
On the structure of the oriented cobordism
ring modulo an equivalence

By Yoshifumi ANDO

\S 0. Introduction

Let L denote the subgroup of \Omega_{n}^{so} , the oriented cobordism group of
dim n, generated by all [M’-M]\in\Omega_{n}^{so} such that M and M’ have the same
oriented homotopy type. Then I_{*}= \sum_{n\geq 0}I_{n} is an ideal of \Omega_{*}^{so} . In this paper

we will determine the structure of \Omega_{*}^{so}/I_{*} modulo 2-t0rsi0n.
THEOREM 0. 1. The rank of \Omega_{4[mathring]_{k}}^{s}/I_{4k} is one.
THEOREM 0. 2. For an odd prime p, Tor (\Omega_{*}^{so}/I_{*})\otimes Z_{p} is isomorphic to

the polynomial ring Z_{p}^{r}[\beta_{p-1}, \cdots, \beta_{a\frac{p-}{2}}1,] \cdots , where all a are positive integers

so that a( \frac{p-1}{2}) is not any form of \frac{p^{f}-1}{2}(j=1,2,3, \cdots) and the degree

of \beta_{a^{\frac{p-1}{2}}} is 2a(p-1).
Theorem 0. 1 has been proved in [4].
In \S 1 we will show that there is an \Omega_{*}^{so}-homomorphism d_{*}; \Omega_{*}^{so}(F/0)arrow\Omega_{*}^{so}

so that Cok (d_{*}) is isomorphic modulo 2-torsion to Tor (\Omega_{*}^{so}/I_{*}) . This hom0-
morphism is originally found in [9, 10] . In \S 2 we will compute Cok (d_{*}) .

All manifolds will be compact, oriented and smooth.
The arthor wishes to thank Professors H. Toda, M. Adachi and G.

Nishida for their helpful advices and encouragement, Professor M. Mimura
who read the original manuscript and Professor A. Tsuchiya who suggested
a proof of Lemma 1. 3.

\S 1. Interpetation of \Omega_{n}^{so}/I_{n}

Let M and M’ be manifolds of dim n and a:(M, \partial M)arrow(M’, \partial M’), a
homotopy equivalence of degree 1. (Both of a|M and a|\partial M are homotopy
equivalences). We denote this by a triple (a, M, M’). If M and M’ are
closed, simply connected, or manifolds of dim n, then we call a triple (a, M,
M’) closed, simply connected, or of dimn. We define that closed triples
of dim n(a, M, M’) and (b, N, N’) are cobordant if there exists a triple of
dim (n+1), (A, V, V’) with \partial V=M\cup(-N), \partial V’=M’\cup(-N’), A|M=a and
A|N=b . Then it is easily seen that this is an equivalence relation. As
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usual we define the cobordism group \Omega_{n}^{h-eq} : an abelian group of the cobordism
classes of closed, simply connected triples of dim n. In the definition we
require for convenience that cobordism manifolds are also simply connected.
The zero element is a triple cobordant to an empty set.

Then we can define a homomorphism \overline{d}_{n} : \Omega_{n}^{h-eq}arrow\Omega_{n}^{so} by mapping a triple
of dim n, (a, M, M’) into [M-M’]\in\Omega_{n}^{so} . Note that the image of d_{n} is con-
tained in I_{n} . We will prove that its converse is also true.

LEMMA 1. 1. The image of \overline{d}_{n} is I_{n} .
(PROOF) If dim n\leqq 3 , the lemma is trivial. So we may assume n>3 .

We will prove that a closed triple (a, M, M’) is cobordant to a simply con-
nected triple (a_{0}, M_{0}, M_{\acute{0}}) . We can suppose that M, M’ are connected. Let
\alpha_{1} , \cdots , \alpha_{m} be the finite generators of \pi_{1}(M’) . We represent \alpha_{i} by an em-
bedding \alpha_{\acute{i}} : S^{1}arrow M’(i=1,2, \cdots, m) with a path combining the point of M’
with an embedded circle S_{\acute{i}}=\alpha_{i}(\prime S^{1}) . Let S_{i}’\cross D^{n-1} be the normal disk bundle
of S_{i}’ . Since n>3 , we may assume that S_{i}’\cross D^{n-1}(i=1, \cdots, m) do not meet
each other. Let a be transverse regular on \cup S_{i}’m . Since \pi_{1}(M)\cong\pi_{1}(M’),

i=1
we can make a^{-1}(S_{i}’) connected by the usual method. We denote a^{-1}(S_{i}’)=S_{i}

(i=1,2, \cdots, m) . Since a is a map of degree 1, a|S_{i} : S_{i}arrow S_{i}’ is of degree 1.
Therefore by changing a by the homotopy extension theorem, we may con-
sider that a|a^{-1}(S_{i}’\cross D^{n-1})=id. We now surgery M, M’ by these embeddings.
Let W and W’ be their surgery traces and M_{0} , M_{\acute{0}} the oposite boundaries
respectively. Then we can extend a:Marrow M’ to a map A:Warrow W’ so that
A(M_{0})\subset M_{\acute{0}} . Then A is a homotopy equivalence of degree 1. Since \pi_{1}(M_{0})

=\pi_{1}(M_{0})=0, the isomorphism A_{*}: H_{*}(W, M_{0})arrow H_{*}(W’, M_{\acute{0}}) shows that a_{0} :
M_{0}arrow M_{\acute{0}} is an homotopy equivalence of degree 1, where a_{0}=A|M_{0} . Q. E. D.

Here we recall the results of D. Sullivan [9, 10] . Let M be a simply
connected manifold with dim M\geq 5 and hS(M), the concordance classes of
homotopy smoothings. D. Sullivan has defined \eta:hS(M)arrow[M, F/0] and a
surgery obstruction \mathscr{S}:[M, F/0]arrow Z when dim M\equiv 0(4). For the rest of
the paper we often use the construction of \mathscr{S} . Here we recall it. The
homotopy classes [M, F/O] corresponds isomorphically to the equivalence
classes of F/O-bundles over M. Let f:Marrow F/0 and (E, t) be a corresponding
F/O-bundle and a spherical trivialization t:Earrow D^{n} (D^{n} is the unit n-disk).
H\overline{\gamma} is a universal F/O-bundle, then E is the associated disk bundle of f^{*}(\overline{r}) .
Let t be transversal regular on 0\in D^{n} . If we put t^{-1}(0)=M’ . then \mathscr{S} is
defined by .\mathscr{S}(f)=1/8(I(M)-I(M’)) . Note that \tau_{M},=a^{*}\tau_{M}+a^{*}f^{*}(\overline{\gamma}), where
a:M’arrow M is a restriction of a projection Earrow M.

Note that a triple (a, M, M’) is a homotopy equivalence. We can define
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\overline{r/}:\Omega_{n}^{h-eq}arrow\Omega_{n}^{so}(F/0), by mapping a triple \alpha=(a, M, M’) into the cobordism
class of \eta(\alpha) . Let (A, W, W’) be a cobordism of (a, M, M’) and (a_{0}, M_{0}, M_{\acute{0}}) .
Then the following diagram commutes,

hS(W)-[W, F/0]
\downarrow r \downarrow r

hS(M\cup(-M_{0}))arrow[M\cup(-M_{0}), F/0]

where r is the restriction map. This shows that \overline{\eta} is well defined. It is
clear that \overline{\eta} is a homomorphism. If we provide \Omega_{*}^{h-eq}=\sum_{n\geqq 0}\Omega_{n}^{h-eq} with an \Omega_{*}^{so}-

module structure by [N]\cross\alpha=(a\cross id, M\cross N, M’\cross N) for [N]\in\Omega_{m}^{so} , \alpha=(a, M,
M’)\in\Omega_{n}^{h-eq} , then \overline{\tau_{J^{*}}}:

\Omega_{*}^{h-eq}arrow\Omega_{*}^{so}(F/O) is an \Omega_{*}^{so}-homomorphism. In fact \eta([N]

\cross\alpha)=P_{1}\circ\eta(\alpha) , where P_{1} is a projection: M’\cross Narrow M’ . The map \#;bP_{n+1}arrow

hS(M) in [9, Theorem 3] also induces a homomorphism \#:bP_{n\dagger 1}arrow\Omega_{n}^{h-eq} by
defining \# ( \sum)= (a map of degree 1, \sum , S^{n}) for \sum\in bP_{n+1} , S^{n} standard sphere.
Note that the connected sum (a, \sum, S^{n})\#(b, M’, M) is defined and cobordant
to (a \cup b, \sum\cup M, s^{n}\cup M’) for a simply connected triple (a, M, M’) since we
can change a:Marrow M’ so that a is an identity map on some embedded small
n-disks of M and M’. With these notations the following proposition is an
easy consequence from [9, Theorem 3].

PROPOSITION 1. 2. For n\geqq 5 , the sequmce

bP_{n+1}\Omega_{n}^{h-eq}arrow\Omega_{n}^{si}(F/0).arrow P_{n}\underline{\#}\eta \mathscr{S}

is an exact sequmce.
(PROOF) Let \alpha=(a, M, M’)\in\Omega_{n}^{h-eq} and \overline{\eta}(\alpha)=0 . Then we have a map

f:W’arrow F/0 with \partial W’=M’ and f|M’=\eta(\alpha) . By the same argument as
above we have a normal map of degree 1 A:Warrow W’. (This is a Browder’s
notation [3, \S 2] ) . It follows form [3, (2. 11)] that there exists an homotopy
equivalence B : ( V, \partial V)arrow(W’, \partial W’) so that \partial V=M\#\sum for some \sum\in bP_{n+1}

and B|\partial V=a\# (a map of degree 1). Other parts is immediate from [9,

Theorem 3]. Q. E. D.
Let f:M’arrow F/0 be a representative element of x\in\Omega_{n}^{so}(F/0) and h :

Marrow M’ a normal map of degree 1 corresponding to f. If we define d_{n} by
d_{n}(x)=[M-M’]\in\Omega_{n}^{so} , then d_{*}= \sum_{n\geq 0}d_{n} : \Omega_{*}^{so}(F/0)arrow\Omega_{*}^{so} is well defined and an
\Omega_{*}^{so}rightarrow homomorphism . In fact let f\circ P_{1} be the composition: M’\cross Narrow M’-F/O .
Then we can take (h\cross id, M\cross N, M’\cross N) as the corresponding normal map
of degree 1. Since d_{*} is an \Omega_{*}^{so}-homomorphism, Cok (d_{*}) has a ring structure
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induced from that of \Omega_{*}^{so} . Then we have the following
THEOREM 1. 2. The ring Tor (\Omega_{*}^{so}/I_{*}) is isomorphic modulo 2-torsion to

the ring Cok (d_{*}) .
(PROOF) We only need to consider *\equiv 0(4) . At first we prove this for

n=4. There exists an almost parallelizable closed manifold M’ of dim 4
with index 16. [5, Theorem 2]. It follows from [5, Lemma 1] that the
stable normal bundle \nu of an almost parallelizable manifold is trivial as a
spherical fiber space. Let E be the associated disk bundle of \nu . If we take
a spherical trivialization t , we have an F/O-bundle (E, t). This is an element
\alpha of \Omega_{4}^{so}(F/0) . Let a:M->M’ be a map of degree 1 which is constructed
as above from (E, t). Then \tau_{M}=a^{*}(\tau_{M’}\oplus\nu) which is a trivial bundle. Since
M is a parallelizable manifold, I(M)=0. Therefore the index of d(\alpha)=

I(M)-I(M’)=-I(M’)=-16. Note that \Omega_{4}^{so} is characterized by index. So
Cok (d_{4}) is a 2-torsion. On the other hand I_{4}=0 and \Omega_{4}^{so}/I_{4}\cong\prime Z, that is,
Tor (\Omega_{4}^{so}/I_{4})=0 . For n\equiv 0(4) , n>4 , we have the following commutative
diagram

\overline{\eta}

.\mathscr{S}

0arrow\Omega_{n}^{h-eq}arrow\Omega_{n}^{so}(\not\in/0)arrow Z

\downarrow\overline{d}_{n} \downarrow d_{n}

I
\downarrow\cross 8

Oarrow KerIarrow\Omega_{n}^{so} –arrow Z-0 .
In fact, bP_{n+1}=0 for n\equiv 0(4)[6] . If \alpha=(a, M, M’)\in\Omega_{n}^{h-rq} , then d_{n}\circ\overline{\eta}=[M-

M’] . [M-M’] is an element of Ker I. This is the first vertical map. The
identity 8\mathscr{S}=J\circ d_{n} follows from the definition of .\mathscr{S} . This diagram leads us
to the exact sequence

Oarrow KerI/I_{n}arrowCok (d_{n})arrowCok (8 \cdot.\mathscr{S})arrow 0r

It follows from Lemma 1. 3 that Cok (d_{n}) is isomorphic modulo 2-torsion to
Ker I/I_{n} . Since the ring structure of Cok (d_{*}) and Ker I/I_{*} is induced from
that of \Omega_{*}^{so} , it is clear that the isomorphism: Ker I/I_{*}arrow Cok(d_{*}) is a ring
isomorphism. Lemma 1. 4 completes the proof. Q. E. D.

LEMMA 1. 3. Cok (8 \cdot.\mathscr{S})is a 2-t0rsi0n.
(PROOF) As above we have an element \alpha of \Omega_{4}^{so}(F/0) with .\mathscr{S}(\alpha)=2 .

Since \mathscr{S} is an \Omega_{*}^{so}-homomorphism and the index of 2n dimensional complex
projective space is one, Cok (8 \cdot.\mathscr{S}) is a 2-torsion group. Q. E. D.

LEMMA 1. 4. Cok (d_{n}) is a torsim group.
(PPOOF) ‘ Let f:M’arrow F/0 and a:Marrow M’ be as above. It follows from
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the construction of (a, M, M^{r}) that \tau_{M}=a^{*}\circ f^{*}\overline{\gamma}+a^{*}\tau_{M} . Let \gamma be a universal
oriented bundle over BSO, i:F/Oarrow BSO the inclusion. Then the universal
F/O-bundle \overline{\gamma} is i^{*}\gamma with a spherical trivialization. Let \mu:F/O\cross BSO- BSO
be the classifying map of \overline{\gamma}\cross\gamma, P_{2} : F/O\cross BSO- BSO the projection on the
second factor and c:M’arrow BSO the classifying map of \tau_{M’} . Then a^{*}\circ f^{*}(\overline{\gamma})

\oplus a^{*}\tau_{M’}=a^{*}\circ\Delta^{*}\circ(f\cross c)^{*}(\overline{\gamma}\cross\gamma)=a^{*}\circ\Delta^{*}\circ(f\cross c)^{*}\circ\mu^{*}(\gamma)=(\mu\circ(f\cross c)\circ\Delta\circ a)^{*}(\gamma),
where \Delta:M’arrow M’\cross M’ is a diagonal map. This shows the following dia-
gram commutes:

\overline{h}_{n}

lim \Pi_{n+k}(F/0_{\Lambda}^{+}MSO(k))arrow H_{n}(F/0\cross BSO:Z)

\vec{k\cong}|\varphi

d_{n} h_{n}

\downarrow (\mu_{*}-P_{2}*)((-1)\cross id)_{*}

\Omega_{n}^{so}(F/0)-\Omega_{n}^{so}–-H_{n}(BSO:Z)

where h_{n},\overline{h}_{n} are the Thom homomorphism and (–1) denotes the inverse
map. Let \overline{c}:M’arrow BSO be the classifying map of the stable normal bundle
of \nu_{M’} . If \alpha represents (M’, f), then it is well known that \overline{h}_{n}\cdot\varphi(\alpha)=

(f\cross c)_{*}\circ\Delta_{*}([M’]), where [M’] is the fundamental class of M’([2]). P_{2_{*}}\circ((-1)

\cross id)_{*}\circ(f\cross\overline{c})_{*}\circ\Delta_{*}([M’])=\overline{c}_{*}([M’]) . \mu_{*}\circ((-1)\cross id)_{*}(f\cross\overline{c})_{*}\circ\Delta_{*}([M’])=

\mu_{*}((-f)\cross\overline{c})_{*}\circ\Delta_{*}\circ a_{*}([M])=(-1)_{*}\circ\mu_{*}\circ(f\cross c)_{*}\circ\Delta_{*}\circ a_{*}([M])=(-1)_{*}\circ(\mu\cdot(f

\cross c)\circ\Delta\circ a)_{*}([M]). It follows from the definition of h_{n} that h_{n}\circ d_{n}(\alpha)=(-1)_{*}

(\mu\circ(f\cross c)\circ\Delta\circ a)_{*}([M])-c_{*}([M’]) .
Now we complete the proof. It is well known that the kernel of h_{n}

is a 2-torsion and that h_{n} and \overline{h}_{n} are isomorphism modulo a torsion. These
facts show that Cok (d_{n}) is isomorphic modulo a tQrsion to Im (h_{n})/{\rm Im}(\mu_{*}-

j
P_{2}*)\circ((-1)\cross id)_{*} . If we consider a map: F/Oarrow F/0\cross BSO, then P_{2}\circ i=*

and \mu\circ j=i . Since i_{*}: H_{*}(F/0:Z)arrow H_{*}(BSO:Z) is an isomorphism modulo
torsion, the above module is a torsion. Therefore Cok (d_{n}) is a torsion.
Q. E. D.

It follows from this lemma that Tor (\Omega_{n}^{so}/I_{n})=Ker I/I_{n} .

\S 2. On the structure of Tor (\Omega_{*}^{so}/I_{*})\otimes Z_{p} : p an odd prime

In this section p is always an odd prime. We denote the mod p total
Pontrjagin class 1+p_{1}+p_{2}+\cdots+p_{n}+\cdots , p_{i}\in H^{4i} (BSO:Z^{r} p) by f=1r^{n}I(1+x_{f}^{2}) , dim
x_{f}=2 . For any partition \omega=(i_{1}, \cdots, i_{r}), let S_{\omega} denote the elements of
H^{**}(BSO:Z_{p}) defined by the functions \sum x_{1}^{2i_{1}}x_{2}^{2i_{2}}\cdots x_{r}^{2i_{r}} , where the sum de-
notes the smallest symmetric functions containing the monomial x_{1}^{2p_{1}}x_{2}^{2i_{2}}\cdots x_{r}^{2i_{r}} .
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Let \beta_{w}\in^{\backslash }H_{*}(BSO:Z^{r} p) be the dual element of S_{\omega} . Let S_{n}=S_{(n)} , \beta_{n}=\beta_{(n)} .
Then H_{*}(BSO:\swarrow^{r}/_{p}) is the polynomial ring Z_{p}[\beta_{1}, \beta_{2}, \cdots, \beta_{n}, \cdots] .

Recall that \Omega_{*}^{so}/Tor is the polynomial r,ing over the generators [M_{4n}]

(n=1,2,\cdots) where if n is not of the form \frac{q^{j}-1}{2} for any prime q, then

S_{n}([M_{4n}])=1 , S_{n}\in H^{4n}(BSO:Z) and if n is \frac{q^{f}-1}{2} for a prime q, then all

the Pontrjagin numbers of M_{4n} are divisible by q. Let P denote the*pro-

jection: Z_{p}[\beta_{1}, \beta_{2}, \cdots, \beta_{n}, \cdots]arrow Z_{p}[\cdots, \beta_{v}, \cdots] , where v are not any \frac{p^{f}-1}{2}

(j=1,2, \cdots) . Then P induces an isomorphism of Image h_{*} onto Z_{p}[\cdots, \beta_{v}, \cdots] ,
where h_{*} is the Thom homomorphism \Omega_{*}^{so}arrow H_{*}(BSO:Z_{p}) . If we prove
the following proposition, Cok (d_{*}) is isomorphic to Z_{p}[\cdots, \beta_{a^{\frac{v- 1}{2}}}, \cdots] since

Kernel h_{*} is a 2-torsion and p is an odd prime. We will need the following
Quillen’s result t\={o} prove the proposition.

(2. 1) (Quillen) Let J be the J-homomorphism. Then Kernel (J) coin-
cides with the subgroup of KO(X) generated by the elements k^{e(k)}(\psi^{k}-1)(\xi),
where e(k) is a sufficiently large integer, \psi^{k} is the Adams operation, and
\xi\in KO(X)[7] .

PROPOSITION 2. 2. The image of P\circ h_{*}\circ d_{*} is the ideal of Z_{p}^{\Gamma}[\cdots, \beta_{v}, \cdots]

generated by all \beta_{i} , where i is not any multiple of \frac{p-1}{2} .

(PROOF) We shall prove this by induction on degree. The statement
of degree 0 is trivial. Suppose that the proposition is valid in degree less
than n. Let a\in Z_{p}[\cdots, \beta_{v}, \cdots] , b be an element of the above ideal and degree
of a\cdot b=n , degree of b\neq 0 . Then there exists x\in\Omega_{*_{2}}^{so} and y\in\Omega_{*}^{so}(F/0) so that
P\circ h_{*}(x)=a and P\circ h_{*}\circ d_{*}(y)=b. Since d_{*} is an \Omega_{*_{\backslash }}^{so}-homomorphism P\circ h_{*}\circ

d_{*}(x\cdot y)=a\cdot b. Hence all the decomposable element of degree n of the above
ideal are contained in the image of P\circ h_{*}\circ d_{*} . If n\equiv 0(2(p-1)), then the
proposition is true. If n\not\equiv 0(2(p-1)) and n=4l , then we only need to show
that \beta_{l} is contained in the ideal. Let \eta be the canonical complex line bundle
over CP^{2l} . The associated spherical fiber space of k^{e}(\psi_{R}^{k}-1)\eta (we denote
this by \xi for convenience) becomes trivial by (2. 1) if e is sufficienty large
integer compairing with an integer k . We now choose a spherival trivi-
alization t of \xi . This is an F/O-bundle. So we have a normal map of
degree 1: a:Marrow CP^{2l} which corresponds to the F/O-bundle (\xi, t) . Recall
that the stable tangent bundle \tau_{M} is a^{*}\xi\oplus a^{*}\tau_{CP^{2l}} . Let f:CP^{2l}arrow F/0 be the
classifying map of (\xi, t) and \alpha=(CP^{2l}, f)\in\Omega_{4l}^{so}(F/O) . Then \langle S_{l}, h_{4l}\circ d_{4l}(\alpha)\rangle=

\langle S_{l}(\tau_{M}), [M]\rangle-\langle S_{l}(\tau_{CP}), [CP^{2l}]\rangle=\langle S_{l}(a^{*}\xi\oplus a^{*}\tau_{CP}), [M]\rangle-\langle S_{l}(\tau_{CP}), [CP^{2l}]\rangle=
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\langle S_{l}(\xi\oplus\tau_{P\vee}), [CP^{2l}]\rangle-\langle S_{l}(\tau_{CP}), [CP^{2l}]\rangle=\langle S_{l}(\xi)_{1}, [CP^{2l}]\rangle+\langle S_{l}(\tau_{CP}), [CP^{2l}]\rangle-

\langle S_{l}(\tau_{CP}), [CP^{2l}]\rangle=\langle S_{l}(\xi), [CP^{2l}]\rangle=\langle S_{l}(k^{e}(\psi_{R}^{k}rightarrow 1)\eta), [CP^{2l}]\rangle . Since S_{l}(k^{e}(\psi_{R}^{k}

-1)\eta)=k^{e}(k^{2l}-1)S_{l}(\eta) and \langle S_{l}(\eta), [CP^{2l}]\rangle=1 , \langle S_{l}, h_{4l^{Q}}d_{4l}(\alpha)\rangle=k^{e}(k^{2l}-1). It
is known that the greatest common divisor of all k^{e}(k^{2l}-1) divides m(2l)
[ 1 , Theorem 2. 7]. On the other hand m(2l) is not divisible by p \’if 2l\not\equiv 0

(mod (p-1)) [1, P139] . Hence if 2l^{-}\neq 0(p–1), then there exists k^{e}(k^{2l}-1)

for some k so that k^{e}(k^{2l}-1)\underline{\neq-}0(p) . That is h_{n}\circ d_{n}(\alpha)=a\cdot\beta_{l}+decomposable

terms, where a\not\equiv 0(p). This completes the proof.
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