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POSSIBLE BRAUER TREES
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WALTER FEIT

1. Introduction

Let G be a finite group and let p be a prime. Let K be a finite extension field
of Q, the p-adic numbers, and let R be the ring of integers in K. Let B be a
p-block of RIG] with a cyclic defect group D : < >. Let z z(B) be the
Brauer tree associated to B. We will say that , belongs to G.
The object of this paper is to show that most trees do not occur as Brauer

trees. This answers a question raised in [3]. The proof relies on the classifica-
tion of finite simple groups. As far as I know not a single tree can be
eliminated without using this classification. We first prove a result which re-
duces the question to the study of simple groups and then use the classification
of simple groups to get information about trees belonging to simple groups.

Let be a tree and let Po be a vertex of . Let n be a natural number. Then
(,Po) is defined to be the union of n copies of z with the vertices Po iden-
tified. (A more precise definition can be found in Section 2.) Observe that

(, Po) for any vertex Po of .
Two trees a and are similar if there exists a tree 3’ such that

O (3", PO) and = (, P)
for integers m,n. It is easily seen that similarity is an equivalence relation. See
Lemma 2.2.

THEOREM 1.1. Let G be afinite group and let be a tree which belongs to
G. Then there exists a simple group H which is involved in G and a group H
where

I- H if IHI p,

I-’ I- and/-/Z(/- = H if HI :/: p,

such that z is similar to a tree that belongs to 1-71. Iffurthermore z (3",Po)
for some n > then Po is the exceptional vertex of z if z has an exceptional
vertex.

In case G is p-solvable, ]HI P. Thus Theorem 1.1 asserts the well-known
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fact that is similar to o---o Hence is

Po

where Po is the exceptional vertex.
Somewhat more precise results are proved in Section 4.

THEOREM 1.2. Let G be afinite group and let r be a tree which belongs to
G. Then r (7, Po) for some natural number n, where Po is the exceptional
vertex (if there is an exceptional vertex). Furthermore, one of the following
holds.

(i) 7 has at most 248 edges.

(ii) 7 is an open polygon (i.e., a straight line segment).

It is of course in the proof of Theorem 1.2 that the classification of finite
simple groups is needed. We actually use only rather superficial properties of
simple groups. In case G GL,(q) more precise results have been obtained
by Fong and Srinivasan [6].
By looking more closely at various classes of finite simple groups it should

be possible to improve Theorem 1.2 and eventually to give a complete descrip-
tion of all possible Brauer trees.

In Theorem 1.2 (ii) neither n nor the number of edges of 7 needs to be
bounded as is shown in the following examples.

Let r be a prime and let m,n be integers with mn> 2. Letp be a prime so that
r has order mn modulo p. (Such ap always exists if r"" = 26; for example, see
E. Artin, Comm. Pure Appl. Math., vol. 8 (1955), p. 358, Corollary 2.) Let
Go GLm(r n) and let G Go<t>, where on= and t induces the
Frobenius automorphism of order n on Go. Let r be the Brauer tree of the prin-
cipal p-block of G and let 7 be the Brauer tree of the principal p-block of Go.
By [6], 7 is an open polygon with m edges and the exceptional vertex Po at one
end. Lemma 4.3 below implies that r (7, Po)n.

I wish to thank E. C. Dade and R. Solomon for pointing out some gaps in
the first version of this paper.

2. Some properties of trees

By a tree we will always mean a finite connected graph with no cycles. An
object of a tree is either an edge or a vertex. An isomorphism from a tree r to a
tree r’ is a bijection from the set of all objects of r onto the set of all objects of
r’ which preserves edges, vertices and incidence.

If a tree r has exactly e edges then it has exactly e + vertices.
Let Po be a vertex on the tree c. Let n be a positive integer. Then we will
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write ct (r, Po) if r is a tree with Po as a vertex and there exist n graph iso-
morphisms fl,... ,fn of r onto subgraphs of a such that the following hold:

(1) f,(Po) Po for 1 s _< n.

(2) f,(r) fq f,(r) {Pol if 1 _< s #= t _< n.

(3) U.,f,(r)= a.

Observe that if r is a tree with Po as a vertex and n is a natural number then
there always exists a tree (r, Po)n, and any two such trees are isomorphic
by an isomorphism which fixes Po.

LEMMA 2.1. Let m,n > 1. If (r,Po) (r’, P)m then Po P.

Proof. Let y be the graph obtained from (r,Po) by removing a vertex P
and all the edges incident to P. If P = Po then the connected component of y
which contains Po has more than half the edges of ./. If however P Po then
no connected component of -/has more than half the edges of % Thus Po is
uniquely determined.

LEMMA 2.2. Let a, [3 be trees and let s, t be integers such that

(,py (,P’),.
Then there exists a tree 3/and integers m,n with

(,po), (,po)

for some vertex Po of and ms nt. In particular similarity is an equivalence
relation.

Proof. If s 1 or t 1 the result is clear. Suppose that s > 1 and t > 1.
Then P P’by Lemma 2.1. Let Po P and let r (c,Po).

Let [Eil be the set of all edges of r which are incident to Po. For each let
r(El) be the subgraph of r consisting of Po and all edges and vertices which are
connected to Po via E. Then r/(E,) is a tree for each i, (E,) and
r/(E,) f3 r/(Ej)= IPol for all iS j. Let r/,...,r/k be a complete set of
representatives of the isomorphism classes of the trees r/(E). Let aj be the
number of trees r/(E) which are isomorphic to rj. Let a be the greatest common
divisor of all the a. Define ./to be a subtree of containing Po which is the
union of various r/(E) such that for eachj, exactly aJa of these are isomorphic
to r/j. Then r (y,Po)a;s and t divide a; (t,Po) (y,Po)m, (g,Po)
(-/,Po)" where ms nt a. 1

Let tr be an automorphism of the tree r. Then tr is admissible if it satisfies the
following conditions.

(I) If o(E) E for an edge E of then o(P) P for every vertex P of z
incident to E.



46 WALTER FEIT

(II) If tr(P) P for a vertex P of r and E,,... ,E,, are all the edges of r in-
cident to P then defines a permutation of {E,,... ,E,} which is a product of
disjoint cycles, all of which have the same length.

Condition (II) is clearly equivalent to:

(II)’ If o(P) P for a vertex P of r and o fixes an edge incident to P for
some s then tr fixes every edge incident to P.

Suppose that z = (3,,Po)". LetA bea group of order n. ForxA let 3, be a
subtree of which contains Po so that , Uea’r and there exists an iso-
morphismf from 3’ to 3’ which fixes Po. ForyA define the automorphism %
of ,by

Then it is easily seen that [%[yEA} A is a group of admissible automor-
phisms of r. In the rest of this section we will be primarily concerned with
proving the converse of this result.

LEMMA 2.3. Let a be an admissible automorphism of the tree

(i) If tr(E) Efor some edge E then tr 1.

(ii) If trfixes two distinct vertices of r then tr 1.

Proof. (i) If tr 1 then there exist edges E, E’ with a common vertex P
such that tr(E) E and tr(E’) E’. Hence a(P) P by condition (I). This
contradicts condition (II)’.

(ii) Suppose that tr fixes the vertices P and Q of r. There exist objects
Oo P O Q such that O,_ is incident with O for 1,..., k. Thus
also tr(O,-1) is incident with a(Oi) for 1,... ,k. As r contains no cycles this
implies that a(O,) O, for 0,..., k and so if P : Q theft tr fixes an edge
of r. Hence tr 1 by (i).

THEOREM 2.4. Let A’be a group ofadmissible automorphisms of the tree
Then thefollowing hold

(i) Each orbit ofA on the set of edges of z has length IA I.
(ii) There exists a vertex Po ofrfixed by all the elements ofA. If [P.] is the

set of all vertices of z distinctfrom Po then each orbit ofA on [P.] has length
IAI,

Proof. (i) By Lemma 2.3(i) no element ofA fixes any edge. This im-
plies the result.

(ii) Let e be the number of edges in z. By (i), IAI e. Let e IAIt. Let V
be the set of all vertices of z. Thus IV] e + 1. Let 0 be the character af-
forded by the permutation representation of A on V. By Lemma 2.3(ii),
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0 <_ O(x) _< 1 for x C A [1} and 0(1) t lAl+ 1. As ,eO(x) =-0 (mod
[A I) it follows that O(x) 1 for all x C A [1}. Hence A has exactly t +
orbits on V. Let their lengths be dr,..., d+. Thus d, [A for each i, and so

t+xdfor each either di I1 or d: < I[ As -x, I[t + this implies
that after a possible change of notation d [A for 1,...,t and
d,+, 1.

LEMMA 2.5. Let A be a group of admissible automorphisms of the tree z
and let Po be a vertex ofrfixed by all elements ofA. Let a E A and let 0 be an
object of r with o(O) O. Let O Oo,...,O tr(O) be objects of r such
that 0,_ is incident to O, for <_ <_ k. Then O Po for some j with
l<_j<_k.

Proof. Suppose that the result is false. Choose tr and O so that k is as small
as possible. Then a’(O,) q: O for 1 <_ < j _< k and any s. Let tr have order n.
Consider

o Oo,...,o (Oo),...,o(o)= (o),...
--’(o_,), ,--’(o) "(0o) o.

Any two consecutive objects in this sequence are incident and no object in this
sequence is equal to Po. By Theorem 2.4 each orbit of < o > on the set of ob-
jects in the sequence has length n. Thus no two objects in the sequence are
equal except the first and the last. Hence the sequence is a cycle in r contrary to
the fact that r is a tree.

Let r be a tree and let A be a group of admissible automorphisms of r. For
an object O of r let O’ denote the orbit ofA containing O. Let Po be a vertex
of r fixed by all elements of A. Define the graph ra as follows:

[Ea} is the set of edges of ra as E ranges over all edges of r.

{pal is the set of vertices of ra as P ranges over all vertices of r.

Ea is incident with pa if and only if some edge in Ea is incident with some
vertex in pa in r.

It is easily seen that each Ea is incident with exactly two pa SO that ra is a
graph. (This for instance follows from the proof of Theorem 2.7.)

LEMMA 2.6. Let z be a tree and let A be a group of admissible automor-
phisms of r. Then ra is a tree.

Proof. Clearly ra is connected. Suppose that r has e edges. By Theorem
2.4, e IAlt for some integer t. Furthermore ra has t edges and t + ver-
tices. Thus ra has no cycles.

THEOREM 2.7. Let z be a tree and let A be a group of admissible automor-
phisms of r. Let Po be a vertex of z fixed by all the elements ofA. Then r is
isomorphic to (ra,Po) lal.
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Proof. If [A[ 1 there is nothing to prove. Suppose that [A[>I. By
Theorem 2.4, Po is uniquely determined. Let El,... ,En be all the edges of r in-
cident with Po. By Theorem 2.4, n [A[t for some integer t and A has t or-
bits on [E}. Choose the notation so that EI,...,E, is a complete set of
representatives of the orbits ofA on [EI.
For _< _< t define the subgraph . of r to consist of all objects O of r

such that there exists a sequence of objects

0 Oo,...,O,- E,,O, Po
with O CPo for 1 <j_< s-1 such that 0-1 is incident with O for
1 _< j _< s. Let

Clearly 3r is connected and so 3( is a tree. Furthermore r OoAa(y). By
Lemma 2.5 o(3)

Since a(3) 3( {Po} for , 1 it follows that the map sending an object
O of "r onto the object O

COROLLARY 2.8. Let r be a tree and letA,A be groups ofadmissible auto-
morphisms of z with ]A ]A’ > 1. Let Po,P be the vertex of rfixed by all
the elements ofA,A’ respectively. Then Po P.

Proof. Clear by Lemma 2.1 and Theorem 2.7.

3. Brauer trees

Throughout this section the following notation will be used.

G is a finite group.

p is a prime.

K is a finite extension of Qp, thep-adic numbers, which is a splitting field for
G. R is the ring of integers in K and r is a prime in R.

-R- R/rR and - V/rV for an R module V.

B is a block with a cyclic defect group D < > and r(B) is the
Brauer tree associated to B.

We will freely use the notation and results of [4], Chapter VII. Thus
{o,..., ,} is the set of all irreducible Brauer characters in B. If B contains no
exceptional character then Xo,. x. is the set of all irreducible characters in B.
If B contains exceptional characters Xx,) A then Xo Exe^x and
{X,..., X.} is the set of all non-exceptional irreducible characters in B. Let
tL +/- 1 be the sign corresponding to x. defined in [4], Chapter VII, above
Theorem 2.15.
Theorems 2.20 and 2.25 of [4], Chapter VII, imply the following statements.
Suppose that d., 0. Then there exists an R-free R[G] module X,, such that
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(Xu,), affords x and , is a serial module whose socle affords o,. If further-
more X is an R-free RIG] module such that Xr affords Xu and is indecom-
posable thenX Xu, for some with du, : 0. Hence in particular Xu is deter-
mined up to isomorphism by u and i.

L. 3.1. Let a be an automorphism of the fieM K or of the group G
with B B. Then defines an admissible automorphism of z(B).

Proof. Clearly o defines an automorphism of r. This will also be denoted
by o.

Let E be an edge of r with o(E) E. Let o correspond to E and let Xu, xv
correspond to the vertices incident with E. By [4], Theorem VII. 2.15, 6u : t3v.
If [D] > 2 then the definition of 6, 6 implies that x X,x X. Hence
x x.,x X as ’ ,.
Suppose that [D 2. Hence is

X Xo

If a is an automorphism ofK then x xl by Theorem VII. 2.19 of [4]. Sup-
pose that a is an automorphism of G. Replacing a by a power it may be
assumed that a2" 1 for some n > 1. Let H be the semi-direct product
G< a >. Then there exists a unique irreducible Brauer character of H such
that ol is a constituent of o. Furthermore o o. For example, see [4], Cor-
ollary IV. 3.15. Suppose that x xl. By Lemma V. 2.4 of [4] any irreducible
character in the 2-block/ of H which contains has the property that
o c(xo + X,) for some integer c. This implies that every decomposition
number for/ is even contrary to the fact that the elementary divisors of the
decomposition matrix are all 1. Thus x Xu for u 0, 1.

Let P be a vertex of r and let x. correspond to P. Suppose that some power
ak of tr fixes some oj with d : 0. ThenXk = X. As is serial this implies

akthat o, o, for all with d., : 0. As this holds for every k it follows that a
defines a permutation on the set [o, [du : 0} which is a product of pairwise
disjoint cycles all of which have the same length.

In case a is an automorphism of K, Lemma 3.1 is implicit in [4], Chapter
VII.

LEMfA 3.2. Suppose that B contains exceptional characters and the vertex
Po of corresponds to the exceptional characters in B. Let a be an automor-
phism ofK or of G which fixes B. Then a(Po) Po.

Proof. The result follows from considering the higher decomposition
numbers. See [4], Theorem VII. 2.17. 1
Suppose that [D : 2 and a is an automorphism ofK or of G which fixes B

such that tr induces the automorphism a : 1 on . By Lemma 3.1 and
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Theorem 2.4 there is a unique vertex Po of r with o(Po) Po. Define Po to be
the exceptional vertex of r.

If B contains exceptional characters then by Lemma 3.2 the exceptional
vertex corresponds to the exceptional characters. By Corollary 2.8 the excep-
tional vertex is independent of the choice of o.

In case is an automorphism ofK the exceptional vertex was defined essen-
tially in this way in [4], Chapter VII, Section 2.

4. Proof of Theorem 1.1

The notation of Section 3 will be used throughout this section. Furthermore
e will denote the index of inertia of B. In view of Theorem 2.7 and Lemma 3.1
it may be assumed for the proof of Theorem 1.1 that K is a splitting field for G
and all its subgroups.
We first prove some preliminary results.

LEM 4.1. LetHG and let Bo be a block ofH which is covered by B.
Let T(Bo) denote the inertia group ofBo. Then there exists a block B1 of T(Bo)
which covers Bo and has defect group D such that r(B) = r(B).

Proof. This follows from known results of Fong and Reynolds. For exam-
ple, see [4], Theorem V. 2.5. 1

LEMUA 4.2. Let H< G. There exists a block Bo ofH which is covered by B
such that D N H is a defect group of Bo. Furthermore the defect group of
every block covered by B is contained in a conjugate ofD.

Proof. See [1], (O.lc). 1

LSMA 4.3. Let D C__ H< G. Let Bo be a block ofH which is covered by B
and has D as a defect group. Then (B) is similar to (Bo).

Proof. Inductionon[G’HI. If IG’HI the result is clear. Ifp 2
then ,(B) ,(Bo) is

Thus it may be assumed thatp : 2. By induction it may be assumed that G/H
is simple. By Lemma 4.1 it may be assumed G T(Bo). Therefore
G HN(D).

Let be an irreducible Brauer character in Bo. By Lemma 3.1, G acts by
conjugation as a group of admissible automorphisms of -(Bo). Thus
T(b) T() for every irreducible Brauer character , in B, where T(b)
denotes the inertia group of . Hence T(b)< G. Thus T() Hor T(b) G.
If T() H then Theorem 2.7 implies that ,(B) is similar to ’(Bo). Thus it
may be assumed that T() G for all irreducible Brauer characters b in Bo.
As H C__HC(D)< G it follows that either H HC(D) or G HC(D).
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Suppose that H HCo(D). As p 2, G/H is cyclic. Thus any nonexcep-
tional irreducible character 0u in Bo extends to an irreducible character ’u of G.
Furthermore if c is a faithful linear character of G/H then
’uc’, 1 _< _< ]G HI is the set of all irreducible characters of G whose re-
striction to H have 0 as a constituent, and they are all distinct. For example,
see [2], (9.12). Thus p [G HI as every character in B vanishes on all ele-
ments whose p-parts are not in H. Hence Co(y)__C H for every element
y E D- I. Therefore if )B is the central character of R--[G] corresponding to
B then )B vanishes on all class sums not in H. Thus ’c is in B for all u, i.
Multiplication by any ’ defines an admissible automorphism of r(B) with
r(B)<> r(B1). Hence Theorem 2.7 implies that

,(B)

where Po is the exceptional vertex of r(Bo) (which necessarily exists as
G /-/). Hence r(B) is similar to r(Bo). Thus it may be assumed that
G HCo(D) and G T() for every irreducible Brauer character in Bo.

Let eo be the index of inertia of Bo. As G HCo(D), e <_ eo. By [4], Lemma
V.2.3, and Clifford’s theorem, e eo. Thus the map sending irreducible
Brauer characters oi and non-exceptional irreducible characters x in B to the
unique irreducible constituents of (O)n, (X)n respectively, defines an isomor-
phism from r(B) onto r(Bo).

LEMMA 4.4. Let H<3G with G/H simple and < > =/= D ( H =/= D. Let
Bo be a block ofH which is covered by B and has D f H as a defect group.
Assume that G T(Bo). Then r(B) is similar to

Proof. As G T(Bo) it follows that G HNo(D N H) and so

DH C__ HC(DnH)O.

As G/H is simple this implies that G HCo(D f H).
By [4], (V.3.5), there exists a unique block BI of HD which covers Bo. As

T(Bo) G it follows that Bo is the unique block ofHwhich is covered by B or
by B,.

Let Vbe an indecomposable R---[G] module in B with vertex D. Then there ex-
ists an indecomposable component V, of Vm, with vertex D. As Vn is a direct
sum of modules in Bo, this is also the case for (V1)n. Hence the uniqueness of
B, implies that V, is in B,. Hence there exists a defect group D, of B, with
D C__ D,. This implies that HD HDI.
As Bo is the unique block of H which is covered by B,, Lemma 4.2 implies

that D H D, H. Hence

IDI ID HI IHD HI ID, HI IHD, :HI
ThusD DlasD CD.

Let x be a p’-element in Nn,,(D). Then xE H and so [x,D]C__
H DCD. Thus x Cno(D). Therefore ]Nno(D) Cno(D) is a power of
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p. Thus the inertial index of BI is 1. Let o be the unique irreducible Brauer
character in B,.

Let eo be the inertial index ofBo and let {if, _< eol be all the irreducible
Brauer characters in Bo. As B1 is the unique block of HD which covers Bo, it
follows that each ff is a constituent of ox. As Bo is the unique block ofHwhich
is covered by Ba, Clifford’s theorem implies that o sk, for some natural
number s. Furthermore HD:T(k,) tq HDI eo < p. As HD/H is a
p-group this implies that HD T(k,) for all i. Hence k kl is the unique
irreducible Brauer character in Bo. Thus eo 1.

If p 2 the result is clear. Suppose that p :# 2.
Let I’A be the exceptional characters in Bo. These exist as p : 2. Let

’o E-, and let " ’ be the unique nonexceptional irreducible character in
no.

Let Ixl be the exceptional characters in B. These exist as DI > P. Let
xo 12xx and let {x I1 -< u _< el be the nonexceptional irreducible characters
in B.
As G T(Bo) it follows that G T(’) and if z E G and/ is given then- ’ for some u. Thus if 0 _< u _< e then either (x)- m" or m’o for

some natural number m.
If x + x is projective then, after changing notation,

(x)x mu’, (x)n md’o with mu
As r(B) is connected it follows that m rn is independent of u. Define

S [ul(x)n m’}, T {ul(x)n m’o}.

Then S U T 10,...,e}. Let S’ S- [0], T’ T-[0}. Thus

S’ LI T’ {1,...,e}.

If u E S then X(1) rn’(1). If u T then x(1) (p- 1)m’(1) wher

ID HI p. Furthermore IIDI- 1}xx(1) exo(1) and

,,es’ X,,(1) ,,eT’ :,,(1) + 6X,,,(1),

where i 1 if 0 E S and 1 if 0 C T. See [4], Theorem VII 2.15.
Suppose that 0 E S. Then T’I > 0 and

IS’ Imp’(1) IT’ I(P"- 1)mr(l)- e

IIDI-11
As IS’l< e _< p- 1 this implies that

m’(1)> (p"- 1)mg’(1)- m’(1).

p-1 > IS’l+l >p"-I

which is not the case. Thus 0 E T. Hence

IS’ Imp’(1) IT’ I(p- 1)m’(1) + e (p"- 1)mg’(1)
IDI- 1

Therefore



POSSIBLE BRAUER TREES 53

and so

(pk_ 1)+ IT’ I(p- 1) IS’l e- [rl’

e- IY’lp/ e (pk- 1) _> IT’ I(e + 1).

Hence IT’l 0.
This implies that r(B) (r,Po)e, where

LEMMA 4.5. Let H< G with D N H < >. Let Bo be a block ofH
which is covered by B. Assume that G T(Bo). Then there exists a group M
and a subgroup Z C_C_ Z(M) so that M/Z G/H and (B) (BI) for a
block B1 ofM.

Proof. Let " be the unique irreducible character in Bo and let M be the
representation group of ’. In this case the result has been proved by E. C.
Dade [la| and I am indebted to him for sending me his proof. In the special
case thatp ’ H] the result had been proved earlier by Fong. For example, see
[4], Theorem X.1.2. 1

Proof of Theorem 1.1. Induction on ]G Z(G) I.
If G Z(G) then r(B) is

Suppose that G Z(G). Let H be a maximal normal subgroup of G with
Z(G) __C H.

Suppose that D N H :# < >. By Lemma 4.2 there exists a block Bo of H
which is covered by B and has D t H as a defect group. By Lemma 4.1 and
induction it may be assumed that G T(Bo). If D _C H then Lemma 4.3 im-
plies that r(B) is similar to (Bo) and the result follows by induction. If
D H then Lemma 4.4 implies that (B) is similar to

and the result is proved in this case.
Suppose that D tq H= <1>. IfMis defined as in Lemma 4.5 then

M/Z(M) = G/H is simple. The result follows from Lemma 4.5.

5. Proof of Theorem 1.2

Throughout this section G denotes a noncyclic simple group and t denotes
its universal central extension. As usual Z(H) is the center of any group H.
We begin with a simple observation.

LEMMA 5.1. Let B be a p-block of with a cyclic defect group D. Suppose
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that G has a representation of degree d over a fieM of characteristic not p
whose kernel is in Z(G). Then r(B) has at most d edges.

Proof If D C_ Z((7) then e _< d. If D Z(t) this follows, as a
generator of D is conjugate to at most d elements in D. 1

If p < 249, case (i) of Theorem 1.2 holds. Hence from now on it will be
assumed that p > 249. In view of Theorem 1.1 it is enough to prove Theorem
1.2 for G as G ranges over all noncyclic simple groups. As p > 249, G is not a
sporadic group.
Suppose that G G(q) is of Lie type. Ifp[q and t has a p-block B with a

cyclic defect group D #: < > then it follows from the results of [8] that
G PSL2(p). in this case it is well known z(B) is an open polygon. Suppose
that p ’ q. By Lemma 5.1 it may be assumed that t does not have a represen-
tation in a field of characteristic not p of degree _< 248. This implies that the
only groups that need to be considered for the proof of Theorem 1.2 are those
in Table I. Here An denotes the alternating group on n letters and z(/L) 2
ash > 7.

TABLE

G A. PSL.(q) PSU.(q) PSp.(q) PSO(q)’
0: A. SLy(q) SU.(q) Sp(q) Spin.(q)’

The following result will be used in considering the groups in Table I.

LEMMA 5.2. Let M C__ H C__ Ho, where M<Ho, H/M is abelian and
Ho H <_ 2. Suppose that every element in H is conjugate in Ho to its in-

verse. Let B be a p-block ofM with a cyclic defect group D :/: < >. Then
r(B) is similar to an open polygon.

Proof. Let M C__ HI ..C__c H where p ’ M[ and H/HI is a p-group.
Let B be a block ofH which covers B. Then B and B have the same defect.
Thus D is a defect group ofB by Lemma 4.2. By Lemma 4.3, r(B) is similar
to r(B). Thus it suffices to prove the result in case M H. Hence it will be
assumed that H/M is a p-group.

If p 2 the result is clear. Suppose that p : 2.
If every irreducible Brauer character in B is real valued then r(B) is an open

polygon. For example, see [4], Theorem VII.9.2. Suppose that , : , for
some irreducible Brauer character , in B. By assumption there exists x Ho
with o , Thus B /Fis the contragredient block of B.

Let To be the inertia group of B in Ho. Let Tbe the inertia group of B in H.
Then T/M is a p-group and one of the following occurs.

(5.3) To" T[ 2, To <T,x>,/F= B,

(5.4) To T, Bx= 1":/: B.

Furthermore if y E Ho then By /;r’if and only if y Tox.
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Let {,,} be the set of all irreducible Brauer characters in B. Then
I{o,I p 1. As the p-group T/M acts as a permutation group on {o,I it
follows that T fixes every o,. Suppose that o e . Then - for some
y Tox. Hence y ytx for some y E T. Thus o]. t]x o. Conse-
quently o + o] is real valued for all j and there is a unique block of <M,x>
which covers B.

Let Mo <M,x>. Then ]Mo M] 2. Let Bo be the block of Mo which
covers B. Then D is a defect group of Bo as p 2. If (5.4) holds then
T(B) ----T(Bo) is an open polygon as every irreducible Brauer character in Bo is
of the form o,o and so is real valued. If (5.4) holds then o, is irreducible for
all by Lemma 2.3 and Lemma 3.1 as there exists o e o o. Hence 7(Bo)
is an open polygon as every irreducible character in Bo is real valued. By Lem-
ma 4.3, 7(B) is similar to ’(Bo).
The next result will only be needed in case Ho HI 4.

LEUtA 5.5. Let H<Ho such that Ho/H is an elementary abelian 2-group.
Suppose that every element in H is conjugate in Ho to its inverse. Let B be a
p-block ofH with a cyclic defect group D :/: < >. Then z(B) is similar to an
open polygon.

Proof Let {,} be the set of all irreducible Brauer characters in B. Let T, be
the inertia group of o, in Ho. Then B B for x E Tt. Thus Lemmas 2.3 and
3.1 imply that T Tl is independent of i.
As Ho/H has exponent 2 there exists a group M with H _.C M _.C Ho such

that TM Ho and T t3 M H. Then o is irreducible for each and o is
real valued as it is constant on Ho-classes in H. Hence if BI is the unique block
of M which covers B then every irreducible Brauer character in B1 is real
valued and so z(Bl) is an open polygon. The result now follows from Theorem
2.7 and Lemma 3.1. i
We will now show that case (ii) of Theorem 1.2 holds for each of the groups

( in Table I. The various cases will be treated separately.
G A. Let H , and let Ho 2, where , is a central extension of

the symmetric group
Let x E , and let " denote the image of x in A. There exists y E g: such

that)’ 1, g-l. Thus y-lxy x-1 or x-lz where <z> Z(). Ifx has odd
order then clearly y-lxy x-lz and so y-lxy x-1. If x has even order then a
result of Schur implies that x-1 is conjugate to x-lz in ,. See [9], vol. I, p. 363,
Theorem IV. Thus in any case x is conjugate to x-1 in I:. The result now
follows from Lemma 5.2 with Ho , and M H ,.
G PSLn(q). Let M=-’= SLn(q). Let H= GL.(q) and let

Ho <H, o > where x x’-I and the prime denotes transpose. (The group
Ho was considered by Gow [7] in a different context). As every element x in H
is conjugate to x’ in H it follows that x is conjugate to x-1 in Ho. The result
follows from Lemma 5.2.
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G PSUn(q). Let M t SUn(q). Let H Ho Un(q). Every ele-
ment in x in H is conjugate to x’ x-1. See [10], p. 34. The result follows
from Lemma 5.2.

G PSpn(q). The result follows from [51, Theorem E and Lemma 5.2.

G PSOn(q). The result follows from [5] Theorem B and Lemma 5.2.
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