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Introduction. Recently S. Tachibana $[2]^{1)}$ has introduced a notion of
a conformal Killing tensor field of degree 2 in a Riemannian manifold and
T. Kashiwada [3] has given the definition of a conformal Killing tensor
field of degree $p(p\geqq 2)$ in a Riemannian manifold. They discussed such
the tensor fields and obtained many interesting results.

In this paper, the author proves by the mathematical induction that a
Riemannian manifold of constant curvature admitting a conformal Killing
vector field admits necessarily a conformal Killing tensor field of degree $p$ .
\S 1 is devoted to give some preliminaries on a general Riemannian manifold
$R^{n}$ admitting a conformal Killing vector field. In \S 2 we give the definition
of a conformal Killing tensor field of degree $p\geqq 2$ .

Let us denote by $M^{n}$ an $n$-dimensional Riemannian manifold of constant
curvature which admits a conformal Killing vector field. We prove that $M^{n}$

admits a conformal Killing tensor field of degree 2 in \S 3. $Mak^{-ing}$ use of
the results in \S 3, in the last section \S 4 we shall show that $M^{n}$ admits a
conformal Killing tensor field of general degree.

The present author wishes to express his very sincere thanks to PrO-
fessor Y. Katsurada for her many valuable advices and constant guidances.

\S 1. Preliminaries on a Riemannian manifold admitting a con-
formal Killing vector field. Let $R^{n}(n>2)$ be an $n$-dimensional Riemannian
manifold whose metric tensor is given by $g_{if}$ .

Let $\xi^{i}$ be a vector field in $R^{n}$ such that

(1. 1) $Sg_{if}=\xi_{i;f}+\xi_{f;i}=2\phi g_{if}\xi$

where $\phi i\dot{s}$ a scalar field in $R^{n}$ and the symbol $S$ and “ ;” denote the
$\xi$

operator of Lie derivation with respect to $\xi^{i}$ and of covariant differentiation
with respect to the Riemann connection determined by $g_{if}$ respectively.
Then $\xi^{i}$ is called a conformal Killing vector field. If $\phi$ vanishes identically
in (1. 1), then $\xi^{i}$ is called a Killing vector field.

1) Numbers in brackets refer to the references at the end of the paper.
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If $P_{ij}$ is a covariant tensor field, then we have

$S(P_{if;k})-(SP_{if})_{;k}=-\xi\xi(\xi S$ $\{\begin{array}{l}lki\end{array}\}$ $)P_{lf}-($
$s_{\xi}$

$\{\begin{array}{l}lkj\end{array}\}$ $)P_{il}$ (cf. [6]),

where $\{\begin{array}{l}ijk\end{array}\}$ denotes the Christoffel symbol of the first kind.

Applying the above formula to the metric tensor $g_{if}$ , we obtain

(1. 2)
$s_{\dot{\epsilon}}$

$\{\begin{array}{l}ijk\end{array}\}=\frac{1}{2}g^{il}\cdot[(Sg_{kl})_{j}f+(Sg_{lf})_{;k}-(Sg_{jk})_{;l}]\xi\xi\xi$ .

Substituting (1. 1) into (1. 2), we find

(1. 3)
$a_{\xi}e$

$\{\begin{array}{l}ijk\end{array}\}=\delta_{j}^{i}\phi_{k}+\delta_{k}^{i}\phi_{f}-g_{fk}\phi^{i}$

where $\phi_{l}=\phi_{;i}$ , $\phi^{i}=g^{if}\phi_{f}$ and $\delta_{f}^{i}$ denotes the Kronecker deltas.
Substituting (1. 3) into

$s_{\xi}R_{fkl}^{i}=(\xi S$ $\{\begin{array}{l}ijk\end{array}\})_{;l}-($
$a_{\xi}e$

$\{\begin{array}{l}ilk\end{array}\}$ $)_{;f}$

where $R_{fkl}^{i}$ is the curvature tensor, we obtain

(1. 4) $s_{\xi}R_{fkl}^{i}=-\delta_{l}^{i}\phi_{J;k}+\delta_{k}^{i}\phi_{f;l}-g_{fk}\phi_{;l}^{i}+g_{fl}\phi_{;k}^{i}$

By contraction with respect to $i$ and $l$, it follows from (1. 4) that

(1. 5) $s_{\xi}R_{fk}=-(n-2)\phi_{k;f}-g_{fk}\phi_{;i}^{i}$

where $R_{fk}$ is the Ricci tensor.
Transvecting (1. 5) with $g^{fk}$ , we find

(1. 6) $s_{\xi}R=-2(n-1)\phi_{ji}^{i}-2\phi R$

where $R$ is the scalar curvature.

When $R^{n}$ is an Einstein space, that is,

$R_{fk}= \frac{R}{n}g_{fk}$ , $R=const.$ ,

we have, for a conformal Killing vector field $\xi^{i}$ ,

$SR_{fk}= \frac{R}{n}Sg_{fk}=\frac{2R}{n}\phi g_{fk}\xi\xi’$. $S_{\epsilon}R=0\backslash$

Consequently, from (1. 5) and (1. 6), we get
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$\frac{2R}{n}\phi g_{jk}=-(n-2)\phi_{k;j}-g_{jk}\phi_{;i}^{i}$ , $(n-1)\phi_{;i}^{i}+R\phi=0,\cdot$

respectively. From these relations, it follows that

(1. 7) $\phi_{;i;f}=-k\phi g_{if}$ , $k= \frac{R}{n(n-1)}$

Thus if an Einstein space of dimension $n>2$ admits a conformal Killing $vec$.
tor field, then it admits a non-zero scalar function $\phi$ which satisfies the above
equation.

A space of constant curvature $(n>2)$ is a Riemannian manifold satisfying

(1. 8) $R_{jkl}^{i}=k(g_{fk}\delta_{l}^{i}-\delta_{k}^{\acute{y}}g_{fl})$

and then $k$ is a constant given by $k= \frac{R}{n(n-1)}$ .

A space of constant curvature is necessarily an Einstein space.

\S 2. Conformal Killing tensor field. In this section, as the gener-
alization of a conformal Killing vector field we shall show the definition
of a conformal Killing tensor field which is given by S. Tachibana and T.
Kashiwada.

We shall call a skew symmetric tensor $T_{if}$ a conformal Killing tensor
field of degree 2 in $R^{n}$ if there exists a vector field $\rho_{i}$ such that

(2. 1) $T_{if;k}+T_{kf;i}=2\rho_{f}g_{ik}-\rho_{k}g_{ij},-\rho_{fg_{fk}}\uparrow$

The vector $\rho_{i}$ is called the associated vector field of $T_{ij}$ . If $\rho_{i}$ vanishes
identically in (2. 1), then $T_{if}$ is called a Killing tensor field of degree 2.

Furthermore, we shall generalize it to the case of degree $p(p\geqq 2)$ . A
skew symmetric tensor field $T_{ii_{p}}‘\ldots$ is called a conformal Killing tensor field
of degree $p$ in $R^{n}$ , if there exists a skew symmetric tensor $\acute{n}eld\rho_{i_{1}\cdots i_{p-1}}$ such
that

(2. 2) $T_{i_{1}\cdots i_{p};i}+T_{ii_{2}\cdots i_{p};i_{1}}=2 \rho_{i_{2}\cdots i_{p}g_{i_{1}i}}-\sum_{-h-2}^{p}(-1)^{h}\cdot(\rho_{i_{1}\cdots\hat{i_{hp}}}\ldots\dot{l}g_{ii_{h}}+\rho_{ii_{2}\cdots\hat{i_{h}}\cdots i_{p}}g_{ii_{h}}‘)$ ,

where $\hat{i_{h}}$ means that $i_{h}$ is omitted. We call $\rho_{i_{1}\cdots i_{p-1}}$ the associated tensor
field of $T_{i_{1}\cdots i_{p}}$ . If $\rho_{i_{1}\cdots i_{p-1}}$ vanishes identically in (2. 2), then $T_{i_{1}\cdots i_{p}}$ is called
a Killing tensor field of degree $p$.

Especially, if $R^{n}$ is a space of constant curvature, then the associated
tensor field of conformal Killing tensor field of degree $p$ is a Killing tensor
field (cf. [3]).



On conformal Killing tensors of a Riemannian manifold 239

\S 3. Conformal Killing tensor field of degree 2. In the following
sections, let $M^{n}$ be an $n$-dimensional Riemannian manifold of constant
curvature.

LEMMA 3. 1. Let $R^{n}(n>2)$ be an Einstein space which admits a con-
formal Killing vector fifield $\xi^{i}$ . Then $R^{n}$ admits a Killing vector fifield.

PROOF. We put

$\rho_{i}=\xi_{i}+\frac{1}{k}\phi_{i}$ , $k= \frac{R}{n(n-1)}$

Differentiating this covariantly, by means of (1. 1) and (1. $7.j$ we get

(3. 1) $\rho_{if}+\rho_{j;f}=0$ .
THEOREM 3. 2. If $M^{n}$ admits a conformal Killing vector fifield $\xi^{i}$ , $thm$

$M^{n}$ admits a conformal Killing tmsor fifield of degree 2.
PROOF. Since $M^{n}$ admits a Killing vector field $\rho^{i}$ by Lemma 3. 1, differ-

entiating (3. 1) covariantly, we obtain
$\rho_{i;fjk}+\rho_{fjijk}=0$ .

From the above equation, we have
$\rho_{i;f,k}.+\rho_{f;i;k}+\rho_{ijk;J}+\rho_{k;i;J}-(\rho_{fk;i}..+\rho_{k;g;i})=0$ .

Then by virtue of Ricci’s identity, we get

$2\rho_{i;f;k}-\rho_{h}(R_{fik}^{h}+R_{kif}^{h}+R_{ikf}^{h})=0$ .
In consequence of Bianchi’s identity the above equation reduces to

$\rho_{i;f;k}+\rho_{h}R_{kfl}^{h}=0$ .
Then by means of (1. 8) the last equation turns to

$\rho_{i;f;k}=k(\rho_{f}g_{ki}-\rho_{ig_{jk}})$ .
We put $T_{if}=\rho_{i;f}$ , then the above equation is rewritten as follows:
(3. 2) $T_{if;k}=k(\rho_{f}g_{ki}-\rho_{lg_{jk}}.)$ ,

and hence we obtain
$\backslash \prime s$ . S) $T_{if;k}+T_{kf;i}=k(2\rho_{f}g_{ki}-\rho_{ig_{fk}}-\rho_{k}g_{fi})$ .
This equation shows that $T_{vf}i$ is a conformal Killing tensor field of degree
2 whose associated vector field is given by $k\rho_{i}$ .

\S 4. Conformal Killing tensor field of degree $p\geqq 3$. At the first,
we shall show that a conformal Killing tensor field of degree 3 can be con-



240 H. K\^ojy\^o

structed by a conformal Killing tensor field of degree 2 and the vector $\phi_{i}$ .
By virture of Theorem 3. 2, we have shown that constant Riemannian

curvature. space $M^{n}$ admits a conformal Killing tensor field $T_{if}$ of degree
2. Put

(4. 1) $T_{ifk}=T_{if}\phi_{k}+T_{fk}\phi_{i}+T_{ki}\phi_{f}$ .

Then it is clear that $T_{ifk}$ is skew symmetric with respect to all indices.
Differentiating (4. 1) covariantly, by means of (1. 7) and (3. 2) we have

$T_{ijk;l}=k[(\rho_{f}\phi_{k}-\rho_{k}\phi_{f}-\phi T_{fk})g_{il}-(\rho_{i}\phi_{k}-\rho_{k}\phi_{i}-\phi T_{ik})g_{fl}$

$+(\rho_{i}\phi_{f}-\rho_{f}\phi_{i}-\phi T_{if})g_{kl}]$ .

Hence we put

$\rho_{fk}=\rho_{f}\phi_{k}-\rho_{k}\phi_{f}-\phi T_{fk}$ .
then the last equation turns to

(4. 2) $T_{ifk;l}=k(\rho_{fkg_{il}-}\rho_{ikg_{fl}}+\rho_{tJ}g_{kl})$ ,

and hence we get

$T_{ifk;l}+T_{lfk;i}=k(2\rho_{fkg_{il}-}\rho_{ikg_{fl}-}\rho_{lkg_{fi}+\rho_{if}}g_{kl}+\rho_{lf}g_{ki})1$

This equation shows that $T_{ifk}$ is a conformal Killing tensor field of degree
3 whose associated tensor field is given by $k\rho_{if}$ . Therefore we have

THEOREM 4. 1. Let $M^{n}$ be an $n$-dimensional Riemannian manifold of
constant cumature which admits a cmformal Killing vector fifield $\xi^{i}$ . Then
$M^{n}$ admits a conformal Killing tensor fifield of degree 3.

Next, we prove that $M^{n}$ admits a conformal Killing tensor field of degree
$p$, under the assumption that $M^{n}$ admits a conformal Killing tensor field of
degree $p-1\geqq 3$ .

We assume that $M^{n}$ admits a skew symmetric tensor field $T_{i_{1}\cdots i_{p-1}}$ such
that

(4. 3) $T_{i_{1}\cdots i_{p-1};i}=-k \sum_{h=1}^{p-1}(-1)^{h}\rho_{i_{1}\cdots\acute{\grave{i}}_{h}\cdots i_{p-\iota}}g_{i_{h}i}$ .

where $\rho_{i_{2}\cdots i_{p-1}}$ denotes a Killing tensor field of degree $p$ –2.
Putting $p=2$ and $p=3$ in (4. 3), we obtain (3. 2) and (4. 2) respectively.

Then we have

$T_{i_{1}\cdots i_{p-1};i}+T_{ii_{2}\cdots i_{p-1};i_{1}}=k\cdot[2\rho_{i_{2}\cdots i_{p-1}}g_{i_{1}i}$

$- \sum(-1)^{h}\cdot(\rho_{i_{1}\cdots\acute{i}_{h}\cdots t_{p-1}g_{i_{h}i}+\rho_{ii_{2}\cdots\hat{i_{h}}\cdots i_{p-1}}g_{i_{h}i})]}p-1$ ,
$h=2$
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where $\rho_{i_{2}\cdots i_{p-1}}$ denotes the associated tensor field of $T_{i_{1}\cdots i_{p-1}}$ . Thus this
equation shows that $T_{\dot{\iota}_{1}\cdots i_{p-1}}$ is a conformal Killing tensor field of degree
$p-1$ .

If we put

(4. 4) $T_{i_{1}\cdots i_{p}}= \sum_{h=1}^{p}(-1)^{h}T_{i_{1}\cdots\hat{i_{h}}\cdots i_{p}}\phi_{i_{h}}l$

Then it is clear that $T_{l_{1}\cdots i_{p}}$ is skew symmetric with respect to all indices.
Differentiating (4. 4) covariantly we have

$T_{l_{1}\cdots i_{p};i}= \sum_{h=1}^{p}(-1)^{h}T_{i_{1}\cdots\dot{i}_{h}^{\wedge}\cdots i_{p};i}\phi_{i_{h}}+\sum_{h=1}^{p}(-1)^{h}T_{i_{1}\cdots\hat{i_{h}}\cdots i_{p}}\phi_{i_{h};t}$ .

Substituting (1. 7) and (4. 3) into this equation, we find

$T_{ii_{p};i}‘ \ldots=-\sum_{h=1}^{p}(-1)^{h}\cdot k$ .
$(h \neq k’)k-1\sum_{-}^{p}(-1)^{k}\rho_{i_{1}\cdots\hat{i_{h}}\cdots\acute{i}_{k}^{\backslash }\cdots i_{p}}\acute{\varphi}_{i_{h}}g_{i_{k}i}$

$-k \phi\sum_{h=1}^{p}(-1)^{h}T_{i_{1}\cdots\hat{i_{h}}\cdots i_{p}}g_{i_{h}i}$

$=-k \sum_{h=1}^{p}(-1)^{h[_{(h\neq k)}\hat{i}\cdots\hat{i}\cdots i}\sum_{k=1}^{n}(-1)^{k}\rho_{i_{1hkp}}\ldots\phi_{i_{k}}+\phi\acute{T}_{i_{1}\cdots\hat{i_{h}}\cdots t_{p}]t}(g_{i_{h^{J}}}$ .

Hence if we put

$\rho_{i_{1}\cdots\hat{i_{h}}\cdots i_{p}}=\sum_{k=1}^{p}(-1)^{k}\rho_{i_{1}}\ldots\hat{i_{hk}}\ldots\acute{\nu}\wedge(h\neq k)\ldots i_{p}\phi_{i_{k}}+\phi T_{i_{1}\cdots\hat{i_{h}}\cdots i_{p}}$ ,

then the last equation turns to

(4. 5) $T_{i_{1}\cdots i_{p};i}=-k \sum_{h=1}^{p}(-1)^{h}\rho_{i_{1}\cdots\hat{i_{h}}\cdots i_{p}g_{i_{h}i:}}$

and hence we get

$T_{i_{1}\cdots i_{p}:\iota}+T_{ii_{2}\cdots i_{p};i_{1}}$

$=-k \sum_{h=1}^{p}(-1)^{h}\rho_{i_{1}\cdots\hat{i_{h}}\cdot\cdot i_{p}g_{i_{h}i}-k\sum_{-}^{p}(-1)^{h}\rho_{ii_{2}\cdots\hat{i_{h}}\cdots i_{p}g_{i_{h}i_{1}}}}(h\neq 1)h-1$

$=-k[-\rho_{i_{2}\cdots i_{p}g_{i_{1}i}+\sum_{h=2}^{p}(-1)^{h}\rho_{i_{1}\cdots\hat{i_{h}}\cdots i_{p}g_{i_{h}i}]}}$

$-k[-\rho_{i_{f}\cdots t_{p}g_{i_{1}i}+\sum_{h=2}^{p}(-1)^{h}\rho_{ii_{2}\cdots\hat{i_{h}}\cdots i_{p}g_{i_{h}i_{1}}]}}$

$=k[2\rho_{i_{2}\cdots i_{p}g_{i_{1}i}-\sum_{h=2}^{p}(-1)^{h}\cdot(\rho_{i\cdots i\cdots ig_{i_{h^{f}}},+\rho_{ii_{2}\cdots\hat{i_{h}}\cdots i_{p}g_{i_{h}i_{1}})]}}}\iota hp$ .

This equation shows that $T_{i_{1}\cdots i_{p}}$ is a conformal Killing tensor field of degree
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$p$ whose associated tensor field is given by $k\rho_{i_{l}\cdots i_{p}}$ . Therefore we have
THEOREM 4. 2. Let $M^{n}$ be an $n$-dimensional Rimannian manifold of

constant cumature which admits a conformal Killing vector fifield $\xi^{t}$. Then
$M^{n}$ admits a conformal Killing tmsor fifield of degree $p$.

Department of Mathematics,
Hokkaido University
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