Rational points of Abelian varieties in Γ -extension

By Hideji Ito

Let K be an algebraic number field, and L/K the Γ -extension associated to the rational prime p. We put $\Gamma_n = \Gamma^{p^n}$, and denote by K_n corresponding subfields. Let A be an abelian variety defined over K.

The purpose of this short note is to improve *B*. Mazur's result on the asymptotic behavior of the rank $A(K_n)$, where $A(K_n)$ is the K_n -rational-point-group of *A*. The known asymptotic estimate is the following, somewhat weak, one: there is a non-negative integer ρ such that rank $A(K_n) + corankH^1(\Gamma_n, A(L)) = \rho \cdot p^n + const$. for all sufficiently large *n*. Here, for a *p*-primary Γ -module *G*, corank *G* means the \mathbb{Z}_p -rank of G^* , where G^* is the Pontrjagin dual of *G* (see [1], p. 22).

We shall show that the corank $H^{t}(\Gamma_{n}, A(L))$ is in fact constant for all sufficiently large n, so that we get an asymptotic formula for the rank of $A(K_{n})$.

In section 1, we shall prove above fact in general setting, and in section 2 apply it to A(L).

NOTATIONS.

For a finite group X, |X| denotes its order. If G is a group and if B is a G-module, B^{q} means the subgroup of B consisted of the invariant elements under the action of G.

1. The aim of this section is to prove the following

THEOREM 1. Let B be a Γ -module, such that B^{Γ_n} is a free Z-module of finite rank for all n. Then the corank $H^1(\Gamma_n, B)$ is constant for all sufficiently large n.

Before beginning the proof, we recall the well-known structure of $H^{i}(\mathfrak{g}, \mathbb{C})$ for i=1, 2, where \mathfrak{g} is a finite cyclic group and \mathbb{C} is a \mathfrak{g} -module:

$$H^1(\mathfrak{g}, C) = {}_{\mathfrak{g}}C/D_{\mathfrak{g}}C, \quad H^2(\mathfrak{g}, C) = C^{\mathfrak{g}}/N_{\mathfrak{g}}C.$$

Here $N_{\mathfrak{g}}$ is the homomorphism $C \rightarrow C^{\mathfrak{g}}$, defined by $N_{\mathfrak{g}}(x) = \sum_{\tau \in \mathfrak{g}} \tau x$ for $x \in C$, ${}_{\mathfrak{g}}C = \operatorname{Ker}(N_{\mathfrak{g}})$, and $D_{\mathfrak{g}}C = \{\tau x - x | x \in C, \tau \in \mathfrak{g}\} = \{\sigma x - x | x \in C\}$ for any generator σ of \mathfrak{g} .

First we observe that corank $H^1(\Gamma_n, B)$ is monotone increasing.

H. Ito

LEMMA 1. Suppose $m \ge n$, then corank $H^1(\Gamma_m, B) \ge corank \ H^1(\Gamma_n, B)$. PROOF. Obvious from the inflation-restriction sequence $0 \rightarrow H^1(\Gamma_n/\Gamma_m, B) \rightarrow H^1(\Gamma_n, B) \rightarrow H^1(\Gamma_m, B)$.

Therefore, without loss of generality, we may assume that the corank $H^1(\Gamma_n, B)$ is finite for all n.

Next we discuss the action of Γ/Γ_m of B^{Γ_m} and obtain non-negative integers $e(p^i)$, by which $|H^1(\Gamma/\Gamma_m, B^{\Gamma_m})|$ is expressed in case $B^{\Gamma}=0$.

Put $r_m = \operatorname{rank} (B^{r_m})$. From the action of Γ/Γ_m on B^{r_m} , we get representations $\psi_m : \Gamma/\Gamma_m \to GL_{r_m}(\mathbb{Z})$. For $m \ge n$, let $j_{m,n}$ be the natural surjection $\Gamma/\Gamma_m \to \Gamma/\Gamma_n$. Combining ψ_m and $j_{m,n}$, we get representations $\psi_{m,n} = \psi_n \circ j_{m,n}$: $\Gamma/\Gamma_m \to GL_{r_n}(\mathbb{Z})$. For a fixed generator σ_m of $\Gamma/\Gamma_m (\cong \mathbb{Z}/p^m \mathbb{Z})$, we put $M_m = \psi_m(\sigma_m)$, $M_{m,n} = \psi_{m,n}(\sigma_m)$. From the construction, $M_{m,n}$ and M_n are equivalent. Denote by $F_m(X) \in \mathbb{Z}[X]$ the characteristic polynomial of M_m . Since $F_m(X)$ divides $(X^{p_m}-1)^{r_m}$, we can write $F_m(X) = \prod_{i=0}^m \Phi_p (X) = e_m(p^i) \le r_m$. Here $\Phi_d(X)$ means the cyclotomic polynomial. Since deg $\Phi_d(X) = \varphi(d)$, we have $r_m = \sum_{i=0}^m \varphi(p^i) \cdot e_m(p^i)$, $(\varphi = \operatorname{Euler's function})$. Of course $e_m(p^i)$ does not depend on the choice of the \mathbb{Z} -basis of B^{r_m} , nor on the choice of σ_m . And indeed $e_m(p^i)$ is independent of m. For the proof we need the following

LEMMA 2. Suppose G is a finite group and C is a free Z-module of finite rank on which G acts. Then there are submodules D and E of C which have the following properties respectively.

- 1) $C = C^{g} \oplus D$, rank $D = rank (_{g}C)$,
- 2) $C = E \oplus_{G} C$, rank $E = rank (C^{G})$.

PROOF. By the elementary divisor theory the existence of the above direct sum is easily verified. As for the rank, we have only to note the exact sequence $0 \rightarrow_{g} C \rightarrow C \rightarrow N_{g}(C) \rightarrow 0$, and the relation $C^{g} \supset N_{g}(C) \supset |G| \cdot C$.

PROPOSITION 1. Notations being as above, suppose $m \ge n$. Then we have $e_m(p^i) = e_n(p^i)$, for $0 \le i \le n$. Hence we can drop the suffix of e_m , so that we get the relations $r_m = \sum_{i=0}^m \varphi(p^i) \cdot e(p^i)$, $r_m - r_{m-1} = \varphi(p^i) \cdot e(p^i)$, for all m.

PROOF. Apply lemma 2. 1) to $G = \Gamma_n / \Gamma_m \cong \mathbb{Z} / p^{m-n} \mathbb{Z}$, $C = B^{\Gamma_m}$. (Note that $(B^{\Gamma_m})^{\Gamma_n/\Gamma_m} = B^{\Gamma_n}$). On account of the direct sum decomposition, matrix $M_m (=M, \text{ we write for short})$ can be written in the following form: $M = \left(\frac{M' \mid *}{0 \mid R}\right)$, $M' = M_{m,n}$, $R \in GL_{r_m - r_n}(\mathbb{Z})$. Hence we have $F_m(X) = F_n(X) \cdot F_R(X)$, where $F_R(X)$ is the characteristic polynomial of R. Therefore it suffices to show that all the roots of $F_R(X)$ i.e. all the characteristic roots of R are

 p^{i} -th primitive roots of unity (i > n). The generator $\sigma_{m}^{p^{n}}$ of Γ_{n}/Γ_{m} is represented in the form $M^{p^{n}} = \begin{pmatrix} 1 & 0 & | \\ 0 & 1 & | \\ 0 & | & R^{p^{n}} \end{pmatrix}$. Put $T = R^{p^{n}}$. We must show that

among the characteristic roots of T there is not a 1. Norm homomophism $N_{\Gamma_n/\Gamma_m} = \sum_{j=1}^{p^{m-n}} (\sigma_m^{p^m})^j \colon B^{\Gamma_m} \to B^{\Gamma_n} \text{ is represented in the form}$

$$\sum_{j=1}^{p^{m-n}} (M^{p^n})^j = \begin{pmatrix} p^{m-n} & & \\ & \ddots & \\ 0 & p^{m-n} & \\ \hline & 0 & \\ & & 0 & \\ \hline & & 0 & \\ & & & \\ & & & \\ \end{bmatrix} .$$

Hence $\sum_{j=1}^{p^{m-n}} T^j = 0$. This implies the desired result (note that $T^{p^{m-n}} = 1$).

The relation between $e(p^i)$ and $|H^1(\Gamma/\Gamma_m, B^{\Gamma_m})|$ mentioned above is as follows.

PROPOSITION 2. Suppose $B^r = 0$, then

1)
$$|H^{1}(\Gamma/\Gamma_{m}, B^{\Gamma_{m}})| = p^{\sum_{i=1}^{m} e(p^{i})},$$

2) in general, for $m \ge n$, $H^1(\Gamma_n/\Gamma_m, B^{\Gamma_m})^{\Gamma/\Gamma_n} = H^1(\Gamma_n/\Gamma_m, B^{\Gamma_m})$, and $|H^1(\Gamma_n/\Gamma_m, B^{\Gamma_m})| = p^{\sum_{i=n+1}^{m} e(p^i)}$.

PROOF. 1) Put $C=B^{r_m}$, $\mathfrak{g}=\Gamma/\Gamma_m$. By our assumption $B^r=0$, we have $\mathfrak{g}C=C$. In $GL_{r_m}(C)$, the matrix M_m-1 is equivalent to the matrix $\begin{pmatrix} \omega_1-1 & 0 \\ \ddots & \\ 0 & \omega_{r_m}-1 \end{pmatrix}$, where ω_i 's are the p^m -th roots of unity $(\neq 1)$. Hence M_m-1 is regular. As $D_\mathfrak{g}(C)=C(M_m-1)$, we get $|H^1(\mathfrak{g},C)|=|C/D_\mathfrak{g}(C)|=|\det(M_m-1)|=\left|\prod_{i=1}^r (\omega_i-1)\right|=\left|\prod_{i=1}^m \Phi_p \mathfrak{i}(1)^{e(p^i)}\right|=p^{\sum_{i=1}^m e(p^i)}$.

2) Notations being as in the proof of 1), put $\mathfrak{h}=\Gamma_n/\Gamma_m$. Apply lemma 2. 1, taking \mathfrak{h} in place of G. Then $M_m = \left(\frac{*\mid 0}{*\mid S}\right)$, $S \in GL_k(\mathbb{Z})$, $k=r_m-r_n$. The same reasoning as in the proof of 1) gives $|H^1(\mathfrak{h}, \mathfrak{h}C)| = |\det(S-1)| = p^{\frac{m}{2}-e(p^{\mathfrak{h}})}$. Since $|H^1(\mathfrak{h}, C)| \leq |H^1(\mathfrak{h}, \mathfrak{h}C)|$, we have $|H^1(\mathfrak{h}, C)| \leq p^{\frac{m}{2}-n+1}e(p^{\mathfrak{h}})$. But the exact sequence of Hochschild-Serre $0 \to H^1(\mathfrak{g}/\mathfrak{h}, C^{\mathfrak{h}}) \to H^1(\mathfrak{g}, C) \to H^1(\mathfrak{h}, C)$. Now we can prove theorem 1. By means of the exact sequence of Hochschild-Serre, we easily see that corank $H^1(\Gamma, B) = \operatorname{corank} H^1(\Gamma_n, B)^{\Gamma/\Gamma_n}$. Since $\Gamma_n = \lim_{\substack{m \ge n \\ m \ge n}} \Gamma_n/\Gamma_m$, and $B = \lim_{\substack{m \ge n \\ m \ge n}} B^{\Gamma_m}$, we have $H^1(\Gamma_n, B) = \lim_{\substack{m \ge n \\ m \ge n}} H^1(\Gamma_n/\Gamma_m, B^{\Gamma_n})$. So the validity of our assertion in case $B^{\Gamma} = 0$ is obvious, on account of Prop. 2. 2).

To prove the theorem in general case, put $B' = B/B^r$. Then we have $(B')^r = 0$. Indeed from the exact sequence; $(*) \quad 0 \to B^r \to B \to B' \to 0$, we get the exact sequence $0 \to B^r \to B^r \to (B')^r \to H^1(\Gamma, B^r) = \lim_{m \to \infty} H^1(\Gamma/\Gamma_m, B^r) = 0$.

From (*), we also get the exact sequence

$$0 = H^1(\Gamma_n, B^r) \to H^1(\Gamma_n, B) \to H^1(\Gamma_n, B') \to H^2(\Gamma_n, B^r) \,.$$

But $H^2(\Gamma_n, B^{\Gamma}) = \lim_{\substack{m \ge n \\ m \ge n}} H^2(\Gamma_n / \Gamma_m, B^{\Gamma}) \cong \lim_{\substack{m \ge n \\ m \ge n}} B^{\Gamma} / p^{m-n} B^{\Gamma}$. So, dualizing above sequence, we obtain the following inequality:

corank $H^1(\Gamma_n, B) \leq \text{corank } H^1(\Gamma_n, B') \leq \text{corank } H^1(\Gamma_n, B) + \text{rank}(B').$

(Note that $B^r/p^{m-n}B^r \cong \widetilde{\mathbb{Z}/p^{m-n}\mathbb{Z} \oplus \cdots \oplus \mathbb{Z}/p^{m-n}\mathbb{Z}}$, where r is the rank of B^r). As theorem 1 holds in case $B^r = 0$, corank $H^1(\Gamma_n, B')$ is constant for all n. Therefore, by means of the above inequality and lemma 1, the corank $H^1(\Gamma_n, B)$ must be constant for all sufficiently large n. This completes the proof of our theorem 1.

2. In order to apply the theorem 1 to A(L), we need some modifications on $A(K_n)$. Let $\tilde{A}(K_m)$ be the set of points of finite order in $A(K_m)$. By Mordell-Weil's theorem $\tilde{A}(K_m)$ is finite. Denote its order by N_m . We put $\overline{A_m} = N_m \cdot A(K_m)$ (=free Z-module of the same rank as of $A(K_m)$), and for $m \ge n$ define homomorphisms $f_{n,m} : \overline{A_n} \to \overline{A_m}$ by $f_{n,m}(x) = \frac{N_m}{N_n} x$, for x in $\overline{A_n}$. Since the system $(\overline{A_n}, \{f_{n,m}\})$ is inductive, we can define $\overline{A_L} = \lim_{\longrightarrow} A_n$. The group $\overline{A_L}$ has obvious Γ -module structure and $(\overline{A_L})^{\Gamma_n} \cong \overline{A_n}$ as Γ -module. Hence rank $(\overline{A_L})^{\Gamma_n} = \operatorname{rank} \overline{A_n} = \operatorname{rank} A(K_n)$.

LEMMA 3. We have corank $H^{1}(\Gamma_{n}, A(L)) = corank H^{1}(\Gamma_{n}, \overline{A_{L}})$, for all n.

PROOF. Let $m \ge n$. The exact sequence of Γ_n/Γ_m -modules: $0 \to \tilde{A}(K_m) \to A(K_m) \xrightarrow{g_m} N_m \cdot A(K_m) = \overline{A_m} \to 0$, where g_m is the multiplication by N_m , yields the exact sequence of cohomology groups:

$$\cdots \to H^1(\Gamma_n/\Gamma_m, \tilde{A}(K_m)) \to H^1(\Gamma_n/\Gamma_m, A(K_m)) \to$$
$$H^1(\Gamma_n/\Gamma_m, \overline{A_m}) \to H^2(\Gamma_n/\Gamma_m, \tilde{A}(K_m)) \to \cdots .$$

Since $H^1(\Gamma_n, A(L)) = \underset{m \ge n}{\lim} H^1(\Gamma_n/\Gamma_m, A(K_m))$ etc., we get the exact sequence

$$\rightarrow H^{1}(\Gamma_{n}, \tilde{A}(L)) \rightarrow H^{1}(\Gamma_{n}, A(L)) \rightarrow H^{1}(\Gamma_{n}, \overline{A_{L}}) \rightarrow H^{2}(\Gamma_{n}, \tilde{A}(L)).$$

Now independent of m, the order of $H^i(\Gamma_n/\Gamma_m, \tilde{A}(K_m))$ is bounded (for i=1,2). Indeed, as Γ_n/Γ_m is a finite cyclic group and $\tilde{A}(K_m)$ is finite, $|H^1(\Gamma_n/\Gamma_m, \tilde{A}(K_m))| = |H^2(\Gamma_n/\Gamma_m, \tilde{A}(K_m))| \le |\tilde{A}(K_n)|$. So their inductive limit $H^i(\Gamma_n, \tilde{A}(L))$ must be finite (for i=1,2). Hence we have our assertion.

THEOREM 2. Let A be an abelian variety defined over a number field K, L/K the Γ -extension associated to the rational prime p, and K_n the subfield of L/K such that Gal (K_n/K) is isomorphic to $\mathbb{Z}/p^n\mathbb{Z}$. Then there exists a non-negative integer ρ , for which we have rank $A(K_n) = \rho \cdot p^n + const$. for all sufficiently large n.

For the proof, apply theorem 1 and lemma 3 to B. Mazur's estimate mentioned in the introduction.

Although we do not know at present even an example in which ρ is positive, by means of Prop. 1, 2 we easily get the following

PROPOSITION 3. If corank $H^1(\Gamma, A(L)) > 0$, then rank $A(K_n)$ grows arbitrally large, as $n \to \infty$.

Department of Mathematics Hokkaido University

Reference

 Y. I. MANIN: Cyclic fields and modular curves, Uspehi. Acad. Nauk. CCCP, Vol. 26, No. 6, 7-71 (1971).

English transl.: Russian Mathematical Surveys, Vol. 26, No. 6, 7-78 (1971).

(Received April 2, 1973)