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In recent years great progress has been made toward the classification of finite
simple groups in terms of local subgroups and in particular the centralizers of
involutions. If this program is to be completed one must show that an arbitrary
simple group G possesses an involution for which Ca(t) is isomorphic to a
centralizer in a known simple group.

This paper concerns itself with that problem for simple groups of component
type; that is groups G such that E(C(t)/O(C(t))) for some involution in
G. These include most of the Chevalley groups of odd characteristic, most of the
alternating groups, and many of the sporadic simple groups. D. Gorenstein has
conjectured that in a group of component type, the centralizer of some involu-
tion is usually in a "standard form." A proof is supplied here of a portion of
that conjecture.
To be more precise, define a subgroup K of a finite group G to be tightly

embedded in G if K has even order while K c Kg has odd order for each
g G-N(K). Define a quasisimple subgroup .4 of G to be standard in G if
[.4,.4g] for each g G, K Ca(,4) is tightly embedded in G, and
N(A) N(K).

Let G be a finite simple group of component type in which O,,(C(t))
O(C(t))E(C(t)) for each involution in G. Let A be a "large component."
Then it is shown, modulo a certain special case where A has 2-rank l, that A is
standard in G in the sense defined above.

Other theorems establish properties of tightly embedded subgroups. They
show that, under the hypothesis of the last paragraph, the centralizer of each
involution centralizing A contains at most one component distinct from A, and
that component must have 2-rank if it exists. Further, it can be shown that
the 2-rank of the centralizer of A is bounded by a function of A, which seems to
be or 2 if A is not of even characteristic.

Proofs of the various theorems utilize properties of the Generalized Fitting
Subgroup F*(G) of a group G, developed by Gorenstein and Walter. These
properties appear in Section 2. Also important to the proof is the classification
of groups with dihedral Sylow 2-groups, Alperin’s fusion theorem, the recent
result on 2-fusion due to Goldschmidt, and Theorem 3.3 in Section 3, which
extends Bender’s classification of groups with a strongly embedded subgroup.

Statements of the major theorems appear in Section l, along with a brief
explanation of notation.
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Gorenstein i-7] and Walter [9"1 have proved results similar to Theorem 1.
The author would like to thank Professor J. Thompson for suggestions leading

to improvements in this manuscript.

1. Notation, terminology, and statements of the principal theorems

We recall some terminology due to Gorenstein and Walter. A group X is
quasisimple if X I-X, X-I and X/Z(X) is a nonabelian simple group. X is
semisimple if X is the central product of quasisimple groups (or if X 1), in
which case these factors are uniquely determined as the normal quasisimple
subgroups of X and are called the components of X (e.g. Lemma 2.1). Denote
by F(X) the Fitting subgroup of X. Define E(X) to the largest normal semi-
simple subgroup of X. Set F*(X) F(X)E(X). Let 02,,E(X) be the preimage
in X/O(X) of E(X/O(X)).

Let G be a group. If U and X are subgroups of G with U acting on X define

Fl, v(X) (Nx(V) v V < U).

E, denotes an elementary 2-group of order 2*.
Denote by La the set of all components of the subgroups E(C(t)) as ranges

over all involutions in G. Define a relation <* on by L < * K if there exists
an involution t with L <__ E(C(t)), K [K, t] and L _< K. Extend this rela-
tion to a partial order << on .o by defining L << K if there exists a sequence
{L}

_
A with L L1, K L,, and for each i, either L, L,+ or L, <*

L+ 1. Let .Z* be the set of maximal elements of under this partial order.
For X < G and L La define Ar.(X) (L: ff <_ E(X)).
From time to time we will consider quasisimple groups satisfying the following

hypothesis"

HYPOTHESIS I. Ifct is an automorphism ofL oforder 2, then either m(L) 1,
or C.() Z(L) contains a 2-element.

The remainder of our notation is standard and can be found in [6]. Now the
statements of the major results"

THEOREM 1. Let G be a finite group, let be an involution in G, and let A <_

E(C(t)), A .. Assume for each involution a EG that 02,,E(C(a))=
O(C(a))E(C(a)). Assume further that ifK . and A is a homomorphic image
of K, then K .q’*. Then one of the following hold:

(1) A Aa(N(A)) A,t(C(a))for each involution a C(A). [A, A] v
for each g G.

(2) D Aa(N(A)) AA, x C(02(A)). re(A) 1. Aa(C(a)) <_. D for
each involution a C(A). If [A, A] 1 then A A.

(3) There exists K .q’* such that K v Ar(N(K)) KK, A Ctr o(t)’, and
K satisfies (2). A has dihedral Sylow 2-groups and [A, A] v for g G.

(4) A < E(G), or A Ctr o(t)’ for some component K K ofE(G).
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Cases (2) and (3) occur in PSp4(q), q odd, among other examples.
Notice in (1) that Q C(A) is tightly embedded in G, and then A is standard.

The remaining theorems in this paper give information about tightly embedded
subgroups, hence restricting C(A) and C(t).

THEOREM 2. Let Q be a tightly embedded subgroup of thefinite group G. Let
H No(Q), # G H, T Syl2 (QO H), and T < S Syl2 (QT). Then:

(1) lf T # then Ns(T) Tx(Ns(T) Q) - T x T and T a 1.
(2) lfT for each # G H then either Q G or <Q> c H is strongly

embedded in <Qo>.
THEOREM 3. Let T # 1 be a 2-group acting on a group Q with T c Q 1.

Let T Syl2 (P), P < QT, and assume P is tightly embedded in QT. Let

Z _< S Syl2 (aT) with Ns(T) Syl2 (NoT(T)).
Assume IT[ > INs(T): T[ and O(Q) 1. Let W be the weak closure of T in S
with respect to Q. Then one of the following holds:

(1) T is cyclic, S Q is cyclic, quaternion, or dihedral, and S is dihedral,
semidihedral, or wreathed.

(2) TQT.
(3) 02’(TO) 02(QT) x O2’(a) E x L2(2n).
(4) W= T x T Ns(T). QT. T is abelian and if re(S/W) > then

r (r).
(5)

___
QT, Il ITI, Z(W) rr" (w) T fl(T). IS: rVl 2.

THEOREM 4. Let Q be tightly embedded in G and assume K O2,,/(O) #
O(Q). Then one of the following hold:

(1) K O2,,g(G).
(2) m(K) and if m(Q) > then N(Q) contains a Sylow 2-group of Q

whenever QO N(Q) is of even order.
(3) 02’(QT)/O(Q) E, x L2(2") for some 9 G- N(Q) and T

Syl2 (QO).
Theorem 4 implies that in Theorem 1, case (1), that if G is simple then

E(C(t)) has at most one component distinct from A, and that component must
have 2-rank 1 if it exists.
Our last theorem is crucial to the proof of Theorem 1 and Theorem 4.

THEOREM 5. Let D < G and set D/O(D). Assume O is the central
product of semisimple groups , < < r, permuted by H No(D) under
conjugation. Assume further that:

(i) If and o are 2-elements centralizing i and j, respectively, and if
Z(G), then # H.

(ii) IfX < H and A < XO(D) then t7 H.
Then ifH G either:

(1) D Al, or
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(2) D A1A2, re(A i) 1, and if ai, 1, 2, are commuting involutions
with i Z(A), then either al a2 or aa2 Z(G).

2. The generalized Fitting subgroup

LEMMA 2.1. Let H be a group. Then
(1) E(H) is the central product of all the quasisimple subnormal subgroups

ofH, known as the components orE(H).
(2) IfL is a component ofE(H) andX < H then L < [L, X] or [L, X] 1.

Further [E(H), X] is the product of those components not centralized by X. If
L < N(X) then L E(X) or [L, X] 1.

Proof See 2.1 of [5].

LEMMA 2.2 Let X F*(H) and Cr.H)(X) < X. Then

X E(H)(X F(H)) and C(H)(F(H) X) <_ X.
Moreover CH(F*(H)) < F*(H).

Proof See 2.2 of [5].

LEMMA 2.3 (Thompson A x B lemma). Let A be a p-group, B OP(B) <
C(A) andassume AB acts on ap-group P with Ce(A) < CI,(B). Then rP, B] 1.

Proof See 5.3.4 in [6].

LEMIA 2.4. Let L be a perfect group and X a group with IX, L, L] 1.
Then IX, L] 1.

Proof By the 3-subgroup lemma, [L, L, X] 1.

LEMMA 2.5. Let a be an involution in H and L a component of E(H) with
M= LL v L Then"

(1) J {xxa" x L} is a homomorphie image of L contained in C(a) with
z(s) <_ Z(M).

(2) IfX <_ N(M) centralizes J then [M, O2(X)] 1.
(3) Ifx M JZ(M) then M (x,
(4) If Y is a solvable subgroup ofH normalized by J then [J, Y] 1.

Proof (1) and (2) are Lemmas 2.1 and 2.2 from [8], respectively. Choose x
as in (3). Then x= uv, u L, v L and x-uu"= v-u"=y L. As
x JZ(M), y Z(M). Therefore as L is quasisimple, L (yU) (yZS)
(yS), so M JL" (J, y) (J, x).

Next let Y be as in (4). Then W [ Y, J, J] < Y c M and W is normalized
by J. Suppose W zg JZ(M). Then by (3), M ( W, J) < N(W), so W M.
Thus W _< Z(M). So in any event, W< JZ(M), and then, by (1), W <
Z(M). Thus [ Y, J, J, J] [W, J] 1, and two applications of 2.4 imply
[Y,J] 1.
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LEMMA 2.6 Let a be an involution in H and X a C(a)-invariant subgroup ofH
with X O(X)E(X). Let K be a component of E(X) and L a component of
E(H). Then:

(1) X < N(L).
(2) [O(Cx(a)), O:(H)] 1.
(3) If[L, a] 1 then either [L, X] or L E(X).
(4) Assume M LL L and define J as in 2.5. Then [0(X), L] and

either [K, L] 1, K M, or K J.

Proof Let Y O(X) and Q O2(H). [Co.(a), X] < Q. Then by 2.1.2,
[Co(a), E(X)] 1, while [Co(a), r] < Q c Y 1. Now the Thompson
lemma implies (2).

IfL < N(X) then by 2.1, either [L, X] 1, or L E(X). As C(a) <_ N(X)
we get (3). Further in either case (1) and (4) are clear, so we may assume
L N(X).
Assume M LL L. By 2.1, either [K, Ct(a)] 1 or K < [K, Ct(a)] <

E(H) X. In the first case K normalizes (Cu(a)v’m) M and then by 2.5,
[K, L] 1. In the second ease clearly K normalizes L E(H). Thus K <
M c X. As L zg N(X), 2.4 implies M X < Z(M)J. Thus K < N(J), and
K< [K,J] < J. As J< N(X), K J, so as K and J are quasisimple,
K J. This establishes the last part of (4).
As J< N(Y), 2.5 implies [Y,J] 1. So by 2.5, Y= O2(y) < C(M).

This completes (4).
Thus we may take L [L, a] and it remains to show X < N(L). Set
W [X, a]. If (Lx, L2) is a cycle of length 2 under a in Lw then by (4), W fixes
L, so Lw {Lx} {L}. On the other hand if a fixes Lw pointwise then so
does W [W, a]. So in any event W < N(L). Thus with 2.1.2 we may take
IX, a] 1.
Then by (2), [Q, x] 1. Set R Q(a). Then X O(C(R))E(C(R)).

Let S Syl2 (N(R)). Then S Z(L), so L (Sm). By 2.1, either [K, S]
or K < [K, S] < E(H). In the first case K normalizes (Sn)) L. In the

second case K normalizes L E(H). Finally [Y, S] has odd order, so
Y _< N(z).

LEMMA 2.7 Let a be an involution in H, K a component of E(C(a)) and L a
component orE(H). Then:

(1) E(C(a)) < E(H)C(E(H)).
(2) K= L or [K, L] orL L" andK CtZ, a(a)’ or L [L, a] >_ K.
(3) If[K, O(F(H))] then K < E(H).
(4) If K E(C(u)) for each involution u in some 4-group U <_ H then

K < E(H).

Proof By 2.6, X E(C(a)) < N(L) and if L # I-L, a] then one of the
alternatives of (2) holds. So assume L [L, a]. Let S be a maximal (a) K-
invariant 2-group of L. By 2.6.2, IS, K] 1, so K <_ E(C(S(a))). We may
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take H LK<a), so maximality of S implies K E(C(S<a))). Let
T Syl2 (NL(S<a>)). Then IT, K] < L c K___ K, so either K IT, K’] L
or IT, K] < Z(K) and hence by 2.4, IT, K] 1. We wish to show K < L
or K < C(L), so we may assume I-T, K] 1. Then maximality of S implies
S T Syl2 (L). But now a result of Glauberman [3"1 implies K < C(L).
This yields (2).

Suppose (1) is false and let M be maximal subject to M E(H) and
X < MC(M). Choose L : M. Then

X < LC(L) MC(M) LM(LC(L) C(M))
LM(C(L) C(M))

by modularity. But this contradicts the maximality of M and establishes (1).
Assume EK, O(F(H)-I 1. Then by 2.5.2, [K, F(H)] 1. $o

K < E(H)C(E(H)) c C(F(H)) E(H)C(F*(H)) < F*(H)

by modularity and 2.2. This yields (3).
Finally if K E(C(u)) for each involution u in some 4-group U, then by 2.1,

[K, C(u) c O(F(H))] 1 for each u U.
Hence O(F(H)) <C(u) c O(F(H))’u Uo> < C(K), and (3) implies (4).

LEMMA 2.8. Let U <u, v> be a 4-group in H and L a component of E(H)
with L" L. Then L < Fa,v(L)and ilL L, L < <Ctz,,(u), Cz,,(uv)> or
[L, v] 1.

Proof. As U

_
N(L) there exists u U with L # L". Set J C[,(u),

and let v e U <u>. Suppose Nv(L) and let x be an element of odd order
in L Z(L). Then xx, x-x-, x"x are all in K F, v(H), so their product
x is also in K. Then by 2.5, L < <J, x> < K.
So take v N(L). Let h LL"/Z(LL) and I CM(VU). If i ./then for

each x L there exists y e L with yy. Then y- E c E 1, so
I-E, v] 1. Hence by 2.1, L < C(v) < K. On the other hand if i q: then
by 2.5, M (I, J) < K.

LEMMA 2.9. Let L be quasisimple with m(Z(L)) < 1. Then L satisfies
hypothesis I.

Proof. Let be an automorphism of L of order 2 and assume Z(L) Z
contains a Sylow 2-group of CL(). We may assume O(L) 1, so Z is a 2-group.
By hypothesis, Z is cyclic. Z is of index 2 in Z() W, so W is abelian,
dihedral, semidihedral, or modular (e.g. 5.4.4 in [6]). Thus there are at most
two Z-classes of involutions in W-Z.

Set E L/Z, and let e Syl2 (Cr()). For e T, if te z, then by a
Frattini argument t e ZCr() Z. Hence as W Z has at most two Z-classes
of involutions, I1 -< 2. So by the well known lemma of Suzuki, ()E has
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dihedral or semidihedral Sylow 2-groups. As E is simple of index two in E(),
L has dihedral Sylow 2-groups. Thus m(L) 1.

3. Fusion and generation

LEMMA 3.1. Let V be a vector space of dimension n over GF(2), X O2(X)
a group of automorphisms of V, and Y v a cyclic subgroup of odd order in X,
which acts transitively on [ Y, V]. Assume U Cv(Y) has dimension k > 1,
U c U 0 for x Nx(U), and Y < Nx(U). Then one of the following holds:

(1) k landn 3.
(2) X normalizes [ Y, V] and U.
(3) X normalizes [ Y, V], Y acts regularly on Ux- U, and V- IV, Y]

(Ux w)
Proof. This is essentially 2.11 of !-5] with the hypothesis that X acts irre-

ducibly on V removed. Irreducibility of X is used in the proof only to show
X Y and to show Y does not act regularly on Ux U if X is irreducible.
So assume Yis regular on Ux U, and set C {c V: c U, x X}.

Then C has order 2"- and C is X-invariant. As Y acts semiregularly on
V- U, and IC[ YI, C is an orbit under Y. One can now check that
IV, Y] (e + d:e,dC), so IV, Y] is normalized by X. Then Uc
[V, Y] 0 for each x X, so if X does not normalize U then a counting argu-
ment yields (3).

THEOREM 3.2. Let z be an involution in the center ofa Sylow 2-subgroup ofG,
let H < G, and assume:

(i) z H ifand only ify H.
(ii) Ifu is an involution with z C(u) :g H then H c L is strongly embedded

in L (z c C(u)). Then H c (z) is strongly embedded in (z).

Proof. See [1].
THEOREM 3.3. Let z be an involution in G, H < G, and assume z H ifand

only if9 H. Then thefollowing are equivalent"
(1) Ifz z c C(z) then (zt) H ifand only ify H.
(2) z is in the center of a Sylow 2-subgroup of G, and if z z c C(z)

then C(zt) < H.
(3) L (z) has 2-rank 1, or E L/O(L) (u) x E’, [ul _< 2, H c E

is strongly embedded in E, and z uE.

Proof This is an easy corollary of 3.2. As similar corollaries have appeared
elsewhere we only sketch the proof.
Assume(1),letm [z c HI, Hx HacosetofHinG, andD H c Hx.

Arguing as in 4.3 of [1], we find that zo c Hx] m. Let z c Hx and
E D(t). Suppose s E c z and st has even order, and let u be the involu-
tion in (st). Then ut z so by hypothesis u (ut)t lies in the unique conju-
gate of H containing and no other. But u D < H, a contradiction. Thus
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za E zE is ofodd order. That is rn is odd. But [za[ [G" HI [z HI
[G" H]m with both ]G" H[ and m odd. Thus (1) implies (2). Also it shows that
(2) is inherited by subgroups. That (3) implies (1) is obvious.
The proof that (2) implies (3) is by induction on the order of (7, so let (7 be a

minimal counter example. Then 0((7) 1. By 3.2 there exists an involution u
centralizing z such that C(u) g H and H L is not strongly embedded in
L (z c C(u)). Conjugates of z in distinct conjugates of H are conjugate
in their join, so z c C(u) zL. Minimality of G implies either L (7, or
L (u) x L’ with zL uL’, and H c E strongly embedded in L’.
Assume the latter, and suppose v uC(u). Let K= (zLcC(v)).

Then K H, we may take z K, and either E/O(E) L2(4) and v induces an
outer automorphism on E, or (u) O2(K). In the first case vz is conjugate to
vu under L. Now vz is the product of conjugates of z in C(v), so by hypothesis
C(vz) and hence C(uv) is contained in H. But K zg H. So (u) O2(K). But
by symmetry (v)= O2(K). So u is isolated, and by the Z*-theorem
u z*(6) z(6).

So in any event L G. Minimality of (7 implies that G/(u) has 2-rank
1, or C () x C,’ with a __q_ ,, and H c ,’ is strongly embedded in C,’.
In the latter case ’ is a Bender group so (7’ is simple, SL2(5), or S(8). As z
is a 2-central involution acting nontrivially on (7’, we conclude (7’ SL2(5)
or $2(8). As G (za) we conclude G (u) x G’ with za =_ uG’.

LEMMA 3.4. Let As < S Syl2 (G) such that lax, A2] and m(A) > 1.
Let H be the subgroup of G generated by all g G with A c As v 1, for some
i, j {1, 2}. Assume

(*) A w A2 is strongly closed in H c S with respect to H and in Ns(A) with
respect to G.

Then one of the following hold:
(1) H-- G.
(2) As - As, some j, and n c (A) is strongly embedded in (A).
(3) A is conjugate to A2 under an element fused into A, A is dihedral or

semidihedral, and A c A2I 2.

Proof Let G be a minimal counterexample. Set A A,, let t) be the set of
cosets of H in G, and represent G on ft. Then

(a) X < G fixes the unique point H of exactly when N(X) < H and
X cH= Xn.

Let X < A, IXI > 2, and X < Ns((A, A2)). Then IX" X c Ns(A)I < 2,
soXaeoNs(A) Y# 1. Then by(*), Y<A, wA2, so g H and then (*)
implies Xa

__
A A2. This has several consequences. First

(b) S Ns({A, A2)) and IS" Ns(A)I < 2.

Second, with remark (a) it follows that

(c) ifX < A and IXI > 2, then Xfixes a unique point of.
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Now let u be an involution in AA2 and K Ca(u). Suppose m(Ca,(u)) > 1,
Ca,(u) :g Aj, 4: j, and if CA(U) is conjugate to Ca2(u), then Ca(u) is not di-
hedral or semidihedral. By (c), CA(u) fixes a unique point of f, so H c K
contains a Sylow 2-group of K, which we may take to be S c K. As CA,(U)
Aj, Ns(At c K) < Ns(At) by (b). Hence K satisfies our hypothesis, and by
minimality of G,

(d) either K G or K < H.

Assume a is an involution in A and a S with g H. By (.), A A2.

LetBt= A,tB1 B, andT= So

Assume firstA1 cA2 1. IftxC(t) < H we may assume xTand
then as [t,tx] and tB-B2, even tNr(B). But then by (,),
BwB2,soxeH. LetvbeaninvolutioninA. ThenvtA2 < C(A),
so It, ] 1. Thus v Hg. But then fl(A) < Hg, against (c).
SoA A2 -76 1. By(c), Caoa,(t)= (z ) is of order 2, soD= (A c A2)(t)

is dihedral or semidihedral. Let v A A2 with v2 e A2. Then x vv
v2tt C(t) and x2 A c A2, so x2 (z). We may assume V (x, z) < T,
so asB B,x2 4: z. Thusx2 landtinvertsv2.
Suppose f(A) < A2. As D is dihedral or semidihedral and A c A2 < Z(A),

.4 c .42 is a 4-group. As inverts v2, v2 z. Also there is an involution
wA hA2 with [w,t] z. Notice (vw)(vw) xz. As Vacts on {B, B2}
and B B2, with the symmetry between x and xz we may choose x N(B).
Now tx N(B), so vw Ho, against (c).
So we may choose v to be an involution. Then It, ] and as v Hg,
N(B). Hence x q N(B), so xz N(B). By (c) txz B. But (txz) tz,

and txz N(B), so by (.), tz is not fused into A. Therefore as D is dihedral or
semidihedral, A c A2 (z).
A is not dihedral or we are in (3). Also as B Bx, x is not rooted in C(t),

so v is not rooted in A. Therefore as {aat’a A} A/(z), we may choose
u .4 .42 such that U (x, y) is a 4-group, for y uu. We may assume
yN(B), so as above, u2 1. Then u2 z. If Ca(u) is cyclic then A is
dihedral or semidihedral (e.g. 5.4.8. in [6]), a contradiction. So y satisfies the
hypothesis in (d) and hence either C(y) <_ H or y Z(G). In the first case by
(c), [Ca(y)I 2, so B is dihedral, a contradiction. Thus y Z(G). Set t
G/(y). Now if -2 then satisfies our hypothesis and minimality of G
yields a contradiction. So . ,2. Thus [A[ IA c A21 [A" A c A21 4,
and A is dihedral, a contradiction. Hence we have shown

(e) A A2 is strongly closed in S with respect to G.

Together with (a) this implies

(f) Each element of.4 fixes a unique point of.
Let at, i= 1, 2, be involutions in At withu ala2 1. SupposeK=

C(u) :g H. If Ca(u) Ca(a) is a 4-group then .4 is dihedral or semidihedral.
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If Ca(u) is nonabelian dihedral or semidihedral then A Ca(u). Therefore as
(3) does not hold, the hypothesis of (d) are satisfied, and then u Z(G). But (e)
implies G/(u) satisfies our hypothesis, so again minimality of G leads to a
contradiction. Therefore

(g) C(u) <_ H.

Suppose u S, g H. Then C(t) < H, so by (f), Ca(t) and hence
A A2andA cA2 1. So U= Caa,(t) A. We may assume U< So

Then U has a subgroup V of index 2 normalizing A and 1 : Ca(V) < H by
(g), contradicting (f). Thus u c H un, so by (g) and (a) we conclude that u
fixes a unique point of f. Now 3.3 yields the desired result.

LEMMA 3.5. Let L be a quasisimple normal subgroup of H of 2-rank and
U a 4-group in H such that L Ft, v(H). Then"

(1) L /7 Or SL2(q) q 5, 7, or 9.
(2) U <_ LC(L).
(3) H/C(L) contains no quaternion group X with m(C/c(L)(X)) > 1.
(4) IfA is an abelian subgroup ofH of2-rank 3 then L <_ Fx, a(L).

Proof re(L) 1, so L 7 or SL2(q), q odd. Set E L/Z(L). re(E) 2,
so (2) implies (4). IfL is as in (1), then Aut (E) contains no quaternion subgroup
Q unless L - SL2(q). Further in that case Q contains its centralizer. Therefore
(1) implies (3).
Assume L 7. We may assume u U# induces an outer automorphism

on E and then take (1, 2) or (1, 2)(3, 4)(5, 6), representing L on
{1 _< < 7} f. Then CL(u) is isomorphic to SL2(5) or SL2(3), respectively,
and in the latter case is transitive on f {7}. Let v U induce an inner
automorphism on E. Then Cz(v) is cyclic of order 24 and has orbits of length
3 and 4 on f. Let X (Cz(v), Cz(u)). If fi is a transposition then the global
stabilizer of {1, 2} is the unique maximal subgroup of L containing Cz(u), so
as Cz(v) does not stabilize {1, 2}, L X. If is not a transposition then Cz(u)
is transitive on f {7} and Cr.(v) moves 7, so Xn is 2-transitive. X contains an
element of order 12, so X 47 and X L.
So we may take L - SL2(q), q odd. If u U induces an outer automor-

phism on E then u induces a field automorphism or an automorphism in
PGL2(q). If u and u2 induce automorphisms of the first and second types,
respectively then uu2 does not induce an involutory automorphism on E, a
contradiction. Hence some v U induces an inner automorphism on E.
Then Cz(v) is cyclic of order q e, e _+ q mod 4. Further unless

q <_ 9, Cz(v) is contained in a unique maximal subgroup M of L, which is the
preimage of a dihedral group of order q e in E. (Here, and later in the proof
we use Dickson’s list of the maximal subgroups of L2(q) (p. 285, [2]). Further
M contains the centralizer of no other involutory automorphism, so (1) holds.

Suppose u induces an automorphism in PGL2(q) on . Then Cr.(u) and
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CL(uv) are cyclic of order q + a. X <CL(u), Cz(uv)> is a subgroup of L and
(u)X contains an abelian subgroup of order 2(q + a), so we conclude L X.
Suppose u induces a field automorphism on E. We may represent <u)L on

f {1 < < 6} as S and take (1, 2). Then C,.(u) - Cz(uv) SLy(3)
and X <Cz(u), Cz(v)) is transitive on f. As no maximal subgroup of L
containing Cz(u) is transitive on f we conclude L X. This completes the
proof of (2).

Essentially the same proof shows:

LEMMA 3.6. Lemma 3.5 holds ifL is assumed to have dihedral Sylow 2-groups,
and in (1), z]

7 and SL2(q) are replaced by A7 and L2(q).

LEMMA 3.7. Let be an involution acting on the semisimple group A. Assume
a Sylow 2-group of Ca(t) is cyclic of order 4. Then re(A) 1.

Proofi Let R (x) aSyl(Ca(t)). As R is cyclic, teA. Let R < S
Syl (A(t)). Again as R is cyclic, tr a, where r x. So Cs(t) is the central
product of (t, tr) a Cs(t) with R. Let Cs(t) < X < S be maximal
subject to being the central product of a dihedral group D <t, d) (ta & X)
with R. Here we choose d e a.
Then X A <td, x) is abelian of exponent greater than 2, and thus is not

Sylow in the semisimple group A. So we may choose u e Ns(X) X with
U2

ff X. As Cs(t) < X, x, so we may take d. Set X <u)X.
Suppose u a. Then (u, t) D is dihedral. Let y be an element of order

4in(ut). If[DI > 4thenR Z(X). IflD[ 4, thenR XcA. So in
any event u normalizes R. Thus u either inverts or centralizes x. If u inverts x
then u centralizes the 4-group (r, yx) < A, impossible as u a. So X is the
central product ofD (ta c X) with R, contradicting the maximality of X.
So uta. Thus D (X cta)<<_ Ns(X), so Ns(X) XCs(t) X

and then S X. If f(S c A) < X c A then either S c A is quaternion of
order 8 or If(S c A)I 4. In the latter case S c A is not isomorphic to a
Sylow 2-group of a semisimple group with that property. If fl(S c A) ;
X c A we may pick u to be an involution, so S c A is dihedral or the central
product of the dihedral group (u, td) with either R or (yr), where y is an ele-
ment of order 4 in (td). As A is semisimple, S c A is dihedral and then
A A7 or L2(q). But none of these groups admit an automorphism of order 2
such that a Sylow 2-group of CA(t) is cyclic of order 4.

LEMMA 3.8. Let U be a 4-group acting on a semisimple group A such that
m(F, v(A )) 1. Then m(A) 1.

Proof Let S be a U-invariant Sylow 2-subgroup of A. If W is a U-invariant
4-subgroup of S, then Cv(W) 1, contrary to hypothesis. So every U-invariant
abelian subgroup of S is cyclic. Hence S is the central product of subgroups E
and R where either E or E is extra special, and R is cyclic, quaternion,
dihedral, or semidihedral (e.g. 5.4.9, [61).
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We may assume re(A) > 1. Suppose S is dihedral or semidihedral. By 3.6,
S is semidihedral. Then A and its automorphism group are known. Indeed the
outer automorphism group of A is cyclic, so some element u U induces an
inner automorphism on A. But then re(Ca(u)) > 1.

Therefore S is not dihedral or semidihedral. Let Z QI(Z(S)) and
VlZ n,(z(s/z)).
Claim S is extraspecial. Assume not. Then either R or R’ is cyclic with a

subgroup T of order 4 characteristic in S. Thus replacing S by TV if necessary
we may assume R is cyclic of order 4. Now S is not cyclic, dihedral, or semi-
dihedral so S R and hence E # 1. So there exists a U-invariant subgroup
Y of S of order 8 containing R. R < Z(S), so ),(Y) is a U-invariant 4-group.
So S is extraspedal of order at least 2s. Now for each involution x S,

Z Cs(X)’, so the involution z Z is isolated. Thus Z < Z(A) and then
A/Z(A) has abelian Sylow 2-groups. As ,4 is semisimple its components have
2-rank 1. By 2.8 and 3.5, F, v(A U) contains a Sylow 2-group ofA, so re(A) 1.

LEMMA 3.9. Let U (a, b) be a 4-group acting on a simple 9roup L with
dihedral Sylow 2-#roups. Assume C,(a) and C,(b) have cyclic Sylow 2-groups and

L zg (a, b, Cz(a), C.(b)).
Then lab, L] 1.

Proof L - L2(q), q odd, or AT. As m(Cz(a)) 1, L - L2(q) and (a)L -PGL2(q), and inspecting Dickson’s list of maximal subgroups (p. 285, [2]),
(a)Cz(a) is a maximal subgroup of (a)L with (a) Z((a)Cz(a)). Hence the
result follows.

4. The proof of Theorem 3

In this section we assume T is a nontrivial 2-group acting on a group G with
T c G 1. Let S be a Sylow 2-group of GT containing a Sylow 2-group of
Nor(T). The proof of the following lemma is straightforward.

LEMMA 4.1. Ns(T) T x (Ns(T) c G).

LEMMA 4.2. Assume T is weakly closed in S with respect to G, and O(G) 1.
Then [G, T] 1.

Proof Let GTbe a counter example ofminimal order. As Tis weakly closed
inS, S < N(T). So by 4.1, S T x (Sc G).
Assume first [E(G), T] 1. Then minimality of G implies E(G) 1. So

as O(G) 1, F*(G)= O2(G). But T < C(02(G)), and as O2(G) F*(G),
C(02(G)) Z(O2(G)). Thus TZ(O2(G))= C(02(G))< GT. As T is weakly
closed in S, T GT, so [G, T] 1.
So [E(G), T] # 1 and then minimality of G implies G E(G), and Z(G)

1. Let Z= Z(T) and # Y< (S c G)Z. Then T< N(Y) < G, so mini-
mality of G implies N(Y) O(N(Y))(N(Y) c N(T)). Thus N(Z) is weakly
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embedded in ZG, so a result of Goldschmidt [4i implies Z GZ. Now con-
sidering GT/Z, minimality of GT yields a contradiction.
For the remainder of this section we operate under the following hypothesis"

HYPOTHESIS 4.3. Q H< GT, with Te Syl2 (Q) and T c To for
geG-H.

LEMMA 4.4.
(1) Let X be a 2-group containing T with IX: TI < ITI. Then T <a X.
(2) If T T <_ S H then TT T x Ta is abelian.

Proofi Choose X as in (1). If T is weakly closed in Nx(T) X c H with
respect to X, then T___ X. So we may take T Ta _< X c H. T e Syl (),
soT= X {2. ThusgeH, soTc Ta 1. Thus

IX] > IX c HI > ITTI--ITI 2 > ITI IX: T] IXI,
so TT X= XcH< N(T). By symmetry, T___ X, so X= Tx T.
By 4.1,

X= T x (XcG)= To x (X G),

so X c G is the center of TT X. Then T - X/T - X G is abelian, so X
is abelian.

LEMMA 4.5. Assume W T x To is the weak closure of T in H c S with
respect to G. Then:

(1) H c S Cs(t) for each T#.
(2) HcS= Cs(T).
(3) Ifm(Ns(H c S)/(H c S)) > then T is elementary.
(4) f(W c G) < Z(fI(Ns( W)).
(5) Let m(T) > 1. If V is a conjugate of f,(T) in Ns(W), V : W, then

V c H 1 and T f(T). In particular if W is the weak closure of T in S
then ,(W) is the weak closure of fl,(T) in S.

Proof By 4.4, T is abelian. Let T. By 4.3,

Cs(t) <_ H c S T x (H S c G),

so as T is abelian, H c S Cs(t). Set Z f/(W c G). Then

ZcZ(HcS) Zo so TZoc To <_ Z(HcS).

Hence (1) implies (2). Also Z <_ TT <_ Z(H c S).
Let x(H c S) be an involution in Ns(H c S)/(H S). If T T then

x e H S < C(Z).

If T 4= T then x inverts Ix, W] W c G and hence centralizes Z.
Suppose U/(H c S) is a 4-group in Ns(H c S)/(H S). We have shown

each u e U Hinverts W c G, so W c G is elementary. Thus Tis elementary.
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Finally assume V is a conjugate of fl(T) contained in S but not in W. If
VcH 1 then by (1) and (2), IV_< C(VcH) and then V_< W. So
V c H 1. Assume re(T) > 1. Then (3) implies T I(T).

LEMMA 4.6. Assume O(G) 1 and W TT is the weak closure of T in S
with respect to G. Then one of the followiny holds"

(1) re(T)= 1.
(2) wr.
(3) (T) O2((Ta)) IT, G] with O2((Ta)) - En and IT, G] - L2(2n),

sz(v) or v3(2).

Proof. Let GTbe a minimal counter example. By 4.4, Tis abelian. We may
take m(T) > 1.
Assume G : E(G). Then minimality of G implies either TE(G) is as in (3)

or I-T, E(G)-I 1. In the former case

[O2(G), r] O2(G) (’3 (W (-3 G) W (’3 O2(G) f’3 E(G) 1.

So 02(rE(G)) <_ C(F*(GT) <_ 02(GT) and then TE(G) < F*(GT). So
TE(G) (T). In the latter case minimality of G implies E(G)= 1, so
F*(G) O2(G). If IT, O2(G)] 1 then arguing as in 4.2, W GT. So
W c G [T, O2(G)] _< O2(G) P. Thus TIP is weakly closed in SIP with
respect to G/P, so by 4.2, TO2,2,(G) G. Thus we may take G 02, 2,(G).
As m(T)> 2, 2.6.2 implies O(Q)<_ C(P)<_ P, so O(Q)= 1. Thus
W N(Q). So by 4.5 and induction on ITI we may assume T f(T).
Also G (N((t)P): t T) and if G No((t)P), then by induction on

the order of G, W Na((t)P). Therefore we may assume G Na((t)P) for
some T. By 4.5, W c G < C(to) < C(T) for each e G. We may take
G (Ta), so W c G < Z(G). Then T/(W c G) is weakly dosed in S/(W c G)
with respect to G/(W c G), so by 4.2, W/(W c G)O(G/(W c G))

_
G/(W c G),

and we may assume S W. So W c G F*(G) and then Car(W c G)
TC(W c G) T(W G) W. So W___ G.
Therefore G E(G). Let U f(T) and Z f(Wc G). By 4.5,

Z < Z(f(S)) and f(W) is the weak closure of U in S with respect to G. Let
z e Z and assume z S- Z. Then as z centralizes Z, we may assume
Z _< S. By Alperin we may choose ZZ <_ X < S and y N(X). As Z < X,
U < N(X). Thus by minimality of G, UO(N(X)) <_ N(X) and we may choose
y N(U), impossible as W c G is Sylow in Na(U). So Z is strongly closed in S
with respect to G. Therefore by a theorem of Goldschmidt [5], either (Za) is
a 2-group or E((ZO)) is a product of Goldschmidt groups.

In the first case UZ/Z is weakly closed in S/Z with respect to G/Z, so by 4.2,
UZ < GT, so W< GT. In the second case minimality of G yields G (Za).
As UI IZI and G 4- H, G is a Bender group and TG 02(GT) x G. As
T - W G < Z(S), T E,, and G L2(2"), Sz(2"), or Ua(2").
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LEMMA 4.7. Assume TI > IS c H: TI and let W be the weak closure of T
in S with respect to G. Then one of the following holds"

(1) W- T.
(2) T is cyclic and S is wreathed, dihedral, or semidihedral.
(3) W= T x Ta is abelian.
(4) T is elementary, IWI IT31, Z(W) W’ e(W) and IS: WI 2.

Proof Assume W# T. Then by 4.4, Tisabelianand T x To < SH
for some To # T. As IT[ > IS c H: TI, S c H T x To If T is cyclic and
W= ScH, thenIS: WI 2 so S is wreathed. So takeScH< W. Then
S c H is not the weak closure of T in Ns(S c H), so if m(T)= then
IS c HI 4. Then by a result of Suzuki, S is dihedral or semidihedral. So
take m(T) > 1.
By 4.5, T is elementary and if Visa conjugate of Tin Ns(S c H) not contained

inH, then Vc H 1. Hence V(Hc S)I TI a. Let Z Hc Sc G,
A V(H S). By 4.5, Z Z(A) and ZV Ns(V). As all elements in A but
not in ZV or TZ are of order 4, (TZ)G c A {TZ, VZ}. Thus

INs(A): Ns(TZ)I <_ 2.

But Ns(TZ) ANs(T) ATZ A. Thus as ITI > 2, if T < Ns(A) then
T c ZT or T c ZV are nontrivial and hence T < ZT or T < ZV. So
W= A. AsZ= IT, V],Z= W’ =*(W).

THEOREM 4.8. Assume TI > IS c H: TI, O(G) and m(T) > 1. Let W
be the weak closure of T in S with respect to G. Then one of the following holds:

(1) W G.
(2) 02’(GT)= 02(GT) x IT, G] E, x L2(2").

Proof Suppose (TG) O2((Tt)) x IT, G] with IT, G] a Bender group.
If s S W, then s centralizes an element u of O2((T))e and an element v
of S r IT, G]. Further we may take uv T, so by 4.5, s s H r S W < (T).
Hence 02’(GT) (T). Therefore by 4.2, 4.6, and 4.7, we may take W as in
4.7.4. Let GT be a minimal counterexample. Define Z Z(W) and let V be
a conjugate of T in S H. Then ZT and ZV contain all involutions in W, so
Z ill(R) where R W c G. Minimality of G implies R is not Sylow in a
normal subgroup of G. As usual either G E(G) or F*(G) is a 2-group. Let
uScG-R.
Assume Z < O2(G). Claim Z GT. This is clear if Z tal(O2(G)), so

we may assume u is an involution in O2(G) Z. Then R l’u, T! < O2(G)
and therefore S c G O2(G). Now G (NG((t)(S c G)): e T) so by
induction on the order of G we may take G N(P), where P (t)(S c G),
for some T. But

Ie: c(Z)l <_ 2 > Ie: C(u)l,

so Z is characteristic in P and hence normal in GT.
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Suppose O2(G)= F*(G). Then by 2.6.2, O(Q)< C(02(G)) and by 2.2,
O(Q) 1. Therefore H S

___
H and then (H S)/Z serves in the role of T

in G/Z for Lemma 4.6. Hence 4.6 implies R is Sylow in a normal subgroup of
G, a contradiction.
So G E(G). Now G/Z has abelian Sylow 2-groups, so as Z <_ Z(G), G

is the central product of copies of SL2(5). As T centralizes a hyperplane of
(S G)/Z, T fixes each component of G, so G is quasisimple. Then IZI 2, a
contradiction.
Arguing as in the last paragraph, G is quasisimple. By Corollary 4 in [5]

there exists an element of Z fused to u S W, and [[Z, u]l < 2. Hence
A Cz(u) Z(S) is of index at most 2 in Z. Notice as R’ and I-R, u] are con-
tained in Z(R), (SG)’ < (R’,[R,u]) < A. Thus if A < Z(G), then
(S c G)/A is abelian of order at least 8, so G/A has a trivial multiplier, a contra-
diction.
So A Z(G). Now W < N(A), so minimality of G implies O(N(A))W

N(A) and hence Z < O2,, 2(N(A)). Therefore by Corollary 2 in [5], there exists
A < S,Azg W.
By Alperin’s fusion theorem we may take AA < X < S and # N(X).

A < Z(S), soA < Z(X). HenceA ZcXandAA f(Z(X)), so we
may take X= AA. (S G)’ < A < X, so ScGSylz(N(X)). Then we
may take

# Y= (S G, S c G).
Notice Y centralizes B A c A and then acts on X/B. As IX/BI 4,

IO2(y)" O2(y) C(X)I _< 3,

so SG has a subgroup D of index 2 with DC(X) Y. We may take
9 N(D) by a Frattini argument. But A Z(D), or D R is quaternion and
A D’, a contradiction.
Lemma 4.5, Lemma 4.7, and Theorem 4.8 immediately yield Theorem 3.

LEMMA 4.9. Let Q be a solvable, G semisimple, and/1 a component of G.
Assume m(a) > 1, A zg H, and m(T) >_ m(Cza)(T)). Then CA(T) Z(A)
contains a 2-element.

Proof Assume GQ is a counterexample. By 2.8 we may take G A. Let
R S c G and U CR(T). U < Z(G), so m(T) > m(U). Let r Ng(TU)
U with r 2 6 U. Then r inverts TT G IT, r] Z - T. As Z < Z(G)it
follows that (Z)= 1, so (T)= 1. Therefore as re(T)> m(U), TZ
fx(TU) is the weak closure of T in S c H with respect to G.

Set O(T) O((C(t)" T)). As (T) and Q is solvable we may take
Q O(T)T. Let tT and TU. Then tz, somezZ < Z(GT),
so Cr(t)= Cr(tx). Thus IT, T] 1, so as TUSyl2(H), TU= TU.
Also 0(T) 0(TX). Thus (QU) O(T)TxU QU. Hence is tightly
embedded in , GT/U. Further C() Nr(Z) and IN(TZ)" U[ <
IT[, so IC()l < I[. Hence. by 4.8, either [, ] or t3 - E, x L2(2").
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In the first case FT, G] by 2.1. In the second case (g has a cyclic multiplier.
So in any event we have a contradiction.

5. The proof of Theorem 2

Assume the hypothesis of Theorem 2. If T for each # G H, then
Theorem 3.3 implies that (QG) c H is strongly embedded in (QG) or Q G.

Therefore assume T # 1. By symmetry between Q and Qo we may assume
[TI > [Nt(T)[2. Now, with suitable change of notation, Hypothesis 4.3 is
satisfied with respect to the action of T on Q, so by 4.4, either T S or
Ns(T) T x (Ns(T) Q) - T x T. In the former case as ITI > IN(T)I2
1012 ITI, S T x (S Q) T x T.

6. The proof of Theorem 5

In this section we assume the following hypothesis.

HYPOTHESIS 6.1. G is a #roup, D < G, D/O(D). is the central
product of semisimple subyroups t, < < r, permuted by H N(D) under
conjuyation. Further"

(1) lf and a are 2-elements centralizing t and respectively, and Z(G),
then tt H.

(2) lfX < Ha with XO(D) > 2t then # H.

We wish to prove the following theorem"

THEOREM 5. Assume Hypothesis 6.1 with H G. Then either
(1) D Al, or
(2) D A1A2, re(At) 1, and if at, 1, 2, are commutin# involutions

with t Z(t), then either al a2 or ala2 Z(G).

Throughout this section and until the proof of Theorem 5 is complete, we
assume G is a counter example to Theorem 5. Set A A1.
LEMMA 6.2. Z(G) 1.

Proof Let #N(DZ(G)). Then Da < DZ(G) < H, so by 6.1.2, #H.
That is, N(DZ(G))= N(D). Similarly if is a 2-element centralizing
AtZ(G)/Z(G)O(D) then A < AtZ(G) < H, so H and hence centralizes
i. Therefore DZ(G)/Z(G) satisfies Hypothesis 6.1 in G/Z(G). Assume Z(G) #
1. Then minimality of G implies (1) or (2) of Theorem 5 holds in G/Z(G), and
as G does not satisfy (1), it must be (2). Choose at as in (2) and let a ala2.

Then aZ(G) is in the center of G/Z(G) and we may assume a q Z(G). Now for
# G, aa aZ(G) centralizes -t as above, so by 6.1.1, G < H, a contradiction.

LEMMA 6.3. H acts transitively on the groups At.

Proof. Assume not and let B be the product of all those . conjugate to .
in H. By Theorem 2 there exists e G H such that a Sylow 2-group T of
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B c H is nontrivial. By 6.1.2, l-T, ,] : 1, so by 2.1, O2(/). Hence
Theorems 2 and 3 imply either T is cyclic and B has dihedral or quaternion
Sylow 2-groups, or B7 - E x L2(2). Hence , B is quasisimple. Similarly
setting E E(Cn(fi..)), L has cyclic or dihedral Sylow 2-groups, or E - L2(2).
Choose m(A) > m(L).
Assume g En x L2(2n). Let T < V Syl2 (TA), and let Y be a cyclic

subgroup of order 2 1 in NA(V). Let U Cv(A). Then Y is transitive on
IV, Y] (V c A)#. Let Y1 be a similar subgroup in A normalizing V and
set X (Y, Y). Now for x X, U c U centralizes A and A, so by 6.1.1,
either x e H c X or U c U 1. Therefore the action ofX on V satisfies the
Hypothesis of 3.1, and that lemma implies that either vI 8 or x normalizes
[Y, V]. In any case as T [-Y, V] q= V c A [Y, V] and T[Y, V] V,
we have a contradiction.

So T is cyclic and A has quaternion or dihedral Sylow 2-groups. If re(L)
and Z*(L) :g A then we can apply Theorems 2 and 3 with Z(L)A in the role of
Q and obtain a contradiction. Hence we may assume A and L have dihedral
Sylow 2-groups. Let be the involution in T and let a and b be involutions in
A and L, respectively, centralized by t. Let K Aa. (C(a), C(b)) < H, so by
6.1.2, (Cr,(a), Cr,(b)). Further Cr,(a) and Cr(b) have cyclic Sylow 2-groups,
so by 3.9, ab centralizes . Hence by 6.1.1, C(ab) < Ha. But ab centralizes a
4-group in A whereas m(A c Ho) 1, a contradiction.

Given a conjugate Ha of H define U(Ha) UH(Ha) to be the set of 4-groups
U contained in H such that C6(u) < H for each u U. Define A(H) to be
the set of conjugates H distinct from H such that U(Ho) is nonempty.

THEOREM 6.4. A(H) is empty.

For the remainder of this section assume Theorem 6.4 to be false and let
HA(H). Let Lt A, and L L. Let TSyl2(N,(A)) and S a T-
invariant Sylow 2-group of A with S c Ha Syl2 (A c Ha). In the next two
lemmas let U U(H).

LEMMA 6.5.
(1) U < N(A).
(2) Ifre(A) 1 then A c Ha Z*(A) contains a 2-element.

Proof. A g FI,,(H) < Ha, so by 2.8, U < N(A). If the components of
satisfy Hypothesis I, then (2) is obvious. Hence by 2.9 we may assume
m(Z*(A)) > 1. In this case we will apply 4.9. Now re(F1, v(Z*(A)) > 1, so
Z*(A) contains a member V of Uuo(H). Considering the action of V on Z*(Da),
Q Z*(Da) c H has 2-rank at least 2. Notice Z*(D) is tightly embedded in G.
Hence by Theorem 2,

m(Q) >_ m(Z*(D) c Ha).
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Further if X e Syl2 (Q) then by (1), f/l(X) < N(A). Hence

m(Nx(A)) > m(Z*(A) C(Nx(A)).

Now (2) follows from 4.9.

LEMMA 6.6. re(A) > 1.

Proofi Assume re(A) 1. A < FI,v(N(A)), so by 3.5, U < .C(,),
Aut (.) contains no 2-subgroup W such that W contains a quaternion group
and m(Z(W)) 2, and if V is a 2-group in N(A) with re(V) > 2, then
a <_ F1, (N(A)).
As U _< ((fi.), FI.v(N(A))_< Ha contains a Sylow 2-group Q of A.

Similarly A, c Ha contains a Sylow 2-group Q, of A, for each i. Now X
Ql"’" Q-I is a 2-group in Ha with FI.x(G) _< H. Suppose r > 2. Then
re(X) >_ 2 and as m(X) _< 2, r 3, andQ1 Q 1. But asr 3isodd,
we may assume X acts faithfully on L, contradicting 3.5.3.
So r 2. We may assume Z*(A1) Z*(A2), so Q1 c Q2 1. Now

Y Q1Q2 has a subgroup W of index at most 2 fixing L. As C(z) <_ 1t for
each z Z(Y) fi(Y), Cw(E) 1, so W is isomorphic to a subgroup of
Aut (E). But as Q1 c Q2 1, W contains a quaternion subgroup, and
m(Z(W)) 2, a contradiction.

LEMMA 6.7. m(L c H) >_ 2 <_ m(A c HO, so U(HO c L is nonempty.

Proof This follows from 6.5, 6.6, and 3.8.

LEMMA 6.8. If ITI >_ INa(L)I2 then there exists x A N(L) such that
T T is of even order, and thus Z*(L) Z*(Lx) 1.

Proof If not, apply Theorem 3 to the action of T on A. By 6.7, m(T) > 1.
If . E, x L2(2n) the argument in the second paragraph of the proof of 6.3
can be repeated verbatim.

LEMMA 6.9. D A1A2.

Proof Assume r > 2. Let P be a 2-group in L c H containing T and max-
imal with respect to (Av) # D. By 6.5 and 6.7, P q= 1. Let Q be a P-invariant
Sylow 2-group of (Av) Ha and R NQ(P). Claim R Q. Assume not
and letxNo.(RP)- R. ThenP < ppx < PR. AsxHa LU c (Av) is
of odd order. But this is impossible as P < PP’ < (A,P). So R-- Q.
[P,Q] 1 by 4.1. By 6.5, . c, Z(,), so P < N(A). Hence P
T Syl2 (L c H).
Next let T2 Syl2 (L2 c H)and V TT2. We have shown R S c Ha

Ns(V). Claim R S. Assume not and let xNs(RV)-R, x2R. If
Vc V # lthen

x Ns(V c V’) < S c H R,
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a contradiction. So V c V 1, and thus IRI VI. But by symmetry be-
tween H and Ha we may choose IT[ _> [RI, so V= T_< L. But by 6.5,
2 dg Z(E2), so V dg L. Thus R S and then by 4.4.1, T Syl2 (L).
Let Ti Syl2 (Li), Ti _< H, X T1T2"’" T,_ and Y XT,. By 4.2 there

exists a 6 A such that Y ya <_ YS. Then

IXllSl>lXSl>lXXl> IX12
IX f xal

Thus IX c xa[ >_ IXI/ISI IX: T[. Also a H, so by 6.1, no element of
(Xa) # centralizes E. Hence IX c xal 1. It follows that T X, a contra-
diction.

LEMMA 6.10. If A c H zg N(L) and T :g Z*(L) there exists a S c H
with L Lz. Further R TTac S 1, R < Z(TTa), RT= TTa, and
TT is abelian.

Proof By hypothesis there exists a A with L’ L2. By 6.9 we may pick
a to be a 2-element and hence pick a S H. By hypothesis T

_
Z*(L), so

T Ta. Thus TT c S R 1. R is centralized by Tand Ta, so R <
Z(TT"). T c T < Z*(L), so R projects on /Z(E). Thus as R <_ Z(TTa),
T and then TT is abelian.

LEMMA 6.11. There exists He A(H) such that W Ns(L) is of maximal
order and W Z*(A).

Proof Choose H A(H) so that W has maximal order. Let P be a WT-
invariant Sylow 2-group of L containing a Sylow 2-group of L H. By
hypothesis ]W] > [TI, so by 6.8 there exists y 6 P c H with A A
Assume W <_ Z*(A). [W, E] 1, by 6.7 we have m(W) > 1, and Z(E) 4: 1,

so by 4.8 applied to the action of W on L, [W[ < INe(W)I < 2[TI < 21W1.
Therefore IT[ [W[ and there exists a 6 S with Lz L". Thus T < Z*(L),
or else we could replace H by Ho- 1. Suppose W c WTy is nonempty for
some W < WT(y) and x L. Then W < N(W) < Hand Wxmoves A,
so substituting H for H we are done, since T Z*(L)c T(y) fixes A.
Thus we may assume WT is the weak closure of W in W(P c H).
Again as [W, E] 4= 1, re(W) > 1, and Z(E) 1, 4.6 applied to the action of

Won L implies WTis not the weak closure of Win WP, so by 4.5.5, W
and there is a conjugate W1 of W under L acting regularly on A {T}, where
A WG c WT. Similarly there is a conjugate T1 of T under A acting regularly
on A {W}. Set X (TW, T1, W1). Then (W1TW)= N,(A) is regular
on A {T} and Sylow in Cx(T)a- Nx(T), so by 3.3, X - Lz(q) in its
doubly transitive representation on q + letters, where q WI. In par-
ticular the stabilizer of W and T in X is transitive on T#. As (y)T6
Sylz (Cz(TW)), a Frattini argument implies this fusion takes place in N((y)T).
Nowy2 6 Tand as y moves A, 6.5.1 implies y2 6 T. Thus (y2) tb(T(y)),

impossible as N((y)T) is transitive on T.
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LEMMA 6.12. Let U fl(T). Then"
(1) re(T) m(Ns(L)).
(2) Either ( U, Ua} Ua c SU, some a A Ha and if L c H N(A)

then f(S) is abelian, or there exists b A Ha with UUb U x Ub.

Proof. Assume(U, Ua} Ua c SU, some a 6 A c Ha By 4.2, U Ua.
UU<a SU, so IS" Ns(U)I 2. By 6.5, f:(S) < Ns(L) Ns(U), so re(T) <
m(Ns(L)). Also Ns(L)

_
Z*(A), so if L c H :g N(A), then by 6.10, Ns(L) >_

f(S) is abelian.
So we may assume there exists beA- Ha with Ub< SUcHa As
bHa Uc Ub 1. By 6.5, Ub f(U) < N(L), so by 4.1, UU U x
Ub. Thus m(T) < m(Ns(L)). So in any event re(T) <_ m(Ns(L)). By symmetry,
re(T) m(Ns(L)).

LEMMA 6.13. Choose H A(H) such that W Ns(L) g Z*(A) and W is of
maximal order. Set U i(T) and V I(W). Then

(1) (S) V is abelian, and
(2) UV contains the weak closure of U in SU with respect to A.

Proof Maximality of (W) and 6.8 implies there exists y e L H with
A # A. By 6.12 we may assume there exists b e A H with UU U x U.
Also by 6.12, re(U) re(V), so UU UV.

If UV is the weak closure of U in US then it remains to show only that
V fl(S), so we may choose b to be an involution. If UV is not the weak
closure of U in US then let U < Nsv(UV), U : UV. If U c UV # then
U < C(U c UV) < H and then U fl(U) < N(U), so that Ucentralizes
U. Hence U (UO < Nsv(U), so U < (Nsv(L)) UV, a contra-
diction. Thus U c UV 1, so there exists an involution U (S c H0U.
i= du, dS, u U. Then 2 andd= iu-iN(UV), so (du)2

dZuau d2 UV. Thus d2 UV. In this case set b d, so that in any event,
b2 UV.
Then b centralizes V [UV, b]. By 6.10, WW WVR, R WW c L 1.

Hence w W is of the form wr. As [b, Ay] and Cv(b) 1, [w, b] if
and only if w w’ and w Z*(A). So V < Z*(A) and IV, y] 1.

Let P be a T(y) W-invariant Sylow 2-group of L. By 4.2 there is x L with
VV VxV K < PV. V < Z*(A) and Z*(A) is tightly embedded in G.
Also by 6.12, m(W) m(V), so K is the weak closure of V in VP c H. Thus
we can apply 4.6 to the action of V on L and conclude there is a conjugate V
ofVinPVactingonKwithV K. IfV K# lthenV< C(V K) <
C(V), so V1 cK= 1. V acts on WT(y) C(Va) for each Va < K.
Further Cw(y)= W c A= W c Z*(A), so unless W: W c Z*(A)] 2,
WT is the unique abelian subgroup of index 2 in WT(y), and then V acts on
WT. As lW[ is maximal, [WI > TI, so as W c Wa 1 for d V, WT
W x Wa. Thus [d, WT] Tisinvertedbyd, so asm(Vi) > 1, T- Wis
elementary abelian. Therefore W V < Z*(A), contrary to hypothesis.
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So W: W c Z*(A)I 2 and WT: Cwr(Y)l 2. Indeed the same argument
shows INg(WT)} < 2. Now Z Cw(y)--Z(TW(y) is of index 4 in
TW(y), so IVy" Nv(WT)I < 2. Therefore IVtl 4 and TW W x Wa

where (d) Nv(WT).
Let X Vt WT(y). V1 c O(X) v V c O(X), so V is not conjugate

to V in N(X). Thus New(X)= XN,w(UV)= X. Therefore PW X. Then
P/U - X/UV is the split extension of a 4-group VT(Y)/UV by the 4-group
VV U/UV and thus is abelian or order 16 or isomorphic to Z2 x Ds. P/U is
Sylow in the semisimple group A/Z*(A), so A/Z*(A) - L2(16) or L2(qt) x
L2(q2), qz + 3 rood 8. In the first case A/Z*(A) has a trivial multiplier, a
contradiction. In the second case we must have , g SL2(q) x SL2(q2). But
then g does not admit the action of a *group U tightly embedded in Ug.
We are now in a position to derive a contradiction and establish Theorem 6.4.

Choose Ha A(H) with W Ns(L) of maximal order and W Z*(A). This
is possible by 6.11. By 6.13, (S) V is abelian and setting U (T),
UVcontains the weak closure of U in US with respect to A. Now as V is abelian
and V c Z*(A) 4 1, Goldschmidt’s fusion theorem [-5] implies either A/Z*(A)
has a component X isomorphic to Sz(8), or V < Z*(A). In the first case V
centralizes each involution in a Sylow 2-group ofX and the other automorphism
group of X is of odd order. So U < XC(g.) and UI -> VI so Cv(X) 1.
Let be the product of all such components. Then BUV/BV is weakly closed
in BUS/BV with respect to A/BV, so by 4.2, [U, A/BV] 1. Thus A <
O(D)(A c Ho), a contradiction.

7. More Theorem 5

In this section G continues to be a counterexampl to Theorem . In addition
we assume the following hypothesis"

HYPOTHESIS 7.1. is an involution in H with C(t) < H H. Set L A,
L= L.
By 6.4, H contains no 4-group U with C(u) < H, all u U and of course

the same holds with the roles of H and H reversed.

LEMMA 7.2. m(Cv(ggt) c C(t)) < 1 < m(Cx(t)).

Proof. This follows from our initial remark and 6.1.

LEMMA 7.3. Assume A At. Then D AA and re(A) > 1.

Proof. Let B C,,q(t). If D AAt, then by 7.2, re(B)= 1. Thus
re(A) land Z*(A) Z*(At).
So we may assume re(A) and O2(g) # O(gt), and it remains to exhibit

a contradiction. Now A H, so E(D c H)-. Let z be an involution



ON FINITE GROUPS OF COMPONENT TYPE 109

with z Z*(B). Then by 2.7, either B E, [B, E] 1, or B Ctr.,z(z)’.
In any case I-E, z] 1, a contradiction.
LEMMA 7.4. Assume A A. Then D A1A2 and fi(t) PGL2(q), q odd.

Proof. By 7.3, fixes each A. If m(A) then as m(C(t) c Z*(D)) < 1,
Z*(A) Z*(A) for each i. Further inverts elements x A, 1, 2, of
order 4, so U (xlx2, x2) is a 4-group in C(t). Hence by 7.2, D AxA2.
So m(A) > 1. Let R Syl2 (Ca(t)). Then m(R) 1. Let r be the involution

in R. Similarly let R2 Syl2 (Ca2(t)), and suppose D q: AxA2. Thenm(RR2)
1, so r is the unique involution in RR2. Hence R R2 (r), so A(t) has
dihedral or semidihedral Sylow 2-groups. This is impossible as m(A) > and
r Z*(A). Thus D AtA2.

Suppose A has dihedral Sylow 2-groups. Then A L2(q) or .47, so as
m(Ca(t)) 1, g_(t) PGL2(q). Hence we may assume this is not the case.
So IRI > 2, and r is in the subgroup Ro, of index at most 2 in R, fixing L. Let

T Syl2 (CL(r)) and To Nr(A). Let RTo <_ S Syl2 (ToA).
Suppose induces an inner automorphism on .. Then ab, a R,

b C(.) and as m(R) 1, ]al > 2, a2 Z*(.4), and R is cyclic Sylow 2-group
of Ca(a). Then by 5.4.8 in I-6], either S c .4 is dihedral or semidihedral or
R (a). The former is impossible as , is semisimple and IZ*()12 1. In
the latter case

IC(s a/<>(a)l 4,

so (S c A)/(a2) is dihedral or semidihedral, yielding the same contradiction.
So induces an outer automorphism on ,. By 4.2 there exists T # To <

ToR. If a e Hg then we may choose r ToT c R, and r induces an inner
automorphism on L. So Tg c To 1, IRI > Tol, and by 4.4, To is abelian.
If IRI Tol then by Theorem 3, A has dihedral Sylow 2-groups. So Tol < IRI
and then by symmetry between H and Hg, TI IRI, and for x T- To,
R Ro < .4 c A < Z*(A). Hence R is cyclic. Also R and To normalize
each other so RTo R x To.

Let RTo be of index 2 in X < S. If ITol > 2 then RTo is the unique abelian
subgroup of index 2 in X, so Ns(X)= XCs(t)= X and X S. But then
IS c .4" Rol 4, a contradiction as above. Hence To (t) and R is cyclic
of order 4. Now 3.7 yields the desired conclusion.

LEMMA 7.5. At - A.

Proof Assume At= A. By 7.4, .4 has dihedral Sylow 2-groups. cen-
tralizes involutions a and b in A and .42. Suppose neither a or b acts on L.
Then by 2.8, ab centralizes E, so C(ab) < H. But ab centralizes a 4-group in .4,
against 7.2. Thus we may assume a acts on L, and Cr.(a). As [b, t] 1,
b acts on L. Now we repeat the arguments in the last paragraph of the proof
of 6.3 to reach a contradiction.
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8. Still moro Thoorom 5

In this section G continues to be a counterexample to Theorem 5.

LEMMA 8.1. Let a be an involution with C(a) < H. Then either
(1) a Ha if and only if# H; or
(2) D .41.42, and if aa H, t7 q H, then .4t .42 and m(A) > 1.

Proof. This is a direct consequence of 7.3, 7.4, and 7.5.

LEMMA 8.2. D A1.42.
Proof. Assume D 4: .41.42, and let a be an involution in .4. By 8.1, a Ha

if and only if# H. Thus if a - aa C(a) then # H so aa Aa .4 , some i.
Further b aaa centralizes some ., so by 6.1 and 8.1, b H if and only if
x H. Thus 3.3 yields a contradiction.

LEMMA 8.3. m(.4) > 1.

Proof. Assume m(.4) 1. Then we may assume Z*(A1) v Z*(.42). Thus
Z*(D) UO(D) where U is a 4-group. Further by 8.1, for each u Ua,
u Ha if and only if # H. Hence 3.3 again yields a contradiction as U is
not fused in H.

LEMMA 8.4. Let Ti Syl2 (As) and T1 T2 < S Syl2 (G). Then T1 w T2 is
strongly closed in H c S with respect to H and in Ns(Ti) with respect to G.

Proof. See 8.1 and 8.2.

Now 8.3, 8.4, and 3.4 yield a contradiction. This completes the proof of
Theorem 5.

9. Groups of component type

In this section we operate under the following hypothesis"

HYPOTHESIS 9.1. G is a finite group. For each involution G,

02,,E(C(t)) O(C(t))E(C(t)).

Recall is the set of components of the groups E(C(t)) as ranges over all
involutions in G, and * is the set of maximal elements of La under the partial
order defined in Section 1.

LEMMA 9.2. Let be an involution in G, A E(C(t)), A La*, and X < G.
Assume X, A < E(X) and u is an involution centralizing and [E(X), A] B.
Then"

(1) B < E(C(u)).
(2) Either A E(X) or A Ctr.,:(t)’ for some component L L of

E(X) and of E(C(u)).
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Proof By 2.7, A < 02,,E(C(u)), so by 9.1, A < E(C(u)). Then B
[B, A] < E(C(u)). If A

_
E(C(u)) we are done, so assume A E(C(u)).

Then by 2.7 there is a component L of E(C(u)) such that either L [L, t] and
A < L or L # L and A Ctr ta(t)’. As A .W*, the first case is impossible.
Now A < B [B, A] < Lid and by 2.5, either A B

_
E(X) or Lid

B < E(X).

LEMMA 9.3. Let be an involution in G and A E(C(t)) where A .*
Let a be an involution centralizing (t)A with A

_
E(C(a)). Let

S Syl2 (C((a)A)) and S < T SyI2 (C(A)).
Then"

(1) There is a component K K ofE(C(a)) with A CtK ta(t)’.
(2) S has a subgroup R of index 2 centralizing K and [K, t] < E(C(r)) for

each r R. [K, t]
_

E(C(r)) if r Cg(t).
(3) lfy S R with C(y) and ICs(y)l > 8 then A E(C(y)).
(4) Either there exists an involution b in the center of T with [K, t]

_
E(C(b))

or T is dihedral or semidihedral.
(5) If (a) fl(O2([K, t])) and K .W* then either a Z*(C(A)) or T is

dihedral or semidihedral, and d’ moves Kfor each a a in ac(a) c C(a).
(6) Either m(Cr(t)) 2 or there exists a 4-group U < C(A) with KKt_

E(C(u)) for each u U.
Proof (1) follows from 9.2. Now S acts on [E(C(a)), A] IK, t] and then

has a subgroup R of index 2 fixing K. If R # Cs(K) let x R C(K) with
x2 C(K), and let X (x)O2(K). Then by 2.5, K < (NK(X), A) < N(X),
so l-X, K] 1, a contradiction. Now by 9.2, [K, t] < E(C(r)), each r R*
and if l-t, r] then even [K, t]

___
E(C(r)).

Suppose y S- R with lt, y] and Cs(y) Y has order at least 8.
Assume A

_
E(C(y)). By (1) there is a component L 4: L of E(C(y)) with

A Ctr ta(t)’. If [L, t] [K, t] then (yt, y) centralizes K, a contradic-
tion. By (2) there is a subgroup Yo of index 2 in Y with l-L, t] < C(Yo). As
Yol >- 4, centralizes an element # z R c Yo. By (2) [L, t] and [K, t]
are normal in E(C(z)), a contradiction.
Assume (a> fl(O2([K, t-l)) and K *, but a q Z*(C(A)). Then there

exists a a S, x C(A). Let r R. By (2), [K, t] < E(C(r)). As K *
and a Z(K), 9.2 implies [K, t]

___
E(C(r)). Thus [K, t] (Ar(C(). As

a ax,
[K, t] # [K, t]’= <AE(C(ax))>,

so Ca([K, t]x) 1. Hence (2) implies ICs(aOI 4. Thus either S Cs(aO is
of order 4 and T is dihedral or semidihedral, or S is nonabelian dihedral or
semidihedral and (a) is characteristic in S, so that T S.

Notice that if b Z(T) with A E(C(b)) and IRI > 4, then (2) and (3) imply
[K, t] E(C(b)). So assume (4) is false and choose a with S maximal subject
toA E(C(a)). LetbNr(S)- Swithb2S. ThenZ= <a, ab> < Z(S)
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and by maximality of S, A E(C(aab)), so ab S R. As T is not dihedral
or semidihedral, ISI > 4, so (3) implies A E(C(ab)). As b C(A), this is
impossible.

Finally assume m(Cr(t))> 3. Then by (2), KKt E(C(u)) for each
u CR(t). By (4) S T, so Cl(t) contains a 4-group.

HYIOXHESIS 9.4. is an involution in G and A E(C(t)) where A *.
Further one of the following holds"

(1) z().
(2) is contained in a 4-group U with A E(C(u)), each u U.
(3) s is an involution in A with A [A, s], and A

LEMMA 9.5. Assume hypothesis 9.4. Let a be an involution centralizing
and in case 9.4.2 assume a centralizes U. Then .4 E(C(a)).

Proof Assume A . E(C(a)). By 9.3 there is a component K K of
E(C(a)) with A Ctt:, ,a(t)’. Then Z(A) < Z(KK’), so in 9.4.1, centralizes K,
a contradiction. Further in 9.4.2, U acts on KK [A, E(C(a))], so some
u e U* fixes K. But we could have chosen u. Finally in 9.4.3, C(s) nor-
malizes the semisimple group (Acs)) X, while by 2.5, KK (CK(s), A) <
N(X), contradicting 2.1.

LEMMA 9.6. Assume hypothesis 9.4. Let a be an involution centralizing A.
Then either A E(C(a)), or we are in 9.4.2, C(A) has dihedral Sylow 2-groups,
and a q 02(C(A)).

Proof. Let a T Syl2 (C(A)). We may choose e T, and in 9.4.2, choose
U < T. By 9.5 we may take Z(T). Then another application of 9.5 implies
we are in 9.4.2. As U intersects any subgroup of T of index 2 nontrivially, 9.3.2
and 9.3.4 imply T is dihedral. As a is not conjugate to in C(A), a q 02(C(A)).

THEOREM 9.7. Assume Hypothesis 9.4.
Then one of the following holds:
(1) A Aa(N(A)) AA(C(a))for each involution a

1 for each tt G.
(2) D AA(N(A)) AAx, x C(02(A )). m(A) 1. D Aa(C(a)), each

involution a C(A) and if [A, A] then A A.
(3) A Aa(N(A)) and [A, A] for tt G. C(A) has dihedral Sylow

2-groups, O2(A) 1, and A Aa(C(a))for each involution a in 02(C(A)).
(4) A E(G).

Proof. Set D Aa(N(A)). Suppose [A, AI 1. By 9.6, A E(C(a)) for
each involution a A. By 9.2, A E(N(Dg)). By symmetry A< D for
each A D. Hence D D.

Therefore if A E(C(a)), A E(C(ag)), and A
___

D, then x N(D)
and Axg-’ E(C(a)), so x#-1 and then # normalizes D.
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Assume D # A. By 9.6, A E(C(a)), each involution a A, so that
A (Ac(=)) < D. Hence 9.4.1 or 9.4.3 holds, and by 9.6, A E(C(b)) for
each involution b in C(A).

Suppose A normalizes D. Either m(A) 1 and we pick Z(A), or A
contains a 4-group U with C(u) < N(D), each u U. Then by 2.8 and 3.8
there is a 4-group V <_ F, v(A) and by symmetry a 4-group W in F, v(C(A)).
Now by 2.7 either A A or [A, A] 1. Hence # N(D).

Therefore we can apply Theorem 5 to D and conclude 9.7.2 or 9.7.4 holds.
On the other hand if D A then 9.7.1. or 9.7.3 holds by 9.6.

10. The proof of Theorem 1

Assume the hypothesis of Theorem 1 and assume further that none of the
conclusions hold. Then m(C(A))> 2 and by 9.7, there is an involution
a C(A) with A E(C(a)). By 9.3 there is a component K # K of g(C(a))
with A CtK ta(t)’. A is a homomorphic image of K, so by hypothesis K .a..

Suppose Khas 9.4. Then by 9.7, K satisfies 9.7.2. So we may choose a Z(K)
and A has dihedral Sylow 2-groups. By 9.3.5 either a Z*(C(A)) or C(A) has
dihedral or semidihedral Sylow 2-groups. Assume [A, A] 1. If a Z*(C(A))
we may assume a centralizes a subgroup B B covering A modulo O(C(A)).
By 2.5, B < C(KKt), so C(b) < N(KK) for each involution b in B. We may
take a Sylow 2-group T of B in A. Then v a C(T) < N(KKt), so v acts
on KK c C(A) >_ A. As v Z*(C(A)), Iv, A] 1. Now C(u) < N(KtKt)
for each involution u in A, so K <A, Cry(u)> < N(KKt), a contradiction.
So assume C(A) has dihedral Sylow 2-groups. A < C(A) and A has dihedral
Sylow 2-groups, so C(A) has 2 classes of involutions, one in AO(C(A)), and
one outside. Moreover A contains a 4-group U fused in A while by 9.7, A is
not normal in E(C(u)) for some u U. So AO(C(A)). Hence a e
AO(C(A)) and conjugating in C(A) we may assume a A. Let S Syl1 (C(A))
with tSand aZ(S). Let a # aS, xC(A). By 9.3.5, a moves K,
so b ta fixes K and then centralizes KK by 2.5. As a A, d a-’ A <_
KKt. Then d kkt where k and k are elements of order 4 in K. Let u b,k
and U (u, a>, where b, is an element of order 4 in (b>. Then U is a 4-group
centralizing K and by 9.7, Fx,u(G) < N(KKt). Moreover u centralizes d and
then acts on D K-’Kt-’. By 9.7, D does not act on KKt, so by 2.8 and 3.5,
U < DC(D). As a Sylow 2-group of C(D) is cyclic, even U < D. But
D Z(D) has one class of involutions (d-’)I

_
a, so u a. So by 9.7, u

is fused to a in N(KKt), a contradiction. Therefore [A, A] =/= and conclu-
sion (3) of Theorem holds.

Therefore K does not satisfy 9.4. Thus by 9.3.6,

m(C(A) c C(t)) 2.

If m(C(K) c C(a)) > 2 then arguing on K in place of A as above, since
l-K, K] we conclude K satisfies (4) of Theorem 1. Then A < [K, t] <
E(G). By 2.7 there is a component L of E(G) such that either A Ctz ,(t)’ or
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A < L, and as A e La* it must be the former. So this is not the case and
m(C(K) C(a)) < 2. If a Z([K, t]) then 9.2 implies K E(C(u)) for each
involution u Z(K), impossible as K does not satisfy 9.4. Further if Oz(K) v
then by 9.3.2 we may pick a Z([K, t]). So Oz(K) 1. But now <a>K <
C(K) and m(C(a) Kt<a>) > 2, a contradiction.

Assume Theorem 4 to be false and let G be a counterexample ofminimal order.
Let T be a Sylow 2-group of QO N(Q) acting on a Sylow 2-group R of Q.
T exists by Theorem 2. If R is not cyclic, quaternion, or dihedral, then by
Theorem 3, m(T) > and T < 02,,2(QT), so that by 2.1, [K, t] < O(Q).
As m(T) > 1, K Cr(T)O(Q) FI,r(K) < N(Q). In particular if re(Q) >

m(K), then by 2.7, K< 02,,E(KQo) and then by 2.1, K centralizes a Sylow
2-group of Qo. Thus we are in (2). So we may assume m(K) > 1.
For X < G define X Kh if Kh <_ (Kh C(X))O(Kh). Minimality of G

(11.1) IfX Q and C(X) G, then Cr(X) <a Oz,,r.(C(X)) or

O2’(Ct2(x))e_ E, x L2(2n)
o(cdx))

for suitable P.

Assume X is a 2-group in 11.1. Let U be a Sylow 2-group of Cr(X) and V a
Sylow 2-group of Q containing U. Then in the second case of 11.1, X
Cxv(K/O(K)) <_ Nxv(XU), so if V U then Nv(X) > U. Hence if N(X) < G,
then as C(X) O,,(C(X)), U Nv(X), so U V, and (3) is satisfied,
contrary to the choice of G. Therefore:

(11.2) IfX is a 2-group with G N(X) and X K, then

Cr(X) 02,, r.(N(X)).

(11.3) IfK Kh then K O2,,n(N(Kh)).
(11.4) is an equivalence relation on KG.

Let Cd(K) be the equivalence class under containing K. If Cg(K) KG

then (K) - 02,,g(N(K)) and then K
___

O2,,E(G). So (K) K. Set
D (Cg(K)). If is a 2-element in G- Z(G) with K, then by 11.2,
{Kh:t..Kh}

_
Cg(K). So if Ko(K) then xN(D). Also if K=

Nr(Dr)O(K) then similar arguments show D Dr. Therefore applying
Theorem 5, with the members of Cg(K) in the role of the A’s, we conclude
if(K) {K}. Then remarks in the initial paragraph imply Q has a dihedral
Sylow 2-group R and a Sylow 2-group T of H c Qo is cyclic for suitable
a e G- H and H N(Q). We conclude R < K and (t) K(t)/O(K) -PGL2(q), where T (t) is of order 2. We may take K Q.

11. The proof of Theorem 4

implies"
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Set P R(t) and let P < S c Syl2 (G). Suppose s is a conjugate of in
S e. Then (g)Q PGL2(q), so we may assume st C(Q) and Is, t] 1.
Let z CR(t). Then tz is conjugate to under Q, so st , impossible as
{Q} Cg(Q). Thus P (tc S). It follows that S Syl2 (G). Further
PQ H, so P is strongly closed in S with respect to G.
As P is strongly closed in S with respect to G, G/Z(G) satisfies the hypothesis

of Theorem 4, so minimality of G implies Z(G)= 1. As {Q} if(Q),
N(X) < H for each X with Ca(X)O(Q) Q. Suppose a is an involution
centralizing PO. Let (z) Z(P). z induces an automorphism in PGL2(q)
on E .o so Cx(z) is maximal in E. But E (Cx(z), Cx(a)) <_ H, so az
centralizes E. Hence P < C(az) <_ Ho, a contradiction. Thus C(.) has odd
order.

Therefore S _< Aut (L2(q)), so SIP is cyclic. Minimality of G implies
G (pG). Suppose a is an involution in S P. As P is strongly closed in
S and SIP is cyclic, a c S

_
Pa. But now considering the transfer of G to

S/P, P is Sylow in a proper normal subgroup of G, a contradiction. Thus as

P -- PGL2(q) and S < Aut (P0_.), S P is dihedral. But this contradicts
3.6, since F1,R(G) is not solvable.
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