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Representing and interpolating sequences

on parabolic Bloch type spaces

Yosuke HiISHIKAWA and Masahiro YAMADA

(Received December 2, 2010; Revised June 6, 2011)

Abstract. Let H be the upper half-space of the Euclidean space. The a-parabolic
Bloch type space B, (o) on H is the set of all solutions u of the parabolic equation
(8/0t + (—AL)*)u = 0 with 0 < o < 1 which belong to C'(H) and have finite Bloch
norm with weight t°. In this paper, we study representing and interpolating sequences
on parabolic Bloch type spaces. In our previous paper [8], the reproducing formula on
Ba (o) is given. A representing sequence gives a discrete version of the reproducing for-
mula on B, (o). Interpolating sequences are closely related to representing sequences,
and such sequences are very interesting in their own right.

Key words: Bloch space, parabolic operator of fractional order, representing sequence,
interpolating sequence.

1. Introduction

Let n > 1 and let H be the upper half-space of the (n + 1)-dimensional
Euclidean space, that is, H = {X = (x,t) € R""! 1 2 = (21,...,2,) €
R™, t > 0}. For 0 < a < 1, the parabolic operator L(®) is defined by

L@ = 9, + (—=A,)", (1.1)

where 8; = 0/0t, 9y = 0/0zp, and A, = 02 + -+ 0%. Let C(H) be the set
of all real-valued continuous functions on H, and let Cp(H) be the set of all
functions in C(H) which vanish continuously at 0H U {co}. For a positive
integer k, C*(H) denotes the set of all k times continuously differentiable
functions on H, and put C*°(H) = NC*(H). Furthermore, let C>°(H) be
the set of all functions in C°°(H) with compact support. A function u €
C(H) is said to be L(®-harmonic if L(®u = 0 in the sense of distributions
(for details, see Section 2). Put m(«) = min{1,1/(2a)}. For a real number
o > —m(a), let B,(c) be the set of all L{*)-harmonic functions u € C(H)
with the norm
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ullgo o) = 1u(0, )]+ sup 7 {tV | Vyu(a, )] + t|dpu(e, t)|} < oo,
(z,t)eEH
(1.2)

where V, = (01,...,0,). We call B,(c) the a-parabolic Bloch type space.
Since B, (o) contains constant functions, we may identify B, (c)/R = B, (o),
where

B.(0) == {u € By(o) : u(0,1) = 0}.

The a-parabolic Bloch type space B, (o) is introduced and studied in our
previous paper [8]. The authors mainly studied fundamental properties and
reproducing formulae for functions of B, (o) in [8]. We remark that B, (o)
and B, (o) are Banach spaces with the norm (1.2) (see [8, Theorem 3.2]). It
is also shown that when a = 1/2, every u € By /2(0) is harmonic on H (see
[8, Remark 3.3]). Thus, By,2(c) coincides with the harmonic Bloch type
space.

In this paper, we study representing and interpolating sequences on
parabolic Bloch type spaces. First, we describe the definition of ga(a)—
representing sequences. Let Ny = NU {0}. For k € Ny, a function w* on
H x H is defined by

Wh(X;Y) = wh(z, by, 8) == DYW D (z—y, t45) =Dy (—y, 145) (1.3)

for all X = (z,t),Y = (y,s) € H, where D; = —9; and W(®) is the funda-
mental solution of L(*) (see Section 2 for definition). Let £>° be the Banach
space of all bounded sequences. Furthermore, let X = {X,} = {(z;,t;)} be
a sequence in H. For {\;} € (>, let

n/2a+k—o
UE AN HX) = Y 2o 0wk (X X ) (1.4)
J

for all X € H. We say that {X;}is a B, (0)-representing sequence of order
kif Uy {);} € B, (o) for all {A;} € £ and the operator U} y : £>° — B, (0)
is bounded and onto.

Next, we describe definition of Bq (o)-interpolating sequences. Let k €
N. For u € B,(0), we define a sequence of real numbers Tfyxu by
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T(ﬁxu = {t?‘”‘”@fu(?(})}. (1.5)

We say that {X,} is a B, (0)-interpolating sequence of order k if the operator
TSy : Ba(o) — £ is bounded and onto.

It is known that for every k € N, there exists a constant C' > 0 such
that

t 70 u(z, 1) < Cllull, (o)

for all u € ga(O') and (x,t) € H (see [8, Theorem 3.2 (4)]). Thus, Tf,x :
ga(a) — £°° is always bounded, and this is the reason why we consider a
weight t;ﬁ" in definition of the operator fo. We note that our definitions
and investigations for such sequences are more general, that is, we shall
study properties of operators Uf,x and fo when k is a fractional order.

Representation theorems for holomorphic and harmonic functions in L?
were studied in [3]. Also, interpolating sequences for the classical Hardy
space H> were studied by L. Carleson [1], and many investigations on vari-
ous settings are well known. In [8], the authors give reproducing formulae on
the function space l;j;a (o). A representing sequence gives the discrete version
of the reproducing formula on the function space ga(a). We study a suffi-
cient condition for a sequence in H to be the B (0)-representing sequence.
The interpolating sequences are closely related to representing sequences,
and such sequences are interesting in their own right. In this paper, we also
study B, (o)-interpolating sequences.

We describe the construction of this paper. In Section 2, we present
preliminary results of parabolic Bloch type spaces. In particular, we recall
definitions of L(®)-harmonic functions and the fundamental solution of L(®).
In Section 3, we study a necessary and sufficient condition for a sequence
X C H which ensures that the operator U}y : £ — B, (o) is bounded. In
Section 4, we study properties of the operator Tf,x- As mentioned above,
Ty : B,(0) — £ is always bounded. Therefore, we study boundedness

of Tix on a subspace of ga(a). In Section 5, we give our representing
theorem, that is, we give a sufficient condition for a sequence X C H to
be the ga(a)—representing sequence. In Section 6, we give our interpolating
theorem, that is, we give a sufficient condition for a sequence X C H to be
the B, (o)-interpolating sequence.
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Throughout this paper, C' will denote a positive constant whose value is
not necessarily the same at each occurrence; it may vary even within a line.

2. Preliminaries

In this section, we recall some basic properties. We begin with describing
the operator (—A,)® and the L(®)-harmonic functions. Since the case o = 1
is trivial, we only describe the case 0 < a < 1. For 0 < a < 1, (—A,)% is
the convolution operator defined by

(_Ax)ad](xvt) = _Cn,a 1(51&)1 (¢(5€ + y7t) - w(x’t))ky‘_n_mldy (21)
ly[>0

for all ¢» € C®(H) and (z,t) € H, where C,, o, = —4%7~"/2T'((n + 2a)/2)/
[(—a) > 0. Let L(® := —9,4+(—A,)® be the adjoint operator of L(*). Then,
a function v € C(H) is said to be L(®)-harmonic if u satisfies L(®)u = 0 in the
sense of distributions, that is, [}, [u L@y|dV < oo and Jyu L@ ypdV =0
for all ¥ € C°(H), where dV is the Lebesgue measure on H. We describe
the fundamental solution of L(®). For z € R™, let

2 .
W) (2, 1) = { 2m)" /Rnexp(—“f +iz-£)ds (t>0)

0 (t<0),

where z-¢ denotes the inner product on R” and |¢| = (£-€)'/2. The function
W (@) is the fundamental solution of L(® and it is L(®-harmonic on H. We
note that

W >00on H and W (g, t)de =1forall 0 <t <oo. (2.2)
Rn

Furthermore, W(® € C°(H).

Since we treat fractional calculus in our investigations, we recall defi-
nitions of the fractional integral and differential operators for functions on
R4 = (0,00) (for details, see [4]). For a real number k > 0, let

FC R i={p e ORy): p(t) = O(t™ ) (t — o) for some &' > K}. (2.3)
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For a function ¢ € FC™", we can define the fractional integral D; "¢ of ¢
by

1 o0
Dy e(t) = ) /0 ™ lo(r +t)dr, teR;. (2.4)

I'(k
We put FC° := C(R) and D%y := ¢. Moreover, let
Fer = {p; 0l p e Fe K= (2.5)

where [k] is the smallest integer greater than or equal to k. Then, we can
also define the fractional derivative Dfy of ¢ € FC" by

Dio(t) == D; 179 ((—a) o) (1), teR,. (2.6)

Clearly, when x € Ny, the operator Dy coincides with the ordinary dif-
ferential operator (—0;)*. For a multi-index v = (v1,...,7,) € Ny, let
Y == 97" ---9)». We present some properties of fractional derivatives of
the fundamental solution W ().

Lemma 2.1 ([4, Theorem 3.1]) Let 0 < o <1 and let v be a real number
such that v > —g-. Let v € Ny be a multi-index. Then, the following
statements hold.

(1) The derivatives 03Dy W ) (x,t) and DY OYW (@) (x,t) can be defined, and
the equation OJDYW () (x,t) = DYOIW @) (x,t) holds. Furthermore,
there exists a constant C = C(n,a,7y,v) > 0 such that

00Dy W) (,8)] < C(t + [af2)~ (5 +v)
for all (x,t) € H.
2) If a real number k satisfies the condition k+v > — 2=, then the derivative
( 2
DrOYDYW ) (1) is well defined, and
DEIDY W (2, t) = IDFH W (. ).
3) The derivative Y DY W ) (z,t) is L\¥ -harmonic on H.
( ) Tt ’

(4) The derivative 9)DYW ™) (z,t) satisfies the homogeneous property, that
18,
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n+|y
2a

DY) (2, 1) = ¢t~ (27 H) (91 DY W) (1= %6 2, 1)

for all (x,t) € H.

We note that 9)DYW () (—z,t) = (=1)9YDYW (@) (2, t) by the defini-
tion of W(®_ We also describe basic properties of fractional derivatives of
functions in B, (o).

Lemma 2.2 ([8, Proposition 5.4]) Let 0 < a <1, 0 > —m(«), and let
k be a real number such that k = 0 or k > max{0,—c}. Let v € Ny be a
multi-index. If uw € B, (o), then the following statements hold.

(1) The derivatives 0)Dju(x,t) and DyfoJu(z,t) can be defined, and the

equation J)Diu(x,t) = DfdJu(x,t) holds. Furthermore, if (v,k) #
(0,0), then there exists a constant C' = C(n,«a,0,v,k) > 0 such that

02D u(e, )] < O ) g o)

for all (x,t) € H.
(2) If v =0 or v > max{0,—c}, then

DY) Diu(x,t) = 0D} u(w,t) (2.7)

Furthermore, if v < 0, then (2.7) also holds when v < o and v + k >
max{0, —c}.
(3) The derivative ) Dfu is L) -harmonic on H.

We give the definition of the kernel function, which is generalization of
(1.3). Let I, be an interval (—g%,00). Then, for (y,x) € Nfj X Iy, in
view of Lemma 2.1, we define a function w2'¥ on H x H by

wo (X5 Y) = wi " (w0, 8y, 8)

= NDIW D (z —y,t 4 5) —NDYW O (—y,14+5)  (2.8)

for all X = (2,t),Y = (y,s) € H. We may write w” = w%”. We describe
the following lemma. In particular, Lemma 2.3 (1) is [5, Proposition 3.1
(1)]. The result Lemma 2.3 (2) is an immediate consequence of Lemma 2.3

(1).
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Lemma 2.3 Let 0 < o <1 and (v,k) € N§ x I ,. Then, the following
statements hold.

(1) For any compact set E C R™ and any real number T > 1, there exist
constants Cy,Cy > 0 such that

Cy |z Colt — 1]
R (145 4 [y[2e) et

Wl (2, ty, 5)| <

(1+s+[yl**)

for all (z,t) € E x [T~ T) and (y,s) € H.
(2) For any compact set K C H, there exists a constant C > 0 such that

C
|war (@, t5y, )| < EESEY
(1 + 5+ |y|2@) 2 Trtmle)

for all (z,t) € K and (y,s) € H.

We give definitions of some function spaces, which are closely related
to parabolic Bloch type spaces. For 1 < p < oo and A > —1, the Lebesgue
space LP()\) := LP(H,t*dV) is defined to be the Banach space of all Lebesgue
measurable functions v on H with

1/p
lullzrcsy = ( / |u<x,t>rpt*dv<x,t>) < o,
H

The a-parabolic Bergman space b? () is the set of all L(®)-harmonic func-
tions w on H with v € LP(X). Furthermore, L> := L*°(H,dV) is defined to
be the Banach space of all Lebesgue measurable functions v on H with

Jull = = ess supfu(z, £)]; (z.) € H} < oo,

and let b2° be the set of all L(®)-harmonic functions v on H with u € L>°.
We also consider the subspace of B,(0). The a-parabolic little Bloch type
space By o(0) is the set of all functions u € B, (o) with

1i o {41/ R u(x, t)] + t]O H = o. 2.9
T { \Vaou(z, )] + tO0pu(z, )| } (2.9)

Furthermore, let B o(c) be the set of all functions u € Bao(o) with
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u(0,1) = 0. Clearly, Ba.o(0) and Ba (o) are, respectively, the closed sub-
spaces of B, (o) and B, (o) by definition. We describe reproducing formulae
by fractional derivatives on bf (\) and B, (c). We note that Lemma 2.4 (1)
is [4, Theorem 5.2] and Lemma 2.4 (2) is [8, Theorem 5.7], respectively.

Lemma 2.4 Let 0 < a < 1. Then, the following statements hold.

(1) Let 1 < p < oo and A > —1. If real numbers r and v satisfy x > —2+L

P
and v > M'l , then
u(w,t) = 2 / Dy, s)DYW D (x — y,t + 5)s" " 1dV (y, 5)
I ]._‘(fi + V) H t I t ’ bl

(2.10)

for all u € b2 (X\) and (z,t) € H. Furthermore, (2.10) also holds for
v=MA+1 when p=1.

(2) Let 0 > —m(«). If real numbers k € Ry and v € R satisfy kK > —o and
v > o, then

2}1—1—1/
1 D k+rv—1
) = u0.1) = g | DFu(y.s)eatiy. ) V(. )
(2.11)

for all w € B,(o) and (z,t) € H. Furthermore, (2.11) also holds for
v > max{0,0} when k = 0.

We also describe the following duality theorems. In the following lemma,
Lemma 2.5 (1) is [8, Theorem 3] and Lemma 2.5 (2) is [8, Theorem 4],
respectively.

Lemma 2.5 Let0<a<1,0>—-m(«a), and A > —1. Then, the following
statements hold.

(1) The duality (b} (A\)* = By(0) holds under the pairing { -, - YA.0, where

2)\+U+2
(U, V)0 1=

- D )\+U+1d
F()\—f—0'+2) L]u(yvs) t’l)(y,S)S V(y73)7

uebL(\), veBy(o). (2.12)

(2) The duality bL(X\) = (Ba.o(0))* holds under the pairing (2.12), that is,
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(u,0)x0 with u € bL(N) and v € By (o).

Lemma 2.6 ([11, Lemma5]) Letf,c € R. If0 > —1 and 0—c+55+1 <0,
then there exists a constant C = C(n,«a,0,c¢) > 0 such that

0
S n
dV(y,s) = Ct/=cTaatt
/H(t+8+lx—yl2°‘)c 2]

for all (z,t) € H.

We also need the following lemma.

Lemma 2.7 ([7, Theorem 3.1]) Let0<a<1,1<p<oo, and A € R.

n

Suppose that a multi-index v € N, and real numbers k, p € R with k > — 5=
satisfy

A—pp<p—1< (gjl+m>p+/\—pp.

Then, for every f € LP(\),
v t)i= [ f )R DEW ) =yt 4 5)5PaV (1,5)
H

is well defined for every (x,t) € H. Furthermore, let § € Nj be a multi-
index. If a real number v € R satisfies
n 1l
v+rk>——andp—1<|—4+v+r|p+—pp,
2c 2«
then
97Dy v(w,t) = / flys$)OT DW=y, t 4 5)s7dV (y, ).
H
Now, we recall the definition of a-parabolic cylinders, which are in-
troduced in [12]. The a-parabolic cylinders will be used to define separated

sequences below. For Y = (y,s) € H and 0 < § < 1, an a-parabolic cylinder
Sga)(Y) = Sga) (y,s) is defined by
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. 26 \'* 1-3 140
S§)(y78)1={(x,t)€Hs!w—y’<(1_523) ’1+53<t<1—53}'

Clearly, lims_.; Sga)(Y) = H and Séa) (y,s) = @gfé)(S((;a)(O, 1)) for each Y €
H, where <I>§,a )(X ) is the function defined by

<I>§,a)(X) = (51/20‘x—|—y73t), X = (z,t) € H.

Also, V(Séa)(y,s)) = 2B,(28s/(1 — §%))"/ )+l where B, is the volume
of the unit ball in R™. For 0 < 0 < 1, we say that a sequence {X;} C H

is d-separated in the a-parabolic sense if a-parabolic cylinders Séa)(X ;) are
pairwise disjoint. We also need the following lemma.

Lemma 2.8 ([6, Lemma 4.2]) Let 0 < o < 1. For every § > —1 and
¢ > 0, there exists a constant C > 0 such that

% F(§ %
- 2a)c < ¢ /(2( ))+1 / . 2c CdV(Z,T)
(t+ s+ |z —yl?) sn/(2a S (y,5) (t+7r+ |z — z]29)

for all0 < § <1 and (x,t), (y,s) € H, where

(1 _ 52)n/(2a)+9+1fc
F(9) = 6/ () {(1 + §)200+1) — (1 — §)2(0+1)}

We describe representing and interpolating operators, which are studied
in [6]. Let X = {X,} = {(xj,t;)} be a sequence in H. First, we give
the definition of the representing operators. Let (v,x) € Ny X I, ,. For
{)\J} € (P let

n+M o 1
U R0 = 3, S 1D ) (0 — 1 4 1y)

DA,

(2.13)

for all X = (x,t) € H. We call U)(x the representing operator of order
(7, k). The following result is also glven in [6].

Lemma 2.9 ([6, Theorem 4.3]) Let0 < a < 1,1 <p< oo, A > —1,

and let k be a real number such that k > %. Let v € Ny be a multi-
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index. Furthermore, let X = {X,;} = {(x},t;)} be a sequence in H. Then,
Ulnx i P — bh(N) is bounded if and only if for any 0 < § < 1, there exists
M € N such that X =X U---UXys and each sequence X; is d-separated in
the a-parabolic sense. When p =1, the “if” part also holds.

Next, we give the definition of the interpolating operators. Let v € Nj
and let k be a real number such that £ > — (4% +1+X). Then, for u € b2 (),
we define a sequence of real numbers Ty u by

n 1yl e
T = {t§2"‘+1+>\)”+2a+ Dru(X;) ). (2.14)

We call T,y the interpolating operator of order (v, x). The boundedness
of the operator Ty : b, (A) — P is characterized by the following lemma.

Lemma 2.10 ([6, Lemma 4.1]) Let 0 < o < 1,1 <p < o0, A > —1,
and K be a real number such that k > —%. Let v € N§ be a multi-
index. Furthermore, let X = {X;} = {(x},t;)} be a sequence in H. Then,
T\ : bR (N) — €7 is bounded if and only if for any 0 < § < 1, there exists
M € N such that X = X3 U---UXys and each sequence X; is d-separated in
the a-parabolic sense.

3. The %a(a)—representing operator

In this section, we define the ga(a)—representing operators, and study
their properties. First, we give the definition of the ga(o)—representing
operators. Let o > —m(a) and X = {X,} = {(x;,t;)} be a sequence in H.
Furthermore, let (v, k) € Nij X I, 5. For {\;} € £, put

_ ntl ko ok
Ul HX) =) At ™ WwI(X;X;), XeH o (3.1)

7 7
J

We call U]y the B, (o)-representing operator of order (7y,x). Let ¢o be
the totality of sequences convergent to 0, which is a closed subspace of £°°,
and we may regard a finite sequence as an element of ¢y. Now, we give a
necessary and sufficient condition for a sequence {X,} which ensures that
O Ba (o) is bounded and also that UJx maps co into Ba.o(o),

Theorem 3.1 Let0 < o <1, 0 > —m(«), and let k be a real number
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such that k > 0. Lety € N§j be a multi-index. Furthermore, let X = {X;} =
{(z;,t;)} be a sequence in H. Then, U]y : £ — Ba(o) is bounded and
U)x maps cy into g%g(a) if and only if for any 0 < 6 < 1, there exists
M € N such that X =X, U---UX)s and each sequence X; is d-separated in
the a-parabolic sense.

Proof.  First, suppose that U : £ — ga(a) is bounded and U]y maps
co into g@[’o(a). Then, the restriction operator S := U;g’g|00 tcg — gmo(a)
is bounded. Therefore, there exists the adjoint operator S* of .S such that
S* (ga,o(a))* — (cg)* is bounded. Let A > —1. Then, Lemma 2.5 (2)
implies that S* : b’(\) — ¢! is bounded. Let (- ,-) be the usual pairing of
¢' and £>°, and recall that { -, - ), is the pairing of b} (\) and gmo(a)
described in Lemma 2.5. Furthermore, let {e;} be the standard basis of £>°.
(We note that e; € ¢p.) Then, for u € b’ ()\), we have

(S™u,ej) = (u, Sej)ro = (u, U)K ej)r0
2>\+0'+2
I'A+o0+2)

x / w(y, YDl (y, 525, 1,)s T dV (3, )
H

_ [+l @a)tr—o
g

2/\+a+2

F'A+o+2)

X / u(y, s)@lDfHW(O‘) (y —zj,s+ tj)s>‘+”+1dV(y, s). (3.2)
H

— (nt)/2e)+r—o
U

Making a change of variable y = 2z; — z, we find that the right-hand side
of (3.2) is equal to

9A+o+2

F'A+o0+2)

X / v(z,8)0)DETIW ) (15 — 2 t; + 8) AV (2, ),
H

(/e tr—o
J

where v(z, s) = u(2x; — z,s). Furthermore, Lemma 2.7 and Lemma 2.4 (1)
imply that



Representing and interpolating sequences 347

/ v(z,8)00 Dyt (W(a) (z—2,t+s)) sV (2, )
H

(i»t):(mj 7tj)

= gypy~Aroth (/ v(z,s)
H

) DM@ (g — 4t S)SA+U+1dV(z,S)>

(z,t)=(z;,t5)

(A +o+2)

k—(A+o+1
oA to+2 9Dy ( )v(:c,t)

(Ivt):(zj ’tj)

A4o+2)

P( k—(A+o+1
= ()M = oDy M (. ).

Hence, we obtain
(S*u,5) = (~1) D/ me g Oty gy,
that is,

§*u = (1) {00/ o) tn=r gy (koD

h—(A+o+1
= (-

[X43)

Since S* is bounded, the operator Tl'y ;;g (4ot s also bounded. Therefore,

by Lemma 2.10, for any 0 < § < 1, there exists M € N such that X =
X1 U---UX)s and each sequence X; is d-separated in the a-parabolic sense.

Next, we show the “only if” part. It is sufficient to prove that if X is
d-separated in the a-parabolic sense for some 0 < § < 1 then U;g'g Y

Ba(c) is bounded and U]y maps co into lfS’Vap(J). Thus, we suppose that
X ={X,} = {(zj,t;)} is d-separated in the a-parabolic sense. Let {\;} €
£>°. We begin with showing that the series in (3.1) converges uniformly on
compact subsets of H (we only use the pointwise convergence of this series
later). Let K be a compact subset of H. Then, Lemma 2.3 (2) and Lemma
2.8 imply that there exists a constant C' = C(K) > 0 such that
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Aty DI EOTETT R b )]
((nt)/ (20)+r—0

) J
< ClHA i (14 t; + |x;[20) e+ D/ ) +r+m(a)

P11/ (2a)+r—o-1

@ (x,) (L4 7 + [2[2e) et/ @a)+rtm(a)

< CF®) Mo / av (z,r)

forall 0 < 6§ <1, j, and (z,t) € K, where F() is the function defined in
Lemma 2.8. Therefore, Lemma 2.6 shows that

Z ‘)\ .t('n+|7|)/(2a)+ﬁ—0wv,n(x t; zj, tj)‘

rll/(20) 4 -0 -1
< CFOIA }”°°Z/<a>(x) T+ ey rrmia 1V (5:7)

rhil/2a)+r—o-1

(1 + 7+ |2|22) D/ Ca)Frtm(a)

< CFOI I |

< CF(0)[[{j} oo

AV (z,r)

for all (z,t) € K, that is, the series in (3.1) converges uniformly on K. Put
N
un(z,t) = Z )\jtg-"ﬂﬂ)/(m””*awg’”(ac,t; zj,t;), (x,t) € H.
j=1
Then, we claim that {uy} is bounded in B, (o). In fact, for each (3,m) €

Ni x No\{(0,0)}, Lemma 2.1 (1) and Lemma 2.8 imply that

N
S Il E T D (g, )|
j=1

I
E

n 2a)+Kk—0 m—+k
|/\j|t§- +v)/(2a)+ ‘8§+7Dt + W(a)(:v—xj,t—i—tj)‘
1

<.

(nF9)/ 20)+r—0
< . J
B C(é‘?EN M") z; (t +t; + |x — x;]22) (0 HIBIHIYD/ Q) +mts
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<cr)( s v

1<j<N

) Z phl/(20)+x—0—1
510 () (E+ 1+ [ — 2[22) O HBHAD/CGa) P

dv(z,r) (3.3)
for all X = (x,t) € H. Therefore, (3.3) and Lemma 2.6 also imply that

N
S e, x|
j=1

gcra—l/(?a)( sup |Aj|> (3.4)

1<j<N

and

N
Z ‘)\j|t§n+\’ﬂ)/(2a)+ﬁ—a}atwg,n(X; X])| < Ct—o-1 < sup |)\]’> (35)
= 1<j<N
for all X = (z,t) € H. Thus, (3.4) and (3.5) show [[un||5,(s) < Cl[{Nj}H|oo
for all N € N. Let A > —1, and we recall the fact (b} (\))* 2 Ba(c) under
the pairing ( -, - )xo defined in Lemma 2.5. Furthermore, since L!())
is separable, the subspace b.,(\) of L'()\) is also separable. Therefore, the
Banach-Alaoglu theorem implies that there exist a subsequence {un,} C
{un} and a function u € Ba(c) such that {uy,} converges to u in the w*-
topology. By Lemma 2.3 (2) and Lemma 2.6, we have witoT1(X;. ) =
wWOATIHL(X; ) € bL(N) for each X € H. Hence, Lemma 2.4 (2) with x = 1
shows that

w(X) = (WA (X)),

= lim (W37 (X ), un, ), = limu, (X) = UJE{A; HX)
This implies U] {)\;} € Ba(c) and |U ax 1N His, () < lim inf; [|un, || 5, (o)
< C|{Aj}loo, that is, the operator Uy : £ — B, (o) is bounded. Next,
let {n;} € cp, and put
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N
un(X) = Y gtV s (), X el
j=1

Then, by (3.3), we have vy € ga’o(a). Furthermore, (3.4) and (3.5) show
that

MM1Mmm§C<sw m@w<M>Nﬂm»
N+1<j<M

Hence, there exists a function v € B o(0) such that {vx} converges to v
in By(o). Thus, {vy} also converges to v in the w*-topology. Therefore,
Lemma 2.4 (2) with x = 1 also implies that

v(X) = (wa TN XG ) 0),

= lim (@t )ow)y, = lim oy (X) = Ugx{n;}(X).
It follows that U;g’g maps cg into gayo(a). dJ

4. The Ea(a)-interpolating operator

In this section, we define ga(a)—interpolating operators, and study their
properties. First, we give the definition of the ga (o)-interpolating opera-
tors. Let 0 > —m(a) and put ¥, := {0} U {x € R : k > max{0,—c}}.
Furthermore, let X = {X;} = {(z;,t;)} be a sequence in H, and let
(v,6) € (N2 x £,)\{(0,0)}. Then, for u € By (0), we define a sequence
of real numbers T ;'u by

T = {t'j'/ (20“)*”*“8;Dfu(xj)}. (4.1)
By Lemma 2.2 (1), the linear operator T,y : Ba (o) — €% is always bounded,
and we call 7% the B, (0)-interpolating operator of order (v,x). We also
consider the operator T, on the subspace ga,()(U) of B, (c). We give suffi-

cient conditions for a sequence {X;} which ensures that 77 maps Bao(o)
into ¢g. We give the following theorem.
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Theorem 4.1 Let 0 < a < 1, 0 > —m(a), and (v,k) € (N x E5)\
{(0,0)}. Then, the following statements hold.

(1) Ifu € Bao(0), then lim(, 1) amuieoy 1/ COT oI Diwu(2, t) = 0.

(2) If a sequence X = {X,} C H satisfies X; — 0H U {oo} (j — 00), then
T;’S'g maps Bo o(o) into co.

(3) If for any 0 < 0 < 1, there exists M € N such that X =X; U---UX)y
and each sequence X; is d-separated in the a-parabolic sense, then T;g’g

maps ga,o(U) mto cg.

Proof. (1) Let u € Ba(o). Then, by Lemma 2.4 (2) with x = 1 and
v =041, we have

20+2
D =55 g / Deuly, s)wi (2, 8y, 8)s7 1 dV (y, 5) (4.2)
(o

for all (z,t) € H. Let (v,k) € (N x X,)\{(0,0)}. If k ¢ Ny, then differen-
tiating through the integral (4.2), we obtain

9D u(z, )
20'+2

— D ’yD’Vﬁ']‘FU‘i‘l (a) _ o+1
ra+2/ ru(y, s)0) Wi (z —y,t + 5)s7 dV (y, s).

Thus, we have

0 Dfu(x,t) = Zihi ! /OoTMKl/ Dyu(y, s)
e I'(o+2)I([x] = &) Jo H ’

x DT (p — gy t 4 s+ 7)s7 TV (y, s)dr.

Here, Lemma 2.1 (1) and Lemma 2.6 imply that

/ T[Iﬂ“*/ﬂ:fl
0

X / |Dtu(y, s)@ll){“w—i_a—HW(o‘)(az —y,t+ s+ 7')}5”"*'1dV(y7 s)dr
H
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o0
< C||U||Ba(a)/0 plrl=r-1

1
8 /H (tstr+]o—ygpo)orhnCarmreri &V 4 8)dr

0o ,Tl—K,-lfﬁifl
- CHUHBQ(J)/O (5 1)@+ Te dr < o0,

because |v|/(2a) + k + o > 0. Therefore, the Fubini theorem shows

9} Diu(w,t)
20—1—2

- oty ), P D W @ =yt )5V (0.9)

If k € Ny, then clearly we also obtain (4.3). Hence, we conclude that
Equation (4.3) holds for every (v,x) € (N§ x £,)\{(0,0)}. Let u € gmo(a)
and let n > 0 be a real number such that |y|/(2«a) + k + o > n. Then, given
e > 0, there exists a compact set K C H such that s*1|D,u(y, s)| < e for
all (y,s) € K¢, because u € gayo(a). Hence, Lemma 2.1 (1) and Lemma 2.6

again imply that

thl/ 42| 0 D (a, 1)

o+ Dyu(y, )|
< (/@) trto s7 [ Dyu(y,
= Ct g (t+ s+ |z — y|2o)(ntlD/a)+rtotl dV(y,s)

s7 [ Dyuly, s)|
<ot : av
- /H (t+ s + |z — y|20)/@a)+n+ (v, 5)

1
< Cet"
> /KC (t + s+ |l’ _ y|2a)n/(2a)+n+1
1
n
+ CHUHBQ(U)t /K' (t + s+ |:1: _ y‘Qa)n/(QOc)+77+1
tn
(1 +t+’x‘2a)n/(2a)+77+1
1
(14t [a2e)n/ (o)t

AV (y, s)

dv(y,s)

< Ce + Cllul|g, (o)

< Ce+ Cllullp, ()
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for all (z,t) € H. Thus, we obtain

lim thl/@e)trte| 99Dl (z, t)| < Ce.
(z,t)—0HU{oo}

(2) The desired result immediately follows from Theorem 4.1 (1).

(3) Let X = {X;} and 0 < 6 < 1. Suppose that there exists M € N
such that X = X; U --- U Xj; and each sequence X; is d-separated in the
a-parabolic sense. Then clearly, for any compact set K C H, there exists
Jo € N such that X; € K¢ for all j > jo, that is, X; — 0H U {oo} (j — o0).

O

5. The B, (o)-representing theorem

In this section, we give a representing theorem for ga(a). Let o >
—m(a) and X = {X;} = {(z;,t;)} be a sequence in H. Furthermore, let
(7,Kk) € N§ x Iy . For {)\;} € £°°, we recall the B, (o)-representing operator

UZEHX) = Do\t th/Cosemo i (xi X)), X e Ho o (5.1)
J

We say that {X,} is a B (0)-representing sequence of order (v,x) if
Ui} € B, (o) for all {\;} € £ and the operator Ul 1 £° — B, (o) is
bounded and onto. We also say that {X;} is a By o(0)-representing sequence
of order (v,r) if UJ5{)\;} € Boo(o) for all {\;} € ¢y and the operator
U;g’g tco — ga,o(a) is bounded and onto. In this section, we give a repre-
senting theorem for B, (o) and gmo(a), that is, we give a sufficient condition
for a sequence {X;} to be the B, (c)-representing and gayo(a)—representing
sequence. We need the following lemma.

Lemma 5.1 ([6, Lemma 5.2]) Let0<a<1,veNj, k> —-n/(2a), and
0 € R. Then, there ezists a constant C = C(n,a,~y,k,0) > 0 such that
}seangW(a) (x—y,t+5)—rPNDEW ) (x — 2,t + 7‘)}

(5—}-(51/(2&))7’9
(t+ 7+ |z — 2|2)(ntVD)/(2e)+n

for all (x,t), (y,s) € H, (z,r) € Séa)(y,s), and 0 <6 <1/3.
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We also give the Lipschitz type estimates of functions in B (o).

Proposition 5.2 Let 0 < a < 1, 0 > —m(«), and (v,k) € (N§ x
¥:)\{(0,0)}. Then, there exists a constant C = C(n,a,0,7,Kk) > 0 such
that

00D u(y, 5) — 81 Dfu(e, )| < C(8 + 82w ) s~ M/ @Rt 15 0 (5.2)

for allu € By(0), (z,t) € H, (y,5) € S(ga)(a:,t), and 0 < § <1/3.

Proof. Let u € Bu(0), (x,t) € H, (y,5) € S$(z,1), and 0 < § < 1/3.
Then, by (4.3) and Lemma 5.1, we have

|8;Dfu(y, s) — 8%Dfu(:v,t)’
e / Dyu(zr)|| 2D W (y — 254 7)
H

—0IDFH W (g — 2t + 1) [r7 AV (2, 1)

o+1
1)(20) |Dyu(z,r)|r
<C(0+46 )/H (r + s + |z — y|20)(n+D/ o) +rtot1

dV(z,r)

<C(6+ 51/(2(1))’\?1\\3&(0)

1
) /H 5t 7= g et 4V (357

Hence, (5.2) follows from Lemma 2.6, where C is independent of 4. O

Given 0 < 0 < 1, we say that a sequence {X;} C H is a d-lattice in
the a-parabolic sense if H = |J; Sga) (X;) and {X;} is e-separated in the
a-parabolic sense for some ¢, 0 < ¢ < 4. The notion of the d-lattice in the
a-parabolic sense is introduced in [13] and an example of the J-lattice is
given in [13, Remark 4.3].

Let 0 < 0 < 1/3 and {X,} be a d-lattice in the a-parabolic sense (e-

separated for some 0 < ¢ < ). Then, we take a pairwise disjoint covering
{S;} of H as follows:

Sy = S5 (x)\ | 59 (Xe)

k>2
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S; =S (x {( U Sm>U< U s§a>(Xk)>}, (j>2). (5.3)

m<j—1 k>j+1

It is easy to see that Séa)(Xj) Cc S C Sga)(Xj) C Si%( ;), and there

exists a constant C' > 0 independent of ¢ such that V' (S;) < C’t?/m+1 for
all 7 > 1. We show the main theorem of this section.

Theorem 5.3 Let0<a <1, 0> —m(a), and k be a real number such
that k > o. Then, there exists 0 < 6y < 1 such that if a sequence {X;} in
H is the 0-lattice in the a-parabolic sense with 0 < § < &y, then {X;} is the

B, (0)-representing and B, o(0)-representing sequence of order (0, k).

Proof. Suppose that 0 < § <1/3and X = {X,} = {(z,¢;)} is the -lattice
in the a-parabolic sense (e-separated for some 0 < € < §). Here constraints
of § will be imposed later. Theorem 3.1 implies that Ug”g 4 — By(o)

is bounded and Ug:g maps ¢o into Ba,o(o). Let {S;} be a pairwise disjoint

covering of H defined in (5.3). Then, we define an operator B, x on Bo (o)
by

Bo,XU — {t;+a_(n/(2a)+1)DtU(Xj)V(Sj)} — {t;’_"/(za)Dtu(Xj)V(Sj)}.

We note that B, x : : B, (o) — £ is bounded and B, x maps ga,o(a) into ¢,
because V(S;) < Ctn/(za)Jrl and {X,} is e-separated for some 0 < ¢ < 4.

Thus, we define an operator A7 y on Ba(c) by

2n+l .
AG xu(w,t) == WUS,’XBU,XU(% t)
2n+1
Zt Diu(zj, tj)wh(x, t;x5,t5)V(S;).

Then, Af y : B.(0) — B, (o) is bounded and Aj x maps B.o(0) into itself.

It suffices to show that A  is invertible on B, (o) for all § sufficiently small.
We shall show that HI Aj x|l < 1 for all § sufficiently small, where [

is the identity operator on By (o). In fact, Lemma 2.4 (2) implies that for
u € By(o) and (z,t) € H,
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2/-c+1
U(.’E,t / Dtu y7 :1: t Y,s ) Hdv(ya S)
Z/ Dtu y7 :B t Y,s ) ﬂdV(@/? S)'

Hence, we obtain

2&—{—1

(I — A;X)u(m,t) = m

(I (2, 1) 4+ Ha(z, 1)),
where
1(x,t) = Z/s Diu(y, s)(s”wg(aj,t; Yy, 8) — tiwg (w,; azj,tj))dV(y, s)
5 /S
and

o(z,t) = Z/S (Dtu(y, s) — Dtu(azj,tj))t;-‘wg(m,t; zj,t;))dV (y, s).

First, we shall show that there exists a constant C' > 0 independent of
6 and u such that ||II1||5, () < C(6+6Y3Y)||ul/5,(»). By Lemmas 5.1 and
2.6, we have for each 1 < ¢ < n,

|a€teH1 (x7 t)|

< Z/ |Dyu(y, s Hs“@uD”W(O‘)(aj -y, t+s)
t“8$eD“W(a)(x —xj,t+t;) }dV Y, S

1/(20) |Dyu(y, s)|s”
S
J J

8—1—U+H

(t + s+ |.’E _ y|2a)(n+1)/(2a)+n

< O(6+ 6YC) ull 5, (o) / vV (y,s)
H
< O+ ullg, @) - 7771,

and
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0,10 (2, 1)
< Z/ |Diu(y, s HSRD“JAW(O‘)(@" —y,t+s)

t“D“HW(O‘)(x—xJ,t—l-t }dV Y, S)

0(5 + 51/(204)) Z/ |Dtu(y7 S)"g dV(y,s)
PR

(t + s+ ’$ _ y’2a)n/(2a)+n+1

S*l*O'JrFL

< O(6+ 6YC) ullg, (o) / AV (y,s)

I (t + s+ |.CL‘ _ y|2a)n/(2a)+n+1
< O3 + 8" ulls, oy - 7.
Therefore, we obtain ||II1 ||z, ) < C(0 + 61/(20‘))||u|]5a(,,), where the con-
stant C' is independent of ¢ and w.
Next, we shall show that there exists a constant C' > 0 independent of

¢ and u such that |1 s, (o) < C(8 + 6C3)||u|s, (»). By Lemma 2.1 (1)
and Proposition 5.2, we have for each 1 < /£ < n,

‘890141_[2(‘%7 t)|

< Z/S Dyuly, s) — Deuly, ) |t5]00, DEW (2 — .t + £5)|dV (3, 5)

Diul(y, s) Dum,-t”
<Z/ Do) = Doty Ll v (5,

(Ett; + o — z;20) (D /ey Tw

< C(6+6YC)lul|g, (o)
sTlzogr

J
X
zj: /sj (t+t; + |z — xj20) D/ Ca)ts

dV(y,s),

and

|0, o (2, 1)]

< Z/ [Deuly, s) — Dyulay, t)|t5 | DFF W (@ — zj,t + £5)|dV (y, s)
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Diu(y, s) — Dyu(zy, t;)|t7
—Z/ Dty o)~ Deaay Ity

(Ett; + o — ;20 @) +rtd

—l—otn

1/(2&)
C(6 + 07 |Julls, (U>Z/ T |2a)n/(2a)+ﬁ+1dV(y,s).

Since S; C S(a)( X;) C Si%( ), there exists a constant C' > 0 independent
of ¢ such that

Cls<t;<Cs, t+s+|z—y**<CEt+t;+ |z — 2>

for all (y,s) € S; and j. Therefore, Lemma 2.6 implies that there exists a
constant C' > 0 independent of § such that for each 1 < /¢ < n,

|0, 2 (2, 1))

—1—o+n

1/(2a
< C(5+5 /( ) HU’HB (U)Z/ t+$+ ‘./L._y‘ro)(n-f—l)/(Qa)-f—lidV(y’S)

s*lfo+n
Ba (o) /H (t+ 5+ |z — y[20) D/ @) 4w dV(y, s)

< O + 61|y

< C(6+ YN ullg, (o) - 7,
and

0115 (2, )]

57170+H

S 0(5 + 51/(204))“u||6a(0) Z/S (t + s + ‘x _ y‘QO&)n/(QOé)+KZ+1 dv(y7 8)
i J

—1—0+k

AV (y, s)

< C(5 4 51/ ) / °
>~ ( + )HU’HBa( ) I (t+5+ |:E_y|2a)n/(2a)+m+1

< C(6 48N |ullp, o) -t

Hence, we obtain |1z s, ») < C(6 + 6Y/2Y)||ul5,(,), where the constant
C is independent of § and u. O
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6. The ga(a)-interpolating theorem

In this section, we give a interpolating theorem for the a-parabolic Bloch
type spaces. Let 0 > —m(«a) and X = {X;} = {(z;,t;)} be a sequence in
H. Furthermore, let (v, ) € (N x 2,)\{(0,0)}. For u € Bq(c), we recall
the B, (c)-interpolating operator

T fu = {t';'/ <2a>+“+"agz>fu(xj)}. (6.1)
We say that {X;} is a Ba(0)-interpolating sequence of order (v, x) if the
operator 1% : By(0) — £ is bounded and onto. Again, we remark that
T)x : B, (0) — £ is always bounded by Lemma 2.2 (1). We also say that
{X;} is a Ba,o(0)-interpolating sequence of order (v, k) if T : Byo(0) —
¢o is bounded and onto. In this section, we give an interpolating theorem
for B, (o) and B, o(0), that is, we give a sufficient condition for a sequence
{X;} to be the B, (o)-interpolating and Bq (o )-interpolating sequence. We
need the following lemma.

Lemma 6.1 Let0< a<1,0>—m(a), and k be a real number such that
k> 0. Lety € Ny be a multi-index. Furthermore, let X = {X;} = {(z;,t;)}
be d-separated in the a-parabolic sense. If (B,v) € N x ¥,\{(0,0)} and
{\;} € £°°, then

7D} (U {A}) (1)

= Y b @t gt Ry () (4 — gt 4 ) (6.2)
j=1

for all (x,t) € H.
Proof. Let (B,v) € N§ x £,\{(0,0)}.
Suppose v € Ng. Put
N
un(x,t) = Y Nty VGO g b 1), (1) € H.

Jj=1

Then, {02DYux} converges uniformly on R" x [, 00) for every 7 > 0. In
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fact, by (3.3), we have

N
> Mj|t§n+w)/(2a)+ﬁ_a|3fpi'wl’“($, tixj,t5)|
j=1

< CF)I{A) Hloo

y ZN:/ P/ (2a)+r—o—1
2 Jggor () Ut 74 [ — 2Poo) A BTRRD Gy

dV(z,r)

1/ (20)+r—0—1
< CFOIRA oo /H (t+ 1+ |z — 2[2)(HBIHRD/ @) +vts

dvi(z,r)

for all X € H. Since (8,v) € Nj x No\{(0,0)}, Lemma 2.6 implies

N

n 20)+Kk—0 v K
S Il RO gi Dy (X X )|
j=1

< OF(8)|[{A; } oot~ 181/ @) 4w

Thus, we have {02DYux} converges uniformly on R™ x [r,00) for every
7 > 0. It follows that we can differentiate term by term, so that (6.2) is
obtained.

Suppose v ¢ Ny. Then, Lemma 2.6 also implies

o0 o0
/0 Pt S @ gD 7 1
j=1
< PO [ 77
0

p(D/(2a)+r—o—1
. /H T e T R ey P e A

,7_[1/] —v—1

<CPOIM | o dr <

because v > max{0, —o}. Hence, differentiating term by term, we obtain
(6.2) from the Fubini theorem. O
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We show the main theorem of this section.

Theorem 6.2 Let 0 < o < 1, 0 > —m(«), and (v,k) € (N§ x ;)\
{(0,0)}. Then, there exists 0 < 09 < 1 such that if a sequence {X;} in
H is §-separated in the a-parabolic sense with 6y < 0 < 1, then {X;} is a
Ba( )-interpolating and B o(0)-interpolating sequence of order (7, k).

Proof.  Let v be a real number such that v > . We note that the function

S(n+2lvl)/(204)+H+V@§71)?+VW(0¢) (0,2s)

is constant on H. In fact, by Lemma 2.1 (4), we have

D@ (0, 2s)
= 9~ ((n+21D)/ @e)+rtv) —((n+217)/ 2a)+r+v) g2y prtv (@) (o, 1),

Thus, s 27D/ Ca)trtva2yphtriye) (g, 2s) is constant on H. Put

Coopw = S(n+2|fy|)/(2a)+/€+ua§'ypf+uw(a) (0’ 28)

_ 2—((n+2|’y|)/(2a)+n+1/)8§7Df+yw(a)(O’ 1).

Then, as in the proof of [14, Proposition 1 (2)], it is easy to see that
O DT W@ (0,1) # 0. Therefore, we obtain ¢, ., # 0.

Suppose that X = {X;} = {(x;,t;)} is d-separated in the a-parabolic
sense. Here constraints of § will be imposed later. By Theorem 3.1, the
operator Uy : £ — B, (o) is bounded and U]y maps co into Bao(o).
Therefore, T ;g’gU;’X £%° — £°° is bounded and T% U“”X maps ¢y into cgy
by Theorem 4.1 (3). As in the proof of Theorem 5.3, it suffices to show that
there exists 0 < §y < 1 such that if §jo < § < 1 then 1T —S)" |l < 1, where
I is the identity operator on ¢> and S)¢" = c 5 T, ”U% In fact, the

Y, H v o,X
operator I — S’"” maps a sequence {\;} in £>° to a sequence {&;,} in (>
given by

Em = A — 1 t|'y\/(2a)+m+aa’wpn (U’Y V{)\ })( )

By Lemma 6.1, we have
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_ -1 20)+k+o
Em = Am — C%,i7,,t|71|/( )

X Z )\jt§n+hl)/(QaH_y_Uai’YDeryW(a) (l‘m - Zj, tm + tj)
j=1

_ .—1 v/ (2a)+K+0o
- c%mutm

% Z )\jtgn'i‘"Y|)/(204)+V—0'a§’ny?+VW(a)(l,m — T, b + tj)‘
Jj#Fm

Thus, Lemma 2.1 (1) and Lemma 2.8 imply

&ml] < ‘0—1 ‘t\rzl/(za)ﬂﬁ

’Y,K,V

Y R C R
j#m
{ntHD/ (20) +r—o

< [t/ e)+rto J
< Ol{AsHlsotin J; (tm =+ t; + | — 3] 2%) (+20D/Ca)Hrtv

< CF(8/2)| 1A, oot/ G40

rl/2a)+v—o—1 .
’ ; [sgc;;m) (b & 1 o — 2Pz s 4V (57)

< CF(8/2)[{A} oot/ 42
rhl/2a)+v—o—1

. /H\Sé“(xm) (tn + 7 + [T — 2|29) (2 F200]D/ (o) +rtv

dV(z,r)

H1/2a) by —o—1
dv(z,r),

= CEE/2 I [

H\st“)(o,l) (1 +t+ |x]20l)(n+2|’7\)/(2a)+/-€+v

where C'is independent of §. Since F'(§/2) is bounded for all 1/2 < ¢ < 1,
Lemma 2.6 shows that there exists 0 < dg < 1 such that if o < 6 < 1 then
I —S5" < 1. .
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