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The purpose of the present paper is to prove the following two theorems"

THEOREM 1. Let L be a function field over a ground field It. Assume that
dim L is not less than 2. Assume furthermore that if dim L 2, then lc is
sufficiently large. Then there exists a complete normal abstract variety of L
which is not projective.

THEOREM 2. If n is a natural number not less than 3, then there exists a
complete nonsingular variety of dimension n which is not projective; more ex-
plicitly, there exists a nonsingular complete variety of the rational function .field
of dimension n, .which is defined over the prime field and which is not projective.

We shall remark that, since Zariski [4] proved that a normal abstract sur-
face can be imbedded in a projective suri’ace (as an open subset) if there
exists an affine variety which carries all singular points of the given surface,
our results give a complete answer for the imbedding problem in one sense.
Therefore it will be an important problem to give some sufficient conditions
for a given variety to be projective. It will be also an interesting problem
to characterize function fields which have nonsingular complete nonprojective
varieties.

1. Two lemmas

LEMMA 1. Let V and V’ be varieties. If V is not projective, then V X V’
is not prqective.

Proof. V X V’ contains a nonprojective subvariety V X P’ (P’e V’),
and therefore V X V’ is not projective.

LEMMA 2. Let V be a normal variety with function field L, and let L’ be a

finite algebraic extension of L. Let V’ be the derived normal variety of V in
L’. If V’ can be imbedded in a projective variety V’, then V can be imbedded
in a projective variety.

Proof. We may assume that V’ is an open subset of V". Let P be a
generic point of Y over a ground field It, and let Z(P) be P’, where P’ form

Received November 15, 1957.
The meaning of "large" will be explained in the course of the proof.
Cf. Chow [2], Chevalley [1], and Weil [3]. On the other hand, the following problem

was offered by Chevalley a few years ago:
Assume that a normal variety V satisfies the following condition: For any finite number

of points of V, there exists an afline variety which carries them. Can then V be imbedded
in a projective variety?
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the complete set of conjugates of a generic point of V’, which corresponds to
P, over lc(P). The locus V* of Z(P) over lc, i.e., the Chow variety of Z(P)
over lc, is a projective variety and has the following properties: (i) the mapping
P -- Z(P) induces a regular mapping from V into V*, and (ii) every point of
V corresponds to a point of V* in a one-to-one way by the regular mapping
defined above. Therefore the derived normal variety of V* in L contains
an open subset which is biregular with V. Thus the lemma is proved.
Now, by virtue of these lemnas, in order to prove the theorems it is suffi-

cient to show (1) an example of a normal complete nonprojective variety of
the rational function field of dimension 2, and (2) an example of a complete
nonsingular nonprojective variety of the rational function field of dimension
3 which is defined over the prime field.
These examples will be constructed in 4 and 6.

2. A general remark on construction of complete
abstract varieties

Let V be a complete abstract variety (which may be projective), and let D
be a subvariety of V. Let V’ be a variety which is birationally equivalent
to V, D’ a subvariety of V’, and assume that there exist open sets V* and
V’* of V and V’ respectively, satisfying the following conditions: (i) D is the
set of points of V which correspond to points of D’, (ii) D c V*, (iii) D’ V’*,
(iv) V* dominates V’*, and (v) V* D is biregular with V’* D’. In this
case, we say that D is a strictly antiregular total transform of D’ (in V).
Under the above assumption, it is easily seen that V D -k D’ is a com-

plete abstract variety. Therefore, if mutually disjoint subvarieties
D1, D of a projective variety V are the strictly antiregular total trans-
forms of D’I,..., D. respectively, where the D’ are not necessarily on the
same variety, then we see that the set V (’ D.) + E D’ is a complete
variety.
We shall add here the following remark:
Let V and V’ be birationally equivalent normal projective surfaces. If a

curve E on V is the antiregular total transform of a point P’e V’, then E
is a strictly antiregular total transform of P’, because there exists only a
finite number of fundamental points on V’ with respect to the birational
correspondence with V. From this, we deduce

LEMMA 3. Let V be a normal projective surface. If an irreducible curve E
on V is the antiregular total transform of a point P’ of a surface V’, then E is a
strictly antiregular total transform of a normal point.

Proof. Let V" be the derived normal variety of V’ on the function field
of V. Since V is normal and since the transformation T’:V - V’ is regular
at each point of E, the mapping T’:V -- V" is also regular at each point of

Here, V* D and V’* D’ are identified by the biregulur correspondence.
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E. Since E is irreducible and since T’{E} is a point, 7’" {E} is point, say
P’. Since E T’- {P’}, we see that E T"- {P" }. Now we have Lemma
3 by the remark stated just before Lemma 3.

3. A remark on the rational mapping defined
by a linear system

Let V be a normal projective variety. If L is a linear system of divisors
on V, then L defines a rational mapping 7’ from V onto another projective
variety V’, where V’ is defined as follows: Let Do, D1, Dn be a basis
of L, and let f be the function on Vsuchthat (f0 D- Do. Then V
is the projective variety with generic point (1, f, fn).
Now we want to point out the following well known and elementary facts:
(1) If a point P of V is not a base point of L (i.e., if there exists a member

D e L such that P e D), then T is regular at P.
(2) If P, Q V and if there exist members D, D’ L such theft P e D,

Q e D, .g e D’, Q e D’, then T(P) T(Q).
(3) Let E be an irreducible subvariety of V. If there exists a member

D e L such that E does not meet D, then T{E} is a point.

4. An example of a nonprojective rational surface

EXAMPLE 1. Let C and D be independent generic curves of degree 3 and 4
respectively in the projective plane S, and let P P be their intersections.
Let E be the most general cubic curve among those which go through P P: and
P and let QI Q be the intersections of D and E other than P P P
Now let S’ be the quadratic transform of S with centers Pi P2 Q Q
and let C’ and D’ be the proper transforms of C and D respectively. Then, C
and D are strictly antiregular total transforms of normal points, say C* and D*
respectively, and the complete normal variety S* S’ (C’ D’) C* + D*
is not projective.

Proof. (1) We shall show at first that C’ is the strictly antiregular total
transform of normal point. Let p, q. be the total transform of the points
P, Q- respectively in S’. We shall denote in general by a projective line
(hyperplane) in S and by T III the total transform of in S’. Since C D,
we hve T{1} q- C’ q- p D’ q- p q- _, q ;hence T{/} q- C’ D’ q-

q.. Let V be the projective variety defined by the complete linear
system T{1} -+- C’I on S’. Since C’ does not meet the member D’ q- q;
of IT{l} .q- C’ I, it follows by (3) in 3 that C’ is mapped to a point on V,
say C’. By (2) in }3, we see now easily that C’ is the antiregular total trans-
form of C’. Therefore by Lemma 3, C’ is the strictly antiregular total
transform of a normal point.

(2) That D’ is the strictly antiregular total transform of a normal point
can be proved by a method similar to that above. Namely, we consider,
instead of 1, curves 1" of degree 2 on S which go through P, P, Pa instead
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of T 1}, we consider the cycle" [total transform of l"
Then using the fact that D + l" C + E, we see that D’ is the strictly
antiregular total transform of a normal point.

(3) Before proving that S* is not projective, we shall make some remarks
on the points P1, P12, Q, Qg.
We shall denote by r the prime field.
Let L be the trace of the linear system of curves of degree 4 on C. Then

L4 has degree 12 and dimension 1, and hence is complete, because C is of genus
1. Now, since D is generic, we see that .11 of the points P, Ply. are
independent generic points of C over r(C). From this we deduce the follow-
ing"

(i) If a curve F is such that F.C aiPi, then a a2 a.
Proof. Assume, for instance, that al <= a. for anyj. Then (F al D).C
bPwithb 0andbj= aj a >- 0. Therefore there exists a curve
F’ of degree equal to (deg F 4al) such that F’.C bi Pi (b 0).
Since P, PI are independent generic points of C, and since C is of
positive genus, this is impossible, unless all the b 0. Therefore
al a2 --a12.
Next we consider the fields of definition of S*. S* is defined over any field

]c such that C, D, E, and P -[- P -[- P are rational over k. Let lc0 be the
smallest common field of definition of C, D, E, and P -[- P -[- Pa ]Co
r(C, D, E, P -[- P + P). Since E is generic over r(C, D, P1 + P2 -[- P),
we see that Q is prime rational over k0. Thus we have

(ii) ko is a field of definition of S* and Qi is prime rational over ]co.
Furthermore, C* and D* are rational over ]Co.

(4) Now we shall prove that S* is not projective. In order to do so, it is
sufficient to prove that any divisorial closed set F* of S* must go through
either C* or D*. Assume the contrary, namely, assume that there exists an
irreducible divisor F* which does not go through any of C* and D*. Let K
be a field of definition of F* containing k0 given above. Let K’ be a maximal
purely transcendental extension of k0 contained in K. Then Q. is still
prime rational over K’. Let F** be the prime rational divisorial closed set
over K’ such that F* is its component. Since C* and D* are rational points
over K’, F** does not go through any of C* and D*. Now, F** must be the
proper transform of a prime rational divisorial closed set F of S over K’.
We regard F as a prime rational cycle over K’. Since F** does not go through
C*, we see that (i) F and C have no common point outside of Pi, and
(ii) F and C have no common tangential direction at each P. Therefore
F. C a P, and the coefficient ai is the multiplicity of the point P on
F. By a remark in (3), we have al a2. Thus F.C a(E P).

This shows that there exists no nonconstant function which is defined at both C*
and D*.
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Since F** does not go through D*, we see that (i) F and D have no common
point outside of P -[- ] Q., and (ii) F and D have no common tangential
direction at each P, Q.. Therefore F.D cP -- bQ, und c
is the multiplicity of P on F. Therefore c a. Since F and Q. are
prime rational over K’, nd since F.D a(E P) + E bQ, we have
b b. Thus F.D a(E P) -k b(E Q). Therefore
(F aC).D b( Q.); hence (bE -- aC F).D b(P1 -& P -- P).
Since P, P, and P re independent generic points of D over r(D), and
since D is of positive genus, we see that b 0 (cf. the proof of (i) in (3) bove).
Then we have F.D F.C, which is obviously contradiction because
deg D deg C. Thus the proof is completed.

5. A lemma on product varieties and an application

Let V be nonsigulr projective wriety, nd let C be the projective
line. Let D be hyperplane section of V which is also nonsingular, and
let P be a point of C. Set V V X C, W D X P, D D X C,
A V X P. Let V’ be the monoidal transform of V with the center W,
and let A’ be the proper transform of A in V’. The

LnM 4. A’ is the strictly antiregular total transform of the vertex of the
representative cone of V (i.e., the cone with base variety V).

Remar]c. As will be seen from the proof below, V’ dominates the cone K
with the base variety V, and the behaviour of the correspondence is as
follows" (i) If Q e D, then the proper transform of Q C in V’ is mpped
into point; the proper transform D’ of D is mpped to u divisor of a base
wriety; (ii) A’ is mapped to the vertex; nd (iii) the correspondence is bi-
regular at each point of V’ A’ D’.

Proof. Let (x0, x) be strictly homogeneous coordinates of generic
point of V, and let C be the hyperplane section of V defined by x 0.
We may assume that D is different from any of the C. Let W’ be the total
transform of W in V’. Let E’ be the proper transform of E C X C
for ech i. Since D E, we hve D’ -[- W’ E’ D’, where is the proper
transform of D in V’. Let R be a point of C which is different from P, set
B V X R, and let B’ be the proper transform of B in V’. Then since
A B, we hve A’ -- W’ B’. Therefore, on account of the relation
D’ -J- W’ E’, we haveA’ -J- E’ D’ -J- B’. Now let L be the linear
system spanned by D’ -J- B’ and the A’ - E’ (i 0, 1, n), and let K
be the variety defined by L. By a property of monoidal transformation we
see easily that A’ and D’ have no common point. Therefore we see easily
that L has no base point; hence K is dominated by V’. Let (x, x,,
be a generic point of K, where (xi/xo) (A’ -{- Er) (A + Eo),

ff/ ff(w’/x) (D -- B’) (A + Eo). Then we see that xi/x xi/xi for

The assumption of nonsingularity for V1 and D1 can be weakened.
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any i, j. Furthermore, since the trace of L on the proper transform of
Q X C (Q e V, Q e D1) in V’ is of degree 1 and has no base point, w"/x’; (for
each i) generates the function field of C over the function field of V1. There-
fore K is birational with V. This implies, incidentally, that w" is transcen-
dental over k(Xo, x,), where l is a ground field. Therefore, on account
of the fact that x/x x/xj for any i, j, we see that K is the cone with base

f! f!
variety V1 and vertex x0 x x 0. Since A’ has no common
point with D’ -[- B’, and since A’ is contained in A’ + E, it follows that if
P’ is any point of A’, then at the corresponding point of K we must have

f!

x 0 (for eachi) and w’ 0. Thus A is mapped to the vertex of K.
(If Q e D1, then there exists a member of L which does not meet the proper
transform Q* of Q X C, hence Q* is mapped into a point; this statement is
not necessary for the proof of Lemma 4, but is necessary for the proof of the
remark.) We shall next show that the mapping from V’ to K is biregular at
every point of V’ A’ D’. Since K is normal outside of the vertex, it is
sufficient to show that the points of V’ A’ D’ correspond in a one-to-one
way with points of K (observe that no point of V’, outside of A’, corresponds
to the vertex of K, as is easily seen from the nature of L). Since K is domi-
nated by V’, it is sufficient to show that if Qtl and Qt are distinct points of
V’ A’ D’, then the corresponding points Q* and Q* are distinct. Let
Q X P (Q e V, Pi C) be the point of V which corresponds to Q (i 1, 2).
(i) If Qi Q2, then there are hypcrplane sections of V1 which go through
one of Q and not through the other. Therefore Q and Q are separated by
members of L which contain A’. T.herefore Q* Q* in this case. (That
D’ is mapped to a divisor on the base variety can be proved in the same way
as here.) (ii) Assume now that Q1 Q Let l’ be either the total transform
of Qi X P or the proper transform of Q X C according to whether Q D
or QD. Then the Q are points of l’. The trace of L on l’ is a linear
system of degree 1 and has no base point. Therefore Q Q* also in this
case. Thus Lemma 4 (and also the remark) is proved completely.
Now we shall apply the above result for a special variety" Let C, C’,

and C" be projective lines, and set V C’ X C", V V1 X C. We remark
that V is the surface defined by xy zw. We apply the above construction
to V; then we get the cone K defined by xy zw (and with the homogeneous
coordinates (x, y, z, w, 1)). A plane section of K which does not go through
the vertex A* is the proper transform of C’ X C" X Q with Q e C, Q P;
it can be identified naturally with C’ X C", and we may assume that x z 0
is a line C’ X R’ (R" e C). Now we consider the linear pencil L’ on K
spanned by the divisors x z 0 and w y 0 and let L be the minimal
sum of L" and the linear system of plane sections on K. The projective
variety/ defined by L certainly dominates K. Since L" has only one base
point A*, the vertex of K, the same is true of L, and hence the vertex A*

Observe that if Qi D, and if a plane section C’ of V goes through Q, and if D
is not contained in C, then the proper transform of C X C contains the total transform
of Q P.
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of K is the unique fundamental point with respect to/. The local ring of
any points of/ which corresponds to A* is a ring of quotients of one of the
two rings l[x, y, z, w, w/x] and lc[x, y, z, w, x/w] (with respect to a prime
ideal containing the elements x, y, z, w). Since y/z w/x, we have
l[x, y, z, w, w/x] k[x, z, w/x] and l[x, y, z, w, x/w] k[y, w, x/w] these are
polynomial rings. Therefore any point of/ which corresponds to A* is a
simple point. Since K has no singular point other than A*, we see that K
is a nonsingular variety. It is easy to see that the total transform of A*
is a projective line, say (.
Now we consider on the variety V’ the linear system L"’ spanned by the

transforms of C’ X P" X C, C’ X Q" C (P", Q’e C’), which corresponds
to L" on K. Let L’ be the minimal sum of L"’ and the linear system L.
Since L corresponds to the system of plane sections of K, the projective variety
defined by L’ is nothing but/, and the divisor A’ is the strictly antiregular
total transform of ; this is easily seen from the nature of L’. Furthermore,
identifying A’ naturally with C’ X C" and C with C’, we see easily from the
nature of L’ that the mapping from A’ to ( is nothing but the projection, i.e.,
two points of A’ are mapped to the same point if and only if there exists a
member of L"’ which contains these points.

6. An example of a complete nonsingular
nonprojective variety

EXAMPLE 2. Let C, C’, C" be projective lines, and set V C’ X C’,
V V1 X C. Let D be an irreducible plane section of V. (Observe that V
is defined by xy zw, hence we can take D1 such that it is defined over the prime
field and also such that D is nonsingular.) Let P, Q be points of C (P Q);
they can be chosen to be rational over the prime field. Set W D X P,
W2 D1 X Q. Let V be the monoidal transform of V with the centers W
and Ws and let A’, B’ be the proper transforms of A V1 X P, B V X Q
respectively. Then by the observation in 5, A’ and B’ are strictly antiregular
total transforms of projective lines and l’ on nonsingular varieties which are
birationally equivalent to V. Therefore we have a complete nonsingular abstract
variety V** V: A’ B’ -k -k . Here, A’ and B’ are naturally identified
with C’ X C’, and the deformation observed in 5 can be done symmetrically
with respect to C’ and C’. Therefore we deform A’ to C" and B’ to C’ (i.e.,

is identified naturally with C’, and l’ is identified naturally with C’; see the
observation at the end of 5). Then the variety V** is not projective.

Proof. If V** is projective, then there exists a divisorial closed set F**
which meets properly both and l’. We shall show that this is impossible.
Assume the existence of F**. F** must be the proper transform of a di-
visorial closed set F on V. We regard F to be a cycle and consider the inter-
section cycle F.A. (i) If E is a component of F.A, and if E is neither W1
nor C’ X P" X P (P’e C’), then projc,, E C" and therefore F** must
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contain l, which is a contradiction. (ii) Assume that F.A mW1. Then
denoting by F’ and W’ the proper transforms of F in V2 and of W1 in
respectively, we have either F’ contains W’ or F’ does not meet A’. (For
F’ and A’ cannot have a common point outside of W’; if there exists a common
point, then the intersection must be a curve, hence it must be W’.) But,
each of these cases is impossible because F** meets properly 1. By the ob-
servations (i) and (ii), we see that F-A must be of the formmW
X P (P e C"), and this second term is actually present. Since W is linearly
equivalent to P’ X C" X P q- C’ X P" X P (P’ e C’, P" C") on A, we
have that F.A is linearly equivalent to a(P’ X C" X P) -+- b(C’ X P" X P)
on A with b > a. Symmetrically, the intersection cycle F.B is linearly
equivalent to a’(P’ X C" X Q) -+- b’(C’ P" X Q)on B with a’ > b’. On
the other hand, since C is the projective line, F is translated along C to
linearly equivalent divisor F so that P corresponds to Q. Then F.B is
linearly equivalent to a(P’ X C" X Q) q- b(C’ X P" X Q)on B. Since
F F, we have a(P’ X C" X Q) -k b(C’ X P" X Q)is linearly equivalent
to a’(P’ X C" X Q) q- b’(C’ X P" X Q)onB. Thereforea a’,b b’.
(l?or by considering the intersection number with P’ X C" X Q, we have
b b’; similarly a a’.) Therefore the inequalities b > a, a’ > b’ give a
contradiction. Thus the proof is completed.

Remark 1. In the above construction, if we deform A’ and B’ to and l’
so that both and l’ can be naturally identified with C’ (on A’ and B’ respec-
tively), then the new variety is projective;if A’ and B’ are deformed to normal
points, then the new variety is also projective.

Remark 2. The following question was asked by Takahashi and also by
Serre:
Assume that a normal complete variety V of dimension n can be covered

by n q- 1 affine varieties. Is then V a projective variety?
Our Example 2 shows that the answer to this question is negative even

if V is nonsingular.
Proof. Take the variety V** in Example 2. V** is an open subset of a

projective variety, say Va (by Remark l, or it can easily be seen directly).
Set G Va (V** 1), and let L and L. be sufficiently general hypersurface
sections on Vawhich contain G, and set A1 Va L,, A2 Va L2.
ThenAlandAcoverV** l- g with g (V** l) n LI n L= Since
we have chosen L, and L to be general, g is a curve on V** l, and g does
not meet l’ (because l’ is a curve). Similarly, there are two affine varieties
A and A4 contained in V** l’ which cover and g. Therefore V** is
covered by A.,, A, Aa, and A4.

Remark 3. It was communicated to the writer that Kodaira proved that
our Example 2 gives an example of a non-Kaehlerian algebraic manifold, if
it is constructed over the field of complex numbers. Therefore the following
problem will be interesting"
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Assume that V is a complete algebraic manifold which is Kaehlerian. Is
then V projective?

Added in proof. Hironak recently proved the following:

If V is a nonsingular projective variety of dimension not less than 3, then
there exists a complete nonsingular nonprojective variety V’ such that (1) V is
birationally equivalent to V, and (2) V’ dominates V.
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