Linearly compact modules and cogenerators II

By Takeshi ONODERA

Introduction

Let R be a ring with 1-element. A left R-module M is called linearly compact if every finitely solvable system of congruences $x \equiv m_{\alpha} \pmod{M_{\alpha}}$, $\alpha \in I$, where $m_{\alpha} \in M_{\alpha}$ and M_{α} 's are submodules of M, is solvable. Linearly compact modules play an essential role in Morita duality without chain conditions. ([9], [12], [14]).

Let $_{R}P$ be a finitely generated projective left *R*-module and $_{R}Q$ be a cofinitely generated injective¹⁾ left *R*-module. We say that the $\{P, Q\}$ is an *RZ*-pair if every simple homomorphic image of $_{R}P$ is isomorphic to a submodule of $_{R}Q$, and every simple submodule of $_{R}Q$ is a homomorphic image of $_{R}P$. It should be noted that $\{P, P\}$ is an *RZ*-pair if and only if $_{R}P$ is a finitely generated projective and cofinitely generated injective *RZ*-module (cf. [11]). Let *S* and *T* be the endomorphism rings of $_{R}P$ and $_{R}Q$, respectively. The main purpose of this paper is to show the following

THEOREM (THEOREM 2). Suppose that the pair $\{P, Q\}$ is an RZ-pair and both _RP and _RQ are linearly compact. Then both _SHom_R(P, Q) and Hom_R(P, Q)_T are injective cogenerators, and, S and T are naturally isomorphic to the endomorphism rings of Hom_R(P, Q)_T and _SHom_R(P, Q), respectively.

A ring R is called a *left Morita ring* following [14], if _RR and the injective envelope of every simple left R-module are linearly compact. A *right Morita ring* is defined similary. Then we have the following

COROLLARY A (COROLLARY 2 to THEOREM 2). Let R be a left Morita ring. Then the endomorphism ring of every finitely generated projective left R-module is a left Morita ring, and, the endomorphism ring of every cofinitely generated injective left R-module is a right Morita ring.

The first half of the corollary was announced by R. W. Miller and D. R. Turnidge [7].

Further, we have the following corollaries.

COROLLARY B (COROLLARY 3 to THEOREM 2). Let R be a ring such

¹⁾ A module Q is cofinitely generated if and only if the socle of Q is finitely generated and an essential submodule of Q (cf. [12, 13]).

that $_{R}R$ is linearly compact. Let $_{R}Q$ be a linearly compact, cofinitely generated injective left R-module, and T be the endomorphism ring of $_{R}Q$. Then the right T-module Q_{T} is a linearly compact cogenerator, and the left R'module $_{R'}Q$ is cofinitely generated and injective, where R' is the double centralizer of $_{R}Q$, R' = End(Q).

COROLLARY C (COROLLARY 4 to THEOREM 2). Let R be a ring such that $_{R}R$ is linearly compact. If there is a (faithful) linearly compact, cofinitely generated injective and flat left R-module, then there exists a (faithful) finitely generated projective and injective right R-module.

These corollaries afford some useful generalizations in the study of QF-3 rings (cf. [3, 8]).

§1 A pairing of modules

Throught the present paper, $_{R}P$ and $_{R}Q$ denote left *R*-modules, and, *S* and *T* denote always the endomorphism rings of $_{R}P$ and $_{R}Q$, respectively. $_{s}Hom_{R}(P, Q)_{r}$ is then a *S*-*T*-bimodule in the following way:

$$(sgt)(p) = g(ps)t, g \in Hom_R(P,Q), s \in S, t \in T, p \in P.$$

Let ${}_{s}P_{R}^{*} = Hom_{R}(P, R)$ be the *R*-dual of ${}_{R}P$ there is a mapping (,) of $P^{*} \times Q$ into $Hom_{R}(P, Q)$ which is defined by

$$_{q}(f,q)(p) = f(p)q, \quad f \in P^*, \quad q \in Q, \quad p \in P.$$

It is easy to see that the following identities hold:

$$(f_1+f_2, q) = (f_1, q) + (f_2, q), \quad (f, q_1+q_2) = (f, q_1) + (f, q_2)$$

$$(sf, q) = s(f, q), \quad (f, qt) = (f, q)t$$

$$(fr, q) = (f, rq)$$

 $f, f_1, f_2 \in P^*, q, q_1, q_2 \in Q, s \in S, t \in T, r \in R.$

Here we consider the following conditions:

(A) (f, q) = 0 for all $f \in P^*$ implies q = 0.²⁾ (B) (f, q) = 0 for all $q \in Q$ implies f = 0.

If these two conditions are fullfiled, then we say that the pair $\{P, Q\}$ is a regular pair. It is easy to see that if $_{R}P$ is a generator, then $\{P, Q\}$ satisfies the condition (A) for every left *R*-module *Q*.

LEMMA 1. Let $\{P, Q\}$ satisfy the condition (A) and $_{\mathbb{R}}M$ be a left R-module. Then, for any submodule X of $_{\mathcal{S}}Hom_{\mathbb{R}}(P, M)$ and for any S-

²⁾ Condition (A) is equivalent to say that Q is *P*-distinguished in the terminology of [6].

homomorphism δ of X into ${}_{\mathcal{S}}Hom_{\mathcal{R}}(P,Q)$, the following mapping,

$$X(P) \ni \sum_{\text{finite}} f_i(p_i) \longrightarrow \sum \delta(f_i)(p_i) \in Q, \quad f_i \in X, \quad p_i \in P,$$

is an well defined R-homomorphism.

PROOF. By assumption, it suffices to show that if $\sum f_i(p_i)=0$, then $(f, \sum \delta(f_i)(p_i))=0$ for all $f \in P^*$. Let s_i be the element of S which is defined by $ps_i=f(p)p_i$, $p \in P$. Then we have $\sum s_i f_i=0$, because $(\sum s_i f_i)(p)=\sum f_i(ps)$ $=\sum f(p)f_i(p_i)=0$ for all $p \in P$. Now, $(f, \sum \delta(f_i)(p_i))(p)=\sum f(p)(\delta(f_i)(p_i))=$ $\sum \delta(f_i)(f(p)p_i)=\sum \delta(f_i)(ps_i)=\sum \delta(s_i f_i)(p)=\delta(\sum s_i f_i)(p)=0$ for all $p \in P$. Thus $(f, \sum \delta(f_i)(p_i))=0$. Since f is arbitrary element of P^* , we have obtained our assertion.

COROLLARY. Let $_{R}P$ be a generator. Then, for any left R-modules $_{R}A$ and $_{R}B$, $Hom_{s}(Hom_{R}(P, A), Hom_{R}(P, B))$ is naturally isomorphic to $Hom_{R}(A, B)$.

PROOF. Let δ be an element of $Hom_{\mathcal{S}}(Hom_{\mathcal{R}}(P, A), Hom_{\mathcal{R}}(P, B))$. Then, by Lemma 1, the mapping

$$g: A = Hom_{R}(P, A)(P) \in \sum_{finite} f_{i}(p_{i}) \rightarrow \sum \delta(f_{i})(p_{i}) \in B, f_{i} \in Hom_{R}(P, A), p_{i} \in P,$$

is an well defined R-homomorphism. This implies that $\delta(f) = gf$ for all $f \in Hom_R(P, A)$. On the other hand, if g is an element of $Hom_R(A, B)$ and gf=0 for all $f \in Hom_R(P, A)$, then g=0, because $_RP$ is a generator. Thus $Hom_S(Hom_R(P, A), Hom_R(P, B))$ is naturally isomorphic to $Hom_R(A, B)$.

LEMMA 2. Let $\{P, Q\}$ satisfy the condition (A), and _RM be a left R-module. Then the following conditions are equivalent.

(1) $_{R}Q$ is M-injective.³⁾

(2) ${}_{s}Hom_{R}(P, Q)$ is ${}_{s}Hom_{R}(P, M)$ -injective and $Hom_{s}(Hom_{R}(P, M), Hom_{R}(P, Q))$ is naturally isomorphic to $Hom_{R}(M, Q)$.

PROOF. (1)=>(2). Let X be a submodule of ${}_{s}Hom_{R}(P, M)$ and δ be a S-homomorphism of X into ${}_{s}Hom_{R}(P, Q)$. Then, since ${}_{R}Q$ is M-injective, by Lemma 1, there exists an element $g \in Hom_{R}(M, Q)$ such that $\delta(f)=gf$ for all $f \in X$. It follows that ${}_{s}Hom_{R}(P, Q)$ is ${}_{s}Hom_{R}(P, M)$ -injective, and, by taking ${}_{s}Hom_{R}(P, M)$ as X, $Hom_{s}(Hom_{R}(P, M), Hom_{R}(P, Q))$ is homomorphic to $Hom_{R}(M, Q)$. It remains to show that if g is an element of $Hom_{R}(M, Q)$ such that gf=0 for all $f \in Hom_{R}(P, M)$, then g=0. Let m be an element of M. Then we have (h, g(m))(p) = h(p)g(m) = g(h(p)m) = 0 for all $h \in P^*$,

³⁾ Q is called M-injective if every homomorphism of a submodule of M into Q is extended to that of M into Q (cf. [1]).

and for all $p \in P$. This implies, by assumption, that g(m)=0. Since m is an arbitrary element of M, we have g=0. This proves our assertion. $(2) \Rightarrow (1)$. Let M' be a submodule of M and φ be an R-homomorphism of M' into Q. Then, by assumptions, there exists an element $g \in Hom_R(M, Q)$ such that $\varphi \cdot f = g \cdot f$ for all $f \in Hom_R(P, M')$. Then we have $\varphi(m') = g(m')$ for all $m' \in M'$, since $(h, \varphi(m') - g(m'))(p) = (\varphi - g)(h(p)m') = 0$ for all $h \in P^*$, and for all $p \in P$. Thus Q is M-injective.

COROLLARY 1. Let $\{P, Q\}$ satisfy the condition (A). If _RQ is injective, then _sHom_R(P, Q) is injective, and the endomorphis ring of _RQ is naturally isomorphic to that of _sHom_R(P, Q).

PROOF. Setting M=P in Lemma 2, we see that ${}_{s}Hom_{R}(P,Q)$ is injective, and, setting M=Q we obtain the latter half of our assertions.

COROLLARY 2. (Pahl).⁴⁾ Let $_{R}P$ be a generator and S be the endomorphism ring of $_{R}P$. Then the following conditions are equivalent.

- (1) $_{R}P$ is quasi-injective.
- (2) ${}_{s}S$ is injective.
- (3) $_{R}P$ is injective.

PROOF. Since $\{P, P\}$ satisfies the condition (A), the equivalence $(1) \rightleftharpoons (2)$ follows direct from Lemma 2 by setting M = Q = P, while the equivalence $(1) \rightleftharpoons (3)$ is well known.⁵⁾

S2 RZ-pairs

Let $_{R}P$ be a finitely generated left *R*-module and $_{R}Q$ be a cofinitely generated injective left *R*-module. We say that the pair $\{P, Q\}$ is an *RZ*-pair if every homomorphic image of *P* is isomorphic to a submodule of *Q*, and every simple submodule of *Q* is a homomorphic image of *P*.

LEMMA 3. If the pair $\{P, Q\}$ is an RZ-pair, then it is a regular pair. PROOF. Let $(P^*, q)=0$, $q\in Q$. Suppose q=0, and let Rq_0 be a simple submodule of Rq. Then, since Rq_0 is a homomorphic image of $_{R}P$ and $_{R}P$ is projective, there exists an element $f\in P^*$ such that $f(P)q_0=Rq_0$. But this means that $(f, q_0)=0$, and we have a contradiction. Next, let (f, Q)=0, $f\in P^*$. Suppose f=0, and, let Rq_0 be a simple homomorphic image of f(P). Then, since $_{R}Q$ is injective, there exists an element $q_1\in Q$ such that $Rq_0=$ $f(P)q_1$. But this means that $(f, q_1)=0$, and we have a contradiction.

Following lemma is easy to show and we omitt here the proof for it.

5) Cf. [1].

⁴⁾ Cf. [5], Theorem 3.

LEMMA 4. Let $_{R}P$ be a projective left R-module. Then, for a simple left R-module $_{R}M$, $_{s}Hom_{R}(P, M)$ is either 0 or simple.

THEOREM 1.⁶⁾ Let $\{P, Q\}$ be an RZ-pair. Then ${}_{s}Hom_{R}(P, Q)$ is a cofinitely generated injective cogenerator, and the endomorphism ring of ${}_{R}Q$ is naturally isomorphic to that of ${}_{s}Hom_{R}(P, Q)$.

PROOF. Let Q_0 be the socle of Q. Then, by Lemma 4, ${}_{S}Hom_{R}(P, Q_0)$ is a sum of simple submodules. We show that ${}_{S}Hom_{R}(P, Q_0)$ is an essential submodule of ${}_{s}Hom_{R}(P,Q)$. Let f be a non-zero element of ${}_{s}Hom_{R}(P,Q)$ and Q' be a simple submodule of f(P). Then $Hom_{R}(P,Q')$ is a simple submodule of $Hom_{R}(P,Q_0)$ which is contained in $Hom_{R}(P,f(P))=Sf$. Thus ${}_{s}Hom_{R}(P,Q)$ is cofinitely generated. Next, we show that ${}_{s}Hom_{R}(P,Q)$ contains an isomorphic image of every simple left S-module. For this purpose, let I be a maximal left ideal of S. Then, since ${}_{R}P$ is finitely generated and projective, we have $PI \neq P$. Let f be a non-zero R-homomorphism of P/PI into Q. Then $\tilde{f} = f \cdot \nu$ is an element of ${}_{s}Hom_{R}(P,Q)$ such that $S\tilde{f} \cong S/I$, where ν is the natural homomorphism of R/P onto P/PI. Thus ${}_{s}Hom_{R}(P,Q)$ contains an isomorphic image of S/I. Since ${}_{s}Hom_{R}(P,Q)$ is injective by Corollary 1 to Lemma 2, it is an injective cogenerator. The last assertion of the theorem follows direct from Lemma 2.

COROLLARY. If $\{P, P\}$ is an RZ-pair, or equivalently, if $_{R}P$ is a finitely generated projective and cofinitely injective RZ-module, then the endomorphism ring of $_{R}P$ is a left injectiv cogenerator.

§3 Endomorphism rings of linearly compact modules

We begin this section with the following

PROPOSITION 1. Let $_{R}P$ be a finitely generated projective left R-module. If $_{R}Q$ is linearly compact, then $_{S}Hom_{R}(P, Q)$ is linearly compact.

PROOF. This is proved in [14]. But for the sake of completeness, we give here the proof for it. Let $g \equiv g_{\alpha} \pmod{\mathfrak{U}_{\alpha}}$, $\alpha \in I$, where $g_{\alpha} \in Hom_{\mathcal{R}}(P, Q)$ and \mathfrak{U}_{α} 's are submodules of ${}_{\mathcal{S}}Hom_{\mathcal{R}}(P,Q)$, be a finitely solvable system of congruences. Then, as is easily seen, for each element p of P, the system of congruences $x \equiv g_{\alpha}(p) \pmod{\mathfrak{U}_{\alpha}(P)}$ is finitely solvable, and, because ${}_{\mathcal{R}}Q$ is linearly compact, it is solvable. Let $K = \prod_{\alpha \in I} Q/\mathfrak{U}_{\alpha}(P)$ be the direct product of $Q/\mathfrak{U}_{\alpha}(P)$'s and K_0 be the submodule $\{\prod (q \mod \mathfrak{U}_{\alpha}(P)) | q \in Q\}$ of K. Let h be the homomorphism of ${}_{\mathcal{R}}P$ into K wich is defined by,

 $h(p) = \prod (g_{\alpha}(p) \mod \mathfrak{U}_{\alpha}(P)), p \in P.$

ł

⁶⁾ Cf. [6], Theorem 4.

T. Onodera

Because $_{R}P$ is projective, there is a homomorphism k of $_{R}P$ in $_{R}Q$ such that $k(p) \equiv g_{\alpha}(p) \pmod{\mathfrak{U}_{\alpha}(P)}$ for all $p \in P$. Our proof is therefore complete if we prove the following

LEMMA 5. Let $_{R}P$ be a finitely generated projective left R-module and $_{R}Q$ be a left R-module. Let \mathfrak{U} be a submodule of $_{s}Hom_{R}(P,Q)$, and, k be a homomorphism of $_{R}P$ in $_{R}Q$ such that $k(P) \subseteq \mathfrak{U}(P)$. Then we have $k \in \mathfrak{U}$.

PROOF. Let $P = \sum_{i=1}^{n} Rp_i$ and $k(p_i) = u_1^{(i)}(p_1^{(i)}) + \dots + u_{l_i}^{(i)}(p_{i_i}^{(i)}), u_j^{(i)} \in \mathbb{U}, p_j^{(i)} \in P,$ $i=1, 2, \dots, n$. Let $t=l_1+\dots+l_n$ and ν be the homomorphism of $P^{(t)}$, the direct sum of t-copies of $_{R}P$, in Q which is defined by,

$$P^{(t)}(x_1, \cdots, x_t) \longrightarrow u_1^{(1)}(x_1) + \cdots + u_{i_n}^{(n)}(x_t) \in Q.$$

It is clear that $k(P) \subseteq \nu(P^{(t)})$. Since $_{\mathbb{R}}P$ is projective, there exist $s_1, \dots, s_t \in S$ such that $u_1^{(1)}(ps_1) + \dots + u_{l_n}^{(n)}(ps_t) = k(p)$ for all $p \in P$. It follows that $k = s_1 u_1^{(1)} + \dots + s_t u_{l_n}^{(n)} \in \mathbb{U}$, as asserted.

COROLLARY. Let $_{R}P$ be a linearly compact projective left R-module. Then $_{S}S$ is linearly compact.

PROOF.⁷⁾ It suffices to show that $_{R}P$ is finitely generated. Since $_{R}P$ is complemented, Ra(P), the radical of $_{R}P$, is small and P/Ra(P) is semi-simple artinian. It follows that $_{R}P$ is finitely generated.

PROPOSITION 2. Let $_{R}P$ be a generator and $_{R}Q$ be a left R-module. If the left S-module $_{S}Hom_{R}(P,Q)$ is linearly compact, then $_{R}Q$ is linearly compact.

PROOF. Let $x \equiv q_{\alpha} \pmod{\mathfrak{U}_{\alpha}}$, $\alpha \in I$, where $q_{\alpha} \in Q$ and \mathfrak{U}_{α} 's are submodules of ${}_{R}Q$, be a finitely solvable system of congruences. Since ${}_{R}P$ is a generator, there exist $f_{1}, \dots, f_{n} \in Hom_{R}(P, R)$ and $p_{1}, \dots, p_{n} \in P$ such that $\sum_{i=1}^{n} f_{i}(p_{i}) = 1$. For each *i* and for each α , let $g_{\alpha}^{(i)}$ be a homomorphism of ${}_{R}P$ in ${}_{R}Q$ which is defined by,

$$g^{(i)}_{\alpha}: P \ni p \longrightarrow f_i(p) q_{\alpha} \in Q.$$

Then, as is easily seen, for each *i*, the system of congruences $g = g_{\alpha}^{(i)}$ (mod $Hom_{\mathcal{R}}(P, \mathfrak{U}_{\alpha})$), $\alpha \in I$, is finitely solvable. Since ${}_{\mathcal{S}}Hom_{\mathcal{R}}(P, Q)$ is linearly compact, the system has a solution $g^{(i)}$. Let $q_0 = \sum_{i=1}^n g^{(i)}(p_i)$. Then we have, for each $\alpha \in I$, $q_0 - q_{\alpha} = \sum_{i=1}^n g^{(i)}(p_i) - (\sum_{i=1}^n f_i(p_i))q_{\alpha} = \sum_{i=1}^n g^{(i)}(p_i) - g_{\alpha}^{(i)}(p_i) = \sum_{i=1}^n (g^{(i)} - g_{\alpha}^{(i)})(p_i) \in \mathfrak{U}_{\alpha}$. Thus our assertion is proved.

7) Cf. [4, 15].

From Propositions 1 and 2 we have direct the following

PROPOSITION 3. Let $_{R}P$ be a progenerator. Then $_{s}Hom_{R}(P,Q)$ is linearly compact if and only if $_{R}Q$ is linearly compact.

We have also the following

PROPOSITION 4. Let $_{R}Q$ be an injective left R-module with essential socle and $_{R}P$ be a linearly compact left R-module. Then the right T-module $Hom_{R}(P, Q)_{T}$ is linearly compact.

PROOF. For each submodule \mathfrak{U} of $Hom_R(P, Q)_T$, we have $Ann_{Hom_R(P,Q)}(Ann_P(\mathfrak{U})) = \mathfrak{U}^{8}$ Let $g \equiv g_{\alpha} \pmod{\mathfrak{U}_{\alpha}}, \alpha \in I$, be a finitely solvable system of congruences, where $g_{\alpha} \in Hom_R(P, Q)$ and \mathfrak{U}_{α} 's are submodules of $Hom_R(P, Q)_T$. Then, as is easily seen, the mapping

$$\sum Ann_P(\mathfrak{U}_{\alpha}) \ni \sum_{finite} p_{\alpha_i} \longrightarrow \sum g_{\alpha_i}(p_{\alpha_i}) \in Q$$
,

where $p_{\alpha} \in Ann_P(\mathfrak{U}_{a_i})$, is an well defined *R*-homomorphism. Since $_RQ$ is injective, there exists $g \in Hom_R(P, Q)$ such that $g(p_{\alpha}) = g_{\alpha}(p_{\alpha})$ for all $p_{\alpha} \in Ann_P(\mathfrak{U}_{\alpha})$. It follows that, for every $\alpha \in I$, $g - g_{\alpha} \in Ann_{Hom_R(P,Q)}(Ann_P(\mathfrak{U}_{\alpha})) = \mathfrak{U}_{\alpha}$. This proves our assertion.

§4 Main results

THEOREM 2. Suppose that $\{P, Q\}$ is an RZ-pair and both $_{\mathbb{R}}P$ and $_{\mathbb{R}}Q$ are linearly compact. Then both $_{S}Hom_{\mathbb{R}}(P, Q)$ and $Hom_{\mathbb{R}}(P, Q)_{s}$ are injective cogenerators, and, S and T are naturally isomorphic to the endomorphism rings of $Hom_{\mathbb{R}}(P, Q)_{T}$ and $_{S}Hom_{\mathbb{R}}(P, Q)$, respectively, where S is the endomorphism ring of $_{\mathbb{R}}P$ and T is that of $_{\mathbb{R}}Q$.

PROOF. By Theorem 1 ${}_{s}Hom_{R}(P,Q)$ is a cofinitely generated injective cogenerator and T is isomorphic to the endomorphism ring of ${}_{s}Hom_{R}(P,Q)$. Further, by Proposition 1, both ${}_{s}S$ and ${}_{s}Hom_{R}(P,Q)$ are linearly compact, whence ${}_{s}Hom_{R}(P,Q)$ is balanced and $Hom_{R}(P,Q)_{T}$ is an injective cogenerator.⁹⁾

COROLLARY 1. Let $_{R}P$ be a linearly compact, cofinitely generated, injective and projective left R-module. If $\{P, P\}$ is an RZ-pair, then the endomorphism ring of $_{R}P$ is a two-sided cogenerator ring.

A ring R is called *left Morita ring*^{\cdot 0} if both _RR and the injective envelope of every simple left R-module are linearly compact. A *right Morita*

9) Cf. [12], Theorem 2, Theorem 7.

10) Cf. [7].

⁸⁾ Cf. [12], Theorem 5. Here, $Ann_X(Y)$ denotes, as usual, the annihilator of Y in X.

T. Onodera

ring is defined similarly. Then we have the following

COROLLARY 2. Let R be a left Morita ring. Then the endomorphism ring of a finitely generated projective left R-module is a left Morita ring, and, the endomorphism ring of a cofinitely generated injective left R-module is a right Morita ring.

PROOF. Let $_{R}P$ be a finitely generated projective left *R*-module. Since *R* is a semi-perfect ring,¹¹⁾ there exists a cofinitely generated injective left *R*-module $_{R}Q$ such that $\{P, Q\}$ is an *RZ*-pair. Further, since *R* is a left Morita ring, both $_{R}P$ and $_{R}Q$ are linearly compact, whence, by Theorem 2, $_{s}S$ is linearly compact and $_{s}Hom_{R}(P, Q)$ is a linearly compact injective cogenerator. Thus *S* is a left Morita ring. The latter half of the corollary is also proved similarly.

COROLLARY 3. Let R be a ring such that $_{R}R$ is linearly compact. Let $_{R}Q$ be a linearly compact, cofinitely generated injective left R-module and T be the endomorphism ring of $_{R}Q$. Then Q_{T} is a linearly compact cogenerator, and, $_{R'}Q$ is a cofinitely generated injective left R'-module, where R' is the endomorphism ring of Q_{T} .

PROOF. By assumption, there is a finitely generated projective left Rmodule $_{R}P$ such that $\{P, Q\}$ is an RZ-pair. Then, by Theorem 2 $Hom_{R}(P, Q)_{T}$ is an injective cogenerator. Since $Hom_{R}(P, Q)_{T}$ is isomorphic to a direct product of Q_{T}, Q_{T} is a cogenerator. By Proposition 4, Q_{T} is linearly compact and whence $_{R'}Q$ is injective.¹² Further, $_{R'}Q$ is cofinitely generated by ([13], Lemma 8).¹³

COROLLARY 4. Let R be a two-sided cogenerator ring. Let $_{R}P$ be a finitely generated projective left R-module. Then P_{s} is a linearly compact cogenerator and $_{R'}P$ is a faithful finitely generated projective and cofinitely generated injective left R'-module, where S is the endomorphism ring of $_{R'}P$ and R' is the double centralizer of $_{R'}P$.

PROOF. Since $_{R}R$, whence $_{R}P$ is linearly compact, cofinitely generated and injective, our assertion follows direct from the above Corollary 3.

COROLLARY 5. Let R be a ring such that $_{\mathbb{R}}R$ is linearly compact. If there is a (faithful) linearly compact, cofinitely generated injective and flat left R-module, then there exists a (faithful) finitely generated projective and injective right R-module.

PROOF. Let $_{R}Q$ be a linearly compact, cofinitely generated injective and

¹¹⁾ Cf. [12], Corollary to Theorem 5.

¹²⁾ Cf. [12], Corollary 1 to Theorem 2.

¹³⁾ Note that T is a semi-perfect ring.

flat left *R*-module, and, *T* be the endomorphism ring of $_{R}Q$. Let $_{R}P$ be a finitely generated projective left *R*-module such that $\{P, Q\}$ forms an *RZ*-pair. Then, by Theorem 2, both $_{s}Hom_{R}(P, Q)$ and $Hom_{R}(P, Q)_{T}$ are injective cogenerators, and *S*, *T* are naturally isomorphic to the endomorphism rings of $Hom_{R}(P, Q)_{T}$, $_{s}Hom_{R}(P, Q)$ respectively, where *S* is the endomorphism rings of $_{R}P$. We show that the right *R*-module $P^{*} = Hom_{R}(P, R)$ is injective. Since Q_{T} is linearly compact and $\{P, Q\}$ is a regular pair, $_{s}P^{*}$ is isomorphic to the $Hom_{R}(P, Q)$ -dual of Q_{T} , that is, $_{s}P_{R}^{*} \cong Hom_{T}(_{R}Q_{T}, Hom_{R}(P, Q)_{T})^{.14}$. It follows that P_{R}^{*} is injective, because $_{R}Q$ is flat and $Hom_{R}(P, Q)_{T}$ is injective. It is clear that P_{R}^{*} is finitely generated and projective. Further, let $_{R}Q$ be faithful. Then $P^{*}r=0$, $r\in R$, implies that $0=(P^{*}r, Q)=(P^{*}, rQ)$. It follows that rQ=0, whence r=0. Thus P_{R}^{*} is faithful. This completes our proof.

Department of Mathematics Hokkaido University

References

- [1] G. AZUMAYA: *M*-projective and *M*-injective modules (to appear).
- [2] K. R. FULLER: On indecomposable injectives over artinian rings, Pacific J. Math. 29 (1969), 115-135.
- [3] M. HARADA: QF-3 and semiprimary PP-rings II, Osaka J. Math. 3 (1966), 21-27.
- [4] F. KASCH and E. A. MARES: Eine Kenzeichung semiperfecter Moduln, Nagoya Math. J. 27 (1966), 525-529.
- [5] F. KASCH, H.-J. SCHNEIDER and H. J. STOLBERG: On injective modules and cogenerators, Report 69-23, Dept. Math., Carnegie Institut of Technology, Carnegie Mellon Univ., 1969.
- [6] T. KATO: U-distinguished modules (to appear).
- [7] R. W. MILLER and D. R. TURNIDGE: Morita duality for endomorphism rings, Proc. Amer. Math. Soc. 31 (1972) 91-94.
- [8] K. MORITA: Duality in QF-3 rings, Math. Z. 108 (1960), 237-252.
- [9] B. MÜLLER: Linear compactness and Morita duality, J. Algebra 16 (1970), 60-66.
- [10] T. ONODERA: Uber Kogeneratoren, Arch. Math. 16 (1968), 402-410.
- [11] T. ONODERA: Ein Satz über koendlich erzeugte RZ-Moduln, Töhoku Math. J. 23 (1971), 691-695.
- [12] T. ONODERA: Linearly compact modules and cogenerators, J. Fac. Sci., Hokkaido Univ., Ser. I. 12. No. 3. 4 (1972), 116-125.
- [13] T. ONODERA: Koendlich erzeugte Moduln und Kogeneratoren Hokkaido M. J. 2 (1973) 69-83.
- [14] F. L. SANDOMIERSKI: Linearly compact modules and local Morita duality, Ring Theory, Academic Press, 1972.

14) Cf. [12], Theorem 7.

(Received February 28, 1973)