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Geometric characterization of Monge-Ampère equations
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Abstract. It is well known that a Monge-Ampère equation can be expressed in

terms of exterior differential system—Monge-Ampère system, which is the ideal gen-

erated algebraically by a contact form and a 2-form and its exterior derivatives on a

5-dimensional contact manifold, and the system is independent of the choice of coor-

dinate system. On the other hand, a single second order partial differential equation

of one unknown function with two independent variables corresponds to the differ-

ential system on a hypersurface of Lagrange-Grassmann bundle over a 5-dimensional

contact manifold obtained by restricting its canonical system to the hypersurface. We

observe relations between Monge characteristic systems of Monge-Ampère equation

and those of Monge-Ampère system and particularly analyze structure equations of

those systems. This observation leads to the result—to characterize Monge-Ampère

equation by the property that the certain differential system defined from the Monge

characteristic system drops down to the contact manifold.

Key words: differential system, exterior differential system, partial differential equa-

tion, Monge-Ampere equation, Goursat equation, Monge characteristic system.

1. Introduction

An exterior differential system on a manifold Σ, or called EDS for short,
consists of a differential ideal I on Σ, that is, an algebraic ideal of the differ-
ential algebra of differential forms on Σ closed under exterior differentiation.
Let I =

{
ψ1, . . . , ψn

}
diff

denote an EDS algebraically generated by differ-
ential forms ψ1, . . . , ψn and its derivatives dψ1, . . . , dψn. For a point p ∈ Σ,
V is an integral element of an EDS I on Σ if V is a subspace of TpΣ such
that ψ|V = 0 for all ψ ∈ I. An integral manifold of an EDS I on Σ is an
immersed submanifolder ι : M ↪−→ Σ such that ι∗ψ = 0 for all ψ ∈ I.

For a (classical) Monge-Ampère equation in coordinates description

Azxx + 2Bzxy + Czyy + D + E
(
zxxzyy − z2

xy

)
= 0, (1.1)

where each capital letter indicates a function of variables x, y, z, zx, zy, we
consider the following EDS
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I = {θ, Ψ}diff ,

where θ = dz − pdx− qdy and

Ψ = Adp ∧ dy + B(−dp ∧ dx + dq ∧ dy)

− C dq ∧ dx + D dx ∧ dy + E dp ∧ dq. (1.2)

Then a 2-dimensional integral manifold of I on which dx∧dy is nonvanishing
is locally the graph of a solution of the Monge-Ampère equation (1.1).

Let J be a 5-dimensional contact manifold with contact form θ and Ψ
a 2-form on J and suppose Ψ 6≡ 0 (mod θ, dθ). Then the EDS

I = {θ, Ψ}diff

is called a Monge-Ampère system on J . By Darboux’s Theorem, there exists
a coordinate system (x, y, z, p, q) of J such that θ = dz−pdx−qdy and (1.2)
holds (see [IL03]). Locally, a 2-dimensional integral manifold of a Monge-
Ampère system on which dx ∧ dy is nonvanishing is the graph of a solution
of a Monge-Ampère equation (1.1).

We study regular single second order partial differential equations

F (x, y, z, zx, zy, zxx, zxy, zyy) = 0 (1.3)

of one unknown function with two independent variables. We regard them
geometrically as differential systems (R, D) where R is a hypersurface in the
Lagrange-Grassmann bundle L(J) over a contact manifold J of dimension
5 and D is the restriction of the canonical system E on L(J) to R.

In this article, we give a geometric characterization of the class of Monge-
Ampère equations in terms of Monge characteristic systems, in both hyper-
bolic and parabolic cases.

Here, a hyperbolic (resp. parabolic) PDE is an equation (1.3) which sat-
isfies AC − 1

4B2 < 0 (resp. AC − 1
4B2 = 0) at any point, where A = ∂F

∂zxx
,

B = ∂F
∂zxy

and C = ∂F
∂zyy

.
From the structure equations in each case we define the Monge charac-

teristic systems Mi for PDE (R, D), and the Monge characteristic systems
Hi for Monge-Ampère system I in Section 2. We denote by Ch(∂D) the
Cauchy characteristic system of the first derived system ∂D of D.
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We observe relations between Monge characteristic systems Mi and Hi

and particularly analyze structure equations of those systems: If (R, D) is
hyperbolic PDE, the first and second derived systems ∂Mi, ∂2Mi of D are
regular and of rank 4 and 5, and ∂Mi + Ch(∂D) coincides with pullbacks
of Hi (Theorem 3.3 and Corollary 3.4). We observe also in parabolic case
(Theorem 3.11).

This observation leads to main results in this paper.
One of main results is stated as follows: Suppose a regular second order

partial differential equation (R, D) of one unknown function with two inde-
pendent variables is hyperbolic and suppose one of the differential systems
on R, ∂M1 +Ch(∂D) or ∂M2 +Ch(∂D) drops down to J . Then (R, D) co-
incides with the Monge-Ampère equation associated with a Monge-Ampère
system I on J . Moreover ∂M1 +Ch(∂D) and ∂M2 +Ch(∂D) are pullbacks
of the Monge characteristic systems Hi of I.

We give a characterization of Monge-Ampère equations also in parabolic
case (Theorem 4.6).

There are some earlier researches for Monge-Ampère equation. For ex-
ample, V. V. Lychagin ([Lyc79]) discussed non-linear second-order differ-
ential operator and a generalization of Monge-Ampère equations by using
non-linear second-order differential operators.

Especially, R. B. Gardner and N. Kamran ([GK93]) investigated invari-
ants which characterized Monge-Ampère equation in hyperbolic case and
R. L. Bryant and P. A. Griffiths ([BG95]) did in parabolic case. They call
these invariants Monge-Ampère invariants.

R. L. Bryant and P. A. Griffiths described the structure equation of non-
Goursat system ([BG95, p. 556]) and showed that a non-Goursat parabolic
system is locally equivalent to an equation of Monge-Ampère type if and
only if the Monge-Ampère invariant Ψ = S0 π3 ∧ π4 vanishes.

In Section 2 we recall our notations and definitions, and describe the pro-
longation of Monge-Ampère systems. Separating hyperbolic and parabolic
cases, in Section 3 we mention relations between the Monge characteristic
systems of Monge-Ampère systems and those of the corresponding Monge-
Ampère equations (Lemma 3.1, Theorem 3.3 and Corollary 3.4 in hyperbolic
case and Lemma 3.9 and Theorem 3.11 in parabolic case). Additionally, we
look at relations between numbers of independent first integrals of Monge
characteristic systems of Monge-Ampère systems and those of the corre-
sponding Monge-Ampère equations (Corollary 3.2 and 3.5 in hyperbolic case
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and Corollary 3.10 in parabolic case). Section 4 deals with characterizations
of Monge-Ampère equations (Theorem 4.1 in hyperbolic case and Theorem
4.6 in parabolic case).

In this paper we assume all objects are of class C∞.

2. preliminaries

We recall some definitions and fix our notations, following [IL03] and
[Yam82].

In order to consider partial differential equations as geometrical sub-
jects, we utilize differential systems and exterior differential systems.

A differential system D on a manifold R is a subbundle of the tangent
bundle TR of R. A differential system D is locally defined by linearly
independent 1-forms ω1, . . . , ωr as follows:

D = {ω1 = · · · = ωr = 0},

where r is the corank of D. The Cauchy characteristic system Ch(D) of D

is defined by

Ch(D)(x) = {X ∈ D(x) | Xy dωi ≡ 0 (mod ω1
x, . . . , ωr

x)}

at each point x ∈ R. For a point x ∈ R, v is an integral element of the
differential system D if v is a subspace of TxR such that ωk|v = 0 and
dωk|v = 0 for all 1 ≤ k ≤ r. An integral manifold of the differential system
D is a submanifold M of R such that ωk|M = 0 and hence dωk|M = 0 for
all 1 ≤ k ≤ r.

The first derived system ∂D of a differential system D is defined by, in
terms of sections,

∂D = D + [D,D]

where D is the space of sections of D and [, ] is Lie bracket for vector fields.
Furthermore, the k-th derived system ∂kD is defined inductively as follows:
if ∂k−1D is a differential system, then

∂kD = ∂(∂k−1D)
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where we put ∂0D = D for convention. A differential system D is completely
integrable if ∂D coincides with D. A function f on a domain of R is a first
integral of D if df ≡ 0 (mod D⊥), where D⊥ is the set of annihilators of
D, and then we say that D has a first integral f .

Let J be a manifold of dimension 2n + 1 and C a differential system
on J of corank 1, which means that, at each point u ∈ J , there exists a
nonvanishing 1-form θ around u such that C = {θ = 0}. Then (J,C) is
called a contact manifold if θ ∧ (dθ)n is nonvanishing. The notation (J,C)
is often shortened to J in this paper.

Starting from a (2n + 1)-dimensional contact manifold (J,C), we now
construct Lagrange-Grassmann bundle L(J) over (J,C) and the canonical
system E on L(J) as follows: let L(J) be the space consisting of all n-
dimensional integral elements of C, that is,

L(J) =
⋃

u∈J

L(J)u
π−−−−→ J

where L(J)u is the Grassmannian of all Lagrangian subspaces of the sym-
plectic vector space (C(u), dθu) and π is the canonical projection. The
canonical system E on L(J) is defined by

E(v) = π−1
∗ (v) ⊂ Tv(L(J)) for v ∈ L(J).

We now take a coordinate system of L(J) as follows: let us fix a point vo ∈
L(J). By Darboux’s Theorem, there exists a canonical coordinate system
(x1, . . . , xn, z, p1, . . . , pn) around uo = π(vo) such that θ = dz−∑n

i=1 pidxi.
We may assume that dx1 ∧ · · · ∧ dxn|vo 6= 0. Taking a neighborhood V of vo

such that dx1 ∧ · · · ∧ dxn|v 6= 0 around v ∈ V , we define functions pij on V

by

dp1|v = p11(v)dx1|v + · · ·+ p1n(v)dxn|v,
...

dpn|v = pn1(v)dx1|v + · · ·+ pnn(v)dxn|v.

Since dθ|v = 0, we have pij = pji. Thus we have obtained the coordinate
system (xi, z, pi, pij) (1 ≤ i ≤ j ≤ n) of L(J). Then E is locally defined by
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E = {$0 = $1 = · · · = $n = 0}

where $0 = dz −∑n
i=1 pidxi and $i = dpi −

∑n
j=1 pijdxj for i = 1, . . . , n.

Let us consider a single second order partial differential equation of one
unknown function with two independent variables

F (x, y, z, zx, zy, zxx, zxy, zyy) = 0. (2.1)

Assuming that partial derivatives ∂F
∂zxx

, ∂F
∂zxy

and ∂F
∂zyy

of F are never si-
multaneously zero, we define a hypersurface R of the Lagrange-Grassmann
bundle L(J) over a contact manifold (J,C) and a differential system D on
R as

R = {F (x, y, z, p, q, r, s, t) = 0} ⊂ L(J),

D = {$0 = $1 = $2 = 0} ,

where (x, y, z, p, q, r, s, t) is a coordinate system of L(J) taken above and
$0 = (dz−pdx−qdy)|R, $1 = (dp−rdx−sdy)|R, $2 = (dq−sdx− tdy)|R.
Generally, let (R, D) be a single second order PDE and ρ the canonical
projection from R to J . Namely R is a hypersurface of L(J) and D is the
differential system on R obtained by restricting the canonical system E to
R. Then a 2-dimensional integral manifold of D transverse to fibers of ρ is
locally the graph of a solution of the single second order PDE.

Let (R, D) be a single second order PDE and we may write D =
{$0 = $1 = $2 = 0}. Let us assume ρ is a submersion.

It is well-known that the structure equation of D is expressed as follows:
let us fix a point vo ∈ R. If the equation R is hyperbolic around vo, the
structure equation is





d$0 ≡ ω1 ∧$1 + ω2 ∧$2 (mod $0),

d$1 ≡ ω1 ∧ π11 (mod $0, $1, $2),

d$2 ≡ ω2 ∧ π22 (mod $0, $1, $2),

where {$0, $1, $2, ω1, ω2, π11, π22} is a coframe around vo ∈ R

([BCG+91, p. 277]). If the equation R is parabolic around vo,
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



d$0 ≡ ω1 ∧$1 + ω2 ∧$2 (mod $0),

d$1 ≡ ω2 ∧ π12 (mod $0, $1, $2),

d$2 ≡ ω1 ∧ π12 + ω2 ∧ π22 (mod $0, $1, $2),

where {$0, $1, $2, ω1, ω2, π12, π22} is a coframe around vo ∈ R

([BCG+91, p. 275]).
Then, if R is hyperbolic or parabolic, the Monge characteristic system

Mi of (R, D) are defined as

Mi =
{
$0 = $1 = $2 = ωi = πii = 0

}
for i = 1, 2,

or

M =
{
$0 = $1 = $2 = ω2 = π12 = 0

}
,

respectively ([IL03, p. 213]).

Let I = {θ, Ψ}diff be a Monge-Ampère system on J . For a point u ∈ J ,
if Iu has two, one or no independent decomposable 2-covector, modulo θu,
then I is called hyperbolic, parabolic or elliptic at u, respectively. Because
the dimension of J is five, a 2-covector (Ψ + λdθ)u is decomposable modulo
θu if and only if (Ψ + λdθ)2u ≡ 0 (mod θu). Then the relation

(Ψ + λdθ)2u = Ψu ∧Ψu + 2λΨu ∧ dθu + λ2dθu ∧ dθu ≡ 0 (mod θu) (2.2)

yields a quadratic equation in a variable λ. Because a root of the quadric
equation satisfies (2.2), I is hyperbolic, parabolic or elliptic at u ∈ J if the
quadratic equation has two, one or no real roots, respectively. If I has a
decomposable 2-form ω ∧ π, modulo θ, then a Monge characteristic system
H of I is defined as

H = {θ = ω = π = 0} ,

which is a differential system of rank 2 on J .
Finally, we mention the relation between a Monge-Ampère system I

and its prolongation (R, D).
Let I = {θ, Ψ}diff be a Monge-Ampère system on J and let L(J) denote

the Lagrange-Grassmann bundle over J . We obtain the prolongation (R, D)
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of I as follows: the prolongation of I (cf. [BCG+91], [IL03]) is the differential
system (R, D) that R is the set of 2-dimensional integral elements of I and
assume R is a smooth manifold, and D is the restriction of the canonical
system (Gr(2, TJ), Ê) to R. Here, π : Gr(2, TJ) −→ J is the Grassmann
bundle over J consisting of all 2-dimensional subspaces of all tangent spaces
to J and Ê is defined by Ê(v) = π−1

∗ (v) at each point v ∈ Gr(2, TJ). In
this case, by the definition of R, L(J) contains R.

Let us fix a point vo ∈ L(J) and take a coframe
{
θ, ω1, ω2, π1, π2

}
around uo = π(vo) such that

dθ ≡ ω1 ∧ π1 + ω2 ∧ π2 (mod θ).

We may assume ω1 ∧ ω2|vo
6= 0. Taking a neighborhood V of vo such that

ω1 ∧ ω2|v 6= 0 at each point v ∈ V , we can take fiber coordinate functions
a, b, c on V such that

π1|v = a(v)ω1|v + b(v) ω2|v
π2|v = b(v) ω1|v + c(v)ω2|v

v ∈ V.

Setting

Ψ = Aπ1 ∧ ω2 + B (−π1 ∧ ω1 + π2 ∧ ω2)

− Cπ2 ∧ ω1 + Dω1 ∧ ω2 + Eπ1 ∧ π2 (2.3)

where each capital letter indicates a function around uo, we have

Ψ|v = (Aa + 2Bb + Cc + D + E(ac− b2))(v) ω1 ∧ ω2|v.

Thus we set

R = {v ∈ V | Ψ|v = 0},
= {Aa + 2Bb + Cc + D + E(ac− b2) = 0}, (2.4)

which is a subvariety of L(J). Around each regular points of R, we may
define D as the restriction of E to R.

For a Monge-Ampère system I, the prolongation (R, D) of I is called the
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corresponding Monge-Ampère equation in this article. In fact, as mentioned
above, for a given Monge-Ampère system I = {θ, Ψ}diff , we can take a
coordinate system (x, y, z, p, q) such that θ = dz−pdx−qdy and set ω1 = dx,
ω2 = dy, π1 = dp, π2 = dq, and then we set given Ψ as in Equation (2.3).
Therefore we obtain the coordinate description (2.4) of the Monge-Ampère
equation R.

For a Monge characteristic system H of I, the corresponding Monge
characteristic system M means the Monge characteristic system of the cor-
responding Monge-Ampère equation. We show that

M⊂ ρ−1
∗ (H).

in the next section.

3. Relations Between the Monge Characteristic Systems of
Monge-Ampère Equation and Those of Monge-Ampère Sys-
tem

We describe the structure equation of the corresponding Monge-Ampère
equation and investigate relations between the Monge characteristic systems
of Monge-Ampère systems and those of the corresponding Monge-Ampère
equations. Furthermore, this observation gives us a guideline for the char-
acterization of Monge-Ampère equations in Section 4.

3.1. Hyperbolic case
First, we choose a coframe adapted for a Monge-Ampère system: Let

I = {θ, Ψ}diff be a Monge-Ampère system and let (R, D) denote the corre-
sponding Monge-Ampère equation. Let us fix a point vo ∈ R. Assuming I
is hyperbolic around uo = π(vo), we can take different functions λ1 and λ2

around uo such that Ψ+λ1dθ and Ψ+λ2dθ are decomposable 2-forms, and
take 1-forms ω1, ω2, π′1, π

′
2 around uo such that

ωi ∧ π′i ≡ Ψ + λidθ (mod θ) for i = 1, 2.

Since θ|vo
= dθ|vo

= Ψ|vo
= 0, we have ω1 ∧ π′1|vo

= ω2 ∧ π′2|vo
= 0 and may

thus assume ω1|vo
6= 0 and ω2|vo

6= 0. Hence π1|vo
is a multiple of ω1|vo

and π2|vo is of ω2|vo . Since ω1 ∧ π′1 − ω2 ∧ π′2 ≡ (λ1 − λ2)dθ (mod θ) and
λ1 − λ2 6= 0, we have
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dθ ≡ ω1 ∧ π1 + ω2 ∧ π2 (mod θ)

where π1 = 1
λ1−λ2

π′1, π2 = − 1
λ1−λ2

π′2. Since θ is a contact form, θ ∧ ω1 ∧
ω2 ∧ π1 ∧ π2 6= 0 around uo. Hence {θ, ω1, ω2, π1, π2} is a coframe around
uo.

Secondly, let us take a neighborhood V of vo such that ω1 ∧ ω2 |v 6= 0
at each v ∈ V and functions a, b, c on V such that

π1|v = a(v)ω1|v + b(v) ω2|v
π2|v = b(v) ω1|v + c(v)ω2|v

v ∈ V.

Since ω1 ∧ π1|v = 0, we get b(v) = 0. Thus

D = {$0 = $1 = $2 = 0} ,

where $0 = ρ∗θ, $1 = ρ∗π1 − aρ∗ω1, $2 = ρ∗π2 − cρ∗ω2.
For i = 1, 2, we have

dπi ≡ π1 ∧ (Aiπ2 + Biω
1 + Ciω

2) + π2 ∧ (Eiω
1 + Fiω

2) + Giω
1 ∧ ω2,

dωi ≡ π1 ∧ (Hiπ2 + Iiω
1 + Jiω

2) + π2 ∧ (Kiω
1 + Liω

2) + Niω
1 ∧ ω2,

(3.1)

modulo θ, where each capital letter with an additional character indicates
smooth functions around uo on J . Let us omit the pullback ρ∗ in what
follows. Then on R, we have

dπ1 − adω1

≡ (A1ac + C1a− E1c + G1 −H1a
2c− J1a

2 + K1ac−N1a)ω1 ∧ ω2

dπ2 − cdω2

≡ (A2ac + C2a− E2c + G2 −H2ac2 − J2ac + K2c
2 −N2c)ω1 ∧ ω2

modulo $0, $1, $2. Namely, from d$0 = dθ, d$1 = dπ1 − adω1 − da ∧ ω1,
d$2 = dπ2 − bdω2 − db ∧ ω2, we obtain the structure equation:
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



d$0 ≡ ω1 ∧$1 + ω2 ∧$2 (mod $0),

d$1 ≡ ω1 ∧ π11 (mod $0, $1, $2),

d$2 ≡ ω2 ∧ π22 (mod $0, $1, $2),

(3.2)

where

π11 = da + (A1ac + C1a− E1c + G1 −H1a
2c− J1a

2 + K1ac−N1a)ω2,

π22 = dc− (A2ac + C2a− E2c + G2 −H2ac2 − J2ac + K2c
2 −N2c)ω1.

Lemma 3.1

Mi ⊂ ρ−1
∗ (Hi) and ∂Mi ⊂ ρ−1

∗ (Hi) for i = 1, 2.

Proof. As we use the coframe {$0, $1, $2, ω
1, ω2, π11, π22} taken above,

Mi =
{
$0 = $1 = $2 = ωi = πii = 0

}
,

ρ−1
∗ (Hi) =

{
ρ∗θ = ρ∗ωi = ρ∗πi = 0

}
,

=
{
$0 = $i = ωi = 0

}
.

By (3.1) and (3.2), we have d$0 ≡ d$i ≡ dωi ≡ 0 (mod $0, $1, $2, ω
i,

πii). Thus

∂Mi ⊂
{
$0 = $i = ωi = 0

}
= ρ−1

∗ (Hi). ¤

Corollary 3.2 If Hi has two independent first integrals, then Mi also has
at least two.

Here, “independent” means independence as function, that is, there
exists two first integrals f1, f2 of Hi such that df1 ∧ df2 6= 0.

Though we obtain this corollary from the structure equation (3.2), to
obtain more information, we need to analyze the structure equation in more
detail:

Theorem 3.3 Let I be a hyperbolic Monge-Ampère system on a 5-
dimensional contact manifold J and let H1 and H2 denote the Monge char-
acteristic systems of I, and let (R, D) denote the corresponding Monge-
Ampère equation and M1 and M2 the corresponding Monge characteristic
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systems. Then, for i = 1, 2, ∂Mi, ∂2Mi and ∂Hi are differential systems,
and it follows that codim ∂2Mi = 3 and

∂2Mi ⊂ ρ−1
∗ (∂Hi).

Proof. Let us choose the coframe {θ, ω1, ω2, π1, π2} taken above. For i =
1, 2, putting

dπi ≡ π1 ∧ (Aiπ2 + Biω
1 + Ciω

2) + π2 ∧ (Eiω
1 + Fiω

2) + Giω
1 ∧ ω2

dωi ≡ π1 ∧ (Hiπ2 + Iiω
1 + Jiω

2) + π2 ∧ (Kiω
1 + Liω

2) + Niω
1 ∧ ω2

modulo θ, where each capital letter with an additional character indicates
smooth functions on J , we have

dπi ≡ Ai$1 ∧$2 +$1 ∧
(
Biω

1 + (Aic + Ci)ω2
)

+$2 ∧
(
(−Aia + Ei) ω1 + Fiω

2
)

+(Aiac + Cia− Eic + Gi) ω1 ∧ ω2

dωi ≡ Hi$1 ∧$2 +$1 ∧
(
Iiω

1 + (Hic + Ji) ω2
)

+$2 ∧
(
(−Hia + Ki) ω1 + Liω

2
)

+(Hiac + Jia−Kic + Ni) ω1 ∧ ω2

(mod $0)

and hence

d$1 ≡ ω1 ∧ π11 +$1 ∧
(
(B1 − I1a) ω1 + (A1c + C1 −H1ac− J1a) ω2

)

+$2 ∧
(
(−A1a + E1 + H1a

2 −K1a) ω1 + (F1 − L1a)ω2
)

+(A1 −H1a)$1 ∧$2 (mod $0),

d$2 ≡ ω2 ∧ π22 +$1 ∧
(
(B2 − I2c) ω1 + (A2c + C2 −H2c

2 − J2c)ω2
)

+$2 ∧
(
(−A2a + E2 + H2ac−K2c) ω1 + (F2 − L2c) ω2

)

+(A2 −H2c) $1 ∧$2 (mod $0),

where

π11 = da + (A1ac + C1a− E1c + G1 −H1a
2c− J1a

2 + K1ac−N1a) ω2,

π22 = dc− (A2ac + C2a− E2c + G2 −H2ac2 − J2ac + K2c
2 −N2c)ω1.
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By definition, one Monge characteristic system is

H1 =
{
θ = ω1 = π1 = 0

}
.

Since the structure equation of H1 is




dθ≡ ω2 ∧ π2

dω1 ≡−L1 ω2 ∧ π2

dπ1 ≡−F1 ω2 ∧ π2

(mod θ, ω1, π1),

the first derived system of H1 is

∂H1 =
{
ω̃1 = π̃1 = 0

}
,

where ω̃1 = ω1 +L1θ, π̃1 = π1 +F1θ, and hence ∂H1 is a differential system
on J .

On the other hand, let us recall the corresponding Monge characteristic
system

M1 =
{
$0 = $1 = $2 = ω1 = π11 = 0

}
.

Since the structure equation of M1 is




d$0 ≡ 0

d$1 ≡ 0

d$2 ≡ ω2 ∧ π22

dω1 ≡ 0

dπ11 ≡−(A1a− E1 −H1a
2 + K1a) ω2 ∧ π22

(mod $0, $1, $2, ω
1, π11),

the first derived system of M1 is

∂M1 =
{
$0 = $1 = ω1 = π11 = 0

}
,

where π11 = π11 + (A1a − E1 − H1a
2 + K1a)$2, and hence ∂M1 is a

differential system on R. Since
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



d$0 ≡ ω2 ∧$2

d$1 ≡−(F1 − L1a) ω2 ∧$2

dω1 ≡−L1 ω2 ∧$2

(mod $0, $1, ω
1), (3.3)

the second derived system of M1 is

∂2M1 ⊂
{
$̂1 = ω̂1 = 0

}
, (3.4)

where $̂1 = $1 + (F1 − L1a) $0, ω̂1 = ω1 + L1$0. We have

ρ∗(ω̃1) = ω1 + L1$0 = ω̂1,

ρ∗(π̃1) = $1 + aω1 + F1$0 = $̂1 + aω̂1,
(3.5)

and hence ∂2M1 satisfies the inclusion

∂2M1 ⊂ ρ−1
∗ (∂H1) =

{
ρ∗ω̃1 = ρ∗π̃1 = 0

}
. (3.6)

Furthermore, since

dπ11 ≡ (acdA1 +adC1−cdE1 +dG1−a2cdH1−a2dJ1 +acdK1−adM1)∧ω2

modulo $0, $1, ω1, π11, ω2 ∧$2, and

dA1 ∧ ω2 ≡ dC1 ∧ ω2 ≡ dE1 ∧ ω2 ≡ dG1 ∧ ω2

≡ dH1 ∧ ω2 ≡ dJ1 ∧ ω2 ≡ dK1 ∧ ω2 ≡ dM1 ∧ ω2 ≡ 0

modulo $0, $1, $2, ω1, π11, we have

dπ11 ≡ 0 (mod $0, $1, ω
1, π11, ω

2 ∧$2).

Thus ∂2M1 is a differential system and codim ∂2M1 = 3.
Similarly, we can prove the claims in the case of H2 and M2. ¤

The following Corollary is a key of characterization of Monge-Ampère
equation (see Theorem 4.1)
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Corollary 3.4

ρ−1
∗ (Hi) = ∂Mi + Ch(∂D) for i = 1, 2.

From (3.3), (3.4), (3.5) and (3.6), we get the following corollary:

Corollary 3.5 If Mi has three independent first integrals, then Hi also
has two.

Remark 3.6 As it is seen in Corollary 3.2, if Hi has two independent
first integrals, then Mi also has at least two. However, it is not always true
that Hi also has two independent first integrals if Mi has two independent
first integrals. For example, let us consider the hyperbolic Monge-Ampère
equation ([Boo59], [Gou90], [For06])

r − t− np

x
= 0,

where n is an integer. The Monge-Ampère system is

{
θ = dz − pdx− qdy, Ψ = dp ∧ dy + dq ∧ dx− np

x
dx ∧ dy

}
diff

and decomposable 2-forms are

Ψ± dθ =
(

dp∓ dq − np

x
dx

)
∧ (dy ∓ dx).

Then we have

dθ = ω1 ∧ π1 + ω2 ∧ π2,

where ω1 = 1
2 (dx − dy), ω2 = 1

2 (dy + dx), π1 = dp − dq − np
x dx, π2 =

dq + dp− np
x dx.

We obtain the derived systems ∂kHi for each i = 1, 2 as follows: Since
the structure equation of H1 =

{
θ = ω1 = π1 = 0

}
is





dθ≡ ω2 ∧ π2

dω1 = 0

dπ1 ≡ n

2x
ω2 ∧ π2

(mod θ, ω1, π1),
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the first derived system is

∂H1 =
{
ω1 = π′1 = 0

}
,

where π′1 = π1 − n
2xθ. Since the structure equation of ∂H1 is





dω1 = 0

dπ′1 ≡
n(n + 2)

4x2
ω2 ∧ θ

(mod ω1, π′1),

∂H1 is completely integrable if and only if n = 0 or −2.
On the other hand, let us recall the corresponding Monge characteristic

system

M1 =
{
$0 = $1 = $2 = ω1 = π11 = 0

}
,

where $0 = ρ∗θ, $1 = ρ∗π1 − aρ∗ω1, $2 = ρ∗π2 − cρ∗ω2 and let us omit
the pullback ρ∗ in what follows. Then we have

d$0 = ω1 ∧$1 + ω2 ∧$2,

d$1 = ω1 ∧ π11 − n

2x
$1 ∧ (ω1 + ω2)− n

2x
$2 ∧ (ω1 + ω2),

d$2 = ω2 ∧ π22 − n

2x
$1 ∧ (ω1 + ω2)− n

2x
$2 ∧ (ω1 + ω2),

where π11 = da − n(a−c)
2x ω2, π22 = dc + n(a−c)

2x ω1. Since the structure
equation of M1 is





d$0 ≡ 0

d$1 ≡ 0

d$2 ≡ ω2 ∧ π22

dω1 = 0

dπ11 ≡− n

2x
ω2 ∧ π22

(mod $0, $1, $2, ω
1, π11),

the first derived system is
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∂M1 =
{
$0 = $1 = ω1 = π̃11 = 0

}
,

where π̃11 = π11 + n
2x$2. Since the structure equation of ∂M1 is





d$0 ≡ ω2 ∧$22

d$1 ≡ n

2x
ω2 ∧$2

dω1 = 0

dπ̃11 ≡− n

2x2
ω2 ∧$2

(mod $0, $1, ω
1, π̃11),

the second derived system is

∂2M1 =
{
$′

1 = ω1 = π′11 = 0
}

,

where $′
1 = $1 − n

2x$0, π′11 = π̃11 + n
2x2 $0 = π11 + n

2x2 $0 + n
2x$2. Since

the structure equation of ∂2M1 is





d$′
1 ≡

n(n + 2)
4x2

ω2 ∧$0

dω1 = 0

dπ′11 ≡
n(n + 2)(n− 4)

8x3
ω2 ∧$0

(mod $′
1, ω

1, π′11), (3.7)

∂2M1 is completely integrable if and only if n = −2 or 0.
Let us continue the calculation except for the case of n = −2 or 0.

Equation (3.7) implies

∂3M1 =
{
ω1 = π̂11 = 0

}
,

where π̂11 = π′11 − n−4
2x $′

1 = π11 + n(n−2)
4x2 $0 − n−4

2x $1 + n
2x$2. Since we

have

dπ̂11 ≡ −n(n + 4)(n− 2)
8x3

ω2 ∧$0 +
(n + 4)(n− 2)

4x2
ω2 ∧$1 (mod ω1),

∂3M1 is completely integrable if and only if n = −4 or 2. In the other cases,
∂4M1 =

{
ω1 = 0

}
.
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The case of H2 and M2 are as follows: ∂H2 =
{
ω2 = π′2 = 0

}
, where

π′2 = π2 − n
2x θ, and

dπ′2 =
n(n + 2)

4x2
ω1 ∧ θ.

On the other hand, we can obtain

∂2M2 =
{
$′

2 = ω2 = π′22 = 0
}

,

where $′
2 = $2 − n

2x $0, π′22 = π22 + n
2x $1 + n

2x2 $0, and

d$′
2 ≡

n(n + 2)
4x2

ω1 ∧$0

dπ′22 ≡
n(n + 2)(n− 4)

8x3
ω1 ∧$0

(mod $′
2, ω

2, π′22).

If n 6= −2 and 0, we have

∂3M2 =
{
ω2 = π22 = 0

}
,

where π22 = π′22 − n−4
2x $′

2 = π22 + n(n−2)
4x2 $0 + n

2x$1 − n−4
2x $2. Then

dπ22 ≡ −n(n + 4)(n− 2)
8x3

ω1 ∧$0 +
(n + 4)(n− 2)

4x2
ω1 ∧$2 (mod ω2).

For i = 1, 2, we have obtained

Table 1. The Number of Independent First Integrals of Each Monge
Characteristic System

n the number of independent the number of independent
first integrals of Mi first integrals of Hi

−2, 0 3 2

−4, 2 2 1

the others 1 1
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3.2. Parabolic case
First, we choose a coframe adapted for a Monge-Ampère system: Let

I = {θ, Ψ}diff be a Monge-Ampère system and let (R, D) denote the cor-
responding Monge-Ampère equation. Let us fix a point vo ∈ R. Assuming
that I is a parabolic system around uo = π(vo), we can take a function
λ around uo such that Ψ + λdθ is a decomposable 2-form. Hence we may
suppose that Ψ = ω ∧ π is a decomposable 2-form. By definition, since the
quadratic equation in a variable λ given by

(Ψ + λdθ)2 = 2λΨ ∧ dθ + λ2dθ ∧ dθ = 0

has the multiple root λ = 0, we get

Ψ ∧ dθ = ω ∧ π ∧ dθ = 0.

This implies

dθ ≡ ω1 ∧ π + ω ∧ π2 (mod θ),

where ω1 and π2 are 1-forms around uo. Because θ is a contact form, θ ∧
ω1 ∧ π ∧ ω ∧ π2 6= 0. Hence {θ, ω1, ω, π, π2} is a coframe around uo. If ω|vo

and π|vo are simultaneously never zero, we may assume ω|vo 6= 0. Since
dθ|vo = 0, it follows ω1 ∧ ω|vo must be non-zero.

Namely, we may suppose ω1 ∧ ω|vo
6= 0 except for the case that both

ω|vo
and π|vo

vanish (see Remark 3.8 below).
Secondly, let us take a neighborhood V of vo such that ω1 ∧ ω |v 6= 0

at each v ∈ V . Since Ψ|v = 0 for any v ∈ V , we can take fiber coordinates
a, b, c on V such that

π|v = a(v) ω1|v + b(v)ω|v
π2|v = b(v) ω1|v + c(v) ω|v

v ∈ V.

Since ω ∧ π|v = 0, we get a(v) = 0. Thus

D = {$0 = $1 = $2 = 0} ,

where $0 = ρ∗θ, $1 = ρ∗π − bρ∗ω, $2 = ρ∗π2 − bρ∗ω1 − cρ∗ω and let us
omit the pullback ρ∗ in what follows.
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Putting

dπ ≡ π ∧ (Aπ2 + Bω1 + Cω) + π2 ∧ (Eω1 + Fω) + Gω1 ∧ ω

dω ≡ π ∧ (Hπ2 + Iω1 + Jω) + π2 ∧ (Kω1 + Lω) + Nω1 ∧ ω
(mod θ),

where each capital letter indicates smooth functions on J , we have

dπ−bdω ≡ −(Ab2 +Bb+Ec−Fb−G−Hb3−Ib2−Kbc+Lb2 +Nb)ω1∧ω,

modulo $0, $1, $2. Hence we obtain the structure equation:

Lemma 3.7




d$0 ≡ ω1 ∧ π + ω ∧$2 (mod $0),

d$1 ≡ ω ∧ π12 (mod $0, $1, $2),

d$2 ≡ ω1 ∧ π12 + ω ∧ π22 (mod $0, $1, $2),

where π12 = db+(Ab2 +Bb+Ec−Fb−G−Hb3−Ib2−Kbc+Lb2 +Nb) ω1.

Remark 3.8 If both ω|vo and π|vo vanish, it must satisfy ω1 ∧ π2|vo 6= 0.
We consider a neighborhood V of vo such that ω1 ∧π2 |v 6= 0 at each v ∈ V .

D = {$0 = $1 = $2 = 0} ,

where $0 = ρ∗θ, $1 = ρ∗π − aρ∗ω1 − bρ∗π2, $2 = ρ∗ω − bρ∗ω1 − cρ∗π2.
Since ω ∧ π|v = 0 for all v ∈ V , R ∩ V = {ac − b2 = 0} and hence vo is a
singular point of R ∩ V . Thus we omit a point vo such that both ω|vo and
π|vo

vanish.

Lemma 3.9

M⊂ ρ−1
∗ (H).

Proof. As we use the coframe taken above,

M = {$0 = $1 = $2 = ω = π12} ,

ρ−1
∗ (H) = {ρ∗θ = ρ∗ω = ρ∗π = 0} ,

= {$0 = $1 = ω = 0} ,
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and hence our assertion follows. ¤

Corollary 3.10 If H has two independent first integrals, then M also has
at least two.

In the same way as in the case of hyperbolic system, let us analyze the
structure equation in more detail:

Theorem 3.11 Let I be a parabolic Monge-Ampère system on a 5-
dimensional contact manifold J and let (R, D) denote the corresponding
Monge-Ampère equation. Then it follows that

ρ−1
∗ (H) = ∂(M+ Ch(∂D)) (3.8)

and the Monge characteristic system H of I is completely integrable if and
only if the Monge characteristic M of D is completely integrable.

Moreover, if M does not coincide with ∂M, and ∂M is a differential
system on R, then it follows that

∂2M = ρ−1
∗ (H).

Proof. Let us choose a coframe {$0, $1, $2, ω1, ω, π12, π22} taken above.
By definition,

H = {θ = ω = π = 0} .

Since




dθ≡ 0

dω ≡ −Eω1 ∧ π2

dπ ≡ −Kω1 ∧ π2

(mod θ, ω, π),

H is completely integrable if and only if E and K vanish locally.
On the other hand,

M = {$0 = $1 = $2 = ω = π12 = 0} .

Since
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dA ∧ ω1 ≡ dB ∧ ω1 ≡ dF ∧ ω1 ≡ dE ∧ ω1 ≡ dG ∧ ω1 ≡ dH ∧ ω1

≡ dI ∧ ω1 ≡ dL ∧ ω1 ≡ dK ∧ ω1 ≡ dM ∧ ω1 ≡ db ∧ ω1 ≡ 0,

modulo $0, $1, $2, ω
1, π11, we get

dπ12 ≡ (Kb− E) ω1 ∧ π22 (mod $0, $1, $2, ω, π12).

Since d$0 ≡ d$1 ≡ d$2 ≡ dω ≡ 0 (mod $0, $1, $2, ω, π12) and b is one
of the fiber coordinates, M is completely integrable if and only if E and K

vanish locally. Hence second assertion follows.
Since d$0 ≡ d$1 ≡ dω ≡ 0 and d$2 ≡ ω1 ∧ π12 (mod $0, $1, $2, ω),

first assertion follows.
Moreover, let us suppose that M does not coincide with ∂M and ∂M

is a differential system on R. Then

∂M = {$0 = $1 = $2 = ω = 0} .

Since the structure equation of ∂M is




d$0 ≡ 0

d$1 ≡ 0

d$2 ≡ ω1 ∧ π12

dω ≡ 0

(mod $0, $1, $2, ω),

∂2M = {$0 = $1 = ω = 0} .

Consequently, we have obtained

ρ−1
∗ (H) = {ρ∗θ = ρ∗ω = ρ∗π = 0} = ∂2M. ¤

4. Geometric Characterization of Monge-Ampère Equations

The results in the previous section guide us to consider the geometric
characterization of Monge-Ampère equations. In fact, let Mi be Monge
characteristic systems of a hyperbolic PDE (R, D). The corank 3 differential
systems ∂Mi + Ch(∂D) are candidate for Monge characteristic systems of
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a hyperbolic Monge-Ampère system. On the other hand, in parabolic case,
the corank 3 differential system ∂(M + Ch(∂D)) is candidate for Monge
characteristic system of a parabolic Monge-Ampère system.

We use the notation in Section 2 through this section. In this paper we
say that a differential system P on L(J) drops down to J if there exists a
differential system Q such that the pullback of Q by the canonical projection
ρ : R −→ L(J) coincides with P .

4.1. Hyperbolic case
Let (R, D) be a hyperbolic PDE and set D = {$0 = $1 = $2 = 0}.

Let M1 and M2 denote the Monge characteristic system of (R, D).
First of all, let us describe the structure equation ofMi for each i = 1, 2.

We recall the structure equation of D





d$0 ≡ ω1 ∧$1 + ω2 ∧$2 (mod $0),

d$1 ≡ ω1 ∧ π11 (mod $0, $1, $2),

d$2 ≡ ω2 ∧ π22 (mod $0, $1, $2),

and Monge characteristic systems Mi =
{
$0 = $1 = $3 = ωi = πii = 0

}
,

i = 1, 2. Since M1 is of rank 2 and d$0 ≡ d$1 ≡ 0, d$2 ≡ ω2 ∧ π22

(mod $0, $1, $2, ω
1, π11), ∂M1 is of constant rank 3. Similarly, ∂M2 is

so. We can write dω1 ≡ ω2 ∧ (h1π11 + k1π22) (mod $0, $1, $2, ω
1), and

dω2 ≡ ω1 ∧ (h2π11 + k2π22) (mod $0, $1, $2, ω
2). Then since

0 = d2$0

≡ −ω1 ∧ (d$1 + $2 ∧ (h2π11 + k2π22)) (mod $0, $1, ω
2),

0 = d2$0

≡ −ω2 ∧ (d$2 + $1 ∧ (h1π11 + k1π22)) (mod $0, $2, ω
1),

we have

d$1 ≡ ω1 ∧ π11 −$2 ∧ (h2π11 + k2π22) (mod $0, $1, ω
1 ∧$2, ω

2 ∧$2),

d$2 ≡ ω2 ∧ π22 −$1 ∧ (h1π11 + k1π22) (mod $0, $2, ω
1 ∧$1, ω

2 ∧$1).

Furthermore, since
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0 = d2$1

≡ (−k1 + h2) ω2 ∧ π11 ∧ π22 (mod $0, $1, $2, ω
1),

we have k1 = h2. Replacing ω1 − k1$2 and ω2 − h2$1 with ω1 and ω2

respectively, we get

d$0 ≡ ω1 ∧$1 + ω2 ∧$2 (mod $0),

d$1 ≡ ω1 ∧ π11 − k2 $2 ∧ π22 (mod $0, $1, ω
1 ∧$2, ω

2 ∧$2),

d$2 ≡ ω2 ∧ π22 − h1 $1 ∧ π11 (mod $0, $2, ω
1 ∧$1, ω

2 ∧$2),

dω1 ≡ h1 ω2 ∧ π11 (mod $0, $1, $2, ω
1),

dω2 ≡ k2 ω1 ∧ π22 (mod $0, $1, $2, ω
2).

Then ∂Mi + Ch(∂D) =
{
$0 = $i = ωi = 0

}
and we can write those struc-

ture equations as follows:




d$0 ≡ ω2 ∧$2

d$1 ≡ −k2 $2 ∧ π22

dω1 ≡ h1 ω2 ∧ π11 + $2 ∧ (A1π11 + B1π22)

(mod $0, $1, ω
1) (4.1)





d$0 ≡ ω1 ∧$1

d$2 ≡ −h1 $1 ∧ π11

dω2 ≡ k2 ω1 ∧ π22 + $2 ∧ (A2π11 + B2π22)

(mod $0, $2, ω
2) (4.2)

As it is seen in Corollary 3.4, for a hyperbolic Monge-Ampère system,
pullbacks of Monge characteristic systems Hi coincide with ∂Mi +Ch(∂D),
where Mi is the corresponding Monge characteristic system of the corre-
sponding Monge-Ampère equation (R, D). Conversely, we obtain the next
theorem:

Theorem 4.1 Let (R, D) be a hyperbolic PDE and let M1 and M2 denote
the Monge characteristic systems of (R, D). If ∂M1 + Ch(∂D) drops down
to J , or equivalently, ∂M2 + Ch(∂D) drops down to J , then there exists a
Monge-Ampère system I such that (R, D) coincides with the corresponding
Monge-Ampère equation locally. Moreover, ∂M1 + Ch(∂D) and ∂M2 +
Ch(∂D) are then pullbacks of the Monge characteristic systems of the system
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I.
First, we prove the following lemma:

Lemma 4.2 Let (R, D) be a hyperbolic PDE and let M1 and M2 denote
the Monge characteristic systems of (R, D). If ∂Mi+Ch(∂D) drops down to
J for each i = 1, 2, there exists a Monge-Ampère system I such that (R, D)
coincides with the corresponding Monge-Ampère equation locally. Moreover,
∂M1 + Ch(∂D) and ∂M2 + Ch(∂D) are then pullbacks of the Monge char-
acteristic systems of the system I.
Proof. We show that, for each v ∈ R, there exists a Monge-Ampère system
I around ρ(v) ∈ J and a neighborhood V of v such that (R, D) coincides
with the prolongation of I on V .

Let us fix a point vo ∈ R.
Since ∂Mi + Ch(∂D) drops down to J for each i = 1, 2, there exists

1-forms π̂1, ω̂1, π̂2, ω̂2 around uo = ρ(vo) such that ω̂1 ∧ ω̂2|vo
6= 0 and

∂Mi + Ch(∂D) =
{
ρ∗θ = ρ∗π̂i = ρ∗ω̂i = 0

}
, for each i = 1, 2.

Let V be a neighborhood of vo such that ω̂1 ∧ ω̂2|v 6= 0 for each v ∈ V .
Let denote A1, A2 and B non-zero functions on V such that for i = 1, 2,

ωi ∧$i ≡ Aiρ
∗ω̂i ∧ ρ∗π̂i (mod $0) and $0 = Bρ∗θ. Then we get

ρ∗dθ ≡ A1

B
ρ∗ω̂1 ∧ ρ∗π̂1 +

A2

B
ρ∗ω̂2 ∧ ρ∗π̂2 (mod ρ∗θ).

This implies that there exists functions K̂1, K̂2 around uo such that ρ∗K̂i =
Ai

B for i = 1, 2, and hence we have

dθ ≡ (K̂1ω̂
1) ∧ π̂1 + (K̂2ω̂

2) ∧ π̂2 (mod θ).

Now let us consider the following hyperbolic Monge-Ampère system

I =
{
θ, ω̂1 ∧ π̂1

}
diff

=
{
θ, ω̂2 ∧ π̂2

}
diff

and its Monge characteristic systems are Hi =
{
θ = π̂i = ω̂i = 0

}
. From

the definition of I, each point of V is an integral element of I. That is,
(R, D) coincides with the corresponding Monge-Ampère equation locally. ¤
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Next, we show that, for a hyperbolic PDE (R, D), Ch(∂M1 + Ch(∂D))
coincides with Ch(∂D) if and only if Ch(∂M2 + Ch(∂D)) coincides with
Ch(∂D):

Lemma 4.3 Let (R, D) be a hyperbolic PDE and let M1 and M2 denote
the Monge characteristic systems of (R, D). Then, Ch(∂M1 + Ch(∂D))
coincides with Ch(∂D) if and only if Ch(∂M2 + Ch(∂D)) coincides with
Ch(∂D).

Proof. From the structure equation (4.1), if Ch(∂M1 +Ch(∂D)) coincides
with Ch(∂D), we have h1 = k2 = 0. From the structure equation (4.2), if
Ch(∂M2 + Ch(∂D)) coincides with Ch(∂D), we have h1 = k2 = 0.

As we assume h1 = k2 = 0, Equation (4.1) is

d$1 ≡ ω1 ∧ π11 (mod $0, $1, ω
1 ∧$2, ω

2 ∧$2),

dω1 ≡ $2 ∧ (A1π11 + B1π22) (mod $0, $1, ω
1),

d$2 ≡ ω2 ∧ π22 (mod $0, $2, ω
1 ∧$1, ω

2 ∧$2),

dω2 ≡ $1 ∧ (A2π11 + B2π22) (mod $0, $2, ω
2).

Since d$0 ≡ d$1 ≡ d(ω1∧$2) ≡ d(ω2∧$2) ≡ 0 (mod $0, $1, ω
2∧$2, ω

1),

0 = d2$1

≡ −B1$2 ∧ π11 ∧ π22 (mod $0, $1, ω
2 ∧$2, ω

1).

Since d$0 ≡ d$1 ≡ dω1 ≡ 0 (mod $0, $1, $2, ω
1),

0 = d2ω1

≡ −A1ω
2 ∧ π11 ∧ π22 (mod $0, $1, $2, ω

1).

Therefore, we have A1 = B1 = 0.
On the other hand, since d$0 ≡ d$2 ≡ d(ω1 ∧$1) ≡ d(ω2 ∧$1) ≡ 0

(mod $0, $2, ω
1 ∧$1, ω

2),

0 = d2ω2

≡ A2$1 ∧ π11 ∧ π22 (mod $0, $2, ω
1 ∧$1, ω

2).
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Since d$0 ≡ d$2 ≡ dω2 ≡ 0 (mod $0, $1, $2, ω
2),

0 = d2ω2

≡ B2ω
1 ∧ π11 ∧ π22 (mod $0, $1, $2, ω

2).

Therefore, we have A2 = B2 = 0.
Consequently, our assertion follows. ¤

Proof of Theorem 4.1. From Equation (4.1), if ∂M1 + Ch(∂D) drops
down to J = R/Ch(∂D), Ch(∂M1 + Ch(∂D)) must coincides with
Ch(∂D). Similarly, from Equation 4.2, if ∂M2 + Ch(∂D) drops down
to J , Ch(∂M2 + Ch(∂D)) must coincides with Ch(∂D). Conversely, if
Ch(∂M1 + Ch(∂D)) = Ch(∂D), or equivalently, if Ch(∂M2 + Ch(∂D)) =
Ch(∂D), then ∂M1 + Ch(∂D) drops down to J for each i = 1, 2. Thus
∂M1 + Ch(∂D) drops down to J if and only if ∂M2 + Ch(∂D) drops down
to J . Consequently, our assertion follows from Theorem 4.2 and this argu-
ment. ¤

Remark 4.4 ∂Mi + Ch(∂D) and h1, k2 in the above proof are corre-
sponding to the Mi-characteristic vector field systems Char(IF , dMi) and
Monge-Ampère invariants introduced in [GK93]. They characterize Monge-
Ampère equation by the invariants. On the other hand, we characterize
Monge-Ampère equation by the property that ∂Mi + Ch(∂D) should sat-
isfy and find that these differential systems coincides with pullbacks of the
Monge characteristic systems of the corresponding Monge-Ampère system
if (R, D) is a hyperbolic Monge-Ampère system.

From Lemma 4.3, we can translate Theorem 4.1 into the following corol-
lary:

Corollary 4.5 Let (R, D) be a hyperbolic PDE and let M1 and M2 denote
the Monge characteristic systems of (R, D). If Ch(∂M1+Ch(∂D)) coincides
with Ch(∂D), or equivalently, Ch(∂M2 + Ch(∂D)) coincides with Ch(∂D),
there exists a Monge-Ampère system I such that (R, D) coincides with the
corresponding Monge-Ampère equation locally.

4.2. Parabolic case
In parabolic case, we obtain similar results to hyperbolic case. Unlike

hyperbolic case, as it is seen in Theorem 3.11, the regularity of the first
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derived system of the Monge characteristic system of a parabolic PDE does
not follow from the regularity of the Monge characteristic system. In order
to obtain a similar result to Theorem 4.1, we need a further assumption
of the regularity (see Theorem 4.7). The result for Goursat equation, i.e.
a parabolic equation whose Monge characteristic system is completely inte-
grable (hence the assumption is naturally satisfied) is particularly important.

First of all, let us describe the structure equation of M. We recall the
structure equation of D





d$0 ≡ ω1 ∧$1 + ω2 ∧$2 (mod $0),

d$1 ≡ ω2 ∧ π12 (mod $0, $1, $2),

d$2 ≡ ω1 ∧ π12 + ω2 ∧ π22 (mod $0, $1, $2),

and the Monge characteristic system M = {$0 = $1 = $2 = ω2 = π12 =
0}. As we write dω2 ≡ ω1 ∧ (hπ12 + kπ22) (mod $0, $1, $2, ω

2),

0 = d2$0

≡ −ω1 ∧ (d$1 + $2 ∧ (hπ12 + kπ22)) (mod $0, $1, ω
2).

Thus we have

d$1 ≡ ω2 ∧ π12 −$2 ∧ (hπ12 + kπ22) (mod $0, $1, ω
1 ∧$2, ω

2 ∧$2).

Since d$0 ≡ d$1 ≡ d(ω1 ∧ $2) ≡ d(ω2 ∧ $2) ≡ 0 (mod $0, $1, $2, ω
1 ∧

ω2, ω2 ∧ π12), we have

0 = d2$1

≡ −2kω1 ∧ π12 ∧ π22 − ω2 ∧ dπ12 (mod $0, $1, $2, ω
1 ∧ ω2, ω2 ∧ π12)

and hence k = 0. Thus replacing ω2 − h$2 with ω2, we get

d$0 ≡ ω1 ∧$1 + ω2 ∧$2 (mod $0),

d$1 ≡ ω2 ∧ π12 (mod $0, $1, ω
1 ∧$2, ω

2 ∧$2),

dω2 ≡ 0 (mod $0, $1, $2, ω
2).



Geometric characterization of Monge-Ampère equations 437

Then ∂(M+Ch(∂D)) =
{
$0 = $1 = ω2 = 0

}
and we can write its structure

equation as follows:




d$0 ≡ 0

d$1 ≡ Eω1 ∧$2

dω2 ≡ $2 ∧ (Aπ12 + Bπ22 + Cω1)

(mod $0, $1, ω
2) (4.3)

Furthermore, since

0 = d2$1

≡ −ω2 ∧ (dπ12 − E ω1 ∧ π22) (mod $0, $1, $2, ω
2 ∧ π12),

we have

dπ12 ≡ Eω1 ∧ π22 (mod $0, $1, $2, ω
2, π12). (4.4)

Therefore the regularity of ∂M correspond to the regularity of the function
E.

As it is seen in Theorem 4.7, for a parabolic Monge-Ampère system,
the pullback of the Monge characteristic system H coincides with ∂(M +
Ch(∂D)), where M is the corresponding Monge characteristic system of the
corresponding Monge-Ampère equation (R, D). Conversely, we obtain the
next theorem:

Theorem 4.6 Let (R, D) be a parabolic PDE. Let M denote the Monge
characteristic system of (R, D). If ∂(M+ Ch(∂D)) drops down to J , there
exists a Monge-Ampère system I such that (R, D) coincides with the cor-
responding Monge-Ampère equation locally. Moreover, ∂(M + Ch(∂D)) is
then the pullback of the Monge characteristic system of the system I.
Proof. We show that, for each v ∈ R, there exists a Monge-Ampère system
I around ρ(v) and a neighborhood V of v such that (R, D) coincides with
the prolongation of I on V .

Let us fix a point vo ∈ R. Since ∂(M+Ch(∂D)) drops down to J , there
exists 1-forms π̂, ω̂ around uo = ρ(vo) such that ω̂|vo

6= 0 and

∂(M+ Ch(∂D)) = {ρ∗θ = ρ∗π̂ = ρ∗ω̂ = 0} .
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Let denote A and B non-zero functions around vo such that ω2 ∧$1 ≡
Aρ∗ω̂ ∧ ρ∗π̂ (mod $0) and $0 = Bρ∗θ, then we have d$0 ∧ ω2 ∧ $1 ≡
ABρ∗(dθ∧ ω̂∧ π̂) (mod $0). Since d$0 ∧ω2 ∧$1 ≡ 0 (mod $0), we have
dθ ∧ ω̂ ∧ π̂ ≡ 0 (mod θ). Therefore, there exists 1-forms ω̂1, π̂2 around uo

such that

dθ ≡ ω̂1 ∧ π̂ + ω̂ ∧ π̂2 (mod θ).

Since θ is a contact form, θ ∧ ω̂1 ∧ ω̂ ∧ π̂ ∧ π̂2 6= 0, which means θ, ω̂1, ω̂, π̂,
π̂2 are linearly independent. We may assume that ω̂1 ∧ ω̂|vo

6= 0.
Let V be a neighborhood of vo such that ω̂1 ∧ ω̂|v 6= 0 for each v ∈ V .
Now let us consider the following parabolic Monge-Ampère system

I = {θ, ω̂ ∧ π̂}diff

and its Monge characteristic system is H = {θ = π̂ = ω̂ = 0}. From the
definition of I, each point of V is an integral element of I. That is, (R, D)
coincides with the corresponding Monge-Ampère equation locally. ¤

Theorem 4.7 Let (R, D) be a parabolic PDE. Let M denote the Monge
characteristic system of (R, D) and assume the first derived system ∂M
of M is also a differential system. If Ch(∂(M + Ch(∂D)))(v) contains
Ch(∂D)(v) at each point v ∈ R, there exists a Monge-Ampère system I
such that (R, D) coincides with the corresponding Monge-Ampère equation
locally.

Proof. It is sufficient to show that ∂(M + Ch(∂D)) drops down to J if
Ch(∂(M+ Ch(∂D)))(v) contains Ch(∂D)(v) at each point v ∈ R.

From Equation (4.4) and the assumption of the regularity of ∂M, E

uniformly vanishes or is not zero at each point of R. In the former case, M
is completely integrable, that is, R is a Goursat equation. In the latter case,
∂M is of constant rank 3.

As E uniformly vanishes, from d$1 ≡ ω2∧π12, modulo $0, $1, ω
2∧$2,0

0 = d2$1

≡ $2 ∧ (−Bπ12 ∧ π22 + Cω1 ∧ π12) (mod $0, $1, ω
2).

Therefore B and C vanish on R. Additionally, because the structure equa-
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tion (4.3) is satisfied and Ch(∂(M + Ch(∂D)))(v) contains Ch(∂D)(v)
at each point v ∈ R, A is zero at each point of R. Consequently,
∂(M+ Ch(∂D)) is completely integrable and hence drops down to J .

As E is not zero at each point of R, because the structure equation
(4.3) is satisfied and Ch(∂(M + Ch(∂D)))(v) contains Ch(∂D)(v) at each
point v ∈ R, we get Ch(∂(M+Ch(∂D))) = Ch(∂D). Consequently, ∂(M+
Ch(∂D)) drops down to J . ¤

Particularly we note that

Corollary 4.8 Let (R, D) be a Goursat equation and M the Monge char-
acteristic system of (R, D). That is, M is completely integrable. Then,
(R, D) is a Monge-Ampère equation if and only if ∂(M+ Ch(∂D)) is com-
pletely integrable.

Proof. If a Goursat equation (R, D) is a Monge-Ampère equation, from
Theorem 3.11, the Monge characteristic system H of the corresponding
Monge-Ampère system I is completely integrable, and equivalently ρ−1

∗ (H)
= ∂(M+ Ch(∂D)) is completely integrable. Conversely, if ∂(M+ Ch(∂D))
is completely integrable, Ch(∂(M + Ch(∂D))) = ∂(M + Ch(∂D)) ={
$0 = $1 = ω2 = 0

}
contains Ch(∂D). Hence, from Theorem 4.7, (R, D)

is a Monge-Ampère equation. ¤
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