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Estimates of spherical derivative of
meromorphic functions
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Abstract. The spherical derivative f^{\neq\neq}=|f’|/(1+|f|^{2}) of f meromorphic in D=
\{|z|<1\} is estimated from above and below in terms of various geometrical quantities, for
example, \delta^{\neq}(z, f) , \rho(z, f) , and \rho_{au}(z, f) , in several theorems. A necessary and sufficient
condition for (1 -|z|^{2})f^{\neq}(z) to be bounded in D is that there exists r , 0<r\leq 1 , such
that f(w)\neq-1/\overline{f(z)} for all z , w\in D satisfying |w-z|/|1-\overline{z}w|<r . Also, (1-|z|^{2})f^{\neq}(z)

is bounded in D if and only if \delta^{\neq}(z, f)/\rho_{au}(z, f) is bounded in D minus the points z
where f^{\neq}(z)=0 . Applications to evaluating the Poincar\’e density in a plane domain will
be considered.

Key words: normal meromorphic function; antipodal point; spherical and Poincar\’e dis-
tances; spherical derivative of meromorphic function; Poincar\’e density; Bloch function.

1. Introduction

Let a function f be meromorphic in the disk D=\{|z|<1\} . The
spherical derivative f^{\neq}(z) of f at z\in D is defined by f^{\neq}(z)=|f’(z)|/(1+

|f(z)|^{2}) , if f(z)\neq\infty , and f^{\#}(z)=|(1/f)’(z)| , if f(z)=\infty . Then f^{\neq}=

(1/f)^{\neq} in D , where the constant function \infty is regarded as a meromorphic
function, so that \infty^{\#}=0 . One can prove that f^{\neq} is continuous in D .
Actually we shall be mainly concerned with a kind of derivative of f , namely,

\Phi_{f}(z)=(1-|z|^{2})f^{\neq}(z) , z\in D .

We call f normal if \Phi_{f} is bounded in D ; see [LV] for the details. Let
\rho_{a}(z, f) be the maximum of r , 0<r\leq 1 , such that f(w)\neq-1/\overline{f(z)} ,
the antipodal point of f(z) , for all w in the Apollonius disk, or the non-
Euclidean disk

\triangle(z, r)=\{w;|\frac{w-z}{1-\overline{z}w}|<r\}

of center z and the non-Euclidean radi^{1}\iota 1_{\backslash \grave{3}}| arctanh r . Such a \rho_{a}(z, f)>0
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does exist at each point z\in D . Let

\rho_{a}(f)=\inf_{z\in D}\rho_{a}(z, f) .

Then, \rho_{a}(f)>0 if and only if there exists r , 0<r\leq 1 , such that f(w)\neq
-1/\overline{f(z)} for each pair z , w\in D with |w-z|/|1-\overline{z}w|<r .

Our beginning and fundamental result is the following

Theorem 1 A meromorphic function f defined in D is normal if and only
if \rho_{a}(f)>0 .

In fact, the proof depends on the chain (I) of inequalities which will
appear in Section 3.

Sharp upper and lower estimates of \Phi_{f}(z) will be given in terms of
geometrical quantities, in particular, \rho(z, f) and \delta\#(z, f) , together with
analytic quantity (\partial/\partial z) log \Phi_{f}(z) at z with f^{\neq}(z)\neq 0 . Here, 2\partial/\partial z=

(\partial/\partial x)-i(\partial/\partial y) and \rho(z, f) is the maximum of r , 0<r\leq 1 , such that
f is univalent in \triangle(z, r) ; we set \rho(z, f)=0 if f^{\neq}(z)=0 . Furthermore,
\delta\#(z, f) is the maximum of R>0 such that the Riemann image surface of
D by f , covering c\#=C\cup\{\infty\} , contains the one-sheeted spherical cap
\{w;|w-f(z)|/|1+\overline{f(z)}w|<R\} of center f(z) , in other words, the single-
valued branch F of the inverse of f with F(f(z))=z can be defined in the
cap; again, \delta^{\neq}(z, f)=0 if f^{\neq}(z)=0 . The Liouville theorem applied to the
inverse of f then shows that \delta^{\neq}(z, f)<+\infty .

Set

\Lambda_{f}(z)=(1-|z|^{2})|\frac{\partial}{\partial z} log \Phi_{f}(z)| (1.1)

for f at z\in D with f^{\neq}(z)\neq 0 . For example, if f(z)\neq\infty and f’(z)\neq 0 ,
then

\frac{\partial}{\partial z} log \Phi_{f}(z)=\frac{-\overline{z}}{1-|z|^{2}}+\frac{1}{2}
\frac{f’(z)}{f(z)},-\frac{\overline{f(z)}f’(z)}{1+|f(z)|^{2}} .

Then, at each z\in D with f^{\neq}(z)\neq 0 , one has

(A) \Phi_{f}(z)\leq(\frac{2}{\rho(z,f)}+\Lambda_{f}(z))\delta^{\#}(z, f)

and
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(B) (1+ \frac{\Lambda_{f}(z)}{2})\delta^{\#}(z, f)\leq\Phi_{f}(z) .

Both inequalities (A) and (B) are sharp. In particular, at an arbitrary
point z\in D one has

(C) \delta^{\#}(z, f)\leq\Phi_{f}(z) .

This is observed by C. Pommerenke [Po] without detailed equality condition.
Note that (C) is trivial at z\in D with f^{\neq}(z)=0 ; in the other case, (C)
follows from (B). Our detailed equality condition for (C) will be clarified
later in Section 8.

In the specified case where f is univalent in the whole D we shall see
the sharp estimate

(D) \Lambda_{f}(z)\leq\rho_{a}(z, f)+\frac{1}{\rho_{a}(z,f)} .

Indeed, f is then normal, and so the right-hand side of (D) is not greater
than \rho_{a}(f)+(1/\rho_{a}(f))<+\infty . The inequality (D) would be of use for upper
and lower estimates of f^{\neq}(z) with f^{\neq}(0)=1 ; see (5.10) in Section 5.

2. The spherical distance and the Poincar\’e distance

Elementary but necessary facts will be remembered in the present Sec-
tion. The sphere \Sigma\subset R^{3} of diameter one touching the complex plane C=
R^{2} at the origin, or the south pole of \Sigma , from above is identified with C#
with the aid of the stereographic projection (x_{1}, x_{2}, x_{3})\mapsto(x_{1}+ix_{2})/(1-

x_{3}) viewed from the north pole (0, 0, 1) of \Sigma , which itself is mapped to \infty .
The spherical distance \chi(z, w) of z and w of C# is then given by

\chi(z, w)=\arctan|\frac{z-w}{1+\overline{z}w}| ,

where \chi(z, \infty)=\arctan(1/|z|) with \arctan(+\infty) =\pi/2 , so that 0 \leq

\chi(z, w)\leq\pi/2 . All the arcs

C_{\epsilon}(z, z^{*})= \{\frac{\epsilon t+z}{1-\overline{z}\epsilon t};0\leq t\leq+\infty\} , \epsilon\in C , |\epsilon|=1 ,

connect z\in C and the antipodal point z^{*}=-1/\overline{z}\in c\# of z along great
circles, whereas, for z\in C and w\in C with z\neq w\neq z^{*} , the arc
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C(z, w)= \{\frac{\epsilon t+z}{1-\overline{z}\epsilon t};0\leq t\leq|\frac{z-w}{1+\overline{z}w}|\}

with the definite \epsilon ,

\epsilon=\frac{w-z}{1+\overline{z}w}/|\frac{z-w}{1+\overline{z}w}| ,

connects z and w on the arc C_{\epsilon}(z, z^{*}) . In the case where z=\infty or w=\infty

we need obvious change, specifically, \infty^{*}=0 and 0^{*}=\infty . We then have

\chi(z, w)=\int_{C(z,w)}\frac{|d\zeta|}{1+|\zeta|^{2}} (2.1)

for each pair z\in c\# , w\in c\# with z\neq w\neq z^{*}; evidently,

\frac{\pi}{2}=\chi(z, z^{*})=\int_{C_{\epsilon}(z,z^{*})}\frac{|d\zeta|}{1+|\zeta|^{2}}

for all \epsilon\in C , |\epsilon|=1 .
For a\in c\# and R, 0<R\leq+\infty , the set

Cap(a, R)=\{z\in C^{\#}; \chi(z, a)<\arctan R\} ,

where 0<\arctan R\leq\pi/2 , is the spherical cap of center a and of radius
arctan R. Hence, z\in Cap(a, R) if and only if |(z-a)/(1+\overline{a}z)|<R . In
particular, Cap (a, +\infty)=c\#\backslash \{a^{*}\} .

There are two distances in the open unit disk D ; one is the pre-Poincar\’e
distance

\tau(z, w)=|\frac{z-w}{1-\overline{w}z}|

and the other is the Poincar\’e distance

\sigma(z, w)=arc\tanh\tau(z, w) ,

where arctanh x=(1/2)\log\{(1+x)/(1-x)\} , 0\leq x<1 . One needs some
device for the proof of the triangle inequality for \tau . For z\neq w one has

\sigma(z, w)=\int_{\gamma(z,w)}\frac{|d\zeta|}{1-|\zeta|^{2}} ,

where

\gamma(z, w)=\{\frac{\epsilon t+z}{1+\overline{z}\epsilon t};0\leq t\leq\tau(z, w)\} ,
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with (w-z)/(1-\overline{z}w)=\epsilon\tau(z, w) , is the subarc on the circular arc (or,
possibly, the diameter) which is orthogonal to the unit circle \partial D at the
points (z+\epsilon)/(1+\overline{z}\epsilon) and (z-\epsilon)/(1-\overline{z}\epsilon) .

For f meromorphic in D we have

f^{\neq}(z)=|w-z| arrow 0\lim\frac{\chi(f(w),f(z))}{|w-z|} ,

again the spherical derivative of f at z . One can prove that f^{\neq}(z)\neq 0 if
and only if f(z)\neq\infty and f’(z)\neq 0 or f has z as a simple pole. We now
have

\Phi_{f}(z)=\lim_{w-z}\frac{\chi(f(w),f(z))}{\sigma(w,z)}=\lim_{w||arrow 0|-z|arrow 0}\frac{\chi(f(w),f(z))}{\tau(w,z)} , z\in D .

Set

\nu(f)=\sup_{z\in D}\Phi_{f}(z) .

By definition f is normal if \nu(f)<+\infty . This is equivalent to saying that
a meromorphic function f is uniformly continuous as a mapping from the
metric space (D, \sigma) into the metric space (C\#, \chi) . We can also replace
(D, \sigma) with (D, \tau) in the preceding sentence. For example, if f does not
assume the three points of C#, then f is normal. This is a consequence of
the well-known Montel theorem on normal families.

3. Proof of Theorem 1

Let f be meromorphic in D and z\in D . Then we always have r , 0<
r\leq 1 , such that f(w) is in the hemisphere Cap(/(z), 1) for all w\in\triangle(z, r) .
Hence

f(\zeta)\neq f(\eta)^{*} for all \zeta , \eta\in\triangle(z, r) . (3.1)

Let \rho_{a}^{*}(z, f) be the maximum of r , 0<r\leq 1 , such that (3.1) holds. Then
\rho_{a}^{*}(z, f)>0 everywhere in D and

\rho_{a}^{*}(f)\equiv\inf_{z\in D}\rho_{a}^{*}(z, f)\leq\rho_{a}(f)

because \rho_{a}^{*}(z, f)\leq\rho_{a}(z, f) in D . Consequently, 0\leq\rho_{a}^{*}(f)\leq\rho_{a}(f)\leq 1 .
Theorem 1 immediately follows from the following chain of inequalities
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for f meromorphic in D ;

(I) \tanh\frac{\pi}{4\nu(f)}\leq\rho_{a}^{*}(f)\leq\rho_{a}(f)\leq 2\rho_{a}(*f)\leq\frac{2}{\nu(f)} ,

where+\infty=1/0,0=1/+\infty and \tanh(+\infty)=1 .

THE FIRST INEQUALITY IN (I). This is true in both cases \nu(f)=+\infty

and \nu(f)=0 because \rho_{a}^{*}(f)=1 in the latter case. Suppose that 0<\nu(f)<
+\infty . Then for each \zeta , \eta in D with \zeta\neq\eta and f(\zeta)\neq f(\eta) , one has

\chi(f(\zeta), f(\eta))=\int_{\Gamma}\frac{|dw|}{1+|w|^{2}}\leq\int_{\mathcal{R}f(\gamma(\zeta,\eta))}\frac{|dw|}{1+|w|^{2}}

= \int_{\gamma(\zeta,\eta)}f^{\neq}(w)|dw|\leq\nu(f)\int_{\gamma(\zeta,\eta)}\frac{|dw|}{1-|w|^{2}}

=\nu(f)\sigma(\zeta, \eta) .

Here, \Gamma is the geodesic, namely, \Gamma=C(f(\zeta), f(\eta)) or C_{\epsilon}(f(\zeta), f(\eta))(|\epsilon|=

1) according as f(\zeta)\neq f(\eta)^{*} or f(\zeta)=f(\eta)^{*} and further, \mathcal{R}f(\gamma(\zeta, \eta)) is
the image of \gamma(\zeta, \eta) lying on the Riemann image surface of D by f , which
connects f(\zeta) and f(\eta) . Hence, for \zeta , \eta\in\triangle(z, \tanh\{\pi/(4\nu(f))\}) , possibly,
\zeta=\eta , we have

\chi(f(\zeta), f(\eta))\leq\chi(f(\zeta), f(z))+\chi(f(z), f(\eta))

\leq\nu(f)(\sigma(\zeta, z)+\sigma(z, \eta))<\frac{\pi}{2} .

Consequently f(\zeta)\neq f(\eta)^{*} , and then \tanh\{\pi/(4\nu(f))\}\leq\rho_{a}^{*}(z, f) every-
where in D . The first inequality in (I) now follows.

THE THIRD INEQUALITY IN (I). We may suppose that \rho_{a}(f ) > 0 .
Then for each z\in D and for all (, \eta\in\triangle(z, \rho_{a}(f)/2) , one has

(\in\triangle(z, \rho_{a}(f)/2)\subset\triangle(\eta, \rho_{a}(f))\subset\triangle(\eta, \rho_{a}(\eta, f)) ,

so that f(\zeta)\neq f(\eta)^{*} . Therefore \rho_{a}(f)/2\leq\rho_{a}^{*}(z, f) for all z\in D . Hence
\rho_{a}(f)/2\leq\rho_{a}^{*}(f) .

THE FOURTH INEQUALITY IN (I). We propose for the proof that

|g’(0)|\leq 1 (3.2)

for g meromorphic in D with g(0)=0 and \rho_{a}^{*}(0, g)=1 (hence, g is pole-
free in D). The equality holds in (3.2) if and only if g(z)\equiv\epsilon z , |\epsilon|=1 .
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This proposition is attributed to T.-S. Shah [S] in [G , II , p.82, Problem 46];
hereafter our main reference for Univalent Function Theory is [G]. Unfortu-
nately, however, one, together with the present author, might have difficulty
in accessing the paper [S]. For a rather easier reference, we recall here the
paper [LM] of N.A . Lebedev and L M. Milin to whom the result appears to
be essentially due.

In fact, Lebedev and Milin proved the above proposition for g , further-
more, univalent in D ; see [LM , p.397] where they claimed that “Theorem A
[LM , p.380] is valid for the class S_{\Gamma} .” Obviously the equality discussion
there should be restricted to the case n=1 . If we drop univalency of g in
D , then we can find a simply connected, proper subdomain H of C such
that g(D)\subset H and \zeta\neq\eta^{*} for all \zeta , \eta\in H . Let h be a conformal mapping
from D onto H with h(0)=0 . Then g=h\circ\phi with \phi=h^{-1}\circ g : Darrow D

holomorphic. The Schwarz inequality |\phi’(0)|\leq 1 , together with the equality
|\phi’(0)|=1 if and only if \phi(z)\equiv\epsilon z , |\epsilon|=1 , now proves the proposition.

The inequality \rho_{a}^{*}(f)\leq 1/\nu(f) immediately follows from

(II) \rho_{a}^{*}(z, f)\Phi_{f}(z)\leq 1 , z\in D .

For the proof we may suppose that f^{\#}(z)\neq 0 and f(z)\neq\infty ; when f(z)=
\infty , consider the reciprocal 1/f . Set a=\rho_{a}^{*}(z, f)(>0) and set

g(w)= \frac{f(\frac{aw+z}{1+\overline{z}aw})-f(z)}{1+\overline{f(z)}f(\frac{aw+z}{1+\overline{z}aw})} , w\in D .

Then g(0)=0 and \rho_{a}^{*}(0, g)=1 . Hence a\Phi_{f}(z)=|g’(0)|\leq 1 , or (II).
The equality holds in (II) at z if and only if

\lambda\underline{w-z}+\mu

f(w)= \frac{1-\overline{z}w}{1-\overline{\mu}\lambda 1\frac{w-z}{1-\overline{z}w}}

, (3.3)

where \lambda\in C and \mu\in c\# are constants with |\lambda|\geq 1 . If \mu=\infty , then
f(w)=(1-\overline{z}w)/\{\lambda(w-z)\} . The function f of (3.3) maps D univalently
onto Cap (\mu, |\lambda|) .

THE “ONLY IF” PART. For g(w)\equiv\epsilon w , |\epsilon|=1 , we have (3.3) with
\lambda=\epsilon/a and \mu=f(z) .
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THE “IF” PART. A calculation shows that \Phi_{f}(z)=|\lambda| for f of (3.3).
To prove 1/|\lambda|\leq\rho_{a}^{*}(z, f) we suppose that there exist \zeta , \eta in \triangle(z, 1/|\lambda|)

such that f(()=f(\eta)^{*} . Setting

\zeta’=\frac{(-z}{1-\overline{z}\zeta} and \eta’=\frac{\eta-z}{1-\overline{z}\eta},

one then observes that \lambda\zeta’=(\lambda\eta)^{*}
’ or |\lambda|^{2}\zeta’\overline{\eta’}=-1 , together with |\zeta’|<

1/|\lambda| and |\eta’|<1/|\lambda| . We then arrived at a contradiction that 1 =
|\lambda|^{2}|\zeta’||\overline{\eta’}|<1 . Consequently, 1/\Phi_{f}(z)=1/|\lambda|\leq\rho_{a}^{*}(z, f) and hence

1\leq\rho_{a}^{*}(z, f)\Phi_{f}(z)\leq 1 ,

so that the equality holds in (II).
A holomorphic version of a normal meromorphic function is a Bloch

function. Later in Section 13 we shall observe the chain (III) of inequal-
ities analogous to (I). Incidentally, ineterested readers may go directly to
Section 13 except for Remark 7.

4. Estimate of \Lambda_{f}(z)

Suppose that f^{\neq}(z)\neq 0 at z\in D for f meromorphic in D . Then,

\frac{\partial}{\partial z} log f^{\#}(z)= \frac{1}{2} \frac{f’(z)}{f’(z)}-\frac{\overline{f(z)}f’(z)}{1+|f(z)|^{2}}

if f(z)\neq\infty , whereas

\frac{\partial}{\partial z} log f^{\#}(z)= \frac{\partial}{\partial z}\log|(1/f)’(z)|=\frac{1}{2} \frac{(1/f)’(z)}{(1/f)’(z)}

if f(z)=\infty . If f is nonconstant and if f^{\neq}(z)=0 , then

lim
\underline{\partial}

log f^{\#}(w)=\infty .
|w-z|arrow 0\partial w

Recall here \Lambda_{f} of (1.1) for a nonconstant f . Defining \Lambda_{f}(z)=+\infty at z\in D

with f^{\#}(z)=0 one can then observe that \Lambda_{f} is a continuous mapping from
D into [0, +\infty]=C_{1}(0, \infty) .

We begin with an upper estimate of \Lambda_{f}(z) in terms of \rho(z, f) and the
smaller of this and \rho_{a}(z, f) , in notation,

\rho_{au}(z, f)=\min(\rho(z, f), \rho_{a}(z, f)) , z\in D . (4.1)
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The function \rho_{au}(z, f) of z\in D is reasonable because the normality criterion
for a nonconstant f will be described in terms of this and \delta^{\neq}(z, f) after the
forthcoming Theorem 5 in Section 8. In short, f is normal if and only if
\delta^{\neq}(z, f)/\rho_{au}(z, f) is bounded in D minus the points z at which f^{\neq}(z)=0 .

Theorem 2 For f meromorphic in D and for z\in D with f^{\#}(z)\neq 0 we
have

\rho(z, f)\Lambda_{f}(z)\leq\frac{\rho_{au}(z,f)}{\rho(z,f)}+\frac{\rho(z,f)}{\rho_{au}(z,f)} . (4.2)

To describe an equality condition for (4.2) in an “if and only if” form
we first let K(z)=z/(1-z)^{2} be the Koebe function and set

K_{\epsilon}(z)= \overline{\epsilon}K(\epsilon z)=\frac{z}{(1-\epsilon z)^{2}}

for \epsilon\in C , |\epsilon|=1 . Then the rational function K_{\Xi} of z is, in particular,
univalent in D . Set

K_{\epsilon:}

H_{p,\epsilon}= 0<p\leq 1 , |\epsilon|=1 .
1+ \frac{(1+p)^{2}}{p} \epsilon K_{\epsilon}

’

Then H_{p,\epsilon} is a rational function of z and univalent in D with H_{1,-\epsilon}=K_{\Xi}

and

H_{p,-1}(z)= \frac{pz}{(p-z)(1-pz)} , 0<p\leq 1 ,

so that H_{p,\epsilon}(z)=-\overline{\epsilon}H_{p,-1} (-\epsilon z) . Furthermore,

c\#\backslash H_{p,\epsilon}(D)=\{\overline{\epsilon}t;p/(1+p)^{2}\leq t\leq p/(1-p)^{2}\} ;

note that K(p)=p/(1-p)^{2} and -K(-p)=p/(1+p)^{2} for 0<p\leq 1 .
Calculation shows that

H_{p,\epsilon}(0)=H_{p,\epsilon}’(0)-1=0 , H_{p,\epsilon}’(0)=-2 \epsilon(p+\frac{1}{p})

We further have \rho_{a}(0, H_{p,\epsilon})=p for 0<p\leq 1 because H_{p,\epsilon}(-\overline{\epsilon}p)=\infty in
case 0<p<1 .

Returning to our inequality (4.2) we now have the equality in (4.2) at
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z with f^{\neq}(z)\neq 0 if and only if

\lambda H_{p,\epsilon} ( \frac{1}{\rho} \frac{w-z}{1-\overline{z}w}) +\mu

f(w)= (4.3)
1-\overline{\mu}\lambda H_{p,\epsilon} ( \frac{1}{\rho} \frac{w-z}{1-\overline{z}w})

’

where \lambda\in C\backslash \{0\} , \mu\in c\# . \epsilon\in C , |\epsilon|=1 , p and \rho of (0, 1] , all are
constants. Read

1/f(w)= \lambda H_{p,\epsilon}(\frac{1}{\rho} \frac{w-z}{1-\overline{z}w})

in case \mu=\infty .
Under the global condition that f^{\#} never vanishes in D , the equality

holds in (4.2) if and only if \rho=1 in (4.3), so that f of (4.3) is univalent in
the whole D and \rho_{a}(z, f)=p .

For f of (4.3) one can actually observe that \rho(z, f)=\rho and \rho_{au}(z, f)=

\rho_{a}(z, f)=\rho p . The latter follows from H_{p,\epsilon}(-\overline{\epsilon}p)=\infty . Further calculation
for f of (4.3) shows that \rho\Lambda_{f}(z)=p+(1/p) .

5. Proof of Theorem 2

Let S=S(1) be the family of f holomorphic and univalent in D satis-
fying

f(0)=f’(0)-1=0. (5.1)

For 0<p<1 , let S=S(p) be the family of f meromorphic and univalent
in D satisfying (5.1) and f(z_{o})=\infty at a point z_{o} depending on f with
|z_{o}|=p . In particular, H_{p,\epsilon}\in S(p) if 0<p\leq 1 . The Bieberbach and the
Komatu results both can be summarized in

Lemma 5.1 For f\in S(p) with 0<p\leq 1 , one has

|f’(0)| \leq 2(p+\frac{1}{p}) (5.2)

The equality holds in (5.2) if and only if f=H_{p,\epsilon} , |\epsilon|=1 .

The case p=1 is Bieberbach’s second-coefficient theorem; see [G, I ,
p.33, Theorem 1], whereas the case p<1 is attributed to Y_{t} Komatu [K]
in [G , I , p.40, Theorem 7].
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Proof of Theorem 2. To show (4.2) we may suppose that f(z)\neq\infty . We
next set \rho=\rho(z, f)>0 . Then the function

g(w)= \frac{1+|f(z)|^{2}}{\rho(1-|z|^{2})f(z)}, \frac{f(\frac{\rho w+z}{1+\overline{z}\rho w})-f(z))}{1+\overline{f(z)}f(\frac{\rho w+}{1+\overline{z}\rho w})} (5.3)

of w\in D is in S(p) with

p=\rho_{au}(z, f)/\rho=\rho_{au}(z, f)/\rho(z, f) . (5.4)

Since a short calculation shows that

\rho|\Lambda_{f}(z)|=\frac{|g’(0)|}{2} , (5.5)

the requested inequality (4.2) follows from (5.2) applied to g .
Suppose that the equality holds in (4.2) at z with f^{\neq}(z)\neq 0 , where

f(z)\neq\infty without loss of generality. Then g=H_{p,\epsilon} , |\epsilon|=1 , in (5.3) with
p of (5.4), so that we have (4.3) with \mu=f(z) and

\lambda=\frac{\rho(1-|z|^{2})f’(z)}{1+|f(z)|^{2}} .

If f^{\neq} is zer0-free, then \rho in (4.3) must be one. Otherwise, f^{\neq}(\zeta)=0

for

\zeta=\frac{\rho\overline{\epsilon}+z}{1+\overline{z}\rho\overline{\epsilon}}\in D (5.6)

because H_{p,\epsilon}^{\#}(\overline{\epsilon})=0 . \square

Corollary to Theorem 2 For f meromorphic in D and for z\in D with
f^{\neq}(z)\neq 0 one has

\rho_{au}(z, f)\Lambda_{f}(z)\leq 2 . (5.7)

The equality holds in (5.7) at z with f^{\#}(z)\neq 0 if and only if p=1 in
(4.3) or H_{1,\epsilon}=K_{-\in} there. Furthermore, in case f^{\#} never vanishes in D ,
the equality holds if and only if f is of (4.3) with p=1 and \rho=1 .

First, (5.7) follows from (4.2) because

\Lambda_{f}(z)\leq\frac{1}{\rho_{au}(z,f)}(\frac{\rho_{au}(z,f)^{2}}{\rho(z,f)^{2}}+1)\leq\frac{2}{\rho_{au}(z,f)} . (5.8)
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Suppose that the equality holds in (5.7). Then \rho_{au}(z, f)=\rho(z, f)\equiv\rho , and
p of (5.4) must be one. Hence f is of (4.3) with p=1 . The converse is not
difficult to prove. The remaining part of the proof is now obvious.

Remark 1 Set

\rho(f)=\inf_{z\in D}\rho(z, f)

for f meromorphic in D and z\in D . For f(z)=z^{2} , one has \nu(f)<+\infty and
\rho(f)=\rho(0, f)=0 . On the other hand, P. Lappan [L] found an f pole-free
in D with \nu(f)=+\infty and \rho(f)>0 . Hence there is no implication relation
between the inequalities \nu(f)<+\infty and \rho(f)>0 even for holomorphic f .

We set, for f meromorphic with nonvanishing f^{\neq} in D ,

B(f) \equiv\sup_{z\in D}\frac{1}{\rho(z,f)}(\frac{\rho_{au}(z,f)}{\rho(z,f)}+\frac{\rho(z,f)}{\rho_{au}(z,f)})\leq\sup_{z\in D}\frac{2}{\rho_{au}(z,f)} .

When \nu(f)<+\infty and \rho(f)>0 at the same time, we have

B(f) \leq\frac{2}{\min(\rho(f),\rho_{a}(f))} ,

so that B(f)<+\infty . It then follows from (4.2) that

\Lambda_{f}(z)\leq B(f) , z\in D (5.9)

for f with \nu(f)<+\infty and \rho(f)>0 .

Remark 2 Returning to (D) in Section 1 we now have this as a conse-
quence of (4.2). The equality holds there if and only if f is of (4.3) with
\rho=1 . Let \mathcal{M} be the family of f meromorphic and univalent in D with
the normalization f^{\neq}(0)=1 . Note that B(f)=\rho_{a}(f)+(1/\rho_{a}(f))\geq 2 for
f\in \mathcal{M} . A problem is whether or not

f \in \mathcal{M}\sup B(f)<+\infty
, or equivalently, \inf_{f\in \mathcal{M}}\rho_{a}(f)>0 ,

is valid. The answer is in the negative. Indeed, for H_{p,\epsilon}\in \mathcal{M} we have

\rho_{a}(H_{p,\epsilon})\leq\rho_{a}(0, H_{p,\epsilon})=p , 0<p<1 ,

so that

f \inf_{\in \mathcal{M}}\rho_{a}(f)=0 .
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It further follows from (I) that \sup_{f\in \mathcal{M}}\nu(f)=+\infty . See the forthcoming
Section 14.

We now have estimates of f^{\neq} for f\in \mathcal{M} with the aid of (5.9). Namely,

\frac{(1-|z|)^{B(f))-1}}{(1+|z|)^{B(f+1}}\leq f^{\#}(z)\leq\frac{(1+|z|)^{B(f)-1}}{(1-|z|)^{B(f)+1}} , z\in D , (5.10)

for all f\in \mathcal{M} . The right-hand side of (5.10) should be compared with
f^{\neq}(z)\leq\nu(f)(1+|z|)^{-1}/(1-|z|) , z\in D , with the multiplier \nu(f) . Note
that \nu(K)>2 ; see Section 14. To achieve (5.10) we note that \Phi_{f}(0)=1

and

(1-|\zeta|^{2})| grad log \Phi_{f}(z)|=2\Lambda_{f}(\zeta)\leq 2B(f) , \zeta\in D .

Hence for z=|z|e^{i\theta}\in D\backslash \{0\} and \zeta=u+iv=re^{i\theta} , 0<r<|z| , we have

| log \Phi_{f}(z)|=|\int_{0}^{|z|}(\cos\theta \frac{\partial}{\partial u} log \Phi_{f}(\zeta)+\sin\theta
\frac{\partial}{\partial v} log \Phi_{f}(\zeta))dr|

\leq\int_{0}^{|z|}| grad log \Phi_{f}(()|dr\leq B(f)\log\frac{1+|z|}{1-|z|}, (5.10)

whence (5.10) for z\neq 0 .
One can then prove that if the first or the second equality holds in

(5.10) at z\neq 0 , then f is “similar” to H_{p,\epsilon} for 0<p\leq 1 and |\epsilon|=1 . More
precisely,

\Lambda_{f}(\zeta)=\rho_{a}(\zeta, f)+\frac{1}{\rho_{a}(\zeta,f)}=B(f)

for all \zeta=re^{i\theta} , 0<r<|z| , where z=|z|e^{i\theta} . On letting ( -arrow 0 one has
\Lambda_{f}(O)=B(f) . Hence

B(f)= \Lambda_{f}(0)\leq\rho_{a}(0, f)+\frac{1}{\rho_{a}(0,f)}\leq B(f) ,

so that \Lambda_{f}(0)=\rho_{a}(0, f)+(1/\rho_{a}(0, f)) . Since f\in \mathcal{M} , one has f=(\lambda H_{p,\epsilon}+

\mu)/(1-\overline{\mu}\lambda H_{p,\epsilon}) , |\lambda|=1 , \mu\in c\# . in view of (4.3) on setting z=0. In
particular, under the assumption that the equality in the left or right in
(5.10) holds at z\neq 0 for f , we have B(f)=\rho_{a}(0, f)+(1/\rho_{a}(0, f)) .

Unfortunately, we cannot proceed further since determination of B(f)
even for the specified extremal functions f=H_{p,\epsilon} is interesting but dif-
ficult to obtain. Moreover, in view of the above one might conjecture
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that B(H_{\tau, _{\vee}},)=p+(1/p) . In fact, this is false for H_{1,-1}=Kt Actu-
ally, \rho_{a}(z_{ i1}^{\nearrow)},<1 for z\in D except for the real interval [0, K^{-1}(4)] , where
K^{-1}(4)=(9-\sqrt{17})/8 . Hence \rho_{a}(K)<1 , so that B(K)>2 .

6. Riemann image surface; an upper estimate of \Phi_{f}

The quantity \delta^{\neq}(z, f) defined in Section 1 appears in

Theorem 3 Let f be meromorphic in D and suppose that f^{\neq}(z)\neq 0 at
a point z\in D . Then

\Phi f(z)\leq(\frac{2}{\rho(z,f)}+\Lambda_{f}(z))\delta^{\neq}(z, f) . (6.1)

Set

F_{R,\epsilon}= \frac{K_{\mathcal{E}}}{1+R\epsilon K_{\in}} , 0\leq R<+\infty , \epsilon\in C , |\epsilon|=1 .

This is rational and univalent in D , together with

F_{R,\in}(D)=c\#\backslash \{\overline{\frac{\epsilon}{t}};R-4\leq t\leq R\}

One can especially observe that

H_{p,\epsilon}=F_{R,\epsilon} for R= \frac{(1+p)^{2}}{p}\geq 4 , 0<p\leq 1 .

The equality holds in (6.1) at z\in D with f^{\#}(z)\neq 0 if and only if there
exist four parameters \rho\in (0, 1] , R\in[0, +\infty);\epsilon\in C , |\epsilon|=1 , \lambda\in C\backslash \{0\} ,
and \mu\in c\# , such that

\lambda F_{R,\in}(\frac{1}{\rho} \frac{w-z}{1-\overline{z}w}) +\mu

f(w)= (6.2)
1-\overline{\mu}\lambda F_{R,\epsilon} ( \frac{1}{\rho} \frac{w-z}{1-\overline{z}w}).

Suppose that f^{\#} never vanishes in D in Theorem 3. Then the equality
holds in (6.1) at z\in D if and only if \rho=1 further in (6.2).

Remark 3 Combining (4.2) and (6.1) one has

\Phi_{f}(z)\leq\frac{(\rho(z,f)+\rho_{au}(z,f))^{2}}{\rho(z,f)^{2}\rho_{au}(z,f)}\delta^{\#}(z, f) (6.3)
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at z\in D with f^{\neq}(z)\neq 0 . Moreover, one has \Phi_{f}(z)\leq 4\delta^{\neq}(z, f)/\rho_{au}(z, f)

if f^{\#}(z)\neq 0 . The equality holds in (6.3) at z\in D with f^{\#}(z)\neq 0 if and
only if f is of (4.3). If, furthermore, f^{\neq} never vanishes in the whole D , then
\rho=1 in (4.3) in addition.

7. Proof of Theorem 3

The following lemma occupies a central position in the proof of TheO-
rem 3.

Lemma 7.1 For f\in S(p) with 0<p\leq 1 , one has

\frac{2}{4+|f’(0)|},\leq\delta^{\#}(0, f) . (7.1)

The equality holds in (7.1) if and only if f=F_{R,\epsilon} , 0\leq R\leq 4 , |\epsilon|=1 ,
in case p=1 , whereas f=H_{p,\epsilon} in case p<1 .

Lemma 7.1 for p<1 is essentially due to W. Fenchel [F]; see [G, II ,
p.245, Theorem 33]; one needs little technique for the proof of the equality
condition, and so we include here the proof of Lemma 7.1 for p<1 . For
the case p=1 , see, for example, [Y2, 106, Lemma 3.1]. The proof of the
equality condition is considerably delicate in both cases.

For the proof of Lemma 7.1 in case p<1 we let c\in c\#\backslash f(D) be
arbitrary. Then 0\neq c\neq\infty and the function g=cf/(c-f) is in S with

g’(0)=f’(0)+ \frac{2}{c} . (7.2)

Hence

\frac{1}{|c|}\leq\frac{|g’(0)|}{2}+\frac{|f’(0)|}{2}\leq 2+\frac{|f’(0)|}{2} (7.3)

by the Bieberbach inequality |g’(0)|\leq 4 . Consequently,

|c| \geq\frac{2}{4+|f’(0)|}, , (7.4)

from which follows (7.1).
Suppose that the equality holds in (7.1) and choose c\in C on the

boundary of f(D) such that |c|=\delta^{\neq}(0, f) . Then for g=cf/(c-f) for the
present c the equality holds in (7.4), so that the right-most in (7.3) is 1/|c| .
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Consequently, g=K_{\epsilon} , whence

f= \frac{K_{\epsilon}}{1+(1/c)K_{\epsilon}} . (7.5)

Since f’(0)=4\epsilon-(2/c) , it follows from

\frac{1}{|c|}=2+\frac{|f’(0)|}{2}=2+|2\epsilon-\frac{1}{c}|

that c=|c|\overline{\epsilon}. On the other hand, since f(\epsilon’p)=\infty for some \epsilon’ , |\epsilon’|=1 , it
follows that K_{\epsilon}(\epsilon’p)=-c . Hence K(\epsilon\epsilon’p)=-|c|<0 , so that \epsilon\epsilon’p must be
negative, or, \epsilon\epsilon’=-1 . We thus have |c|=-K(-p) , or,

\frac{1}{c}=\frac{(1+p)^{2}}{p}\epsilon . (7.6)

We can now conclude from (7.6) that f=H_{p,\epsilon} .
Conversely, for f=H_{p,\epsilon} , we have

\delta^{\neq}(0, f)=\frac{p}{(1+p)^{2}} and |f’(0)|=2(p+ \frac{1}{p})

We thus observe the equality in (7.1).

Proof of Theorem 3. There is no loss of generality in supposing that f(z)\neq

\infty . Set \rho=\rho(z, f) and recall g of (5.3) for which |g’(0)|=2\rho\Lambda_{f}(z) and

\frac{2}{4+|g(\prime 0)|},\leq\delta^{\#}(0, g)\leq\frac{\delta^{\neq}(z,f)}{\rho\Phi_{f}(z)}

by Lemma 7.1 for the first inequality. Hence (6.1). Suppose that the equality
holds in (6.1). Then g=F_{R,\epsilon} , 0\leq R\leq 4 , or g=H_{p,\epsilon} according as p=
\rho_{au}(z, f)/\rho(z, f) of (5.4) is one or less than one. If f^{\neq} never vanishes in D ,
then \rho=1 ; otherwise f^{\neq}(\zeta)=0 for \zeta of (5.6). Conversely if f is of (6.2),
then one has g=F_{R,\epsilon} , 0\leq R\leq 4 , or g=H_{p,\epsilon} for g of (5.3) for the present

f . One can now easily prove the equality in (6.1). \square

Combining (5.7) and (6.1) one has the following

Corollary to Theorem 3 Let f be meromorphic in D and let f^{\neq}(z)\neq

0 at a point z \in D . Then

\Phi_{f}(z)\leq 2(\frac{1}{\rho(z,f)}+\frac{1}{\rho_{au}(z,f)})\delta^{\neq}(z, f) . (7.7)
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The equality condition is now easily obtained.

8. Lower estimtes of \Phi_{f} or upper estimates of \delta^{\#}

We begin with

Theorem 4 Let f be meromorphic in D. Then at each z\in D with
f^{\neq}(z)\neq 0 ,

\delta^{\#}(z, f)\leq\frac{\Phi_{f}(z)}{1+(1/2)\Lambda_{f}(z)} . (8.1)

In particular, one always has (C) in Section 1. A consequence is that
if f is normal, then \delta\#(z, f) is bounded. The converse is, however, false
[Po, p.6].

The equality holds in (8.1) at z with f^{\neq}(z)\neq 0 if and only if

\lambda\underline{w-z}+\mu

f(w)= \frac{1-\overline{z}w}{1-\overline{\mu}\lambda\cdot\frac{w-z}{1-\overline{z}w}}

, (8.2)

where \lambda\in C\backslash \{0\} and \mu\in c\# are constants. For f of (8.2) one has
\delta^{\neq}(z, f)=\Phi_{f}(z)=|\lambda| , \Lambda_{f}(z)=0 , and \rho_{au}(z, f)=1 .

An equality condition for (C) can be given in “if and only if” form. If
f^{\neq}(z)\neq 0 , then the equality holds in (C) if and only if (8.2) holds. The
proof is now obvious.

Our next result is

Theorem 5 Let f be meromorphic in D. Then at each z\in D ,

\delta\#(z, f)\leq\frac{4\rho_{au}(z,f)}{(1+\rho_{au}(z,f))^{2}}\Phi_{f}(z) . (8.3)

The equality holds in (8.3) at z with f^{\#}(z)\neq 0 if and only if f is of
(8.2). Again (C) is a consequence of (8.3).

It follows from (7.7) and (8.3) that

\frac{1}{4} \frac{\delta^{\neq}(z,f)}{\rho_{au}(z,f)}\leq\Phi_{f}(z)\leq 4\cdot\frac{\delta^{\neq}(z,f)}{\rho_{au}(z,f)} (8.4)

for z\in D with f^{\#}(z)\neq 0 . The right-hand side of (8.4) is observed also in
Remark 3. By the continuity of \Phi_{f} in the whole D one now has a criterion
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that a nonconstant and meromorphic function f is normal if and only if
there exists a constant c(f)>0 such that

\delta\#(z, f)\leq c(f)\rho_{au}(z, f)

for all z\in D .

Remark 4 It seems reasonable to suspect that one of the right-hand sides
of (8.1) and (8.3) is always less than the other, so that (8.1) is a consequence
of (8.3) or the converse.

To observe that this is actually not the case we set

W(z)= \frac{1}{2}\Lambda_{f}(z) , U(z)= \frac{1}{1+W(z)} , and

Y(z)=\frac{4\rho_{au}(z,f)}{(1+\rho_{au}(z,f))^{2}}

for z\in D with f^{\neq}(z)\neq 0 . Then for the specified function f(z)\equiv z^{2} and
for 0<x<1 , we have

W(x)= \frac{|\phi(x)|}{4x(1+x^{4})} , \phi(x)=(x^{2}+1)(x^{4}-4x^{2}+1) ,

\rho_{au}(x, f)=\rho(x, f)=x , and Y(x)=\frac{4x}{(1+x)^{2}}<1 .

Since \phi(x_{o})=0 for x_{o}=(\sqrt{6}-\sqrt{2})/2\in(0,1) , one immediately has
Y(x_{o})<1=U(x_{o}) . On the other hand, U(x)arrow 2/3 and Y(x) -arrow 1 as
xarrow 1-0 . Hence there exists x_{1} , x_{o}\leq x_{1}<1 , such that Y(x)>U(x) for
all x , x_{1}<x<1 .

9. Proofs of Theorems 4 and 5

The bounded Koebe function \kappa_{M} for M, 1\leq M<+\infty is defined by

\kappa_{M}(z)=MK^{-1}(\frac{K(z)}{M}) , z\in D ,

where K^{-1} is the inverse of K in K(D) . As a specified case, we have \kappa_{1}(z)\equiv

z . Suppose that M>1 . At each \zeta of the unit circle \partial D one then has the
limit \kappa_{M}(\zeta)=\lim_{zarrow\zeta}\kappa_{M}(z) lying on the circle \{\eta;|\eta|=M\} or in the real,
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left-0pen interval

(-M, -M(2M-1-2\sqrt{M(M-1)})]

We actually have \chi\in\partial D with Im \chi>0 such that \kappa_{M}(\chi)=\kappa_{M}(\overline{\chi})=-M .
Let I be the closed subarc of \partial D bisected by -1, whose end-points are \chi

and \overline{\chi} . Then \kappa_{M} maps \partial D\backslash I one to one and onto \{\eta;|\eta|=M\}\backslash \{-M\} .
Let \wedge f be the open subarc of I connecting \chi and -1. Then for each \zeta\in 1

one observes that \kappa_{M}(\zeta)=\kappa_{M}(\overline{\zeta})\in(-M, \kappa_{M}(-1)) .
We shall make use of Lemmata due to G. Pick [Pi]. Extremal functions

will be

\kappa_{\epsilon,M}(z)=\overline{\epsilon}\kappa_{M}(\epsilon z) , |\epsilon|=1 ,

so that \kappa_{\epsilon,1}(z)\equiv z .

Lemma 9.1 For f\in S with |f|<M in D one has

|f’(0)| \leq 4(1-\frac{1}{M}) (9.1)

Note that M\geq 1 in the above because 1=f’(0)\leq M by the Schwarz
lemma for f/M. The equality holds in (9.1) if and only if f=\kappa_{\epsilon,M} . See
[G , I , p.38, Theorem 4].

Lemma 9.2 For f\in S with |f|<M in D one has

-\kappa_{M}(-1)\leq\delta^{\#}(0, f) . (9.2)

The equality holds in (9.2) if and only if f=\kappa_{\epsilon,M} . See [Y2, p.Ill,
Lemma 5.1] for the details.

Since

-\kappa_{M}(-1)=M(2M-1-2\sqrt{M(M-1)}) ,

we observe that

\frac{-\kappa_{M}(-1)}{M}=2M-1-2\sqrt{M(M-1)}\leq W\Leftrightarrow\frac{(W+1)^{2}}{4W}\leq M ,

(9.3)

where 0<W\leq 1\leq M<+\infty .

Proof of Theorem 4. We may suppose that f(z)\neq\infty . Let \phi be the inverse
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function of f in Cap(/(z), \delta ), \delta=\delta^{\neq}(z, f) , with \phi(f(z))=z . Set

g(w)= \frac{(1-|z|^{2})f’(z)}{\delta(1+|f(z)|^{2})} \frac{\phi(\frac{\delta w+f(z)}{1-\overline{f(z)}\delta w})-z}{1-\overline{z}\phi(\frac{\delta w+f(z)}{1-\overline{f(z)}\delta w})} , w\in D . (9.4)

Then g\in S and |g|<M\equiv\Phi_{f}(z)/\delta . A laborious but simple calculation
with the aid of

, \frac{\phi’(f(z))}{\phi(f(z))}=-,\frac{f’(z)}{f(z)^{2}} ,

yields that

\frac{g’(0)}{2}=\frac{-\delta(1+|f(z)|^{2})}{(1-|z|^{2})f(z)}, (1-|z|^{2}) \frac{\partial}{\partial z}\log\Phi_{f}(z) .

An appeal to Lemma 9.1 for g now immediately produces that

\frac{\Lambda_{f}(z)}{M}\leq 2(1-\frac{1}{M}) ,

whence (8.1).
Suppose that the equality holds in (8.1) at z with f^{\neq}(z)\neq 0 . Then

g=\kappa_{\epsilon,M} in (9.4) shows that

\frac{\delta w+f(z)}{1-\overline{f(z)}\delta w}=f(\frac{A\kappa_{\epsilon,M}(w)+z}{1+\overline{z}A\kappa_{\epsilon,M}(w)}) , w\in D , (9.5)

where

A= \frac{\delta(1+|f(z)|^{2})}{(1-|z|^{2})f(z)},

with |A|=1/M . Suppose that M>1 . For t\in(-M, \kappa_{M}(-1)) we have
\zeta\in 1 with \kappa_{M}(\zeta)=\kappa_{M}(\overline{\zeta})=t , so that \kappa_{\in,M}(\overline{\epsilon}\zeta)=\kappa_{\epsilon,M}(\overline{\epsilon}\overline{\zeta})=\overline{\epsilon}t . Since
|A\overline{\epsilon}t|=-t/M<1 , the identity (9.5) shows that f has different values

\frac{\delta\overline{\epsilon}(+f(z)}{1-\overline{f(z)}\delta\overline{\epsilon}\zeta} and \frac{\delta\overline{\epsilon}\overline{\zeta}+f(z)}{1-\overline{f(z)}\delta\overline{\epsilon}\overline{\zeta}}

at the same point

\frac{A\overline{\epsilon}t+z}{1+\overline{z}A\overline{\epsilon}t}\in D .
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This contradiction shows that M must be one, so that \kappa_{\epsilon,M}(w)\equiv w . Since
|A|=1 , we now have (8.2) with \lambda=\overline{A}\delta , |\lambda|=\delta , and \mu=f(z) . Conversely,
for f of (8.2) the equality holds in (8.1). \square

Proof of Theorem 5. Without any loss of generality we may suppose that
f^{\neq}(z)\neq 0 and f(z)\neq\infty . To the function g of (9.4) one may apply, this
time, Lemma 9.2 to conclude that

-\kappa_{M}(-1)\leq\delta^{\#}(0, g)\leq M\rho_{au}(z, f) ,

where M=\Phi_{f}(z)/\delta ; note that f(z)^{*}\not\in Cap(f(z), \delta) . On the basis of (9.3)
one has that

\frac{(1+\rho_{au}(z,f))^{2}}{4\rho_{au}(z,f)}\leq M .

Hence (8.3). Suppose that the equality holds in (8.3) at z with f^{\#}(z)\neq 0 .
Then g=\kappa_{\epsilon,M} . The same argument as in the proof of Theorem 4 yields
that M=1 and so f is of (8.2). The converse is now obvious. \square

10. Schwarzian derivative

For f nonconstant and meromorphic in a domain V in c\# , the
Schwarzian derivative Sw(f) of f is a meromorphic function defined by

Sw(f)= \frac{f’}{f}, - \frac{3}{2}(\frac{f’}{f’})^{2}=(\frac{f’}{f’})’-\frac{1}{2}(\frac{f’}{f’})^{2}

in D\backslash \{\infty\} . Consequently, Sw(f) has a point z\in D\backslash \{\infty\} as a pole of order
exactly 2 if and only if f^{\#}(z)=0 , whereas, Sw(f)(z)\neq\infty at z\in D\backslash \{\infty\}

if and only if f^{\neq}(z)\neq 0 . One should be careful enough in case z is a simple
pole of f . If \infty\in D , then we define

Sw(f)( \infty)=\lim_{zarrow\infty}Sw(f)(z) .

More exactly,

Sw(f)( \infty)=\lim_{zarrow 0}2z^{4}Sw(g)(z)=0 ,

where g(z)=f(1/z) for z near 0, so that Sw(f) is meromorphic in the
whole V. Furthermore, Sw(f) has \infty as a zero of order 2 if and only if
g(\# 0)=0 .
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(10.2)

A well known theorem of Z. Nehari [N] reads that if f is meromorphic
in D and if

\sup_{z\in D}(1-|z|^{2})^{2}|Sw(f)(z)|\leq 2 , (10.1)

then f is univalent in D . Furthermore, the constant 2 in the right of (10.1)
is the best possible [H].

Theorem 6 Suppose that f^{\neq}(z)\neq 0 at a point z\in D for f meromorphic
in D. Then

(1-|z|^{2})^{2}|Sw(f)(z)| \leq 6\{(\frac{\Phi_{f}(z)}{\delta\#(z,f)})^{2}-1\} .

Again (C) in Section 1 follows. The equality holds in (10.2) at z with
f^{\#}(z)\neq 0 if and only if f is of (8.2). For f of (8.2) both sides of (10.2) are
zero.

A generalized function \kappa_{\in,M,R} of \kappa_{\epsilon,M} with a nonnegative parameter R
appears in the proof of Theorem 6 as in the equality argument in the proofs
of Theorems 4 and 5. For

\epsilon\in C , |\epsilon|=1 ; 1\leq M<+\infty ; 0 \leq R\leq 4(1-\frac{1}{M})(<4) ,

set

\kappa_{\epsilon,M,R}(z)=\overline{\epsilon}MK^{-1}(\frac{K(\epsilon z)}{M(1+RK(\epsilon z))}) , z\in D .

Note that the present parameter R has the upper bound. Then \kappa_{\epsilon,M}=

\kappa_{\epsilon,M,0} . Furthermore, \kappa_{\epsilon,1,0}(z)=\kappa_{\epsilon,1}(z)\equiv z . One can prove that \kappa_{\epsilon,M,R}\in

S and moreover, the function \kappa_{\epsilon,M,R} maps D univalently onto the disk
\{|z|<M\} minus the union J_{A}\cup J_{B} of the sets

J_{A}=\{-\overline{\epsilon}Ms;A(M, R)\leq s\leq 1\} (10.3)

and

J_{B}=\{\overline{\epsilon}Ms;B(M, R)\leq s\leq 1\} , (10.4)

where

A(M, R)= \frac{1}{2}(M(4-R)-2-\sqrt{M^{2}(4-R)^{2}-4M(4-R)})>0
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and

B(M, R)= \frac{1}{2}(MR+2-\sqrt{M^{2}R^{2}+4MR})>0 .

Suppose that M>1 . Then, A(M, 0)=-\kappa_{M} (-1)/M <1 . If R>0 ,
then B(M, R)=K^{-1}(1/\{MR\})<1 . We then have the open arc \wedge f_{B}(R) ,
R>0 , in the upper half of \partial D with one end-point 1, which, as well as
its reflexion with respect to the real axis, is mapped onto the open interval
(MB(M, R) , M) by the extension of \kappa_{1,M,R} to D\cup\partial D , which we denote
again by \kappa_{1,M,R} .

Our proof of Theorem 6 depends, in fact, on

Lemma 10.1 Suppose thaf\in S is bounded, |f|<M , in D. Then

|Sw(f)(0)| \leq 6(1-\frac{1}{M^{2}}) (10.5)

The equality holds in (10.5) if and only if f=\kappa_{\epsilon,M,R} . See [Y2,
114, Lemma 6.1] for the detailed proof of Lemma 10.1. In case M=

1 , Lemma 10.1 is trivial because f(z)\equiv z .
General facts about the Schwarzian derivative will also be needed. We

begin with the composed function g\circ f in a domain of C. If f(z)\neq\infty ,
then

Sw(gof)(z)=Sw(g)(f(z))f’(z)^{2}+Sw(f)(z) .

Particularly if g is a M\"obius transformation, g(\zeta)=(a(+b)/(c\zeta+d), ad-
bc\neq 0 , then Sw(gof)(z)=Sw(f)(z) . Furthermore if g=f^{-1} , the inverse
of f and f(z)\neq\infty , then

Sw(f^{-1})(f(z))=- \frac{Sw(f)(z)}{f’(z)^{2}} .

Proof of Theorem 6. We may suppose that f(z)\neq\infty because Sw(f)=
Sw(1/f) . For g of (9.4) with \delta=\delta^{\neq}(z, f) again, we have

Sw(g)(0)=Sw(\phi)(f(z))\delta^{2}(1+|f(z)|^{2})^{2}

and

Sw( \phi)(f(z))=-\frac{Sw(f)(z)}{f’(z)^{2}} ,
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so that (10.5) for g\in S with |g|<M=\Phi_{f}(z)/\delta reads that

\frac{(1-|z|^{2})^{2}|Sw(f)(z)|}{M^{2}}=|Sw(g)(0)|\leq 6(1-\frac{1}{M^{2}})

Hence (10.2).
Suppose that the equality holds in (10.2) at z with f^{\neq}(z)\neq 0 . Then

g=\kappa_{\epsilon,M,R} , so that, this time again,

\frac{\delta w+f(z)}{1-\overline{f(z)}\delta w}=f(\frac{A\kappa_{\epsilon,M,R}(w)+z}{1+\overline{z}A\kappa_{\epsilon,M,R}(w)}).
, w\in D , (10.6)

where

A= \frac{\delta(1+|f(z)|^{2})}{(1-|z|^{2})f(z)}, with |A|=1/M .

Suppose that M>1 . If R=0, then for t\in(-M, \kappa_{M}(-1)) we have \zeta\in\prime r

with \kappa_{M}(\zeta)=\kappa_{M}(\overline{\zeta})=t . If R>0 , then for t\in(MB(M, R), M) we have
\zeta\in\prime r_{B}(R) with \kappa_{1,M,R}(\zeta)=\kappa_{1,M,R}(\overline{\zeta})=t .

The remaining part of the proof is established on following the same
argument as in the proof of Theorem 4 with the obvious modification. \square

Remark 5 Suppose that f is meromorphic with nonvanishing f^{\neq} in D
and suppose further that

\sup_{z\in D}\frac{\Phi_{f}(z)}{\delta\#(z,f)}\leq\frac{2}{\sqrt{3}}=1.154 . .

Then f is univalent in D . This follows on combining (10.1) and (10.2).
We note that, for an arbitrary c>0 , there exists f\in \mathcal{M} such that

\sup_{z\in D}\frac{\Phi_{f}(z)}{\delta\#(z,f)}>c .

\mathcal{M}Ind,eed

, choose p , 0<p<1 , such that (1+p)^{2}/p>c . Then for f=H_{p,1} of

\frac{\Phi_{f}(0)}{\delta\#(0,f)}=\frac{(1+p)^{2}}{p}>c .

11. Poincar\’e density

According to the Koebe uniformization theory a plane domain \Omega\subset C

whose complement C\backslash \Omega contains at least two points admits a universal
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covering projection f from D onto \Omega , in notation, f\in Proj(\Omega) , which is
holomorphic with nonvanishing derivative in D , in particular. Furthermore,
f is normal. We set

P_{\Omega}(z)= \frac{1}{(1-|w|^{2})|f’(w)|} , z\in\Omega ,

where z=f(w) ; the choice of f\in Proj(\Omega) and w is immaterial as far as
z=f(w) is satisfied. We call P_{\Omega}(z) the Poincar\’e density of \Omega at z\in\Omega ; the
Poincar\’e metric in \Omega in the differential form is P_{\Omega}(z)|dz| . For the specified
case \Omega=D one has P_{D}(()=1/(1-|\zeta|^{2}) ; the integral of P_{D}(\zeta)|d\zeta| along
\gamma(z, w) defines the Poincar\’e distance \sigma(z, w) in D .

Similarly, set for z=f(w)\in\Omega ,

\rho_{\Omega}(z)=\rho(w, f) , \rho_{\Omega,a}(z)=\rho_{a}(w, f) , \rho_{\Omega,a}^{*}(z)=\rho_{a}^{*}(w, f) ,

and \rho_{\Omega,au}(z)=\rho_{au}(w, f) .

Then all are well defined in \Omega and none of them depends on a particular
choice of f\in Proj(\Omega) and w as far as z=f(w) is satisfied. Since each
f\in Proj(\Omega) is normal, it follows from Theorem 1 that

\rho_{a}(\Omega)\equiv\inf_{z\in\Omega}\rho_{\Omega,a}(z)=\rho_{a}(f)>0 ,

or equivalently, by (I),

\rho_{a}^{*}(\Omega)\equiv\inf_{z\in\Omega}\rho_{\Omega,a}^{*}(z)=\rho_{a}^{*}(f)>0 .

Furthermore,

\delta_{\Omega}^{\#}(z)\equiv\inf_{\zeta\in\partial\#\Omega}|\frac{\zeta-z}{1+\overline{z}\zeta}|=\delta^{\neq}(w, f)

for z=f(w) , where \partial^{\neq}\Omega is the boundary of \Omega in c\# .

Recall here that the spherical distance \chi(z, w) is the line integral of
\chi(\zeta)|d\zeta| along curve(s), where \chi(\zeta)=1/(1+|\zeta|^{2}) ; see (2.1) and its following.
We therefore call \chi(\zeta) the spherical density at \zeta\in c\# , where \chi(\infty)=0 .

As relations among the functions \Phi_{f} , \chi , and P_{\Omega} , we have at z=f(w)\in
\Omega for f\in Proj(\Omega) that \Phi_{f}(w)=\chi(z)/P_{\Omega}(z) and consequently,

\Lambda_{f}(w)=\frac{1}{P_{\Omega}(z)}|\frac{\partial}{\partial z}\log\frac{\chi(z)}{P_{\Omega}(z)}|
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We can now apply preceding theorems to an f\in Proj(\Omega) and translate
them in terms of P_{\Omega} and others.

For example, it follows from Theorem 2 that

\frac{\rho_{\Omega}(z)}{P_{\Omega}(z)}|\frac{\partial}{\partial z}\log\frac{\chi(z)}{P_{\Omega}(z)}|\leq\frac{\rho_{\Omega,au}(z)}{\rho_{\Omega}(z)}+\frac{\rho_{\Omega}(z)}{\rho_{\Omega,au}(z)} , z\in\Omega . (11.1)

The equality holds at z\in\Omega if and only if \Omega=f(D)\subset C , where

\lambda H_{p,\epsilon}(\frac{(-w}{1-\overline{w}\zeta})+\mu

f(\zeta)=

1- \overline{\mu}\lambda H_{p,\in}(\frac{\zeta-w}{1-\overline{w}\zeta})

with four parameters 0<p\leq 1 , \epsilon\in C , |\epsilon|=1 , \lambda\in C\backslash \{0\} , and \mu\in c\#

In this case \Omega is c\# (or \Sigma ) minus a circular arc containing \infty .
It follows from Theorem 4 that

\delta_{\Omega}^{\#}(z)\leq\frac{2\chi(z)}{2P_{\Omega}(z)+|(\partial/\partial z)1og(\chi(z)/P_{\Omega}(z))|} , z\in\Omega . (11.2)

The equality holds at z\in\Omega if and only if \Omega is a spherical cap Cap(z, R) \subset C

with 0<R<+\infty . In this case \delta_{\Omega}^{\#}(z)=\chi(z)/P_{\Omega}(z)=R and (\partial/\partial z)(\chi(z)/

P_{\Omega}(z))=0 .
A hyperbolic domain \Omega\subset C is said to be of finite type [Y2] if \rho(\Omega)=

\inf_{z\in\Omega}\rho_{\Omega}(z)=(=\rho(f)) is strictly positive. This notion was essentially
introduced in [Y1], We prove here that \Omega is of finite type if and only if

\inf_{z\in\Omega}\frac{\delta_{\Omega}^{\#}(z)P_{\Omega}(z)}{\chi(z)}>0 . (11.3)

The infimum is not greater than 1 because (C) holds for f\in Proj(\Omega) .
Suppose that \rho(\Omega)>0 . Then

\rho_{au}(\Omega)\equiv\inf_{z\in\Omega}\rho_{\Omega,au}(z)>0 .

Hence it follows from (7.7) that

\frac{\chi(z)}{\delta_{\Omega}^{\#}(z)P_{\Omega}(z)}\leq 2(\frac{1}{\rho(\Omega)}+\frac{1}{\rho_{au}(\Omega)})<+\infty ,

so that we have (11.3). Conversely suppose (11.3). Then it follows from
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(11.4)

(8.3) that there exists c , 0<c\leq 1 , with

c \leq\frac{4\rho_{au}(z,f)}{(1+\rho_{au}(z,f))^{2}}\leq\frac{4\rho(z,f)}{(1+\rho(z,f))^{2}}

at each z\in\Omega . Hence \rho(\Omega)\geq(2-c-2\sqrt{1-c})/c>0 .
Since

\frac{1}{2}(1-|w|^{2})^{2}|Sw(f)(w)|=\frac{1}{P_{\Omega}(z)}|\frac{\partial^{2}}{\partial z^{2}}\frac{1}{P_{\Omega}(z)}|

at z=f(w)\in\Omega for f\in Proj(\Omega) , it follows from (10.2) that

\frac{1}{P_{\Omega}(z)}|\frac{\partial^{2}}{\partial z^{2}}\frac{1}{P_{\Omega}(z)}|\leq 3\{(\frac{\chi(z)}{\delta_{\Omega}^{\#}(z)P_{\Omega}(z)})^{2}-1\} .

The equality holds in (11.4) if and only if \Omega is a spherical cap Cap(z, R) \subset

C , 0<R<+\infty ; both sides of (11.4) are zero in this case.
Finally, the quantity \nu(\Omega)=\nu(f) for f\in Proj(\Omega) is called the normal

constant of \Omega in [Y3, p.302]; this is independent of a particular choice of
f . It is known, for example, that \nu(C\backslash \{0,1\})\leq 4.487 An immediate
consequence of (I) is then that

\tanh\frac{\pi}{4\nu(\Omega)}\leq\rho_{a}^{*}(\Omega)\leq\rho_{a}(\Omega)\leq 2\rho_{a}^{*}(\Omega)\leq\frac{2}{\nu(\Omega)} .

12. Univalent meromorphic function

As estimates of \Phi_{f}(z) of the type somewhat different from previous
ones we propose here

Theorem 7 Let f be meromorphic and univalent in D. Suppose that
f(w)=f(z)^{*} Then

( \frac{1-\tau(z,w)^{2}}{\tau(z,w)})^{2}\leq\Phi_{f}(z)\Phi_{f}(w)\leq\frac{1}{\tau(z,w)^{2}} . (12.1)

Note that \tau(z, w)=\rho_{a}(z, f)=\rho_{a}(w, f)<1 in this case.
To describe an equality condition for the right-hand side of (12.1) we

set

G_{p}(z)= \frac{pz(1-pz)}{p-z} , 0<p<1 .
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Then the rational function G_{p} of z maps D univalently onto C# minus the
subarc on the circle \{|z|=p\} bisected by -p and having the end-points

p(2p^{2}-1\pm 2p\sqrt{1-p^{2}}i)

To be more precise, G_{p}=f_{3}of_{2}of_{1} , where

f_{1}( \zeta)=\frac{\zeta-b}{1-b\zeta} with b= \frac{1-\sqrt{1-p^{2}}}{p} ;

f_{2}( \zeta)=\frac{p}{2\sqrt{1-p^{2}}}(\zeta-\frac{1}{\zeta}) ; f_{3}( \zeta)=\frac{p((-1)}{(+1} .

We set G_{p,\epsilon}(z)=\overline{\epsilon}G_{p}(\epsilon z) for \epsilon\in C with |\epsilon|=1 . Specifically, G_{p,\epsilon}\in S(p) .
The equality in the right of (12.1) holds if and only if

\lambda G_{p,\epsilon}(\frac{\zeta-z}{1-\overline{z}(})+\mu

f(\zeta)= (12.2)
1- \overline{\mu}\lambda G_{p,\in}(\frac{\zeta-z}{1-\overline{z}\zeta})

’

where \lambda\in C\backslash \{0\} , \mu\in c\# , \epsilon\in C , |\epsilon|=1 , and p , 0<p<1 , all are
constants. In particular, f(w)=f(z)^{*} for w=(\overline{\epsilon}p+z)/(1+\overline{z\epsilon}p) . For f of
(12.2), the equality \Phi_{f}(z)=|\lambda| is valid, so that \Phi_{f}(w)=(p^{2}|\lambda|)^{-1} .

The equality in the left of (12.1) holds if and only if

\lambda H_{p,\epsilon}(\frac{\zeta-z}{1-\overline{z}(})+\mu

f(\zeta)= (12.3)
1- \overline{\mu}\lambda H_{p,\epsilon}(\frac{\zeta-z}{1-\overline{z}(})

where \lambda\in C\backslash \{0\} , \mu\in c\# , \epsilon\in C , |\epsilon|=1 , and p, 0<p<1 , all are
constants. In particular, f(w)=f(z)^{*} for w=(\overline{\epsilon}p+z)/(1+\overline{z\epsilon}p) . For f of
(12.3), the equality \Phi_{f}(z)=|\lambda| is valid, so that \Phi_{f}(w)=(1-p^{2})^{2}/(p^{2}|\lambda|) .

We recall here the result of Komatu on S(p) [K , p.278, (4.4)] on which
Theorem 7 depends; see [G , II , p.263].

Lemma 12.1 Suppose that f(z_{o})=\infty for f\in S(p) with 0<p<1 , so
that |z_{o}|=p . Then

p^{2}(1-p^{2}) \leq|{\rm Res}(f, z_{o})|\leq\frac{p^{2}}{1-p^{2}} , (12.4)
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where

Res (f, z_{o})= \lim_{zarrow z_{o}}(z-z_{o})f(z) .

The equality in the left (right, respectively) of (12.4) holds if and only
if f=G_{p,\in} ( f=H_{p,\epsilon} , respectively); see [K , p.279, (4.8)].

Before passing to the proof of Theorem 7 let us note that

1/{\rm Res}(f, z_{o})=(1/f)’(z_{o}) (12.5)

for f\in S(p) with f(z_{o})=\infty , |z_{o}|=p<1 . We then have \Phi_{f}(z_{o})=(1-

p^{2})/|{\rm Res}(f, z_{o})| .

Proof of Theorem 7. We may suppose, without loss of generality, that 0\neq

f(z)\neq\infty . Indeed, otherwise, consider (f-b)/(1+\overline{b}f) for a constant b\in

C\backslash \{0\} . Set T(()=((+z)/(1+\overline{z}\zeta), \zeta\in D , and choose \eta\in D such that
w=T(\eta) . Then |\eta|=\tau(z, w) . Set

g( \zeta)=\frac{1+|f(z)|^{2}}{(1-|z|^{2})f(z)}, \frac{foT(\zeta)-f(z)}{1+\overline{f(z)}foT(\zeta)} , (\in D .

Then g\in S(p) with g(\eta)=\infty and p=|\eta| . It follows therefore from (12.5)
for g and z_{o}=\eta that

\frac{1}{|{\rm Res}(g,\eta)|}=|(\frac{1}{g})’(\eta)|=\Phi_{f}(z)f^{\#}(w)|T’(\eta)|

= \frac{\Phi_{f}(z)\Phi_{f}(w)}{1-|\eta|^{2}}=\frac{\Phi_{f}(z)\Phi_{f}(w)}{1-p^{2}} .

Here we make use of

|f(w)-f(z)|^{2}= \frac{(1+|f(z)|^{2})}{|f(z)|}\frac{(1+|f(w)|^{2})}{|f(w)|}

=(1+|f(z)|^{2})(1+|f(w)|^{2})

and

(1-|\eta|^{2})|T’(\eta)|=1-|T(\eta)|^{2}=1-|w|^{2} .

One now takes advantage of (12.4) for g , z_{o}=\eta , and p=\tau(z, w) to have
(12.1). It is now an exercise to have the described equality condition. \square
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Remark 6 A consequence of the left of (12.1) is that

\frac{\sqrt{\nu(f)^{2}+4}-\nu(f)}{2}\leq\rho_{a}(z, f)

if \rho_{a}(z, f)<1 ; this is obviously true in case \rho_{a}(z, f)=1 . It then follows
that

\frac{\sqrt{\nu(f)^{2}+4}-\nu(f)}{2}\leq\rho_{a}(f)

if f is meromorphic and univalent in D .
We can translate these results in terms of \nu(\Omega) and \rho_{a}(\Omega) for a simply

connected domain \Omega\neq C .

13. Bloch function

What are reasonable holomorphic versions of (I) and (II) in Section 3?
The situation appears to be very much different. For f holomorphic in D
we set

\beta(f)=\sup_{z\in D}(1-|z|^{2})|f’(z)|

and call f Bloch if \beta(f)<+\infty .
Let \rho_{\omega}(z, f) be the maximum of r , 0<r\leq 1 , such that e^{f(w)}+e^{f(z)}\neq 0

for all w\in\triangle(z, r) , whereas let \rho_{\omega}^{*}(z, f) be the maximum of r , 0<r\leq 1 ,
such that

e^{f(\zeta)}+e^{f(\eta)}\neq 0 (13.1)

for all \zeta , \eta\in\triangle(z, r) .
Since

0<\rho_{\omega}^{*}(z, f)\leq\rho_{\omega}(z, f)\leq 1 , z\in D ,

it follows that

0\leq\rho_{\omega}^{*}(f)\leq\rho_{\omega}(f)\leq 1 ,

where

\rho_{\omega}(f)=\inf_{z\in D}\rho_{\omega}(z, f) and \rho_{\omega}^{*}(f)=\inf_{z\in D}\rho_{\omega}^{*}(z, f) .

Theorem 8 A holomorphic function f defined in D is Bloch if and only

if \rho_{\omega}(f)>0 .
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For the proof it suffices to observe that

(III) \tanh\frac{\pi}{2\beta(f)}\leq\rho_{\omega}^{*}(f)\leq\rho_{\omega}(f)\leq 2\rho_{\omega}(*f)\leq\frac{4}{\beta(f)}

for f holomorphic in D .

THE FIRST INEQUALITY IN (III). We may suppose that 0<\beta(f)<
+\infty . Then for all (, \eta\in D , one has

| Im f(\zeta)- Im f(\eta)|\leq|f(\zeta)-f(\eta)|\leq\beta(f)\sigma(\zeta, \eta) .

Hence, for all \zeta , \eta\in\triangle(z, r) with r=\tanh(\pi/(2\beta(f))) , one further has

| Im f(\zeta)- Im f(\eta)|\leq\beta(f)(\sigma(\zeta, z)+\sigma(z, \eta))<\pi .

Hence (13. 1) is true, and consequently,

\tanh\frac{\pi}{2\beta(f)}\leq\rho_{\omega}^{*}(z, f) ,

whence the first follows.

THE THIRD INEQUALITY IN (III). We may suppose that \beta\omega(f) >0 .
For z\in D and for all \zeta , \eta\in\triangle(z, \rho_{\omega}(f)/2) , we have \zeta\in\triangle(\eta, \rho_{\omega}(\eta, f)) , so
that (13.1) is valid. Hence

\rho_{\omega}(f)/2\leq\rho_{\omega}^{*}(z, f) ,

from which the third follows.

THE FOURTH INEQUALITY IN (III). We shall make use of

(IV) \rho_{\omega}^{*}(z, f)(1-|z|^{2})|f’(z)|\leq 2 , z\in D

for f holomorphic in D .
For the proof of (IV) we may suppose that a=\rho_{\omega}^{*}(z, f)>0 . Then for

each fixed z\in D , the function

g(w)= \exp(f(\frac{aw+z}{1+\overline{z}aw})-f(z))

of w\in D satisfies g(0)=1 and g(\zeta)+g(\eta)\neq 0 for all \zeta , \eta in D . In other
words, g is a Gel’fer function [G , II , p.73]. Hence the holomorphic function
h=(g-1)/(g+1) is a Bieberbach-Eilenberg function in the sense that
h(0)=0 and h(\zeta)h(\eta)\neq 1 for all \zeta , \eta in D ; see [G , II , p.61]. It then follows
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from the Eilenberg theorem [G , II , p.63, Theorem 31] that |h’(0)|\leq 1 and,
moreover, |h’(0)|=1 if and only if h(w)\equiv\epsilon w , |\epsilon|=1 . Consequently,

(1-|z|^{2})|f’(z)|= \frac{|g’(0)|}{a}=\frac{2|h’(0)|}{a}\leq\frac{2}{a} ,

whence (IV). The equality holds in (IV) at z if and only if

f(w)= \log\frac{1+\epsilon\frac{w-z}{1-\overline{z}w}}{w-z}+\mu

, \epsilon\in C , |\epsilon|=1 , and \mu\in C .
1-\epsilon\overline{1-\overline{z}w}

(13.2)

Indeed, suppose that the equality holds in (IV). Then h(w)\equiv\epsilon w , \epsilon\in

C , |\epsilon|=1 , so that

\frac{1+\epsilon w}{1-\epsilon w}(=g(w))=\exp(f(\frac{aw+z}{1+\overline{z}aw})-f(z))

for all w\in D . If a<1 , then we have a contradiction on letting warrow\overline{\epsilon} .
Hence a=1 , whence we have (13.2) with \mu=f(z) . The converse is obvious.

The fourth inequality in (III) now immediately follows from (IV).

Remark 7 The domain constants \rho_{\omega}(\Omega)=\rho_{\omega}(f) and \rho_{\omega}^{*}(\Omega)=\rho_{\omega}^{*}(f)

both are well defined in \Omega with the aid of f\in Proj(\Omega) in the sense that the
choice of f is immaterial. Set

\beta(\Omega)=\frac{1}{\inf_{z\in\Omega}P_{\Omega}(z)} .

Then \beta(\Omega)=\beta(f) , f\in Proj(\Omega) , and 0<\beta(\Omega)\leq+\infty . As the case \Omega=

{ z ; Re z>0} shows, it is possible that \beta(\Omega)=+\infty . For general hyperbolic
domain \Omega one then has

\tanh\frac{\pi}{2\beta(\Omega)}\leq\rho_{\omega}^{*}(\Omega)\leq\rho_{\omega}(\Omega)\leq 2\rho_{\omega}^{*}(\Omega)\leq\frac{4}{\beta(\Omega)} .

14. Absolute constants

We proved in Remark 2 in Section 5 that

f \in \mathcal{M}\sup\nu(f)=+\infty
.
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For S\subset \mathcal{M} , in contrast, we are here able to prove that

\nu(S)\equiv\sup\nu(f)f\in S\leq---(\alpha)=3.4569 . (14.1)

In the above

—(x)= \frac{1}{(1-x)^{4}+x^{2}} , 0\leq x\leq 1 , (14.2)

with

\alpha=\sqrt[3]{\frac{1}{4}(\sqrt{\frac{29}{27}}-1)}-\sqrt[3]{\frac{1}{4}(\sqrt{\frac{29}{27}}+1)}+1=0.4102\ldots .

so that —( \alpha)=\max_{0\leq x\leq 1}\cup--(x) . The proof of (14.1) depends on two forth-
coming inequalities. For the first we let f\in S and set g(w)=1/f(z) , w=
1/z . Then g is meromorphic and univalent in Cap(\infty, 1)=\{w;1<|w|\leq

+\infty\} such that \lim_{|w|arrow+\infty}g(w)/w=1 . It then follows from Loewner’s
inequality [D, 127 , Corollary 6] that

|g’(w)| \leq\frac{|w|^{2}}{|w|^{2}-1} , 1<|w|<+\infty ,

which is reduced to the first inequality

(1-|z|^{2})| \frac{f’(z)}{fz)^{2}}||z|^{2}\leq 1 , z\in D ; (14.3)

the left-hand side is 1 at z=0. On the other hand, the familiar inequality

|f(z)| \leq K(|z|)=\frac{|z|}{(1-|z|)^{2}} (14.4)

for z\in D holds [G , I , p.68, Theorem 8]. Hence the second is that

\frac{1}{|z|^{2}}\frac{|f(zz)|^{2}}{1+f(z)|^{2}}\leq---(|z|) ;

the left-hand side is again 1 at z=0. It then follows from (14.3) and

\Phi_{f}(z)=(1-|z|^{2})|\frac{f’(z)}{fz)^{2}}||z|^{2} \frac{1}{|z|^{2}}\frac{|f(zz)|^{2}}{1+f(z)|^{2}}

that

\Phi_{f}(z)\leq_{-}--(|z|) , z\in D .



184 S. Yamashita

Since

0 \leq x\leq 1\max---(x)=---(\alpha) ,

where 2 (\alpha-1)^{3}+\alpha=0 , we finally have (14.1).
As for the lower estimate of \nu(S) we have

\nu(S)\geq\nu(K)\geq\max\Phi_{K}(x)=\max\frac{(1-x^{2})^{2}}{(1-x)^{4}+x^{2}}=2.5610\leq x\leq 10\leq x\leq 1^{\cdot} ,

the maximum actually being attained at \beta=0.340 . . for which

2\beta^{4}-13\beta^{3}+12\beta^{2}-9\beta+2=0 .

It is of interest to determine the exact value of \nu(S) .
For S(p) , 0<p<1 , the situation is not very much different. Namely,

\nu(S(p))\equiv sup \nu(f)\leq C(p) , (14.5)
f\in S(p)

where

C(p)= \max---p(x)0\leq x\leq 1 ’

–p-(x)= \frac{p^{2}}{(1-px)^{2}(p-x)^{2}+p^{2}x^{2}} , 0\leq x\leq 1 .

For the proof of (14.5) we have only to remember a counter part of (14.4)
for S(p) , namely,

|f(z)| \leq|H_{p,-1}(|z|)|=\frac{p|z|}{|p-|z||(1-p|z|)}

for f\in S(p) and z\in D ; see [KS, Theorem 3] and [G , II , p.248, Theorem 40].
The definition of S(p) in [KS] is slightly different. If f(z_{o})=\infty for f of
our S(p) , z_{o}=\epsilon p , then g(z)=\overline{\epsilon}f(\epsilon z) is in S(p) defined in [KS]. We have
C(p)=—p(\alpha(p)) , where the constant \alpha=\alpha(p) , 0<\alpha(p)<1 , satisfies the
equation

2^{2}p\alpha^{3}-3p(1+p^{2})\alpha^{2}+(p^{4}+5p^{2}+1)\alpha-p(1+p^{2})=0 .

Note that 1<1/p^{2}\leq C(p) .
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As for the lower estimate of \nu(S(p)) we have, in a similar manner, that

\nu(S(p))\geq\nu(H_{p,-1})\geq\max 0\leq x\leq 1\Phi_{H_{p,-1}}(x)

= \max\frac{p^{2}(1-x^{2})^{2}}{(p-x)^{2}(1-px)^{2}+p^{2}x^{2}}0\leq x\leq 1^{\cdot}

Remark 8 Let g(w)=1/f(z) , w=1/z , again for f\in S(p) , 0<p\leq 1 .
It follows from [D , p.127, Corollary 6] that

\frac{|w|^{2}-1}{|w|^{2}}\leq|g’(w)| , 1<|w|<+\infty ,

so that

(1-|z|^{2})^{2} \leq(1-|z|^{2})|\frac{f’(z)}{f(z)^{2}}||z|^{2}’. z\in D .

On the other hand, it is known for f\in S(p) that

\frac{p|z|}{(1+p|z|)(p+|z|)}=-H_{p,-1}(-|z|)\leq|f(z)| , z\in D ;

see [G , I , p.68, Theorem 8] for p=1 , whereas, see [F], [KS], and [G, II ,
p.248, (90) ] for 0<p<1 . It is indeed an exercise to have the left-hand
side of

\frac{p^{2}(1-|z|^{2})^{2}}{(1+p|z|)^{2}(p+|z|)^{2}+p^{2}|z|^{2}}

\leq\Phi_{f}(z)\leq\frac{p^{2}}{(1-p|z|)^{2}(p-|z|)^{2}+p^{2}|z|^{2}} , z\in D ,

for f\in S(p) , 0<p\leq 1 . In particular, let z_{o} be the pole of f\in S(p) ,
0<p<1 , and set z=z_{o} in the above. One then again has the left-hand
side of (12.4).
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