
Hokkaido Mathematical Journal Vol. 45 (2016) p. 383–398

Curve diagrams for Artin groups of type B
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Abstract. We develop a theory of curve diagrams for Artin groups of type B. We

define the winding number labeling and the wall crossing labeling of curve diagrams,

and show that these labelings detect the classical and the dual Garside length, re-

spectively. A remarkable point is that our argument does not require Garside theory

machinery like normal forms, and is more geometric in nature.
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1. Introduction

Let Bn be the n-strand braid group defined by

Bn =
〈

σ1, . . . , σn−1

σiσjσi = σjσiσj , |i− j| = 1

σiσj = σjσi, |i− j| > 1

〉
.

Bn is identified with the mapping class group of an n-punctured disc
Dn, the group of diffeotopy classes of diffeomorphisms of Dn that fix the
boundary pointwise. Using this identification, one can represent a braid by
a collection of smooth curves in Dn called a curve diagram (See [DDRW,
Chapter X]). Although the curve diagram representation is elementary, it
reflects various deep properties of braids in a surprisingly simple way. For
example, a curve diagram provides a geometric interpretation of the De-
hornoy ordering of the braid groups [FGRRW], and one can read both the
classical and the dual Garside lengths from the curve diagram [IW], [IW′],
[W] in a direct manner. Moreover, a certain simplifying procedure of curve
diagrams provides a combinatorial model of the Teichmüller distance [DW].
Thus, it is interesting to develop a theory of curve diagram for other groups
that act on surfaces.
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In the framework of the theory of Artin groups, the braid group Bn

is treated as an Artin group corresponding to the Dynkin diagram of type
An−1. In this paper we deal with A(Bn), the Artin group corresponding to
the Dynkin diagram of type Bn. The group A(Bn) is given by the presen-
tation

A(Bn) =

〈
s1, . . . , sn

s1s2s1s2 = s2s1s2s1,
sisj = sisj , |i− j| > 1

sisi+1si = si+1sisi+1, i = 2, . . . , n− 1

〉
.

In this paper, we develop a theory of curve diagram for Artin groups of
type B. We introduce two labelings on curve diagrams, the winding num-
ber labeling and the wall-crossing labeling by generalizing the corresponding
notions in the curve diagram of braids.

In Theorem 3.2 and Theorem 3.7, we show that from these labelings
one can read the classical Garside length and the dual Garside length of
A(Bn). These are length functions of A(Bn) with respect to certain natural
generating sets called the classical simple elements and the dual simple ele-
ments, respectively. Our main theorems provide a geometric and topological
interpretation of such standard length functions.

The classical and the dual simple elements come from natural Garside
structures on A(Bn). Here a Garside structure is a combinatorial and alge-
braic structure which produces an effectively computable normal form that
solves the word and the conjugacy problems. An idea of Garside structure
dates back to Garside’s solution of the word and the conjugacy problem of
the braid groups [G]. See [BGG], [Deh], [DP] for the basics of theory of
Garside groups.

A remarkable point in a curve diagram argument is that we require no
deep Garside theory machinery. In particular, we do not need to use a lattice
structure which is the key ingredient in Garside theory, so we do not use
normal forms. Our requirement of algebraic properties for the classical and
the dual simple elements, stated as Lemma 3.3 and Lemma 3.8 respectively,
are much weaker than the requirement in developing Garside theory. Thus,
the result in this paper seems to suggest that one can construct a theory
of curve diagrams for more general subgroups of the mapping class groups
and there might be nice length functions, even if the group does not have a
Garside structure.
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2. Curve diagram and its labelings for Artin groups of type B

Let D2n = {z ∈ C | |z| ≤ n + 1} − {−n, . . . ,−1, 1, . . . , n} be the 2n-
punctured disc. For i = 1, . . . , n, we denote the puncture points −i ∈ C and
i ∈ C by pi and qi, respectively, and let r : D2n → D2n be the half-rotation
of the disc D2n defined by r(z) = −z.

The braid group B2n = A(A2n−1) is identified with the mapping class
group of D2n as follows: For i = 1, . . . , n− 1 (resp. i = n + 1, . . . , 2n− 1), a
standard generator σi is identified with the isotopy class of the left-handed
(clockwise) half Dehn twist along the segment of the real line [pn−i+1, pn−i]
(resp. [qi−n, qi−n+1]), and σn is identified with the the isotopy class of the
left-handed half Dehn twist along the segment [p1, q1] = [−1, 1]. See Figure
1.

Figure 1. Left-handed half Dehn twist along the line segment: The position of
two punctures integerchanges along the line segment.

To define the curve diagrams for A(Bn), we consider the homomorphism

Ψ : A(Bn) → B2n

defined by

Ψ(si) =

{
σn (i = 1),

σn+(i−1)σn−(i+1) (i > 1).
(2.1)

It is well-known that Ψ is injective. To see this geometrically, it is
convenient to first identify A(Bn) as the subgroup of the mapping class
group of Dn+1 that preserves the first puncture point p0. We regard D2n

as the double branched covering of Dn+1 branched at p0. Then Ψ is the
map obtained by taking the lift, and is known to be injective by famous
Birman-Hilden theorem [BH].

Using Ψ, we regard an element of A(Bn) as an element the mapping
class group of D2n.
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Let E be a cllection of curves in D2n consisting of the real line segment
between the point −(n + 1), the leftmost point of ∂D2n, and q1. Similarly,
let E ⊂ E be a sub collection in D2n consisting of the real line segment
between pn and q1. We will often call such a collection of curves (or, its
union) diagram. Both E and E are oriented from left to right. We denote
the line segment of E connecting −(n + 1) and pn by E0, the line segment
connecting pn−i+1 and pn−i by Ei (i = 1, . . . , n − 1), and the line segment
connecting p1 and q1 by En.

For i = 1, . . . , n, let Wi be a vertical line segment in the upper half-
disc {z ∈ D2 | Im z > 0} oriented upwards which connects the puncture pi

and a point in ∂D2n. Similarly, let Wi+n be a vertical line segment in the
lower half-disc {z ∈ D2 | Im z < 0} oriented downwards which connects the
punture qi and a point in ∂Dn. See Figure 2 (a). We call Wi the walls, and
their union

⋃
Wi is denoted W . Observe that r(Wi) = Wi+n.

Definition 2.1 (Curve diagram) For β ∈ A(Bn), the total curve dia-
gram and the curve diagram of β is the image of the diagrams E and E,
respectively, under a diffeomorphism φ representing Ψ(β) which satisfies the
following conditions.

( i ) φ(E) is transverse to W , and the number of intersections of φ(E) with
W is minimal in its diffeotopy class.

( ii ) The number of vertical tangencies (the points p of φ(E) where the
tangent vector at p is vertical) is minimal in its diffeotopy class.

(iii) For each puncture point z ∈ {−n, . . . ,−1, 1, . . . , n}, there exists a
small disc neighborhood B(z) of z such that B(z)∩φ(E) is contained
in the real line.

(iv) r(φ(En)) = φ(En).

Since E ⊂ E, we will always regard the curve diagram as a subset of the
total curve diagram. See Figure 2 (b) for an example. We will use a dotted
line to represent φ(E0). We denote the curve diagram of β by Dβ and the
total curve diagram by Dβ , respectively. Up to diffeotopy, a curve diagram
is uniquely determined by β [DDRW, Chapter X], so from now on we will
often identify an element β ∈ A(Bn) with its representative diffeomorphism
φ that produces the curve diagram of β.

Although to develop a theory of curve diagram it is sufficient to consider
Dβ and Dβ , it is often convenient to make curve diagrams r-symmetric by
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considering Dβ = Dβ ∪r(Dβ) and Dβ = Dβ ∪r(Dβ). We call Dβ (resp. Dβ)
the completed curve diagram (resp. the completed total curve diagram).

Figure 2. (a) Punctured disc D2n, walls and diagram E,
(b) Curve diagram of s−1

1 s2s1 ∈ A(B2).

We denote the union of the neighborhood B(z) in Definition 2.1 (iii) by
B. A point x on a curve diagram which is not contained in B is called regular
if x is neither a vertical tangency nor an intersection point with walls. For
a regular point of the curve diagram, we assign two integers, the winding
number labeling and the wall-crossing labeling as follows.

To introduce labelings, we temporary modify the curve diagram near
the puncture points. For each puncture point z that lies on Dβ other than
β(q1), we modify the curve diagram Dβ in B(z) as shown in Figure 3, to
miss the punctures. Then the resulting diagram can be regarded as an arc
in D2n, which we still call the curve diagram of β by abuse of notation.

Figure 3. Modification near puncture points.

Take a smooth parametrization of the modified version of a curve dia-
gram γ : [0, 1] → D2 ⊂ C and let Tγ : [0, 1] → S1 = R/Z be the direction
map defined by Tγ(t) = γ′(t)/‖γ′(t)‖. Take a lift T̃γ : [0, 1] → R of Tγ so
that T̃γ(0) = 0. Then T̃γ(t) ∈ Z+ 1

2 if and only if γ(t) is a vertical tangency.
For a regular point x = γ(t) ∈ Dβ , we assign the integer Win(x) = R(T̃γ(t)),
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where R : R → Z is a rounding function which sends real numbers to the
nearest integers. We call Win(x) the winding number labeling at x. Similarly,
we assign the integer Wcr(x) defined by the algebraic intersection number
of the arc γ([0, t]) and walls W . We call Wcr(x) the wall crossing labeling
at x.

Geometrically, these definitions say that the winding number labeling
counts how many times the curve γ([0, t]) winds the plane and the wall-
crossing labeling counts how many times γ([0, t]) crosses the walls.

Example 2.2 Figure 4 shows an example of the winding and the wall
crossing labeling for β = s−1

1 s2s1 ∈ A(B2). The classical and the dual
normal forms of β are Nclassical(β) = (s2s1s2)(s2s1)∆−1 and Ndual(β) =
(s−1

1 s2s1), respectively.

Figure 4. The winding number and the wall crossing labelings for the curve dia-
gram of β = s−1

1 s2s1 ∈ A(B2). In the left figure, white circles represent vertical
tangencies, and in the right figure, gray circles represent the intersections with
walls.

The winding number and the wall crossing labelings for the completed
(total) curve diagrams Dβ (Dβ) are defined in a similar way. Since the
action of A(Bn) on D2n and all the ingredients appearing in the definition of
labelings, such as winding numbers or walls, are r-symmetric, the labelings
of r(Dβ) is determined by Dβ . That is, for a regular point x ∈ Dβ , we have
an r-symmetry

Win(r(x)) = Win(x) and Wcr(r(x)) = Wcr(x). (2.2)

By Definition 2.1 (iv), r(β(En)) is, as a curve, identical with β(En) but
their orientations are opposite. However, (2.2) says that the labelings of the
completed curve diagram Dβ is well-defined on r(β(En)) = β(En).
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For β ∈ A(Bn), we define LWin(β) and LWcr(β) as the largest winding
number and wall crossing number labelings occurring in Dβ . Similarly,
we define SWin(β) and SWcr(β) as the smallest winding number and wall
crossing number labelings in Dβ . We remark that to define these numbers,
we only consider the labelings of the curve diagram Dβ , not the total curve
digram Dβ . However, we need the total curve diagram in order to define
the labelings.

The following is a direct consequence of the definition of labelings.

Lemma 2.3 For β ∈ A(Bn), the following three conditions are equivalent.

(1) β = 1.
(2) SWin(β) = LWin(β) = 0.
(3) SWcr(β) = LWcr(β) = 0.

3. Length formula

3.1. Classical Garside length and winding number labelings
To state our main theorem, first we recall the definitions of the classical

simple elements. Since we want to avoid algebraic machinery as possible,
we use the following geometric definition.

Definition 3.1 An element x ∈ A(Bn) is called a classical simple element
if as a mapping class, x is described as the following r-symmetric dance
of punctures (namely, a move of punctures which is symmetric under the
r-action):

Step 1: Perform a clockwise rotation of angle π/2 so that all punctures
{p1, . . . , pn, q1, . . . , qn} lie on the imaginary axis.

Step 2: Move punctures horizontally so that the followings are satisfied:

(1) {Re(p1), . . . ,Re(pn),Re(q1), . . . ,Re(qn)} = {−n, . . . ,−1, 1, . . . , n}.
(2) r(pi) = qi holds for all i = 1, . . . , n.

Step 3: Move the punctures vertically so that all punctures lie on the real
axis.

The classical Garside element ∆ is an element of A(Bn) that corresponds
to the clockwise half-rotation of the disc D2n.

We denote the set of all classical simple elements by [1,∆]. Since the
standard generators si are classical simple elements, [1,∆] generates A(Bn).
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For β ∈ A(Bn), the classical Garside length `classical(β) is the length of β

with respect to the classical simple elements [1,∆].
Now we are ready to state the first main theorem of this paper, which

generalizes the corresponding theorem for curve diagrams of braid groups
[W, Theorem 2.1].

Theorem 3.2 For β ∈ A(Bn), `classical(β) = max{LWin(β), 0} −
min{SWin(β), 0}.

It is well-known that classical Garside elements and the classical simple
elements have various nice algebraic properties [BS], [Del]. However, to
prove our main theorem and develop a curve diagram theory, we only need
the following, which is directly confirmed from the definition.

Lemma 3.3 If x ∈ [1,∆], then both ∆x−1 and x−1∆ lies in [1,∆].

To prove Theorem 3.2, it is sufficient to observe the following. Recall
that β ∈ A(Bn) is classical positive (resp. classical negative) if β is written
as a product of positive (resp. negative) classical simple elements [1,∆].

Proposition 3.4 If β ∈ A(Bn) is classical positive, then LWin(β) =
`classical(β) and SWin(β) ≥ 0. Similarly, if β ∈ A(Bn) is classical negative,
then SWin(β) = `classical(β) and LWcr(β) ≤ 0.

Proof of Theorem 3.2, assuming Proposition 3.4. For β ∈ A(Bn), let us
take a geodesic representative of β with respect to `classical, β = xε1

1 · · ·xε`

`

(xi ∈ [1,∆], εi ∈ {±1}). Let `p and `n be the number of i such that εi = +1
and εi = −1, respectively. If either `p or `n is zero, then β is either classical
positive or classical negative so we are done by Proposition 3.4. Thus we
assume neither `p nor `n is zero.

By Lemma 3.3, we may rewrite the geodesic word as β =
z`z`−1 · · · z1∆−`n , zi ∈ [1,∆]. As an element of mapping class group, ∆
is a half rotation of the disc D2n, hence LWin(β∆`n) = LWin(β) + `n.
On the other hand, the braid β∆`n = z`z`−1 · · · z1 is classical positive,
hence by Proposition 3.4, LWin(β∆`n) = `classical(z`z`−1 · · · z1) ≤ `. If
`′ = `classical(z`z`−1 · · · z1) < `, then we may write β = z′`′ · · · z′1∆−`n . By
using Lemma 3.3, we obtain a shorter word representative of β which is
impossible since ` = `classical(β). This shows LWin(β∆`n) = ` hence

LWin(β) = `− `n. (3.1)
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Similarly, by Lemma 3.3, we may rewrite the geodesic word as β =
z′`
−1 · · · z′1−1∆−`n+`, and SWin(β∆`n−`) = SWin(β)+`n−` holds. By Propo-

sition 3.4, SWin(β∆`n−`) = −`classical(z′`
−1 · · · z′1−1) = −` hence we conclude

SWin(β) = −`n. (3.2)

(3.1) and (3.2) prove Theorem 3.2. ¤

It remains to show Proposition 3.4. The following lemma shows that we
have an effective untangling procedure of the curve diagram.

Lemma 3.5 Let β ∈ A(Bn) be a non-trivial element such that SWin(β) ≥
0. Then there exists a classical simple element x such that

(1) LWin(x−1β) = LWin(β)− 1.
(2) SWin(x−1β) ≥ 0.

Proof. First we express an action of the inverse of classical simple elements
as a three-step move of punctures that is a converse of the action given in
Definition 3.1.

Step 1: Move punctures vertically so that

{Im(p1), . . . , Im(pn), Im(q1), . . . , Im(qn)} = {−n, . . . ,−1, 1, . . . , n}

and r(pi) = qi for all i = 1, . . . , n

Step 2: Move punctures horizontally so that all punctures lie on the imag-
inary axis.

Step 3: Perform an counter-clockwise rotation of angle π/2 so that all
puncture points lie on the real axis.

Here in the Step 1, we need to determine the imaginary part of punc-
tures. From the (completed) curve diagramDβ we define the partial ordering
≺ on the set of puncture points in the following manner.

Consider the connected components of Dβ − {vertical tangencies}. We
will call such arcs V -arcs. Each V -arc may contain more than one puncture
points, and the winding number labelings take a constant value on each V -
arc. Roughly speaking, we define z ≺ z′ if there exists a V -arc α such that
z′ lies above α and z lies below α.

To define ≺ precisely, observe that there are two types of V -arc α: The
first case is that the winding number labeling Win takes a local maxima or
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local minima on α, in other words, at the endpoints of α the direction of
winding is different. For such V -arc α, we move punctures vertically and
isotope the diagram accordingly so that the resulting V -arc does not contain
horizontal tangencies (See Figure 5 (A)).

The second case is that the winding number labeling Win does not take a
local maxima or local minima on α, equivalently saying, at the endpoints of
α the direction of winding is the same. For such V -arc α, we move punctures
vertically and isotope the diagram accordingly so that the resulting V -arc
is horizontal except near vertical tangency. (See Figure 5 (B)).

After these moves, by comparing the imaginary part we get a partial
ordering ≺ (c.f. [W, Sublemma 2.3]). Since Dβ is r-symmetric, we can
perform the move of punctures so that it is r-symmetric. In particular, the
resulting partial ordering ≺ can be chosen so that it is r-antisymmetric:
z ≺ z′ implies r(z) Â r(z′). Let ≺̃ be an r-antisymmetric total ordering on
the the set of punctures that extends ≺. Then ≺̃ determines the imaginary
part of the punctures in Step 1. The r-antisymmetry of ≺̃ implies that the
move of punctures described in Step 1 is r-symmetric in the sense r(pi) = qi.

The moves in Steps 1–3 defines the inverse of a classical simple element
x. From the definition of ≺, the vertical moves of punctures in Step 1
removes the V -arcs with labeling LWin(β). Hence LWin(β) decreases by one
after performing x−1, so LWin(x−1β) = LWin(β)− 1. Similarly, the vertical
moves of punctures in Step 1 does not affect the labelling of the V -arcs
with labeling SWin(β). (See [W] for more detailed explanation)

This shows SWin(x−1β) = SWin(β) ≥ 0. The case x = ∆ happens only
if LWin(β) = SWin(β), so in this case SWin(x−1β) ≥ 0 is also satisfied. ¤

Figure 5. How to determine the imaginary part of punctures. (A) illustrates the
case that at the endpoints (the vertical tangencies, denoted by white circles), the
direction of winding (indicated by dotted arrow) disagrees. (B) illustrates the case
that the direction of winding agrees. In such case, between the puncture points a
and b lying on the V -arc the partial ordering ≺ is not defined.
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Proof of Proposition 3.4. The action of classical simple elements of A(Bn),
as given in Definition 3.1, shows that a classical simple element x acts on
Dn locally as clockwise rotations so never decreases the winding number
labelings. Hence SWin(β) ≥ 0 for a classical positive braid β. Moreover, x

add windings to each V -arcs at most by onem hence LWin(xβ) ≤ LWin(β)+1
and LWin(x−1β) ≤ LWin(β) for all β ∈ A(Bn) and x ∈ [1,∆]. (see [W] for
more detailed explanation). In particular, we have an inequality LWin(β) ≤
`classical(β) for any (not necessarily classical positive) β ∈ A(Bn).

If β is classical positive then SWin(β) ≥ 0, so Lemma 3.5 shows a
classical positive β ∈ A(Bn) can be written as a product of LWin(β) classical
positive elements. So we get the converse inequality `classical(β) ≤ LWin(β).
So we conclude `classical(β) = LWin(β). The assertion for SWin(β) is proved
in a similar manner. ¤

3.2. Dual Garside length and wall-crossing labeling
In a similar manner, we prove the length formula for the dual Garside

length. To define dual simple elements, by isotopy we put the punctures,
walls, and curves E so that all punctures lie on the circle |z| = n, preserving
the property that r(Wi) = Wn+i (see the left hand side of the Figure 6).
Since the wall-crossing labeling is defined in terms of the algebraic intersec-
tion numbers, this isotopy does not affect the wall crossing labeling.

Figure 6. (Left) Isotoping walls and curve diagram to treat dual simple elements.
(Right) r-symmetric convex polygons.

Take a collection of convex polygons Q in D2n whose vertices are punc-
ture points. We say Q is r-symmetric if r(Q) = Q (see the right of the
Figure 6, for example).

For an r-symmetric collection of convex polygons Q, we define yQ ∈
A(Bn) as follows. For each connected component Q′ of Q, we associate
a move of puncture points that corresponds to the clockwise rotation of
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Q′. Namely, each puncture on Q′ moves to the adjacent punctures of Q′

in the clockwise direction along the boundary of Q (see Figure 7). If Q′ is
degenerate, namely, Q′ is a line segment e connecting two punctures, the
resulting move is nothing but the half Dehn twist along e which we described
in Figure 1. This move of puntures defines an element yQ′ ∈ B2n. We define

yQ =
∏

Q′
yQ′

where Q′ runs all connected components of Q. Since Q is r-symmetric,
yQ ∈ A(Bn).

Figure 7. The action of dual simple elements.

Definition 3.6 An element y ∈ A(Bn) is called a dual simple element
if y = yQ for some r-symmetric collection of convex polygons Q. The dual
Garside element δ is a dual simple element that corresponds to the connected
convex polygon Q having all the punctures as its vertices. We denote the
set of dual simple elements by [1, δ].

As an element of mapping class group, δ is nothing but the rotation
of D2n by π/n. Since the standard generators si are dual simple elements,
[1, δ] generates A(Bn). For β ∈ A(Bn), the dual Garside length `dual(β) is
the length of β with respect to the dual simple elements [1, δ].

Now we are ready to state the second main theorem, which generalizes
the corresponding theorem for curve diagrams of the braid groups [IW].

Theorem 3.7 For β ∈ A(Bn), `dual(β) = max{LWcr(β), 0} −
min{SWcr(β), 0}.

The proof of Theorem 3.7 is similar to the proof of Theorem 3.2.
First observe that from the definition, the dual simple elements also

have the same property as the classical simple elements.

Lemma 3.8 If y ∈ [1, δ], then both δy−1 and y−1δ lies in [1, δ].

Recall that we say β ∈ A(Bn) is dual positive (resp. dual negative) if β
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is written as a product of positive (resp. negative) dual simple elements. By
the same argument as the proof of Theorem 3.2, the following Proposition
3.9 and Lemma 3.8 proves Theorem 3.7.

Proposition 3.9 If β ∈ A(Bn) is dual positive, then LWcr(β) = `dual(β)
and SWcr(β) ≥ 0. Similarly, if β ∈ A(Bn) is dual negative, then SWcr(β) =
−`dual(β) and LWcr(β) ≤ 0.

Proof of Proposition 3.9. First we show the wall-crossing labeling counter-
part of Lemma 3.5: If SWcr(β) ≥ 0, then there exists a dual simple element
y such that LWcr(y−1β) = LWcr(β) − 1 and that SWcr(y−1β) ≥ 0. This
proves LWcr(β) ≤ `dual(β) if β is dual positive.

Let A be the set of arcs in Dβ −W that attain the largest value of the
wall-crossing labelings. Each arc a ∈ A connects two distinct walls, say i(a)-
th and j(a)-th wall. For a ∈ A, we denote the straight line in D2n connecting
two punctures pi(a) and pj(a) by e(a). Let Q be the convex hull of

⋃
a∈A e(a)

in D2n. Since the curve diagram is r-symmetric, so is Q. Hence Q defines
a dual simple element y of A(Bn). By definition of Q, multiplying by y−1

removes arcs with wall-crossing labeling LWcr(β) preserving SWcr(β) ≥ 0,
as desired. See [CI], [IW] for more detailed discussion.

To get the converse inequality, recall that the action of a dual simple
element is by rotations of convex polygons. Thus, LWcr(yβ) ≤ LWcr(β) + 1
and LWcr(y−1β) ≤ LWcr(β) + 1 hold for any β ∈ A(Bn) and y ∈ [1, δ].
Moreover, if β is dual positive, then SWcr(β) ≥ 0 because clockwise rotations
never decreases the wall-crossing labelling. In particular, `dual(β) ≤ LWcr(β)
holds. The assertions for SWcr(β) is proved similarly. ¤

4. Comments on Garside normal forms

We close the paper by discussing an application of the curve diagram
method to Garside normal forms. [BGG, Section 1] contains a concise
overview of the normal forms.

For β ∈ A(Bn), the classical Garside structure introduces the classical
normal form

Nclassical(β) = xr · · ·x1∆p (p ∈ Z, xi ∈ [1,∆])

and the dual Garside structure gives the dual normal form
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Ndual(β) = ys · · · y1δ
q (q ∈ Z, yi ∈ [1, δ])

of β, respectively.
The classical supremum and the classical infimum of β are integers de-

fined by supclassical(β) = p + r and infclassical(β) = p, respectively. Similarly,
the dual supremum and the dual infimum are defined by supdual(β) = q + s

and infdual(β) = q, respectively. The supremum, infimum and the length are
related by the formula

{
`classical(β) = max{0, supclassical(β)} −min{0, infclassical(β)}
`dual(β) = max{0, supdual(β)} −min{0, infdual(β)}.

(4.1)

By (4.1), Theorem 3.2 and Theorem 3.7 actually prove the following
relationships between the supremum/infimum in Garside theory and the
labelings of curve diagrams.

Corollary 4.1 Let β ∈ A(Bn).

(1) LWin(β) = supclassical(β) and SWin(β) = infclassical(β).
(2) LWcr(β) = supdual(β) and SWcr(β) = infdual(β).

The braid group Bn also has the classical and the dual Garside struc-
tures. As a bonus, by comparing the curve diagram theories of B2n and
A(Bn), we conclude that the map Ψ preserves both the classical and dual
Garside normal forms.

Corollary 4.2 The map Ψ is an embedding that preserves both the clas-
sical and the dual Garside normal forms: That is, if the classical and the
dual Garside normal form of β ∈ A(Bn) are

{
Nclassical(β) = xr · · ·x1∆p

Ndual(β) = ys · · · y1δ
q,

respectively, then the classical and the dual Garside normal form of the braid
Ψ(β) ∈ B2n are given by

{
Nclassical(Ψ(β)) = Ψ(xr) · · ·Ψ(x1)Ψ(∆)p

Ndual(Ψ(β)) = Ψ(ys) · · ·Ψ(y1)Ψ(δ)q,
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respectively.
In particular, Ψ is an isometric embedding of A(Bn) into B2n with re-

spect to the word metric on both the classical and the dual simple elements.

Proof. For the braid group B2n, the curve diagram is defined as an image
of the real line segment [−(n+1), n], arranged so that the conditions similar
to Definition 2.1 (i)–(iii) are satisfied [IW], [W]. Moreover, for the curve di-
agram of braids, the winding number labeling and the wall-crossing labeling
are defined in the similar manner.

By definition of curve diagram and labelings of braids, the (completed)
curve diagrams of elements in A(Bn) are a special case of the curve diagram
of braids. Since the same length formulae of Theorem 3.2 and Theorem 3.7
hold for the curve diagrams of braids, we conclude Ψ preserves both the
classical and the dual Garside length. ¤

Corollary 4.2 was already known and has appeared in several places
[BDM], [DP], [P] by observing that the injection Ψ preserves lattice struc-
tures from the classical or the dual simple elements. Here we emphasize that
curve diagram argument provides a new geometric proof that avoids the use
of Garside theory method.
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