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S1-equivariant Rabinowitz–Floer homology
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Abstract. We define the S1-equivariant Rabinowitz–Floer homology of a bounding

contact hypersurface Σ in an exact symplectic manifold, and show by a geometric

argument that it vanishes if Σ is displaceable.
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1. Introduction

Consider a bounding contact hypersurface Σ in an exact convex sym-
plectic manifold (M, λ). (Definitions are recalled in Section 2.) In this sit-
uation, Kai Cieliebak and the first author defined in [10] a homology group
RFH(Σ,M), the Rabinowitz–Floer homology of Σ, as the Floer homology
associated to the Rabinowitz action functional

AF : L × R→ R, (v, η) 7→ −
∫

S1
v∗λ− η

∫

S1
F (v(t)) dt.

Here, F : M → R is a suitable function with F−1(0) = Σ, and S1 = R/Z
denotes the circle and L = C∞(S1,M) the free loop space of M . Note
that the Rabinowitz action functional is invariant under the circle action
τv(·) 7→ v(· − τ) obtained by rotating the loop v. This makes it possible
to construct the equivariant Rabinowitz–Floer homology RFHS1

(Σ,M) as
well.

Recall that Σ is said to be Hamiltonian displaceable if there exists a
compactly supported Hamiltonian diffeomorphism that disjoins Σ from it-
self. One of the most useful properties of the Rabinowitz–Floer homology
of Σ is that it vanishes if Σ is displaceable. The main result of this note is
that this fact continues to hold in the equivariant case.
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Theorem A Assume that Σ is Hamiltonian displaceable. Then
RFHS1

(Σ,M) = {0}.
We shall prove this result by a leafwise intersection argument, follow-

ing [2]. A more algebraic proof of Theorem A was given in [8] in the
framework of symplectic homology, and their proof should also apply to
Rabinowitz–Floer homology, cf. Section 6.

This note is organized as follows. In Section 2 we recall the construc-
tion of non-equivariant Rabinowitz–Floer homology RFH(Σ,M), and in
Section 3 we construct S1-equivariant Rabinowitz–Floer homology
RFHS1

(Σ,M). The core of this note is Section 4 in which we prove
Theorem A. In Section 5 we give an alternative and somewhat easier ap-
proach to the invariance of RFHS1

(Σ,M). In Section 6 we briefly discuss
other approaches to proving RFHS1

(Σ,M) = 0 for displaceable hypersur-
faces.

2. Recollections on Rabinowitz–Floer homology

In this section we recall the construction of the (non-equivariant)
Rabinowitz–Floer homology of a hypersurface Σ of restricted contact type,
following [10] and [2]. Our construction of equivariant Rabinowitz–Floer
homology in the next section will be based on this construction.

Consider an exact convex symplectic manifold (M, λ). This means that
λ is a one-form on the connected manifold M such that dλ is a symplectic
form, and that (M, dλ) is convex at infinity, i.e., there exists an exhaustion
M =

⋃
k Mk of M by compact subsets Mk ⊂ Mk+1 with smooth boundaries

∂Mk such that λ|∂Mk
is a contact form. We further fix a closed connected

smooth hypersurface Σ in M that is bounding and of contact type. The
former means that M \ Σ has two components, one compact and one non-
compact, and the latter means that λ|Σ is a contact form, or equivalently
that the vector field Yλ implicitly defined by ιYλ

dλ = λ is transverse to Σ.
For a smooth function F on M , the Hamiltonian vector field XF is

defined by ιXF
dλ = dF , and ϕt

F denotes the flow of XF . The Reeb flow ϕt
R

on Σ is the flow of the vector field R defined by dλ(R, ·) = 0 and λ(R) = 1.

2.1. The Rabinowitz action functional
A defining Hamiltonian for Σ is a smooth function F : M → R such that

Σ = F−1(0), such that dF has compact support, and such that ϕt
F restricts
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on Σ to the Reeb flow ϕt
R of (Σ, λ|Σ). The set of defining Hamiltonians is

non-empty and convex. Given a defining Hamiltonian F , the Rabinowitz
action functional AF : L × R→ R is defined by

AF (v, η) = −
∫

S1
v∗λ− η

∫

S1
F (v(t)) dt. (1)

Its critical points (v, η) are the solutions of the problem

v̇(t) = η XF (v(t)), 0 =
∫

S1
F (v(t)) dt,

i.e., pairs (v, η) with η ∈ R and v a closed curve on Σ of the form v(t) = ϕηt
F ,

t ∈ R. The critical points therefore correspond to closed orbits of XF on the
fixed energy surface Σ = F−1(0) of arbitrary period |η| > 0.1 Since v ⊂ Σ
and ϕt

F = ϕt
R along Σ,

AF (v, η) = −
∫

S1
v∗λ = −η,

that is, the critical values of AF are zero and minus the periods of the closed
Reeb orbits on Σ.

The action functional AF is invariant under the S1-action on L × R
given by

τ · (v(·), η) 7→ (v(· − τ), η). (2)

Therefore, the functional AF is thus never Morse. The component {(p, 0) |
p ∈ Σ} ∼= Σ of the critical set is always Morse–Bott for AF , see [2, Lemma
2.12]. The following assumption on Σ is sufficient for AF to be Morse–Bott:

Every periodic orbit of the Reeb flow ϕt
R is non-degenerate. (3)

1Despite J. Moser’s explicit statement that the action functional (1) is useless for find-

ing periodic orbits, [19, p. 731], P. Rabinowitz in [21, p. 161 and (2.7)] used precisely this
functional to prove his celebrated existence theorem for periodic orbits on starshaped

hypersurfaces in R2n, thus pioneering the use of global critical point methods in Hamil-
tonian mechanics. In [10] and subsequent papers, the functional (1) was therefore called

Rabinowitz action functional. Other good names for this functional may be “fixed energy

action functional” or “Hamiltonian free period action functional”, since it selects solutions
on the prescribed energy level {H = 0}, allowing for arbitrary period |η|.
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In other words, for a T -periodic orbit γ of the Reeb flow, 1 is not in the
spectrum of the linearization Tpϕ

T
R : ξp → ξp at p = γ(0), where ξ = kerλ

denotes the contact structure of Σ. This holds if and only if for any defin-
ing Hamiltonian F of Σ, for every periodic orbit of ϕt

F on Σ the Floquet
multiplier 1 has multiplicity 2.

2.2. Rabinowitz–Floer homology
Rabinowitz–Floer homology RFH(Σ,M) is the Floer homology of the

functional AF , where F is any defining Hamiltonian for Σ. We assume the
reader to be familiar with the construction in [10], and also refer to [2] and
to the survey [3]. Here, we only point out a few aspects in the construction
of RFH(Σ,M) that do not arise in the construction of usual Hamiltonian
Floer homology.

1. The chain groups. The functional AF is not Morse, but Morse–
Bott. One therefore chooses an auxiliary Morse function h : CritAF → R,
and generates the chain groups by the critical points of h. However, even
though the symplectic form dλ is exact, the generators of the Rabinowitz–
Floer chain groups FC(AF , h) are not finite sums

∑
ξcc with ξc ∈ Z2 and

c ∈ Crith, but possibly infinite sums
∑

ξcc that for every κ ∈ R satisfy the
finiteness condition

#
{
c ∈ Crith | ξc 6= 0, AF (c) > κ

}
< ∞.

This must be done so for the following reason: Assume that c lies on the
critical point (v, η) of AF , with η 6= 0. Then AF (v, η) = −η. Since with
(v, η) also (v, kη) belongs to CritAF for each k ∈ Z, we see that AF is
not bounded from below on CritAF . Hence there may be infinitely many
critical points that appear in the image ∂c of the boundary operator.

2. The almost complex structures. Let Jcon be the set of almost
complex structures on M that are dλ-compatible and convex at infinity. The
choice of the set of almost complex structures used to define RFH(Σ,M)
depends on the method that one uses to establish transversality. If one
works with polyfolds, one can take a fixed J ∈ Jcon. In the next paragraph
we describe the boundary operator in the traditional way. For this we fix
J∗ ∈ Jcon and following [1] consider the set J of smooth S1 × R-families
J = {Jt(·, η)} ⊂ Jcon such that
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sup
t,η

‖Jt(·, η)‖C` < ∞ for all ` ∈ N (4)

and such that there exists a constant c > 1 (depending on the family) for
which

1
c
‖J∗(x)‖ 6 ‖Jt(x, η)‖ 6 c‖J∗(x)‖ for all x ∈ M and (t, η) ∈ S1 × R. (5)

Here, ‖ · ‖ is the norm taken with respect to some background Riemannian
metric on M .

3. The boundary operator. The boundary operator ∂ on
FC(AF , h) is defined by counting gradient flow lines with cascades (see [17,
Appendix A]). These flow lines consist of (partial) negative gradient flow
lines of h and finite energy Floer gradient flow lines of AF . Given a family
J ∈ J and two critical points (v−, η−) and (v+, η+) of AF , a Floer gradient
flow line is a solution (v, η) ∈ C∞(R× S1,M × R) of the problem

∂sv(s, t) + Jt(v(s, t), η(s))
(
∂tv(s, t)− η(s)XF (v(t)

)
= 0,

η̇(s) +
∫

S1
F (v(s, t)) dt = 0,





(6)

with asymptotic boundary conditions (v−, η−) and (v+, η+). The main an-
alytical issue in defining the boundary operator ∂ is to prove a uniform
L∞-bound on the η-component of the solutions of (6) with given boundary
conditions. This is done in [10, Corollary 3.3] for η-independent J , and the
proof goes through thanks to (5). Assumption (4) is imposed to avoid bub-
bling, so that the space of all solutions of (6) is C∞loc-compact. Transversality
for the space of solutions of (6) between two critical points for a generic set
of J ∈ J is proven in [1, Section 4.3].

We remark that the construction of the boundary operator by gradient
flow lines with cascades in [17, Appendix A] is given for Morse homology on
finite-dimensional manifolds. While this construction directly carries over
to the case of Floer homology, some parts of this generalisation (such as
gluing) are not worked out in the literature. The same applies to the S1-
equivariant Rabinowitz–Floer homology described in the next section. The
foundational work coming closest to the holomorphic curve set-up considered
in this paper is in [5], [6] and [23, Section 10]. Another way to rigorously
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establish RFH and RFHS1
is by verifying that the flow lines with cascades

fit into the M -polyfold set-up.

4. Invariance. The resulting homology group FH(AF ) := ker ∂/ im ∂

does not depend on the choice of a defining function F for Σ. One can there-
fore define RFH(Σ,M) := FH(AF ) for any choice of F . Moreover, given two
bounding contact hypersurfaces Σ0 and Σ1 that are isotopic through a family
{Σs}06s61 of contact hypersurfaces,

RFH(Σ0,M) ∼= RFH(Σ1,M). (7)

For the proof, one chooses a smooth family Fs : M → R of defining Hamil-
tonians for Σs such that Fs = F0 for s 6 0 and Fs = F1 for s > 1, and uses
solutions of (6) with F replaced by Fs to construct a chain homotopy equiv-
alence between FC(AF0 , h0) and FC(AF1 , h1). The main analytical issue is
again proving a bound on the η-components, which can be done as in [10,
Corollary 3.4] thanks to (5).

Recall that we have worked for now under the assumption (3). This
assumption on Σ is generic in the C∞-topology. In view of (7) we can
define the Rabinowitz–Floer homology RFH(Σ,M) of any bounding contact
hypersurface as RFH(Σ′,M) where Σ′ is a close-by hypersurface meeting
assumption (3).

3. Construction of equivariant Rabinowitz–Floer homology

In this section we give a Borel-type construction of S1-equivariant
Rabinowitz–Floer homology, closely following the construction of S1-
equivariant symplectic homology given by Viterbo in [26, Section 5], see
also [7].

3.1. The equivariant Rabinowitz action functional
For each integer N > 1 denote by S2N+1 the odd-dimensional unit

sphere in CN+1. The circle S1 acts on S2N+1 by

τ · (z1, . . . , zN+1) = (τz1, . . . , τzN+1).

The quotient of this action is complex projective space CPN = S2N+1/S1.
Recall the action (2) of S1 on the loop space L, and let S1 act on
L × R× S2N+1 by the diagonal action
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τ · (v(·), η, z
)

=
(
v(· − τ), η, τ · z)

. (8)

We shall denote the circle S1 with this action on L × R × S2N+1 by T.
Denote the quotient of this action by L × R ×T S2N+1. The functional
ÃF,N ;T : L × R× S2N+1 → R defined by

ÃF,N ;T(v, η, z) = −
∫

S1
v∗λ− η

∫

S1
F

(
v(t)

)
dt (9)

is Morse–Bott if and only if the functional AF defined in (1) is Morse–Bott.
Indeed, the critical set of ÃF,N ;T is the critical set of AF times S2N+1.
Since the functional (9) is invariant under the action (8), we can define the
equivariant Rabinowitz action functional AF,N ;T : L × R×T S2N+1 → R by

AF,N ;T([v, η, z]) = −
∫

S1
v∗λ− η

∫

S1
F

(
v(t)

)
dt, (10)

and since the action (8) is free, this functional is Morse–Bott under the
assumption (3) on Σ.

3.2. Equivariant Rabinowitz–Floer homology
T-equivariant Rabinowitz–Floer homology RFHT(Σ,M) is the direct

limit in N of the Floer homology of the functional AF,N ;T, where F is any
defining Hamiltonian for Σ.

1. The chain groups. Fix a defining Hamiltonian F for Σ meeting
assumption (3), and fix N ∈ N. Then ÃF,N ;T is Morse–Bott, with critical
manifolds the union of Σ×{0}×S2N+1 and Ci×{k ηi}×S2N+1, k ∈ Z\{0},
where each Ci×{ηi} is a circle of simple Reeb orbits of period ηi. Since the
action of T on L × R× S2N+1 is free,

CritAF,N ;T = Crit ÃF,N ;T/T = CritAF ×T S2N+1

is a closed manifold. Denote by gS2N+1 the round Riemannian metric on
S2N+1, and choose a Riemannian metric gΣ on Σ and S1-invariant Rieman-
nian metrics gCi

on Ci. Then the Riemannian metric gN on Crit ÃF,N ;T

defined by gN |Σ×{0}×S2N+1 = gΣ ⊕ gS2N+1 and gN |Ci×{k ηi}×S2N+1 = gCi
⊕

gS2N+1 is T-invariant, and hence descends to the Riemannian metric gTN on
CritAF,N ;T. Choose a Morse function hN : CritAF,N ;T → R such that the
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pair (hN , gTN ) is Morse–Smale (that is, the stable and unstable manifolds
of the negative gradient flow of hN with respect to gTN intersect transver-
sally). The chain group FC(AF,N ;T, hN ) consists of Novikov sums

∑
ξcc

with c ∈ CrithN , as in Section 2.2.

2. The almost complex structures. If one works with polyfolds,
one can, again, just take a fixed J ∈ Jcon. Here, we again fix J∗ ∈ Jcon and
look at smooth S1 × S2N+1 × R-families J = {Jt,z(·, η)} ⊂ Jcon such that

sup
t,z,η

‖Jt,z(·, η)‖C` < ∞ for all ` ∈ N (11)

and such that there exists a constant c > 1 (depending on the family) for
which

1
c
‖J∗(x)‖ 6 ‖Jt,z(x, η)‖ 6 c‖J∗(x)‖

for all x ∈ M and (t, z, η) ∈ S1 × S2N+1 × R. (12)

Furthermore, we impose that the family J is S1-invariant:

Jt+τ,τz(·, η) = Jt,z(·, η)

for all (t, z, η) ∈ S1 × S2N+1 × R and τ ∈ S1. (13)

The space J S1
of all families J in Jcon satisfying (11), (12) and (13) is

non-empty (since property (13) is obtained by averaging over S1) and con-
tractible.

3. The boundary operator. Let h̃N : Crit ÃF,N ;T → R be the lift of
hN . Then h̃N is Morse–Bott, with T-orbits as critical manifolds. Given two
critical points c+, c− of hN , denote by C+, C− the corresponding critical
circles of h̃N . Given J ∈ J S1

consider all gradient flow lines with cascades
M̂(c+, c−) from a point in C+ to a point in C−. Here, the (partial) Morse
flow lines are (partial) negative gradient flow lines of h̃N on Crit ÃF,N ;T with
respect to gN , and the cascades (i.e., the Floer gradient flow lines) are finite
energy solutions (v, η, z) ∈ C∞(R× S1,M × R× S2N+1) of the problem
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∂sv(s, t) + Jt,z(s)

(
v(s, t), η(s)

)(
∂tv(s, t)− η(s)XF

(
v(t)

)
= 0,

η̇(s) +
∫

S1
F

(
v(s, t)

)
dt = 0,

ż(s) +∇gS2N+1 h̃N (z(s)) = 0.





(14)

Here, ∇gS2N+1 h̃N (z) denotes the component of ∇gN
h̃N (z) along TzS

2N+1.
Since gN and J are T-invariant, T freely acts on M̂(c+, c−). The space
M̂(c+, c−) therefore decomposes as

M̂(c+, c−) =
∐

c∈C+

M̂(c, c−)

where M̂(c, c−) is the space of gradient flow lines with cascades from
c ∈ C+ with the last gradient flow line of h̃N converging to an arbitrary
point in C−, and M̂(c+, c−)/T ∼= M̂(c, c−) for any c ∈ C+. One shows as
in [1, Section 4.3] that for a generic subset of families J ∈ J S1

the spaces
M̂(c, c−) are smooth manifolds.

The real numbers s ∈ R freely act by shift on each Floer gradient
flow line in a gradient flow line with cascades in M̂(c+, c−). The space
M(c+, c−) ∼= ∐

c∈C+ M(c, c−) obtained by modding out these R-actions is
compact. The main point in the proof is, again, a uniform L∞-bound on
the η-component of the solutions of (14) with given boundary conditions.
Such a bound is obtained exactly as in [10, Corollary 3.3], thanks to (12).

Now the boundary operator on FC(AF,N ;T, hN ) is defined by

∂(c+) =
∑

c−
ν(c+, c−) c−

where the sum runs over those c− for which M(c+, c−)/T ∼= M(c, c−) is
0-dimensional and where ν(c+, c−) is the number mod 2 of elements in this
space.

4. Invariance. Let FH(AF,N ;T, hN , J) := ker ∂/ im ∂ be the result-
ing homology groups. The inclusion S2N+1 → S2N+3 is T-equivariant. In
particular, CritAF,N ;T ⊂ CritAF,N+1;T. Since gS2N+3 restricts to gS2N+1

on S2N+1, the Riemannian metric gN+1 restricts to gN on Crit ÃF,N ;T.
Given a Morse function hN on CritAF,N ;T as above, we choose a Morse
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function hN+1 on CritAF,N+1;T such that hN+1 extends hN , such that
CrithN ⊂ CrithN+1, and such that the pair (hN+1, g

T
N+1) is Morse–Smale.

Further, we choose the family JN+1 = Jt,z(·, η) with z ∈ S2N+3 such that
it extends the family JN = Jt,z(·, η) with z ∈ S2N+1. The chain complex
FC(AF,N ;T, hN , JN ) is thus a subcomplex of FC(AF,N+1;T, hN+1, JN+1). We
thus obtain a homomorphism

ιN : FH(AF,N ;T, hN , JN ) → FH(AF,N+1;T, hN+1, JN+1). (15)

The groups FH(AF,N ;T, hN , JN ) do not depend on the choice of hN and
JN , nor on the choice of gΣ in the definition of gN , nor on the defining
Hamiltonian F for Σ. This is proven by Floer continuation as in [10] (see also
Section 5). These continuation isomorphisms commute with the inclusion
homomorphisms in (15): Given another defining Hamiltonian F ′ and other
choices h′N and J ′N , there is a commutative diagram

FH(AF,N ;T, hN , JN )

∼=
²²

ιN // FH(AF,N+1;T, hN+1, JN+1)

∼=
²²

FH(AF ′,N ;T, h′N , J ′N )
ι′N // FH(AF ′,N+1;T, h′N+1, J

′
N+1).

The direct limit

RFHT(Σ,M) := lim−→FH(AF,N ;T, hN , JN ) (16)

therefore only depends on Σ. In fact, RFHT(Σ,M) is invariant under iso-
topies of bounding contact hypersurfaces (cf. Section 2.2).

Remarks 3.1

1. Our homology groups RFHT(Σ,M) are not graded. We therefore do not
need to assume that the first Chern class of (M, dλ) vanishes on π2(M).
Under this assumption, the groups RFHT(Σ,M) carry a Z-grading (with
values in 1/2 + Z), cf. [10, Section 4].

2. The above construction of S1-equivariant Rabinowitz–Floer homology
should give the same result as the construction in [7] which uses
parametrized symplectic homology, when applied to the parameter space
R×S2N+1: The difference in the construction is that our parameter space
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R × S2N+1 is not compact, and that we work with cascades instead of
suitable perturbations of the Hamiltonian F . We expect that combining
the construction in [7] with the L∞-estimates on the η-component from
[10, Section 3] leads to the same groups RFHT(Σ,M) in view of a version
of the Correspondence Theorem 3.7 in [6].

A construction of an S1-equivariant Rabinowitz–Floer homology that
stays within the setting of S1-equivariant symplectic homology was given
recently in [13]. We expect that also this homology is isomorphic to
RFHT(Σ,M).

4. Proof of Theorem A

In this section we prove our main result: RFHT(Σ,M) = 0 if Σ is
displaceable. For the proof, we first recall how the analogous result is proven
in the non-equivariant case. We shall apply the same method in the non-
equivariant case.

4.1. The perturbed Rabinowitz action functional, and leafwise
intersections

It has been shown in [10] that RFH(Σ,M) vanishes if Σ is displaceable.
This result has been reproved in [2] by a more geometric argument, in which
the functional AF is perturbed to a functional whose critical points are
leafwise intersections. While the argument in [10] can be useful in problems
where the leafwise intersection argument does not help (such as proving
the existence of a closed characteristic on a displaceable stable hypersurface
[12]), we here apply the leafwise intersection argument from [2].

A perturbation pair for the Rabinowitz action functional is a tuple

(χ,H) ∈ C∞
(
S1, [0,∞)

)× C∞
(
M × S1,R

)

such that
∫

S1 χ(t) dt = 1. For a perturbation pair, the perturbed Rabinowitz
action functional AF

χ,H : L × R→ R is defined by

AF
χ,H(v, η) = −

∫

S1
v∗λ− η

∫

S1
χ(t)F

(
v(t)

)
dt−

∫

S1
H

(
v(t), t

)
dt. (17)

The critical points (v, η) of this perturbed action functional are the solutions
of the system
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v̇(t) = η χ(t)XF

(
v(t)

)
+ XH

(
v(t), t

)
,

0 =
∫

S1
χ(t) F

(
v(t)

)
dt.





(18)

As noticed in [2], it is useful to look at special perturbation pairs:

Definition 4.1 A perturbation pair (χ,H) is called of Moser type if there
exists t0 ∈ S1 such that the time support of H lies in [t0, t0 + 1/2] and the
support of χ lies in [t0 − 1/2, t0].

The energy hypersurface Σ = F−1(0) is foliated by its leaves Lx =
{ϕt

F (x) | t ∈ R}. Given a perturbation H as above, a point x ∈ Σ is called
a leafwise intersection point for H if ϕ1

H(x) ∈ Lx. The following lemma was
observed in [2].

Lemma 4.2 If a perturbation pair is of Moser type and (v, η) is a solution
of (18), then v(t0) is a leafwise intersection point for H on Σ = F−1(0).

4.2. The perturbed equivariant Rabinowitz action functional
In order to show that RFHT(Σ,M) vanishes for displaceable Σ, we wish

to apply the same method as in the non-equivariant case.
In the following S1 acts diagonally on S1×S2N+1 by τ(·, z) = (·−τ, τz),

and S1 ×S1 S2N+1 is the quotient of S1 × S2N+1 under this action. A
perturbation triple is a triple (ψ, G, k) in

C∞
(
S1 ×S1 S2N+1, [0,∞)

)× C∞
(
M × S1 ×S1 S2N+1,R

)× C∞
(
CPN ,R

)

such that for every z ∈ S2N+1,
∫

S1
ψ

(
[t, z]

)
dt = 1, (19)

and such that k is a Morse function on CPN . For a perturbation triple we
define the perturbed equivariant Rabinowitz action functional

Aψ,G,k := AF,N ;T
ψ,G,k : L × R×T S2N+1 → R (20)

by
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Aψ,G,k

(
[v, η, z]

)
= −

∫

S1
v∗λ− η

∫

S1
ψ

(
[t, z]

)
F

(
v(t)

)
dt

−
∫

S1
G

(
v(t), [t, z]

)
dt− k

(
[z]

)
.

Denote by

ψ̃ ∈ C∞
(
S1 × S2N+1, [0,∞)

)
,

G̃ ∈ C∞(M × S1 × S2N+1,R),

k̃ ∈ C∞(S2N+1,R)

the lifts of ψ, G and k. We can then write the lift of Aψ,G,k to L×R×S2N+1

as

A eψ, eG,ek(v, η, z) = −
∫

S1
v∗λ− η

∫

S1
ψ̃(t, z)F

(
v(t)

)
dt

−
∫

S1
G̃

(
v(t), t, z

)
dt− k̃(z). (21)

The critical points (v, η, z) of A eψ, eG,ek are the solutions of the system

v̇(t) = η ψ̃(t, z) XF

(
v(t)

)
+ X eG

(
v(t), t

)
,

0 =
∫

S1
ψ̃(t, z)F

(
v(t)

)
dt,

0 = η

∫

S1
F

(
v(t)

)
∂zψ̃(t, z)dt−

∫

S1
∂zG̃

(
v(t), t, z)dt− dk̃(z).





(22)

Definition 4.3 A perturbation triple (ψ, G, k) is called admissible if the
following two conditions hold.

( i ) For each z ∈ S2N+1 and each solution (v, η) of equation (18) with
respect to the perturbation (ψ̃z, G̃z) the identity F

(
v(t)

)
dψ̃t(z) = 0

holds for all t ∈ S1.
( ii ) |dG̃x,t(z) ẑ| < |dk̃(z) ẑ| for all z /∈ Crit k̃, ẑ 6= 0 ∈ TzS

2N+1 and
(x, t) ∈ M × S1.

Lemma 4.4 Assume that (ψ, G, k) is an admissible perturbation triple.
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Then critical points [v, η, z] of Aψ,G,k have the property that [z] is a critical
point of k, and for each z ∈ S2N+1 over [z], the pair (v, η) is a solution to
equation (18) for the perturbation (ψ̃z, G̃z).

Proof. In view of the first two equations in (22), we see that (v, η) is a
solution of (18) for the perturbation (ψ̃z, G̃z). It remains to show that
[z] is a critical point of k. In view of the last equation in (22), for every
ẑ ∈ TzS

2N+1 the equation

η

∫

S1
F

(
v(t)

)
dψ̃t(z) ẑ dt +

∫

S1
dG̃v,t(z) ẑ dt + dk̃(z) ẑ = 0

has to be met. By assertion (i) of Definition 4.3, the first term vanishes.
Now assertion (ii) implies dk̃(z) ẑ = 0, hence [z] is a critical point of k. ¤

Definition 4.5 Given a perturbation pair of Moser type (χ,H), we call
a perturbation triple (ψ, G, k) an equivariant extension of (χ,H) if the fol-
lowing conditions hold.

( I ) The perturbation triple (ψ, G, k) is admissible.
(II) For every z ∈ Crit k̃ there exists tz ∈ S1 such that for every t ∈ S1

and every x ∈ M the identities G̃(x, t, z) = H(x, t + tz) and ψ̃(t, z) =
χ(t + tz) hold true.

Lemma 4.6 For any perturbation pair (χ,H) of Moser type, there exists
an equivariant extension.

Proof. Choose a Morse function k on CPN . For every y ∈ Crit k choose
open neighborhoods

y ∈ Uy ⊂ Uy ⊂ Vy ⊂ Vy ⊂ Wy

with the property that Wy is contractible, and for different critical points
y and y′ of k the neighborhoods Wy and Wy′ are disjoint. Since Wy is
contractible, the principal S1-bundle π : S2N+1 → CPN can be trivialized
over Wy. We abbreviate

X =
⋃

y∈Crit k

π−1(Wy)
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and choose a trivialization

Φ: X → π(X)× S1.

We further choose smooth cutoff functions β1, β2 ∈ C∞(CPN , [0, 1]) with
the property that for every y ∈ Crit k,

β1|Uy
= 1, β2|Vy

= 1

and

supp(β1) ⊂
⋃

y∈Crit k

Vy, supp(β2) ⊂
⋃

y∈Crit k

Wy.

We further abbreviate by p : X × S1 → S1 the projection to the second
factor. We now set

G̃(x, t, z) =

{
β1([z])H

(
x, t + p(Φ(z))

)
, z ∈ X,

0, z /∈ X.

and

ψ̃(t, z) =

{
β2([z])χ

(
t + p(Φ(z))

)
+ 1− β2([z]), z ∈ X,

1, z /∈ X.

Define G and ψ by G(x, [t, z]) = G̃(x, t, z) and ψ([t, z]) = ψ̃(t, z). Then
the perturbation triple (ψ, G, k) satisfies condition (II) of an equivariant
extension. Moreover, since the perturbation pair (χ,H) is of Moser type,
the triple (ψ, G, k) also meets condition (i) of admissibility. It does not
necessarily satisfy condition (ii) of admissibility. However, we can remedy
this by replacing k by Ck for a large enough positive constant C. This
finishes the proof of the lemma. ¤
4.3. Proof of Theorem A

Assume that Σ is displaceable in M , and choose a defining Hamiltonian
F : M → R for Σ meeting assumption (3). In view of the definition (16) of
RFHT(Σ,M), it suffices to show that FH(AF,N ;T) = 0 for each N . So fix
N ∈ N.

Choose χ : S1 → [0,∞) with supp(χ) ⊂ (0, 1/2) and
∫

S1 χ(t) dt = 1,
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and choose a Hamiltonian function H : M × S1 → R with H(·, t) = 0 for
all t ∈ [0, 1/2] whose time 1-flow ϕH displaces Σ. By Lemma 4.6, the pair
(χ,H) has an equivariant extension (ψ, G, k). Let [v, η, z] be a critical point
of Aψ,G,k. Choose z ∈ S2N+1 over [z]. By Lemma 4.4 and by (II) of
Definition 4.5,

v̇(t) = η χ(t + tz) XF

(
v(t)

)
+ XH(·,t+tz)

(
v(t), t

)
,

0 =
∫

S1
χ(t + tz)F

(
v(t)

)
dt.





By Lemma 4.2, v(tz) is a leafwise intersection point for H(·, t + tz). This is
impossible because ϕH displaces Σ. It follows that the functional Aψ,G,k =
AF,N ;T

ψ,G,k has no critical points. The Floer homology FH(AF,N ;T
ψ,G,k ) is defined

along the lines of Section 3.2, see Section 5. Since AF,N ;T
ψ,G,k has no critical

points, the Floer complex of AF,N ;T
ψ,G,k is trivial, and hence FH(AF,N ;T

ψ,G,k ) = 0.
Theorem A thus follows from the invariance FH(AF,N ;T

ψ,G,k ) ∼= FH(AF,N ;T),
which is proven in the next section.

5. Invariance

The goal of this section is to prove

Proposition 5.1 FH(AF,N ;T
ψ,G,k ) ∼= FH(AF,N ;T).

This isomorphism can be proven along the lines of the proof of
Corollary 3.4 in [10]. In this section we give a different proof.

We start with reviewing two continuation methods for showing invari-
ance of a Floer-type homology. For simplicity, we describe these methods in
the setting of Morse homology and Morse–Bott homology on a non-compact
manifold M . For i = 0, 1 let fi : M → R be smooth Morse functions with
compact critical sets Crit fi.

Method 1 Assume that there is a smooth family {fs}06s61 of Morse
functions fs : M → R such that the critical sets Crit fs are all isotopic.
More precisely, assume that there is a diffeomorphism

Ψ: Crit f0 × [0, 1] →
∐

06s61

Crit fs × {s},
(
x, s

) 7→ (
xs, s

)
.
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For a Riemannian metric js on M and for xs, ys ∈ Crit fs denote by
M̂fs,js

(xs, ys) the set of negative gradient flow lines from xs to ys, and
by Mfs,js

(xs, ys) := M̂fs,js
(xs, ys)/R the space of unparametrized gradient

flow lines.
For s = 0, 1 choose a Riemannian metric js on M such that the pair

(fs, js) is Morse–Smale. Then one can define the Morse homology of fs

by counting elements of Mfs,js
(xs, ys) for xs, ys ∈ Crit fs with ind(xs) =

ind(ys)+1, s = 0, 1. For a generic smooth path of Riemannian metrics {js}
from j0 to j1 and for x, y ∈ Crit f0 with ind(x) = ind(y) + 1, the union of
moduli spaces

M{f,j}({x}, {y}) =
⋃

06s61

Mfs,js

(
xs, ys

)× {s}

is then a 1-dimensional smooth manifold with boundary that is “transverse
at 0 and 1”, i.e., for s = 0, 1 the points in Mfs,js

(
xs, ys

)×{s} belong to the
boundary of M{f,j}({x}, {y}), see Figure 1. If one can show that the sets
M̂fs,js

(
xs, ys

)
, 0 6 s 6 1, are uniformly bounded, it follows that the Morse

homologies of f0 and of f1 are isomorphic.

Figure 1. The union of moduli spaces
S

06s61Mfs,js

`
xs, ys

´× {s}.

Indeed, M{f,j}({x}, {y}) is the union M1

∐M2 of two types of com-
ponents: The components of M1 are compact intervals with boundary over
0 and 1, and the components of M2 are half-open intervals (with bound-
ary over 0 or 1) or open intervals. If M2 is empty, then the coefficients
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ν(xi, y
k
i ) = #Mfi,ji

(xi, y
k
i ) mod 2 in the boundary operator

∂i xi =
∑

k

ν(xi, y
k
i ) yk

i

are the same for i = 0, 1. The components ofM2 may change the coefficients
ν(xi, y

k
i ), but they do not alter the Morse homology. Indeed, the contribu-

tion of the components of M2 to the boundary operator can be computed
explicitely, and from this one can write down an explicit chain homotopy
equivalence between the Morse chain complexes of (f0, j0) and (f1, j1), see
[15, Lemmata 3.5 and 3.6]. We illustrate this by an example:

Suppose Crit fs has three critical points, as, bs of index 1 and cs of
index 0. Suppose that at s = 0 there is exactly one gradient flow line γ0,
from b0 to c0. Then the Morse homology is generated by a0:

MH(f0, j0) = MH1(f0, j0) = Z2〈a0〉.

Assume now that at some time s∗ ∈ (0, 1) a gradient flow line γab from as∗

to bs∗ appears. This flow line is not generic, and immediately disappears.
The flow line γab affects the two families of moduli spaces Mfs,js(bs, cs) and
Mfs,js(as, cs) as follows: The moduli spaces Mfs,js(bs, cs) are not affected:
Before time s∗ this space contains exactly one gradient flow line γs, which
persists beyond time s∗.

Figure 2. The gradient flow lines at s = 0, s = s∗, s = 1.

The moduli spaces Mfs,js
(as, cs) were empty for s < s∗. At time s∗

there is a broken gradient flow line from as∗ to cs∗ , namely γab followed
by the gradient flow line γs∗ from bs∗ to cs∗ . These two flow lines can be
glued together to a unique gradient flow line from as to cs. Hence ν(as, cs)
changes at s∗ from 0 to 1. For s > s∗ we now have one gradient flow line
from as to cs and one from bs to cs. But this change does not affect the
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Morse homology: cs is still in the image of the boundary operator ∂s, and
while now neither as nor bs are in the kernel, as − bs is in the kernel of ∂s.
Hence we still have

MH(f1, j1) = MH1(f1, j1) = Z2〈a1 − b1〉.

A bifurcation as above, that creates a component in M2, is called a
slide bifurcation, or a handle slide, since such a bifurcation acts on the cor-
responding handle decomposition of M by sliding one handle over another.
The other type of bifurcation that appears in a generic isotopy between
Morse functions are birth bifurcations and death bifurcations, namely the
birth of two critical points or the cancellation of two critical points. Such
bifurcations do not arise in the situation at hand.

Below we shall apply this method in a Morse–Bott set-up: Assume
there is a smooth family {fs}06s61 of Morse–Bott functions fs : M → R
with compact critical sets Crit fs and a diffeomorphism

Ψ: Crit f0 × [0, 1] →
∐

06s61

Crit fs × {s}, (x, s) 7→ (xs, s).

Choose a Morse function h0 on Crit f0. Then the functions

hs(xs) := h0(x)

are Morse functions on Crit fs, and the sets Criths are isotopic. For a
Riemannian metric gs on Crit fs, for a Riemannian metric js on M and for
xs, ys ∈ Criths denote by M̂fs,js,hs,gs

(xs, ys) the set of negative gradient
flow lines with cascades from xs to ys, and by Mfs,js,hs,gs(xs, ys) the space
of unparametrized gradient flow lines with cascades.

For s = 0, 1 choose a Riemannian metric gs on Crit fs such that
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the pair (hs, gs) is Morse–Smale. For generic Riemannian metrics js

on M one can then define the Morse–Bott homology of the quadruples
(fs, js, hs, gs), s = 0, 1, by counting elements of the 0-dimensional compo-
nents Mfs,js,hs,gs

(xs, ys), see [17, Appendix A]. For a generic smooth path
of Riemannian metrics {gs} on Crit fs and for a generic smooth path of Rie-
mannian metrics {js} on M from (j0, g0) to (j1, g1), we have that for each
pair x, y ∈ Crith0 for which Mf0,j0,h0,g0(x, y) is 0-dimensional, the union of
moduli spaces

M{f,j,h,g}({x}, {y}) =
{
(u, s) | u ∈Mfs,js,hs,gs

(
xs, ys

)
; 0 6 s 6 1

}
,

is a 1-dimensional smooth manifold with boundary that is “transverse at 0
and 1”. If one can show that the sets M̂fs,js,gs,hs

(
xs, ys

)
, 0 6 s 6 1, are

uniformly bounded, it follows that the Morse homologies of f0 and of f1 are
isomorphic.

Method 2 (Floer continuation) Choose a smooth monotone function
β : R → [0, 1] with β(s) = 0 for s 6 0 and β(s) = 1 for s > 1. For
s ∈ R define the function

fs = (1− β(s))f0 + β(s)f1.

For x ∈ Crit f0 and y ∈ Crit f1 and for a smooth family of Riemannian
metrics {gs} with gs = g0 for s 6 0 and gs = g1 for s > 1 consider the
gradient equation with asymptotic boundary conditions





u̇(s) = −∇gsfs(u(s)), s ∈ R;

lim
s→−∞

u(s) = x, lim
s→∞

u(s) = y.
(23)

For a generic choice of the path {gs} and for x ∈ Crit f0 and y ∈ Crit f1 with
ind(x) = ind(y), the space of solutions to (23) is a smooth 0-dimensional
manifold. If one can show that this space is bounded, then it is finite.
Counting these solutions then defines a chain homomorphism between the
Morse chain complexes of f0 and f1, that induces an isomorphism between
the Morse homologies of f0 and f1.

Similarly, given triples (js, hs, gs) for s = 0, 1 with (hs, gs) Morse–Smale
pairs and js generic, Floer continuation can be used to show that the Morse
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homologies of (f0, j0, h0, g0) and (f1, j1, h1, g1) are isomorphic, see [17, The-
orem A.17].

Historical Remark Floer used Method 1 in [15] to prove invariance
of his homology for Lagrangian intersections. (He also dealt with isolated
bifurcations of the critical sets, namely birth and death bifurcations, by first
putting them into normal form and then constructing a chain map between
the complex before and after the bifurcation that induces an isomorphism in
homology.) Such a bifurcation analysis was later also used in [14], [18], [25].
The powerful and flexible Method 2 was invented by Floer only later in [16].

♦
Proposition 5.1 can be proven by Method 2, by adapting the proof of

Corollary 3.4 in [10]. We leave the minor modifications to the interested
reader. Here we give a different argument, that takes into account the
structure of the functional AF,N ;T

ψ,G,k , and uses Method 1 once and Method 2
twice.

Consider the four functionals on L × R×T S2N+1,

A0([v, η, z]) = −
∫

S1
v∗λ− η

∫

S1
F (v(t))dt,

A1([v, η, z]) = −
∫

S1
v∗λ− η

∫

S1
F (v(t))dt − k̃(z),

A2([v, η, z]) = −
∫

S1
v∗λ− η

∫

S1
ψ̃(t, z)F (v(t))dt − k̃(z),

A3([v, η, z]) = −
∫

S1
v∗λ− η

∫

S1
ψ̃(t, z)F (v(t))dt−

∫

S1
G̃(v(t), t, z)dt− k̃(z).

The functionals A0 and A1 are Morse–Bott by our assumption (3) on Σ
and since k is Morse, while A2 is Morse–Bott by Lemma 5.2 below. The
functional A3 is Morse–Bott because it has no critical points. Hence the
four lifted functionals Ãi : L × R× S2N+1 → R are also Morse–Bott.

The Floer homology FH(A0) = FH(A0, h0, J0) was defined in
Section 3.2, and the Floer homology FH(Ai) for i = 1, 2, 3 is defined in
the same way: One chooses a Morse function hi and a Riemannian met-
ric gi on CritAi such that (hi, gi) is a Morse–Smale pair, lifts them to the
Morse–Bott function h̃i and the T-invariant metric g̃i on Crit Ãi, and de-
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fines the boundary of a critical point c+ of hi by counting rigid T-families
of unparametrized negative gradient flow lines with cascades in M(c+, c−)
between critical T-orbits C+ and C− of h̃i, with respect to the T-invariant
Riemannian metric g̃i on Crit Ãi and a generic family Jt,z(·, η) in J S1

.
It follows from Method 2 that FH(A0) ∼= FH(A1) and that FH(A2) ∼=

FH(A3). This is easy for the passage A0 ; A1: The summand k̃(z) is
bounded with all its derivatives. The claim thus follows from the L∞-bound
on each space M̂(c+, c−) of gradient flow lines with cascades between a pair
of critical circles of h̃0 given in the proof of Corollary 3.3 in [10]. For the
passage A2 ; A3, invariance follows as in [2, Section 2], by either choosing
G̃ sufficiently small in L∞ (which we are free to do) or by decomposing the
isotopy A2 ; A3 into many small isotopies.

The isomorphism FH(A1) ∼= FH(A2) can also be shown by applying
Method 2 to the parts of a sufficiently fine decomposition of the isotopy
A1 ; A2 (see the proof of Corollary 3.4 in [10]). This argument is some-
what harder, since η appears in front of the summand that is altered. We
circumvent this difficulty by applying Method 1. Choose a smooth mono-
tone function β : [1, 2] → [0, 1] with β(s) = 0 for s near 1 and β(s) = 1 for s

near 2. For s ∈ [1, 2] set

ψ̃s(t, z) =
(
1− β(s)

) · 1 + β(s) · ψ̃(t, z) = 1 + β(s)
(
ψ̃(t, z)− 1

)
.

Then
∫

S1 ψ̃s(t, z)dt = 1 for all s. Consider the family of functionals

Ãs(v, η, z) := −
∫

S1
v∗λ− η

∫

S1
ψ̃s(t, z) F (v(t)) dt + k̃(z), 1 6 s 6 2.

Then Ãs = Ã1 for s near 1 and Ãs = Ã2 for s near 2.
The critical manifolds Crit Ãs are in canonical bijection with Crit Ã1.

Indeed, looking at (22) with G̃ = 0 and ψ̃ replaced by ψ̃s, we see that they
all contain Σ× {0} × Crit k̃. Moreover, given z ∈ Crit k̃, and with

sz(t) :=
∫ t

0

ψ̃s(τ, z) dτ,

the periodic orbit (v(t), η, z) of XF with period |η| corresponds to the
reparametrized orbit (v(sz(t)), η, z) of ψ̃s(t, z) XF with period |η|. (The
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orbit v(sz(t)) also has period |η| because sz(1) = 1.) More formally, the
reparametrization map

Ψ̃: Crit Ã1 × [1, 2] →
∐

16s62

Crit Ãs × {s},
(
(v(·), η, z), s

) 7→ (
(v(sz(·)), η, z), s

)

is a diffeomorphism.

Lemma 5.2 For each s ∈ [1, 2] the critical set Crit Ãs is a Morse–Bott
submanifold of Ãs.

Before giving the proof, we use the lemma to prove Proposition 5.1. All
the functionals Ãs and all the sets Crit Ãs are T-invariant. Choose a Morse
function h1 on CritA1. Then the functions

hs([v(sz(·)), η, z]) := h1([v(·), η, z])

are Morse functions on CritAs, and the sets Criths are isotopic.
For a Riemannian metric gs on CritAs, for a family Js := (Jt,z(·, η))s

in J S1
and for c+

s , c−s ∈ Criths, denote by M̂As,Js,hs,gs
(c+

s , c−s ) the
set of negative gradient flow lines with cascades from c+

s to c−s , and by
MAs,Js,hs,gs

(c+
s , c−s ) the space of unparametrized T-families of gradient flow

lines with cascades, as constructed in Section 3.2.3.
For s = 1, 2 choose gs and Js as in the definition of the Floer homologies

FH(As): gs is a Riemannian metric on CritAs such that (hs, gs) is a Morse–
Smale pair, and Js is a generic family in J S1

. Then for a generic smooth
path of Riemannian metrics {gs} on CritAs and for a generic smooth path
of families {Js} in J S1

from (g1,J1) to (g2,J2), we have that for each pair
c+, c− ∈ Crith1 for which MA1,J1,h1,g1(c

+, c−) is 0-dimensional, the union
of moduli spaces

MA,J,h,g({c+}, {c−}) =
⋃

16s62

MAs,Js,hs,gs

(
c+
s , c−s

)× {s}

is a 1-dimensional smooth manifold that is “transverse at 0 and 1”. No-
tice that the map Ψ̃ is action-preserving: Ãs(xs) = Ã1(x). The space
M̂A1,J1,h1,g1(c

+, c−) is L∞-bounded, and in fact there is a uniform L∞-
bound on the spaces M̂As,Js,hs,gs

(
c+
s , c−s

)
, 1 6 s 6 2, see the proof of
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Corollary 3.3 in [10]. It follows that FH(A1) ∼= FH(A2).

Proof of Lemma 5.2. We use the method in Appendix A.1 of [2]. Fix s,
and fix a critical point (v0, η0, z0) ∈ L × R× S2N+1. We decompose Ãs as

Ãs(v, η, z) = A0(v) + η0 F∆ψ(v, z) + (η0 − η)Fψ(v, z) + k̃(z)

where

A0(v) := −
∫

S1
v∗λ− η0

∫

S1
ψ̃s(t, z0)F (v(t)) dt,

F∆ψ(v, z) :=
∫

S1

(
ψ̃s(t, z0)− ψ̃s(t, z)

)
F (v(t)) dt,

Fψ(v, z) :=
∫

S1
ψ̃s(t, z)F (v(t)) dt.

In order to compute the Hessian of Ãs at (v0, η0, z0), we apply “a change of
coordinates”: Consider the twisted loop space

Lη0F :=
{
w ∈ C∞([0, 1],M) | w(0) = φ1

η0F (w(1))
}

and the diffeomorphism Φη0F : Lη0F → L = C∞(S1,M) given by

Φη0F (w)(t) = φt
η0Fs

(w(t))

where we abbreviated Fs(·) := ψ̃s(t, z0)F (·). Then the path w0 = Φ−1
η0F ◦v0 =

v0(0) ∈ Σ is constant. Hence tangent vectors ŵ(t) at w0 are curves in the
linear space Tw0M with

ŵ(1) = dφ−1
η0Fs

(w0) ŵ(0). (24)

We are going to compute the kernel of the Hessian of the pulled-back
functional

AΦ
s := (Φη0F × idR× idS2N+1)∗Ãs : Lη0F × R× S2N+1 → R

at the critical point (w0, η0, z0). First notice that Φ∗η0F dA0(w)[ŵ] =∫ 1

0
ω( d

dtw, ŵ)dt for any w ∈ Lη0F and ŵ ∈ TwLη0F , and that
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(Φη0F × idS2N+1)∗F∆ψ(w, z) =
∫ 1

0

(
ψ̃s(t, z0)− ψ̃s(t, z)

)
F (w(t)) dt,

(Φη0F × idS2N+1)∗Fψ(w, z) =
∫ 1

0

ψ̃s(t, z) F (w(t)) dt

(since F is preserved under φt
η0Fs

). The differential of AΦ
s therefore is

dAΦ
s (w, η, z)[ŵ, η̂, ẑ]

=
∫ 1

0

ω

(
d

dt
w, ŵ

)
dt

+ η0

∫ 1

0

{(
ψ̃s(t, z0)− ψ̃s(t, z)

)
dF (w(t)) ŵ(t)− ∂zψ̃s(t, z) ẑ F (w(t))

}
dt

− η̂

∫ 1

0

ψ̃s(t, z) F (w(t)) dt

+ (η0 − η)
∫ 1

0

ψ̃s(t, z) dF (w(t)) ŵ(t) + ∂zψ̃s(t, z) ẑ F (w(t)) dt

+ dk̃(z)ẑ.

At the critical point x0 := (w0, η0, z0) the Hessian of AΦ
s applied to ξi :=

(ŵi, η̂i, ẑi) therefore is

Hess AΦ
s (x0)[ξ1, ξ2]

=
∫ 1

0

ω

(
d

dt
ŵ1, ŵ2

)
dt

− η0

∫ 1

0

{
∂zψ̃s(t, z0) ẑ1 dF (w0) ŵ2(t) + ∂zψ̃s(t, z0) ẑ2 dF (w0) ŵ1(t)

}
dt

− η̂1

∫ 1

0

ψ̃s(t, z0) dF (w0) ŵ2(t) dt

− η̂2

∫ 1

0

ψ̃s(t, z0) dF (w0) ŵ1(t) dt

+ Hess k̃(z)(ẑ1, ẑ2)
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where we have used that F (w0) = 0. A tangent vector (ŵ, η̂, ẑ) therefore
belongs to the kernel of Hess AΦ

s (w0, η0, z0) if and only if

0 =
d

dt
ŵ(t)− η̂ ψ̃s(t, z0)XF (w0)− η0 ∂zψ̃s(t, z0) ẑ XF (w0), (25)

0 =
∫ 1

0

ψ̃s(t, z0) dF (w0) ŵ(t) dt, (26)

0 = −η0

∫ 1

0

dF (w0) ŵ(t) ∂zψ̃s(t, z0)(·) dt + Hess k̃(z0)(ẑ, ·). (27)

Denote by Hz0 = {τz0 | τ ∈ S1} the Hopf circle in S2N+1 through z0.
Assume first that η0 = 0. Then (v0, η0, z0) belongs to the critical com-

ponent Σ × {0} × Hz0 of “constant in Σ loops”. Since η0 = 0, (27) yields
ẑ ∈ Tz0Hz0 , and integrating (25) yields

ŵ(1) = ŵ(0) + η̂ XF (w0)

(since sz0(1) = 1). Since in this case Φη0F : L → L is the identity mapping,
ŵ(1) = ŵ(0), and so η̂ = 0. By now, (25) reads d

dt ŵ(t) = 0, that is,
ŵ(t) ≡ ŵ(0) ∈ Tw0M is constant. Finally, (26) shows that ŵ(0) ∈ Tw0Σ.
The kernel of the Hessian of Ãs at (v0, η0, z0) = (w0, 0, z0) is thus identified
with Tw0Σ× Tz0Hz0 .

Assume now that η0 6= 0. Then Sv0 := {v0(· − τ) | τ ∈ S1} is an
embedded circle in L. Hence the critical component of (v0, η0, z0) is the
torus Sv0 × {η0} ×Hz0 . It is clear that the kernel of the Hessian of Ãs at
(v0, η0, z0) has dimension at least two, and we must show that the dimension
is two. By assumption (3), 1 has multiplicity 2 in the spectrum of dφ−1

η0F (w0).
Since φη0Fs

= φη0F , the same holds true for Ls := dφ−1
η0Fs

(w0). Recall that
sz(t) =

∫ t

0
ψ̃s(τ, z) dτ . Integrating (25) we get

ŵ(t) = ŵ(0) + η̂ sz0(t) XF (w0) + η0 ∂z

∣∣
z0

sz(t) ẑ XF (w0). (28)

In particular (since sz(1) = 1 for all z), and by (24),

ŵ(1) = ŵ(0) + η̂ XF (w0) = Ls ŵ(0). (29)

Consider the sub-vector space V of Tw0M spanned by ŵ(0) and XF (w0).
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Assume that V is 2-dimensional. Then (29) and the fact that 1 has multi-
plicity 2 in the spectrum of Ls show that V is the whole 1-eigenspace of Ls.
In particular, V is symplectic. On the other hand, since dF (XF ) = 0,
equations (28) and (26) show that

dF (w0) ŵ(0) =
∫ 1

0

ψ̃s(t, z0) dF (w0) ŵ(0) dt

=
∫ 1

0

ψ̃s(t, z0) dF (w0) ŵ(t) dt = 0

and hence ŵ(0) ∈ Tw0Σ. Since XF (w0) generates the kernel of ω|Tw0Σ, this
contradicts V being symplectic.

It follows that ŵ(0) = r XF (w0) for some r ∈ R. In particular,
Ls ŵ(0) = ŵ(0). The second equation in (29) thus shows that η̂ = 0. Since
ŵ(0) ∈ V = span(XF (w0)), equation (28) shows that ŵ(t) ∈ V for all t.
Therefore (27) gives ẑ ∈ kerHess k̃(z0) = Tz0Hz0 . We conclude with (28)
that the kernel of Hess AΦ

s (w0, η0, z0) is

{
(ŵ(t), 0, ẑ) | ẑ ∈ Tz0Hz0

}

=
{(

r + η0 ∂z

∣∣
z0

sz(t) ẑ
)
XF (w0), 0, ẑ

) | r ∈ R, ẑ ∈ Tz0Hz0

}
.

Hence dim kerHess AΦ
s (w0, η0, z0) = dim kerHess Ãs(v0, η0, z0) = 2. ¤

6. Other approaches

In this note we have defined T-equivariant Rabinowitz–Floer homology
RFHT(Σ,M) via the Borel construction and Floer homology with cascades,
and we have proven the vanishing of RFHT(Σ,M) for displaceable Σ by
a leave-wise intersection argument. There are several other approaches to
construct a T-equivariant Rabinowitz–Floer homology (two are mentioned in
Remark 3.1, and one more is outlined in 3. below), all of which are expected
to give the same result. And there are different ways to prove the vanishing
of RFHT(Σ,M) or of these other versions for displaceable Σ. In particular,
the arguments in 1. and 2. below imply the vanishing of the version defined
in [13], see items (4) and (3) on page 70 of [13]. Let V be the bounded
component of M \ Σ, and denote by SH∗(V ) its symplectic homology and
by SHT∗(V ) its equivariant symplectic homology.
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1. Vanishing of RFHT(Σ,M) via vanishing of SHT(V ). There
should be a T-equivariant version of the long exact sequence

· · · −→ SH−∗(V ) −→ SH∗(V ) −→ RFH∗(Σ,M) −→ SH−∗+1(V ) → · · ·

from [11]. The vanishing of RFHT(Σ,M) for displaceable Σ would then
follow from the vanishing of SHT(V ) proven in [8].

2. Vanishing of RFHT(Σ,M) via vanishing of RFH(Σ,M). It
is shown in [8, Theorem 1.2] that

SH(V ) = 0 ⇐⇒ SHT(V ) = 0.

While the implication ⇐= follows from the Gysin exact sequence in [7], the
implication =⇒ follows from the fact that SHT(V ) is the limit of a spectral
sequence whose second page is the tensor product of the homology of the
classifying space BS1 and of SH(V ), [8, Section 2.2]. It is expected that these
two algebraic constructions can be adapted to Rabinowitz–Floer homology
(cf. [8, p. 6]). Then

RFH(Σ,M) = 0 ⇐⇒ RFHT(Σ,M) = 0.

In particular, the vanishing of RFHT(Σ,M) for displaceable Σ would then
follow from the vanishing of RFH(Σ,M) proven in [10]. Together with the
equivalence from [22, Theorem 13.3] we could then conclude the equivalences

RFHT(Σ,M) = 0 ⇐⇒ RFH(Σ,M) = 0 ⇐⇒ SH(V ) = 0 ⇐⇒ SHT(V ) = 0.

3. Chekanov’s construction of S1-equivariant Floer homology.
In the Borel-construction, approximations S2N+1 of the classifying space
S∞ = ES1 are somewhat clumsily added to the loop space as direct sum-
mands. In Chekanov’s version of S1-equivariant Floer homology, S2N+1

does not appear as a space, but is incorporated into the boundary opera-
tor: In the setting of Morse theory for a function f : M → R on a compact
S1-manifold M , with action S1 × M → M , (s, x) 7→ s x, one proceeds as
follows. Given times t1 < · · · < tN ∈ R and angles s1, . . . , sN ∈ S1 one
considers the functions
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ft(x) =





f(x) if t < t1,

f(s1x) if t1 6 t < t2,

f((s2 + s1)x) if t2 6 t < t3,
...

f((sN + · · ·+ s1)x) if tN 6 t,

(30)

and counts gradient “N -jump flow lines” of the vector field −∇ft. A neat
way to see that a point (t1, . . . , tN , s1, . . . , sN ) corresponds to a point in
S2N−1 is through the join construction, [8, Section 2.5].

This construction of equivariant Morse and Floer homology was ex-
plained in several lectures by Chekanov [9], and worked out by Noetzel [20],
though never written up. The construction and an isomorphism to the
Borel construction is worked out for Morse homology in [4] based on [9],
and for Floer homology in [8] building on [24, Section 8b]. The con-
struction and the isomorphism in [8] can be adapted to Rabinowitz–Floer
homology, yielding a homology RFHTjump(Σ,M) isomorphic to RFHT(Σ,M).
The vanishing of RFHT(Σ,M) for displaceable Σ then follows from the van-
ishing of RFHTjump(Σ,M), which in turn follows as for the non-equivariant
RFH(Σ,M) by a leafwise intersection argument, because the chain groups
of RFHTjump(Σ,M) are exactly the chain groups of RFH(Σ,M).

Acknowledgments. We are grateful to the referees for valuable com-
ments and suggestions.
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