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1. Introduction Let A be a function algebra on a compact Hausdorff
space X, that is, a closed subalgebra of the complex Banach algebra C(X),
which contains the constant functions and separates the points of X. Gleason
discovered that ||\varphi-\psi||<2 defines an equivalent relation on the set Spec A
of all multiplicative linear functionals of A while Bishop introduced the
other metric \sigma(\varphi, \psi) on Spec A such that \sigma(\varphi, \psi)<1 defines the same
equivalent relations as Gleason’s, and K\"onig established an algebraic relation
between these two metrics (see [1 ; 143\sim 144] and [2, 3]). Importance of
Gleason’s equivalent classes, called Gleason parts, is shown by the fact that
\varphi and \psi belong to the same Gleason part if and only if they admit mutually
dominating representing measures in the sense that there are probability
measures \mu and \nu on X such that for all f in A

\varphi(f)=\int fd\mu_{:} \psi(f)=\int fd\nu

and \mu/k\leq\nu\leq k\mu {or some positive constant k. The minimum k can be de-

termind in terms of \sigma(\varphi, \psi) (see [2, 3]).
Let E be a subset of C(X), which is closed under multiplication and

contains the constant functions. M(E) is the set of all cotinuous multipli-
cative functions \Phi of E to the non-negative real numbers with ||\Phi||_{E}\leq 1 ,
where || ||_{E} denotes the supremum on the set of f with ||f||\leqq 1 . We shall
show that \sigma_{E}(\Phi, \Psi)=\sup_{r>0}||\Phi’.-\Psi^{r}||_{E}<1 defines an equivalent relation on M(E),

and that, in the case of a multiplicative group E, \Phi and \Psi belong to the
same equivalent class if and only if there exist positive measures \mu and \nu

such that \mu/k\leq\nu\leq k\mu for some k>0 and for all f in E

log \Phi(f)=\int\log|f|d\mu , log \Psi (f)= \int\log|f| d\nu .
Applicability of these results to Spec A is based on the observation that each
\varphi in Spec A is completely determined by the values of its modulus \Phi(f)=

|\varphi(f)| on any set containing exp A, the set of f with f=\exp(g) for some
g in A. We can take as E the whole space A, exp A or A^{-1}, the set of
inverlible functions. Associating to \varphi its modulus \Phi we shall show that
though \sigma_{A}(\Phi, \Psi) is trivial, that is, 0–1 valued, ||\Phi-\Psi||_{A} coincides with
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\sigma(\varphi, \psi) . \sigma_{\exp A}(\Phi, \Psi)<1 is shown to define the same equivalent relation as
Gleason’s while \sigma_{A^{-1}}(\Phi, \Psi)<1 introduces new equivalent classes, called log-
modular parts, in Spec A. We shall present several examples in which log-
modular parts coincide with or are different from Gleason parts.

The author expresses his sincere than\dot{k}s to Professor T. Ando for his
advice and encouragement.

2. Metric on M(E) M(E) consists of a^{4}11 continuous functions \Phi on
E such that \Phi(f)\geq 0 , \Phi(fg)=\Phi(f)\Phi(g) and ||\Phi||_{E}\leq 1 . Since the mapping
\alphaarrow\Phi(\alpha) is multiplicative and continuous on the positive numbers, either \Phi

vanishes identically or \Phi(\alpha)=^{j}\alpha^{k} for some constant k. ||\Phi||_{E}\leq 1 implies that
either \Phi(f)=0 or k is non-negative and \Phi(f)\leq||f||^{k} . With respect to point-
wise definition M(E) becomes a multiplicative semigroup, and together with
\Phi all its non-negative exponents \Phi^{r} belong to M(E). The order relation
\Phi_{1}\neg\prec\Phi_{2} is introduced to mean that there is \Psi\in M(E) with \Phi_{1}--\Psi\Phi_{2} . Then
\Phi_{1}{?}\Phi_{2} is equivalent to \Phi_{1}(f)\leq\Phi_{2}(f) for all f\in E with ||f||\leq 1 .

Let us introduce a functional:

\rho_{E}(\Phi, \Psi)=\sup\{| log [ \frac{1og\Phi(f)}{1og\Psi(f)}]| ; f\in E ||f||<1\}

with convention -\infty ) -\infty=1 . Clearly \rho_{E}(\Phi, \Psi)<\infty defines an equiv_{d}a1ent

relation on M(E) and is given by

\rho_{E}(\Phi, \Psi)=\inf {log k:\Phi^{k}{?}\Psi\neg\prec\Phi^{1/k} , k>1}

Now a metric on M(E) is defined by

\sigma_{E}(\Phi, \Psi)=\sup_{r>0}||\Phi^{r}-\Psi^{r}||_{E} .

THEOREM 1. \sigma_{E}(\Phi, \Psi) and \rho_{E}(\Phi, \Psi) are connected to each other by the
relation

\sigma_{E}(\Phi, \Psi)=H(\rho_{E}(\Phi, \Psi))\backslash ,

where H(x)(x\geq 0) is the monotone inceasing fudction defined by

H(x)=(e^{x}-1) exp [ \frac{xe^{x}}{1-e^{\iota}x}] .

In particular, \sigma_{E}(\Phi, \Psi)<1 defines an equivalent relation on M(E).
PROOF. Since H(x) is monotone increasing, it suffices to prove that\cdot for

1>\alpha\geq\beta\geq 0 .
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\sup_{r>0}(\alpha^{r}-\beta^{r})=H(\log(\frac{1og\beta}{1og\alpha})) .

If F(r)=\alpha^{r}-\beta^{r}, r>0 and r_{0}=\log([mathring]_{\frac{1g\beta}{1og\alpha}})/\log_{\beta}^{\alpha}, F’(r_{0})=0 .

F(r_{0})=[_{\alpha} \frac{1}{\log\alpha-\log\beta}\cross log ( \frac{1og\beta}{1og\alpha})]\cross[\frac{\log\beta-1og\alpha}{1og\beta}]

a^{I}nd

F(r_{0})=[_{\beta} \frac{1}{\log\alpha-\log\beta}\cross log ( \frac{1og\beta}{1og\alpha})]\cross[[mathring]_{[mathring]_{\frac{1g\beta-1g\alpha}{1og\alpha}}}]

\sup_{r>0}F(r)=\sqrt\overline{F(r_{0})F(r_{0})}

=[mathring]_{\frac{[mathring]_{\frac{1g\beta}{1g\alpha}}-1}{\sqrt\overline{[mathring]_{\frac{1g\beta}{1og\alpha}}}}} exp \lfloor\frac{1+\frac{1og\beta}{1og\alpha}}{1-\frac{1og\beta}{1og\alpha}}\cross\frac{1}{2}\log\frac{1og\beta}{1og\alpha}J

=H(\log([mathring]_{\frac{1g\beta}{1og\alpha}})) .

This completes the proof.
A positive measure \mu on X is called a Jensen measure for \Phi\in M(E) if

for all f\in E

log \Phi(f)\leq\int\log|f|d\mu .

If E becomes a multiplicative group, inequality in the above definition be-
comes equality. Existence of a Jensen measure can be shown just as in
Bishop (c.f. [1; 33- 34]). In fact, if \Phi(f)=0 for all f\in E, it is trivial. Let
\Phi(f)\leq||f||^{k} for a positive constant k. In the real Banach space C_{R}(X) of
all real valued continuous functions the convex cone of negative functions
is disjoint from the convex cone of functions u such that nu>k log |f|-
log \Phi(f) for some f\in E and some positive integer n, and a positive measure,
which represents a functional separating these two convex cones, is a Jensen
measure for \Phi .

THEOREM 2. The following assertions for \Phi, \Psi\in M(E) are equivalmt:
(1) \Phi^{k}{?}\Psi\subset*\Phi^{1/k} for some k>1 .
(2) there exist Jensm measures \mu for \Phi and \nu for \Psi such that \mu/k\leq

\nu\leq k\mu and for all f\in E
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\frac{1}{k}[\int\log|f|d\mu- log \Phi(f)]\leq\int\log|f|d\nu- log \Psi(f)

\leq k[\int\log|f|d\mu- log \Phi(f)] ,

with convmtion -\infty+\infty=0 . If E becomes a multiplicative group the last
integral inequalities are redundant.

Proof is almost parallel to Bishop (c.f. [1;143]). We may assume
\Phi^{\underline{-\neq}}0 and \Psi\not\equiv 0 . Suppose \Phi^{k}\neg\prec\Psi{?}\Phi^{1/k} for some k>1 . Then, there exist F
and G in M(E) such that \Phi^{k}=F\Psi and \Psi^{k}=G\Phi . There exist Jensen measures
\sigma for F and \tau for G. Put \mu=(k\sigma+\tau)/(k^{2}-1) and \nu=(k\tau+\sigma)/(k^{2}-1) , then \mu

and \nu are Jensen measures for \Phi and \Psi respectively. Clearly 0\leq\mu\leq k\nu and
0\leq\nu\leq k\mu . From \sigma=k\mu-\nu and \tau=k\nu-\mu, we get the latter haH of (2). This
shows that (1) implies (2).

If (2) is valid, for all f\in E

k log \Psi(f)- log \Phi(f)\leq\int\log|f|d(k\nu-\mu)

k log \Phi(f)- log \Psi(f)\leq\int\log|f|d(k\mu-\nu) .

Put F(f)=\Psi(f)^{k}/\Phi(f) if \Phi(f)\neq 0, F(f)=0 if \Phi(f)=0 and put G(f)=
\Phi(f)^{k}/\Psi(f) if \Psi(f)\neq 0 , G(f)=0 if \Psi(f)=0 . Then F\in M(E) and G\in M(E),
thus we get (1).

3. Gleason parts and log-modular parts Let A be a function algebra
on X. Let us denote for \varphi , \psi, \cdots in the set Spec A of all multiplicative
linear functionals of A their moduluses by corresponding capitals \Phi, \Psi, \cdots ;
\Phi(f)=|\varphi(f)| .

Gleason showed that ||\varphi-\psi||<2 defines an equivalent relation on Spec
A. Bishop and K\"onig introduced functions

\sigma(\varphi, \psi)=\sup\{|\psi(f)| ; \varphi(f)=0 , ||f||<1 , f\in A\}

and

G( \varphi, \psi)=\sup\{|\log Re\varphi(f)- log Re\psi(f)| ; Ref>0f\in A\}

respectively, and K\"onig showed the relations;

G( \varphi, \psi)=\log\frac{1+\sigma(\varphi,\psi)}{1-\acute{\sigma}(\varphi,\psi)}=2\log\frac{2+||\varphi-\psi||}{2-||\varphi-\psi||} .

To apply the results of \S 2, let us first take as E the whole space A.
Since for \varphi\neq\psi in Spec A there is f\in A with \psi(f)\neq 0 and \varphi(f)=0, \sigma_{A}(\Phi, \Psi)=0
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or 1 according as \varphi=\psi or not. Thus each equivalent class with respect to
\sigma_{A} reduces to a singleton. In this case, however, the metric ||\Phi-\Psi||_{A} itself
gives rise to the Gleason parts.

THEOREM 3. For \varphi , \psi\in SpecA

||\Phi-\Psi||_{A}=\sigma(\varphi, \psi) .

In particular, ||\Phi-\Psi||_{A}<1 defines the same equivalent relation as Gleason’s.

PROOF. Let A_{\varphi}=\{g\in A;\varphi(g)=0||g||<1\} . For any f\in A and ||f||<1 ,

we can write f= \frac{g+\varphi(f)}{1+\overline{\varphi(f)}g}g\in A_{\varphi} . For any g\in A_{\varphi} , let f= \frac{g+\lambda}{1+\overline{\lambda}g}|\lambda|<1 , then

f\in A and \varphi(f)=\lambda . Then,

|| \Phi-\Psi||_{A}=\sup_{g\in A_{\varphi}}\sup_{|\lambda|<1}\{||\lambda|-|\frac{\psi(g)+\lambda}{1+\overline{\lambda}\psi(g)}||\}

= \sup_{g\in A_{\varphi}}\sup_{0\leq t<1}\sup_{\theta}\{|t-|\frac{\psi(g)+e^{oj\theta}t}{1+e^{-i\theta}t\psi(g)}||\}

When t\geq|\psi(g)| , we can get by simple computation,

\sup_{|\psi(g)|\leq t<1}\sup_{\theta}\{|t-|\frac{\psi(g)+e^{i\theta}t}{1+e^{-i\theta}t\psi(g)}||\}=.\sup_{|\prime\prime(g)|\leq t<1}\{\frac{|\psi(g)|(1-t^{2})}{1-t|\psi(g)|}\}=|\psi(g)|

When t\leq|\psi(g)| , we can get similarly

\sup_{0\leq t\leq|\psi(g)|}\sup_{\theta}\{|t-|\frac{\psi(g)+e^{i\theta}t}{1+e^{-i\theta}t\psi(g)}||\}

= \sup_{0\leq t\leq|\psi(g)|}\max\{\frac{-t^{2}|\psi(g)|+2t-|\psi(g)|}{1-t|\psi(g)|} , \frac{|\psi(g)|(1-t’)}{1+t|\psi(g)|}.\}=|\psi(g) .

Thus,

|| \Phi-\Psi||_{A}=\sup_{\epsilon gA_{\varphi}}|\psi(g)|=\sigma(\varphi, \psi)
.

Secondly, let us take as E the set exp A. The metric \sigma_{\exp A}(\Phi, \Psi) coin-
cides with ||\Phi-\Psi||_{\exp A} for \varphi , \psi\in Spec A. Since

G( \varphi, \psi)=\sup\{\log|\frac{1og|\varphi(\exp f)|}{1og|\psi(evpf)|}| . ||\exp f||<1^{1}Jj

Theorem 1 and K\"onig’s result yields;
THEOREM 4. For \varphi , \psi\in SpecA

\sigma_{\exp A}(\Phi, \Psi)=H(\log\frac{1+\sigma(\varphi,\psi)}{1-\sigma(\varphi,\psi)}) ,
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where H(x)=(e^{x}-1) exp [ \frac{xl}{1-e^{x}}] .
In particular, \sigma_{\exp A}(\Phi, \Psi)<1 defines the same equivalent relation as

Gleason’s.
Jensen measures for exp A are merely representing measures.
Finally let us take as E the set A^{-1} of all invertible functions. Then

\sigma_{A^{-1}}(\Phi, \Psi)<1 defines an equivalent relation on Spec A. The \’equivalent class,
containg \varphi, is called the \log-modular part of \varphi . Then Theorem 2 yields;

THEOREM 5. Multiplicative linear functionals \varphi and \psi belong to the
same log-modular part if and only if there are positive measures \mu and \nu

on X such that \mu/k\leq\nu\leq k\mu for some k>0 and

\log|\varphi(f)|=\int 1og|f|d\mu and log | \psi(f)|=\int 1og|f| d\nu .

4. Examples Let A be a function algebra on a compact Hausdorff
set X. The \log-modular part of a multiplicative linear functional sometimes
coincides with its Gleason part, but sometimes not.

If exp A is (uniformly) dense in A^{-1}, \sigma_{A^{-1}}(\Phi, \Psi) coincides with \sigma_{\exp A}(\Phi, \Psi),
hence every \log-modular part is a Gleason part. Moreover, if A^{-1} is uni-
formly dense in A, every Gleason part (and hence every \log-modular part)
reduces to a single\grave{t}on.

If the set of all representing measures for a multiplicative linear func-
tional \varphi is finite dimensional, it is known [1; 113-114] that \varphi admits a Jensen
measure \mu (with respect to A^{-1}) such that every representing measure is
majorated by a scalar multiple of \mu . If \psi belongs to the Gleason part of
such \varphi, the set of representing measures for \psi is also finite dimensional.
Since \varphi and \psi admit mutually dominating representing measures, they admit
mutually dominating Jensen measures, hence by Theorem 5, \psi belongs to
the \log-modular part of \varphi .

THEOREM 6. If for some f\in A\varphi(f) lies on the boundary of the set
\langle\psi(f);\psi\in SpecA\} in the complex plane, then the log-modular part of \varphi is
contained in the set \{\psi\in SpecA;\psi(f)=\varphi(f)\} .

PROOF. Let \{s_{n}\} be a complex number sequence such that s_{n}\not\in\{\psi(f) ;
\psi\in Spec A\}n=1,2 , \cdots and s_{n}arrow\varphi(f), which lies on the boundary of the set
\{\psi(f);\psi\in SpecA\} . Let sup \{|s_{n}-\psi(f)|;\psi\in SpecA\}=c_{n}/2 and g_{n}= \frac{s_{n}-f}{c_{n}} , then
g_{n}\in A^{-1} and ||g_{n}||<1 . We can assume c_{n}\neq\geq 0, so \psi(g_{n})arrow 0 for every \psi\in SpecA

such that \psi(f=\varphi(f), while \psi(g_{n})\neq\geq 0 for every \psi\in Spece A such that \psi(f)\neq

\varphi(f) . Thus if \psi(f)\neq\varphi(f), \sigma_{A^{-1}}(\Psi, \Phi)=1 .
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To apply these results, let X be a compact plane set and A=R(X) the
subspace of functions in C(X), which are uniformly approximated by rational
functions with poles off X. It is well known [1; 27] that any multiplicative
linear functional \varphi on R(X) is realized by point evaluation at some x\in X ;
\varphi(f)=f(x) . Under this identification, the \log-modular part of x on the
boundary of X is a singleton. For the proof, apply Theorem 6 with f, the
coordinate function: f(x)=x. Further the set of representing measures for
x on the boundary is finite dimensional only if the Dirac measure at x is
the unique representing measure for x. In fact, since the finite dimen-
sionality leads to coincidence of Gleason and \log-modular parts, the Gleason
part of x reduces to a singleton. On the other hand, Wilken (c.f. [1;146])
showed that the Gleason part of x reduces to a singleton only if the Dirac
measure at x is the unique representing measures for x.

A Swiss cheese X[1 ; 25-26] of the complex plane shows an example
that the Gleason parts are different from the \log-modular parts in R(X).
In fact, there exist the points which are not peak point, while each point
of X is one point \log-modular part.

Research Institute of Applied Electricity,

Hokkaido University

References

[1] GAMELIN, T. W. : Uniform algebras, Prentice-Hall, Inc. 1969.
[2] K\dot{O}NIG, H. : Zur abstruckten Theorie der analytishen Funktionen. II, Math. Ann.,

Vol. 1 163 (1966), 9-17.
[3] K\ddot{O}NIG , H. : On the Gleason and Harnack metrics for uniform algebras, Proc.

Am. Math. Soc., Vol. 22 (1969), 100-101.

(Received August 31, 1972)


	1. Introduction
	2. Metric on M(E)
	THEOREM 1. ...
	THEOREM 2. ...

	3. Gleason parts and log-modular ...
	THEOREM 3. ...
	THEOREM 4. ...
	THEOREM 5. ...

	4. Examples
	THEOREM 6. ...

	References

