta = \sum_{i=1}^{N} (b_i \otimes \psi_i)$ for some integer N and some choices of $\psi_i \epsilon \alpha$ and $b_i \epsilon H^*(B)$ (the index *i* does not denote degree). Note that $\tilde{\theta} = \sum_{i=1}^{N} (b_i \otimes \tilde{\psi}_i)$. Now

$$f_n^* \theta^* \iota_m = f_n^* \sum_{i=1}^N (b_i \otimes \psi_i) \iota_n$$

= $\sum_{i=1}^N (b_i \otimes \psi_i (\iota_{n-2} \otimes 1 \otimes e^2 + 1 \otimes \iota_{n-1} \otimes e^1))$
= $\sum_{i=1}^N (b_i \otimes (\psi_i \iota_{n-2} \otimes 1 \otimes e^2 + 1 \otimes \psi_i \iota_{n-1} \otimes e^1 + 1 \otimes \tilde{\psi}_i \iota_{n-1} \otimes e^2).$

On the other hand, $f_m^* \iota_m = \iota_{m-2} \otimes 1 \otimes e^2 + 1 \otimes \iota_{m-1} \otimes e^1$. Comparing coefficients, we see that

$$(\theta^{P})^{*}(\iota_{m-2} \otimes 1) = \sum_{i=1}^{N} (b_{i} \otimes (\psi_{i} \iota_{n-2} \otimes 1 + 1 \otimes \tilde{\psi}_{i} \iota_{n-1}))$$

= $\theta(\iota_{n-2} \otimes 1) + \tilde{\theta}(1 \otimes \iota_{n-1}),$

while $(\theta^{P})^{*}(1 \otimes \iota_{m-1}) = \sum_{i=1}^{N} b_{i} \otimes (1 \otimes \psi_{i} \iota_{n-1}) = \theta(1 \otimes \iota_{n-1})$, as claimed.

5. Applications to immersions

Let $\pi: B \to B'$ be a fibration, where the fiber is (r-1)-connected for some r. If X is a CW complex of dimension n, and if $f: X \to B'$ is a map,

let L(X, B, f) be the set of rel f homotopy classes of liftings of f to B. If $n \leq 2r - 2$, then L(X, B, f) naturally has the structure of an affine group, according to Becker [1].

Let us assume that f has a lifting, g. Then L(X, B, f) is naturally an Abelian group with identity [g], isomorphic to [X, g, e], where $e = (E, \check{e}, \hat{e})$ is the \mathfrak{X}_B -object, where E is the pullback

and $\check{e}(b) = (b, b) \epsilon E$ for all $b \epsilon B$. To compute the group structure on L(X, B, f), we then use McClendon's techniques [9] to obtain a Postnikov tower for e (in the category \mathfrak{X}_B , of course), and hence a spectral sequence for [X, g, e]. (See also [6], Section 5.)

Consider the fibration $\pi: B \to B'$, where $B = BO_r$ and B' = BO. Let e be the \mathfrak{X}_B -object defined above. Let M be a connected, snooth, n-dimensional manifold, and let $\nu: M \to B'$ classify the stable normal bundle of M. The set of regular homotopy classes of immersions of M into R^{n+r} is in one-to-one correspondence with [M, g; e], if $g: M \to B$ classifies the normal bundle of any immersion $M \subseteq R^{n+r}$. If $n \leq 2r - 2$, [M, g; e] is an Abelian group, which we call the immersion group, $Im_{n+r}(M)$, and which does not depend on the choice of g (up to isomorphism) [1], [3]. In this section we shall compute $\operatorname{Im}_{2n-k}(M)$ for sufficiently small k. Toward that end, we construct a Postnikov tower for e. In the range we are considering, four cases are necessary, corresponding to the equivalence class of r modulo 4.

Case I. $r \equiv 1$ (4), $r \geq 5$. The following diagram is the first two stages of the Postnikov tower for e (recall that all objects and maps in this diagram are in the category \mathfrak{X}_{B}):

where $\alpha^* \iota_{r+2} W$ $(1 \otimes Sq^2 + w_2 \otimes 1)\iota_r$. Also, k_{r+1} is the fiber of π , e_2 is the fiber of α , and p is an equivalence through dimension r + 1; i.e.,

$$p_{\#}: [X, h; e] \to [X, h; e_2]$$

is an isomorphism for any complex X of dimension $\leq r + 1$.

Case II. $r \equiv 2$ (4), $r \geq 6$. The Postnikov tower of e, where p is an equivalence through dimension r + 2, begins

where $\alpha^* \iota_{r+2} = (1 \otimes Sq^2 + w_2 \otimes 1)\iota_r \otimes 1 + 1 \otimes (1 \otimes Sq^1)\iota_{r+1}$. Case III. $r \equiv 3$ (4), $r \geq 3$. Then

where $\alpha^* \iota_{r+3} = (1 \otimes Sq^2 Sq^1 + (w_2 + w_1^2) \otimes Sq^1)\iota_r$; *p* is an equivalence through dimension r+1 if r=3, r+2 if r>3.

Case IV. $r \equiv 0$ (4), $r \geq 4$. Then

where $\alpha^* \iota_{r+2} = (1 \otimes Sq^2 + w_2 \otimes 1)\iota_r \otimes 1 + 1 \otimes (w_1 \otimes 1)\iota_{r+1}$; p is an equivalence through dimension r + 1.

We then obtain, via Theorem 4.1, the following (in each case, w_i and \bar{w}_i are the i^{th} Stiefel-Whitney classes of the tangent bundle and the normal bundle of M, respectively):

THEOREM 5.1. Assume $n \ge 4$. As above, M is a connected, smooth n-manifold. Then $\text{Im}_{2n-1}(M)$ is as follows.

Case I. $n \equiv 1$ (4), M orientable. Then $\operatorname{Im}_{2n-1}(M) \cong H^{n-1}(M; Z) \oplus Z_2 \oplus Z_2.$

Case II. $n \equiv 1$ (4), M non-orientable. Then

 $\operatorname{Im}_{2n-1}(M) \cong H^{n-1}(M; Z[w_1]) \oplus Z_2.$

Case III. $n \equiv 2$ (4), M orientable. Then $\operatorname{Im}_{2n-1}(M) \cong H^{n-1}(M) \oplus Z_2$. Case IV. $n \equiv 2$ (4), M non-orientable. Then $\operatorname{Im}_{2n-1}(M) \cong K \oplus Z_4$, where K is the kernel of $Sq^1 : H^{n-1}(M) \to H^n(M)$. Case V. $n \equiv 3$ (4), M orientable. Then $\operatorname{Im}_{2n-1}(M) \cong H^{n-1}(M; Z) \oplus Z_4$. Case VI. $n \equiv 3$ (4), M non-orientable. Then $\operatorname{Im}_{2n-1}(M) \cong H^{n-1}(M; Z[w_1]) \oplus Z_2$. Case VII. $n \equiv 0$ (4), and M immerses in \mathbb{R}^{2n-1} . Then $\operatorname{Im}_{2n-1}(M) \cong H^{n-1}(M)$.

Proof. Cases I and II. We have an exact sequence

$$\cdots \to H^{n-2}(M; Z[w_1]) \oplus H^{n-1}(M) \xrightarrow{\theta} H^n(M) \to \operatorname{Im}_{2n-1}(M)$$
$$\to H^{n-1}(M; Z[w_1]) \oplus H^n(M) \to 0$$

where $\theta(u, v) = (Sq^2 + \bar{w}_2)u + w_1 v$. In the oriented case, $\theta = 0$, and $\Phi_2(u, v) = (Sq^2 + \bar{w}_2) \delta^{-1} u$,

according to Theorem 4.1. But $Sq^2 + \bar{w}_2 = 0$: $H^{n-2}(M) \to H^n(M)$, so $\Phi_2 = 0$, and the extension is trivial. In the unoriented case, Coker $\theta = 0$ since $w_1 v$ is the top class for some $v \in H^{n-1}(M)$; there is no extension problem.

Cases III and IV. We have an exact sequence

$$\cdots \to H^{n-2}(M) \xrightarrow{\theta} H^n(M) \to \operatorname{Im}_{2n-1}(M) \to H^{n-1}(M) \to 0$$

where $\theta u = (Sq^2 + \bar{w}_2)u = 0$. Now for $v \in H^{n-1}(M)$, $\Phi_2(v) = Sq^1v$, and we are done.

Cases V and VI. We have an exact sequence

$$\cdots \to H^{n-2}(M; Z[w_1]) \oplus H^{n-1}(M) \xrightarrow{\theta} H^n(M) \to \operatorname{Im}_{2n-1}(M)$$
$$\to H^{n-1}(M; Z[w_1]) \oplus H^n(M) \to 0$$

where $\theta(u, v) = (Sq^2 + \bar{w}_2)u + Sq^1v$. In the orientable case, $\theta = 0$, and $\Phi_2(u, v) = Sq^1u + v = v$ for all $u \in H^{n-1}(M; Z)$, $v \in H^n(M)$, and we are done. In the unoriented case, Coker $\theta = 0$ and there is no extension problem.

Case VII has a trivial proof, which we leave to the reader.

Remark. For calculation, it is useful to recall that by duality,

$$H^{n-\bullet}(M; Z[w_1]) \cong H_i(M; Z), \quad 0 \le i \le n.$$

THEOREM 5.2. Let M be a connected smooth n-manifold, for $n \equiv 1$ (4), $n \geq 9$. Let $\gamma : H^{n-2}(M) \to H^n(M)$ be multiplication by w_1^2 . Then $\operatorname{Im}_{2n-2}(M)$ is as follows (provided $M \subseteq R^{2n-2}$).

Case I. $\gamma = 0$. Then $\operatorname{Im}_{2n-2}(M) \cong H^{n-2}(M) \oplus Z_2$. Case II. $\gamma \neq 0$, but $\gamma Sq^1 = 0 : H^{n-3}(M) \to H^n(M)$. Then

 $\operatorname{Im}_{2n-2}(M) \cong \operatorname{Ker} \gamma \oplus \mathbb{Z}_{4}$.

Case III. $\gamma Sq^1 \neq 0$. Then $\operatorname{Im}_{2n-2}(M) \cong H^{n-2}(M)$.

Proof. We have an exact sequence

$$\cdots H^{n-3}(M) \xrightarrow{\theta} H^n(M) \to \operatorname{Im}_{2n-2}(M) \to H^{n-2}(M) \to 0$$

where $\theta u = Sq^2 Sq^1 u + (\bar{w}_2 + w_1^2) Sq^1 u = w_1^2 Sq^1 u$. If $x \in H^{n-2}(M)$, $\Phi_2(x) = (Sq^2 + \bar{w}_2 + w_1^2) x = w_1^2 x$:

we are done.

Examples of manifolds satisfying the three conditions are P_{13} , $P_{12} \times S^1$, and $P_2 \times S^{11}$, respectively (where P_k = real projective k-space).

Finally, suppose that M is a smooth connected *n*-manifold, where $n \equiv 0$ (4), $n \geq 8$, and M immerses in R^{2n-2} . There is no particularly neat way of expressing the group Im_{2n-2} in general, but the information below is sufficient to determine it. First of all we have an exact sequence:

$$\cdots \to H^{n-3}(M; Z[w_1]) \oplus H^{n-2}(M) \xrightarrow{\theta} H^{n-1}(M) \to \operatorname{Im}_{2n-2}(M)$$
$$\to H^{n-2}(M; Z[w_1]) \oplus H^{n-1}(M) \to 0$$

where

$$\theta(u, v) = (Sq^2 + \bar{w}_2)u + w_1u$$

for all $u \in H^{n-3}(M; Z[w_1])$ and $v \in H^{n-2}(M)$: secondly,

$$\Phi_2(x, y) = (Sq^2 + \bar{w}_2)\delta^{-1}x + Sq^1\rho x$$

for all $x \in H^{n-2}(M; Z[w_1])$ such that 2x = 0 and all $y \in H^{n-1}(M)$. (ρ = reduction modulo 2.)

For completeness' sake, we mention that if $n \geq 2$,

$$\operatorname{Im}_{2n}(M) \cong Z \quad \text{if } n \text{ is even} \\ \cong Z_2 \quad \text{if } n \text{ is odd}$$

and that if $n \ge 1$, $\operatorname{Im}_{2n+k}(M) = 0$ for all $k \ge 1$. We leave the proofs to the reader; cf. [3].

These results extend those in [4] and [10]. In [4], only the cardinality of the immersion group was computed, while in [10] an exact sequence for the group was constructed, but no extensions were computed.

6. Applications to vector fields

Throughout this section, let M be a smooth connected *n*-dimensional manifold. Let $V^{k}(M)$ be the set of homotopy classes of *k*-fields on M. Now $V^{k}(M)$ is in one-to-one correspondence with the set of rel τ homotopy classes of liftings of τ to BO_{n-k} :

$$M \xrightarrow{\tau} BO_n$$

where τ classifies the tangent bundle. If $n \ge 2k + 2$, $V^k(M)$ is an affine group [1].

Let $B = BO_{n \to k}$, and $B' = BO_n$; then $V^k(M) \cong [M, g; e]$, where e is the \mathfrak{X}_B -object defined in the previous section and $g: M \to B$ is any given lifting of τ . The techniques of the previous sections can then be applied to compute [M, g; e]. We have a complete answer only in the case k = 1.

THEOREM 6.1. If $n \ge 4$ and M admits a vector field, then

 $V^{1}(M) = H^{n-1}(M; Z[w_{1}]) \oplus H^{n}(M) = H_{1}(M; Z) \oplus Z_{2}.$

Proof. We have a Postnikov tower e, where p is an equivalence through dimension n:

where $\alpha^* \iota_{n+1} = (Sq^2 + w_2)\iota_{n-1}$. We have an exact sequence

 $\cdots \to H^{n-2}(M; X[w_1]) \xrightarrow{\theta} H^n(M) \to V^1(M) \to H^{n-1}(M; Z[w_1]) \to 0$ where

$$\theta x = (Sq^2 + w_2)x = w_1^2 x = w_1 Sq^1 x = Sq^1 Sq^1 x = 0.$$

If $y \in H^{n-1}(M; X[w_1])$ and 2y = 0, choose $u \in H^{n-2}(M)$ such that $\delta u = y$. Then

$$\Phi_2 y = (Sq^2 + w_2)u + Sq^1 \rho y = w_1(w_1 u + \rho y)$$

= $w_1(w_1 u + (Sq^1 + w_1)\rho y) = Sq^1 Sq^1 \rho y = 0;$

we are done.

BIBLIOGRAPHY

 J. C. BECKER, Cohomology and the classification of liftings, Trans. Amer. Math. Soc., vol. 133 (1968), pp. 447-475.

- 2. S. GITLER, Cohomology operations with local coefficients, Amer. J. Math., vol. 85 (1963), pp. 156-188.
- M. HIRSCH, Immersions of manifolds, Trans. Amer. Math. Soc., vol. 93 (1959), pp. 242-276.
- 4. I. JAMES AND P. E. THOMAS, On the enumeration of cross-sections, Topology, vol. 5 (1966), pp. 95-114.
- 5. L. KRISTENSEN, On the cohomology of spaces with two non-vanishing homotopy groups, Math. Scand., vol. 12 (1963), pp. 83-105.
- 6. L. LARMORE, Twisted cohomology and the single obstruction to lifting, Pacific J. Math., vol. 41 (1972), pp. 755-769.
- 7. L. LARMORE AND P. E. THOMAS, Group extensions and Postnikov systems, Math. Scand., vol. 30 (1972), pp. 227-248.
- 8. W. S. MASSEY AND F. P. PETERSON, The cohomology structure of certain fiber spaces, I, Topology, vol. 4 (1965) pp. 47-65.
- 9. J. F. McCLENDON, Higher order twisted cohomology operations, Invent. Math., vol. 7 (1969), pp. 183-214.
- 10. ——, Obstruction theory in fiber spaces, Math. Zeitschr., vol 120 (1971), pp. 1-17.
- J. SIEGEL, Higher order cohomology operations in local coefficient theory, Amer. J. Math., vol. 89 (1967), pp. 909-931.

California State College Dominiquez, California University of California Berkeley, California