Rational points of Abelian varieties in Γ-extension

By Hideji Ito

Let K be an algebraic number field, and L / K the Γ-extension associated to the rational prime p. We put $\Gamma_{n}=\Gamma^{p^{n}}$, and denote by K_{n} corresponding subfields. Let A be an abelian variety defined over K.

The purpose of this short note is to improve B. Mazur's result on the asymptotic behavior of the rank $A\left(K_{n}\right)$, where $A\left(K_{n}\right)$ is the K_{n}-rational-point-group of A. The known asymptotic estimate is the following, somewhat weak, one: there is a non-negative integer ρ such that rank $A\left(K_{n}\right)+$ $\operatorname{corank} H^{1}\left(\Gamma_{n}, A(L)\right)=\boldsymbol{\rho} \cdot p^{n}+$ const. for all sufficiently large n. Here, for a p-primary Γ-module G, corank G means the \boldsymbol{Z}_{p}-rank of G^{*}, where G^{*} is the Pontrjagin dual of G (see [1], p. 22).

We shall show that the corank $H^{\mathrm{I}}\left(\Gamma_{n}, A(L)\right)$ is in fact constant for all sufficiently large n, so that we get an asymptotic formula for the rank of $A\left(K_{n}\right)$.

In section 1, we shall prove above fact in general setting, and in section 2 apply it to $A(L)$.

Notations.

For a finite group $X,|X|$ denotes its order. If G is a group and if B is a G-module, B^{G} means the subgroup of B consisted of the invariant elements under the action of G.

1. The aim of this section is to prove the following

Theorem 1. Let B be a Γ-module, such that $B^{r_{n}}$ is a free Z-module of finite rank for all n. Then the corank $H^{1}\left(\Gamma_{n}, B\right)$ is constant for all sufficiently large n.

Before beginning the proof, we recall the well-known structure of $H^{i}(\mathfrak{g}, C)$ for $i=1,2$, where \mathfrak{g} is a finite cyclic group and C is a \mathfrak{g}-module:

$$
H^{1}(\mathfrak{g}, C)={ }_{9} C / D_{9} C, \quad H^{2}(\mathfrak{g}, C)=C^{\mathfrak{g}} / N_{\mathrm{g}} C
$$

Here $N_{\mathfrak{g}}$ is the homomorphism $C \rightarrow C^{\mathfrak{s}}$, defined by $N_{\mathfrak{g}}(x)=\sum_{\tau \in \mathfrak{g}} \tau x$ for $x \in C$, ${ }_{9} C=\operatorname{Ker}\left(N_{g}\right)$, and $D_{9} C=\{\tau x-x \mid x \in C, \tau \in \mathfrak{g}\}=\{\sigma x-x \mid x \in C\}$ for any generator σ of \mathfrak{g}.

First we observe that corank $H^{1}\left(\Gamma_{n}, B\right)$ is monotone increasing.

Lemma 1. Suppose $m \geqq n$, then corank $H^{1}\left(\Gamma_{m}, B\right) \geqq \operatorname{corank} H^{1}\left(\Gamma_{n}, B\right)$.
Proof. Obvious from the inflation-restriction sequence $0 \rightarrow H^{1}\left(\Gamma_{n} / \Gamma_{m}\right.$, $B^{r_{n}} \rightarrow H^{1}\left(\Gamma_{n}, B\right) \rightarrow H^{1}\left(\Gamma_{m}, B\right)$.

Therefore, without loss of generality, we may assume that the corank $H^{1}\left(\Gamma_{n}, B\right)$ is finite for all n.

Next we discuss the action of Γ / Γ_{m} of $B^{r_{m}}$ and obtain non-negative integers $e\left(p^{i}\right)$, by which $\left|H^{1}\left(\Gamma / \Gamma_{m}, B^{r_{m}}\right)\right|$ is expressed in case $B^{r}=0$.

Put $r_{m}=\operatorname{rank}\left(B^{r_{m}}\right)$. From the action of Γ / Γ_{m} on $B^{r_{m}}$, we get representations $\psi_{m}: \Gamma / \Gamma_{m} \rightarrow G L_{r_{m}}(\boldsymbol{Z})$. For $m \geqq n$, let $j_{m, n}$ be the natural surjection $\Gamma / \Gamma_{m} \rightarrow \Gamma / \Gamma_{n}$. Combining ψ_{m} and $j_{m, n}$, we get representations $\psi_{m, n}=\psi_{n} \circ j_{m, n}$: $\Gamma / \Gamma_{m} \rightarrow G L_{r_{n}}(\boldsymbol{Z})$. For a fixed generator σ_{m} of $\Gamma / \Gamma_{m}\left(\cong \boldsymbol{Z} / p^{m} \boldsymbol{Z}\right)$, we put M_{m} $=\psi_{m}\left(\boldsymbol{\sigma}_{m}\right), M_{m, n}=\psi_{m, n}\left(\boldsymbol{\sigma}_{m}\right)$. From the construction, $M_{m, n}$ and M_{n} are equivalent. Denote by $F_{m}(X) \in \mathbb{Z}[X]$ the characteristic polynomial of M_{m}. Since $F_{m}(X)$ divides $\left(X^{p_{m}}-1\right)^{r_{m}}$, we can write $F_{m}(X)=\prod_{i=0}^{m} \Phi_{p^{i}}(X)^{e_{m}\left(p^{i}\right)}, 0 \leqq e_{m}\left(p^{i}\right) \leqq r_{m}$. Here $\Phi_{a}(X)$ means the cyclotomic polynomial. Since $\operatorname{deg} \Phi_{a}(X)=\varphi(d)$, we have $r_{m}=\sum_{i=0}^{m} \varphi\left(p^{i}\right) \cdot e_{m}\left(p^{i}\right)$, ($\varphi=$ Euler's function). Of course $e_{m}\left(p^{i}\right)$ does not depend on the choice of the Z-basis of $B^{r_{m}}$, nor on the choice of $\boldsymbol{\sigma}_{m}$. And indeed $e_{m}\left(p^{i}\right)$ is independent of m. For the proof we need the following

Lemma 2. Suppose G is a finite group and C is a free Z-module of finite rank on which G acts. Then there are submodules D and E of C which have the following properties respectively.

1) $C=C^{\epsilon} \oplus D, \quad \operatorname{rank} D=\operatorname{rank}\left({ }_{G} C\right)$,
2) $C=E \oplus_{G} C, \quad \operatorname{rank} E=\operatorname{rank}\left(C^{G}\right)$.

Proof. By the elementary divisor theory the existence of the above direct sum is easily verified. As for the rank, we have only to note the exact sequence $0 \rightarrow{ }_{G} C \rightarrow C \rightarrow N_{G}(C) \rightarrow 0$, and the relation $C^{G} \supset N_{G}(C) \supset|G| \cdot C$.

Proposition 1. Notations being as above, suppose $m \geqq n$. Then we have $e_{m}\left(p^{i}\right)=e_{n}\left(p^{i}\right)$, for $0 \leqq i \leqq n$. Hence we can drop the suffix of e_{m}, so that we get the relations $r_{m}=\sum_{i=0}^{m} \varphi\left(p^{i}\right) \cdot e\left(p^{i}\right), r_{m}-r_{m-1}=\varphi\left(p^{i}\right) \cdot e\left(p^{i}\right)$, for all m.

Proof. Apply lemma 2. 1) to $G=\Gamma_{n} / \Gamma_{m} \cong \boldsymbol{Z} / p^{m-n} \boldsymbol{Z}, C=B^{r_{m}}$. (Note that $\left(B^{r_{m}}\right)^{r_{n} / r_{m}}=B^{r_{n}}$. On account of the direct sum decomposition, matrix $M_{m}(=M$, we write for short) can be written in the following form: $M=$ $\left(\frac{M^{\prime} \mid *}{0 \mid R}\right), M^{\prime}=M_{m, n}, R \in G L_{r_{m}-r_{n}}(\boldsymbol{Z})$. Hence we have $F_{m}(X)=F_{n}(X) \cdot F_{R}(X)$, where $F_{R}(X)$ is the characteristic polynomial of R. Therefore it suffices to show that all the roots of $F_{R}(X)$ i.e. all the characteristic roots of R are
p^{i}-th primitive roots of unity $(i>n)$. The generator $\sigma_{m}{ }^{n}$ of Γ_{n} / Γ_{m} is represented in the form $M^{p^{n}}=\left(\begin{array}{cc|c}1 & 0 & \\ 0 & 1\end{array} \left\lvert\, *\left(\begin{array}{ll}* \\ \hline 0 & R^{p^{n}}\end{array}\right)\right.\right.$. Put $T=R^{p^{n}}$. We must show that among the characteristic roots of T there is not a 1 . Norm homomophism $N_{\Gamma_{n} / \Gamma_{m}}=\sum_{j=1}^{p^{m-n}}\left(\boldsymbol{\sigma}_{m}^{p^{m}}\right)^{j}: B^{\Gamma_{m} \rightarrow} B^{\Gamma_{n}}$ is represented in the form

$$
\sum_{j=1}^{p^{m-n}}\left(M^{p^{n}}\right)^{j}=\left(\begin{array}{cc|c}
p^{m-n} & * & * \\
0 & p^{m-n} & \\
\hline & 0 & \sum_{j=1}^{p^{m-n}} T^{j}
\end{array}\right) .
$$

Hence $\sum_{j=1}^{p^{m-n}} T^{j}=0$. This implies the desired result (note that $T^{p^{m-n}}=1$).
The relation between $e\left(p^{i}\right)$ and $\left|H^{1}\left(\Gamma / \Gamma_{m}, B^{\Gamma_{m}}\right)\right|$ mentioned above is as follows.

Proposition 2. Suppose $B^{r}=0$, then

1) $\left|H^{1}\left(\Gamma / \Gamma_{m}, B^{r_{m}}\right)\right|=p^{\sum_{i=1}^{m} e\left(p^{i}\right)}$,
2) in general, for $m \geqq n, H^{1}\left(\Gamma_{n} / \Gamma_{m}, B^{\Gamma_{m}}\right)^{\Gamma / \Gamma_{n}}=H^{1}\left(\Gamma_{n} / \Gamma_{m}, B^{r_{m}}\right)$, and $\left|H^{1}\left(\Gamma_{n} / \Gamma_{m}, B^{r_{m}}\right)\right|=p^{\sum_{i=1}^{m} e\left(p^{i}\right)}$.

Proof. 1) Put $C=B^{r_{m}}, \mathfrak{g}=\Gamma / \Gamma_{m}$. By our assumption $B^{r}=0$, we have ${ }_{9} C=C$. In $G L_{r_{m}}(C)$, the matrix $M_{m}-1$ is equivalent to the matrix $\left(\begin{array}{ccc}\omega_{1}-1 & 0 \\ 0 & \ddots & \\ \omega_{r_{m}}-1\end{array}\right)$, where ω_{i}^{\prime} s are the p^{m}-th roots of unity $(\neq 1)$. Hence $M_{m}-1$ is regular. As $D_{\mathfrak{g}}(C)=C\left(M_{m}-1\right)$, we get $\left|H^{1}(\mathfrak{g}, C)\right|=\left|C / D_{\mathfrak{g}}(C)\right|=$ $\left|\operatorname{det}\left(M_{m}-1\right)\right|=\left|\prod_{i=1}^{r_{m}}\left(\omega_{i}-1\right)\right|=\left|\prod_{i=1}^{m} \Phi_{p^{i}}(1)^{e\left(p^{i}\right)}\right|=p^{\sum_{i=1}^{m} e\left(p^{i}\right)}$.
2) Notations being as in the proof of 1), put $\mathfrak{G}=\Gamma_{n} / \Gamma_{m}$. Apply lemma 2. 1 , taking \mathfrak{h} in place of G. Then $M_{m}=\left(\frac{* \mid 0}{* \mid S}\right), S \in G L_{k}(\boldsymbol{Z}), k=r_{m}-r_{n}$. The same reasoning as in the proof of 1) gives $\left|H^{1}\left(\mathfrak{h},{ }_{5 匕} C\right)\right|=|\operatorname{det}(S-1)|$ $=p^{i=\sum_{n+1}^{n} e\left(p^{i}\right)}$. Since $\left|H^{1}(\mathfrak{h}, C)\right| \leqq\left|H^{1}\left(\mathfrak{h},{ }_{\mathfrak{H}} C\right)\right|$, we have $\left|H^{1}(\mathfrak{h}, C)\right| \leqq p^{\sum_{i=n+1}^{m} e\left(p^{i}\right)}$. But the exact sequence of Hochschild-Serre $0 \rightarrow H^{1}\left(\mathfrak{g} / \mathfrak{h}, C^{\mathfrak{h}}\right) \rightarrow H^{1}(\mathfrak{g}, C) \rightarrow H^{1}(\mathfrak{h}$, $C)^{g / h} \rightarrow \cdots$ implies $p^{\sum_{n+1}^{m} e\left(p^{i}\right)} \leqq\left|H^{1}(\mathfrak{h}, C)^{9 / h}\right|$. Hence we have our assertion.

Now we can prove theorem 1. By means of the exact sequence of Hochschild-Serre, we easily see that corank $H^{1}(\Gamma, B)=\operatorname{corank} H^{1}\left(\Gamma_{n}, B\right)^{r / \Gamma_{n}}$. Since $\Gamma_{n}=\underset{m \geqq n}{\lim } \Gamma_{n} / \Gamma_{m}$, and $B=\underset{m}{\underset{m}{\lim }} B^{r_{m}}$, we have $H^{1}\left(\Gamma_{n}, B\right) \underset{m \geqq n}{\lim } H^{1}\left(\Gamma_{n} / \Gamma_{m}\right.$, $\left.B^{r m}\right)$. So the validity of our assertion in case $B^{r}=0$ is obvious, on account of Prop. 2. 2).

To prove the theorem in general case, put $B^{\prime}=B / B^{r}$. Then we have $\left(B^{\prime}\right)^{r}=0$. Indeed from the exact sequence; $\left({ }^{*}\right) 0 \rightarrow B^{\Gamma} \rightarrow B \rightarrow B^{\prime} \rightarrow 0$, we get the exact sequence $0 \rightarrow B^{\Gamma} \rightarrow B^{\Gamma} \rightarrow\left(B^{\prime}\right)^{r} \rightarrow H^{1}\left(\Gamma, B^{r}\right)=\underset{m}{\lim } H^{1}\left(\Gamma / \Gamma_{m}, B^{r}\right)=0$. From (*), we also get the exact sequence

$$
0=H^{1}\left(\Gamma_{n}, B^{\Gamma}\right) \rightarrow H^{1}\left(\Gamma_{n}, B\right) \rightarrow H^{1}\left(\Gamma_{n}, B^{\prime}\right) \rightarrow H^{2}\left(\Gamma_{n}, B^{r}\right)
$$

But $H^{2}\left(\Gamma_{n}, B^{r}\right)=\underset{m \geqq n}{\lim } H^{2}\left(\Gamma_{n} / \Gamma_{m}, B^{r}\right) \cong \underset{m \geqq n}{\lim } B^{r} / p^{m-n} B^{r}$. So, dualizing above sequence, we obtain the following inequality:
corank $H^{1}\left(\Gamma_{n}, B\right) \leqq \operatorname{corank} H^{1}\left(\Gamma_{n}, B^{\prime}\right) \leqq \operatorname{corank} H^{1}\left(\Gamma_{n}, B\right)+\operatorname{rank}\left(B^{r}\right)$.
(Note that $B^{r} \mid p^{m-n} B^{r} \cong \widetilde{\boldsymbol{Z} / p^{m-n} \boldsymbol{Z} \oplus \cdots \oplus \boldsymbol{Z} / p^{m-n} \boldsymbol{Z}}, \frac{r}{}$, where r is the rank of B^{r}). As theorem 1 holds in case $B^{r}=0$, corank $H^{1}\left(\Gamma_{n}, B^{\prime}\right)$ is constant for all n. Therefore, by means of the above inequality and lemma 1 , the corank $H^{1}\left(\Gamma_{n}, B\right)$ must be constant for all sufficiently large n. This completes the proof of our theorem 1 .
2. In order to apply the theorem 1 to $A(L)$, we need some modifications on $A\left(K_{n}\right)$. Let $\tilde{A}\left(K_{m}\right)$ be the set of points of finite order in $A\left(K_{m}\right)$. By Mordell-Weil's theorem $\tilde{A}\left(K_{m}\right)$ is finite. Denote its order by N_{m}. We put $\overline{A_{m}}=N_{m} \cdot A\left(K_{m}\right)$ (= free Z-module of the same rank as of $A\left(K_{m}\right)$), and for $m \geqq n$ define homomorphisms $f_{n, m}: \overline{A_{n}} \rightarrow \overline{A_{m}}$ by $f_{n, m}(x)=\frac{N_{m}}{N_{n}} x$, for x in $\overline{A_{n}}$. Since the system $\left(\overline{A_{n}},\left\{f_{n, m}\right\}\right)$ is inductive, we can define $\overline{A_{L}}=\xrightarrow{\lim } A_{n}$. The group $\overline{A_{L}}$ has obvious Γ-module structure and $\left(\overline{A_{L}}\right)^{r} \cong \overline{A_{n}}$ as Γ-module. Hence $\operatorname{rank}\left(\overline{A_{L}}\right)^{r} n=\operatorname{rank} \overline{A_{n}}=\operatorname{rank} A\left(K_{n}\right)$.

Lemma 3. We have corank $H^{1}\left(\Gamma_{n}, A(L)\right)=\operatorname{corank} H^{1}\left(\Gamma_{n}, \overline{A_{L}}\right)$, for all n.

PRoof. Let $m \geqq n$. The exact sequence of Γ_{n} / Γ_{m}-modules: $0 \rightarrow \tilde{A}\left(K_{m}\right) \rightarrow$ $A\left(K_{m}\right) \xrightarrow{g_{m}} N_{m} \cdot A\left(K_{m}\right)=\overline{A_{m}} \rightarrow 0$, where g_{m} is the multiplication by N_{m}, yields the exact sequence of cohomology groups:

$$
\begin{aligned}
\cdots \rightarrow & H^{1}\left(\Gamma_{n} / \Gamma_{m}, \tilde{A}\left(K_{m}\right)\right) \rightarrow H^{1}\left(\Gamma_{n} / \Gamma_{m}, A\left(K_{m}\right)\right) \rightarrow \\
& H^{1}\left(\Gamma_{n} / \Gamma_{m}, \overline{A_{m}}\right) \rightarrow H^{2}\left(\Gamma_{n} / \Gamma_{m}, \tilde{A}\left(K_{m}\right)\right) \rightarrow \cdots
\end{aligned}
$$

Since $H^{1}\left(\Gamma_{n}, A(L)\right)=\underset{m \geqq n}{\lim } H^{1}\left(\Gamma_{n} / \Gamma_{m}, A\left(K_{m}\right)\right)$ etc., we get the exact sequence

$$
\rightarrow H^{1}\left(\Gamma_{n}, \tilde{A}(L)\right) \rightarrow H^{1}\left(\Gamma_{n}, A(L)\right) \rightarrow H^{1}\left(\Gamma_{n}, \overline{A_{L}}\right) \rightarrow H^{2}\left(\Gamma_{n}, \tilde{A}(L)\right)
$$

Now independent of m, the order of $H^{i}\left(\Gamma_{n} / \Gamma_{m}, \tilde{A}\left(K_{m}\right)\right)$ is bounded (for $i=1,2)$. Indeed, as Γ_{n} / Γ_{m} is a finite cyclic group and $\tilde{A}\left(K_{m}\right)$ is finite, $\left|H^{1}\left(\Gamma_{n} / \Gamma_{m}, \tilde{A}\left(K_{m}\right)\right)\right|=\left|H^{2}\left(\Gamma_{n} / \Gamma_{m}, \tilde{A}\left(K_{m}\right)\right)\right| \leqq\left|\tilde{A}\left(K_{n}\right)\right|$. So their inductive limit $\mathrm{H}^{i}\left(\Gamma_{n}, \tilde{A}(L)\right)$ must be finite (for $\left.i=1,2\right)$. Hence we have our assertion.

Theorem 2. Let A be an abelian variety defined over a number field $K, L / K$ the Γ-extension associated to the rational prime p, and K_{n} the subfield of L / K such that Gal $\left(K_{n} / K\right)$ is isomorphic to $\boldsymbol{Z} / p^{n} \boldsymbol{Z}$. Then there exists a non-negative integer ρ, for which we have rank $A\left(K_{n}\right)=\rho \cdot p^{n}+$ const. for all sufficiently large n.

For the proof, apply theorem 1 and lemma 3 to B. Mazur's estimate mentioned in the introduction.

Although we do not know at present even an example in which ρ is positive, by means of Prop. 1, 2 we easily get the following

Proposition 3. If corank $H^{1}(\Gamma, A(L))>0$, then rank $A\left(K_{n}\right)$ grows arbitralily large, as $n \rightarrow \infty$.

Department of Mathematics Hokkaido University

Reference

[1] Y. I. Manin: Cyclic fields and modular curves, Uspehi. Acad. Nauk. CCCP, Vol. 26, No. 6, 7-71 (1971).
English transl.: Russian Mathematical Surveys, Vol. 26, No. 6, 7-78 (1971).

