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H\"ormander’s type conditions for evolution in spaces
of (small) Gevrey functions
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Abstract. We give H\"ormander’s type necessary and/or sufficient conditions for the
existence of solutions of the Cauchy problem for (overdetermined) systems of linear partial
differential operators with constant coefficients, in spaces of (small) Gevrey functions.
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Introduction

In this paper we continue the study of the Cauchy problem for (overde-
termined) systems of linear partial differential operators with constant c0-
efficients in spaces of (small) Gevrey functions, as considered in [BN2].

We split \mathbb{R}^{N}\simeq \mathbb{R}_{t}^{k}\cross \mathbb{R}_{x}^{n} and consider either the class \gamma^{(s)} of (small)
Gevrey functions of order s>1 in both variables t and x , or, allowing
different scales of regularity in t and x , the topological tensor products \tilde{\gamma}^{(s)}

and \gamma^{(r,s)} , the first not requiring ultradifferentiability in the t-variables, the
second requiring ultradifferentiability of order r>1 in t and s>1 in x .

For a pair K_{1}\subset K_{2} of closed convex subsets of \mathbb{R}^{N} with K_{1}\subset \mathbb{R}_{x}^{n} , let
us denote by \gamma_{K_{1}}^{*} and \gamma_{K_{2}}^{*} one of the above spaces of (ultra)difffferentiable
Whitney functions on K_{1} and K_{2} respectively.

Then, for an a_{1}\cross a_{0} matrix A_{0}(D) of linear partial differential operators
with constant coefficients, we are concerned with the following (overdeter-
mined) Cauchy problem:

\{\begin{array}{l}givenf\in(\gamma_{K_{2}}^{*})^{a_{1}}withA_{1}(D)f=0,andg\in(\gamma_{K_{1}}^{*})^{a_{0}}suchthatA_{0}(D)g=f|_{K_{1}},fi ndu\in(\gamma_{K_{2}}^{*})^{a_{0}}suchthatA_{0}(D)u=fandu|_{K_{1}}=g,\end{array} (0.1)

where the rows of A_{1}(D) give a basis for the integrability conditions for
A_{0}(D) (see \S 1; cf. also [AN1], [N2], [BN1], [BN2]).
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As in [BN2], we shall say that the pair (K_{1}, K_{2}) is of evolution (resp.:
of causality, hyperbolic) for A_{0}(D) in the class \gamma^{*} if the Cauchy problem
(0.1) admits at least a solution (resp.: at most one solution, one and only
one solution).

In this paper we obtain necessary and/or sufficient conditions for evolu-
tion, generalizing a result of H\"ormander in [H\"o3], where he gave a necessary
and sufficient condition for evolution for the pair consisting of a hyperplane
of \mathbb{R}^{N} and one of the half-spaces it bounds, in the scalar case (a_{0}=a_{1}=1)

and in the space of C^{\infty} functions.
In [BN1] we generalized this result of H\"ormander to the case of overde-

termined systems and initial data on an affine subspace \Sigma of \mathbb{R}^{N} of arbitrary
codimension, always in the C^{\infty} class. We obtained a necessary condition
for evolution (H), which naturally generalizes the one of [H\"o3], and which
is equivalent to it when \Sigma is a hyperplane and A_{0}(D) is a scalar opera-
tor. We obtained then a stronger condition (H’) which turns out to be
sufficient, but not necessary, for evolution, and which coincides with the
previous condition (H) in the hyperplane case.

Here we generalize these results of [BN1] to the case of (small) Gevrey
functions, obtaining a necessary condition (H)^{s} for evolution (see \S 2.1),
and a sufficient stronger condition (H’)^{s} , which coincides with (H)^{s} when
\Sigma is a hyperplane (see \S 2.3). When n=1 the characteristic varieties are
algebraic curves, and we then obtain a condition (h)^{s} which is necessary
and/or sufficient for evolution, according to the s>1 for which (h)^{s} is
satisfied (see \S 2.2). In particular, for s\in \mathbb{Q} , when k=1 or n=1 we
find that H\"ormander’s type condition (H)^{s} is necessary and sufficient for
evolution.

We finally give some examples of applications of the above results.

1. Preliminaries and notation

We briefly collect here some basic notion and results that we shall need
in the following. We also refer to [N2], [BN1], [BN2], [B] for more details.

1.1. Algebraic setting
We denote by P =\mathbb{C}[\theta_{1}, . , \theta_{N}] the unitary commutative ring of poly-

nomials with complex coefficients in N indeterminates.
Given then a \mathbb{C}-linear space \mathcal{F} of (ultra)differentiate (Whitney) func-

tions defined on a subset of \mathbb{R}_{z}^{N} , we consider \mathcal{F} as a unitary P-module by
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letting p(\theta)\in P act on f\in \mathcal{F} as

p(\theta)f=fp(\theta)=p(D)f ,

by the formal substitution \theta_{j} -
D_{j}= \frac{1}{i}\frac{\partial}{\partial z_{j}} for j=1 , ., N . We call such

an \mathcal{F} a differential P-module
Given an a_{1}\cross a_{0} matrix A_{0}(D) of linear partial differential operators

in \mathbb{R}^{N} with constant coefficients, and given a differential \prime p-module \mathcal{F} , we
consider the system

\{

u\in \mathcal{F}^{a_{0}}

(1.1)
A_{0}(D)u=f\in \mathcal{F}^{a_{1}} .

In order to solve the system above, we must take into account the
necessary integrability conditions that f must satisfy. To this aim we insert
the \mathcal{P}-homomorphism {}^{t}A_{0}(\theta) : P^{a_{1}} - \mathcal{P}^{a_{0}} into a Hilbert resolution

0arrow P^{a_{d}}arrow {}^{t}A_{d-1}(\theta)P^{a_{d-1}}arrow 1arrow P^{a_{2}}{}^{t}A_{1}(\theta)arrow P^{a_{1}}{}^{t}A_{0}(\theta)arrow P^{a_{0}}

arrow \mathcal{M}arrow 0

of the unitary finitely generated P-module \mathcal{M}=coker{}^{t}A_{0}(\theta) , where the
rows of the matrix A_{1}(D) give a system of generators for the module of all
the integrability conditions for f that can be expressed in terms of partial
differential operators.

The existence of a non-trivial map {}^{t}A_{1}(\theta) : P^{a_{2}} - \mathcal{P}^{a_{1}} such that the
sequence

P^{a_{2}}{}^{t}A_{1}(\theta)arrow P^{a_{1}}{}^{t}A_{0}(\theta)arrow P^{a_{0}}

is a complex, means that the system (1.1) is overdetermined.
From the isomorphisms

\{\begin{array}{l}Ext_{\mathcal{P}}^{0}(\mathcal{M},\mathcal{F})\simeq\{f\in \mathcal{F}^{a_{0}}..A_{0}(D)f=0\}Ext_{P}^{j}(\mathcal{M},\mathcal{F})\simeq\frac{ker(A_{j}(D)\cdot \mathcal{F}}{Image(A_{j-1}(D)}.\cdot.a_{j_{arrow \mathcal{F}^{a_{j+1}})}}\mathcal{F}^{a_{j-1}}arrow \mathcal{F}^{a_{j}})\end{array}

for j\geq 1

we thus obtain that uniqueness and/or existence of solutions of (1.1), for ev-
ery right hand side f\in \mathcal{F}^{a_{1}} satisfying the integrability condition A_{1}(D)f=

0 , are strictly related to the vanishing of the cohomology groups Ext_{P}^{0}(\mathcal{M}, \mathcal{F})

and/orExt_{P}^{1}(\mathcal{M}, \mathcal{F}) .
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By means of duality, the Fourier-Laplace transform and the Ehrenpreis
fundamental principle this will lead the study of the Cauchy problem for
overdetermined systems to the study of the validity of a Phragm\’en-Lindel\"of
principle (see Theorems 1.4 and 1.5).

For this purpose we first need some further algebraic notion related to
the Cauchy problem. Let

\Sigma=\{(t, x)\in \mathbb{R}_{t}^{k}\cross \mathbb{R}_{x}^{n}-\sim \mathbb{R}_{z}^{N} : t=0\}\simeq \mathbb{R}_{x}^{n}\subset \mathbb{R}^{N}

and denote by \theta=(\tau, \zeta)=(\tau_{1} , \ldots , \tau_{k} , (_{1} , ., \zeta_{n})\in \mathbb{C}_{\tau}^{k}\cross \mathbb{C}_{\zeta}^{n}\simeq \mathbb{C}_{\theta}^{N} the dual
coordinates of z=(t, x)=(t_{1}, ., t_{k}, x_{1}, \ldots, x_{n})\in \mathbb{R}_{t}^{k}\cross \mathbb{R}_{x}^{n} .

We can consider P_{n}=\mathbb{C}[\zeta_{1}, . ., \zeta_{n}] as a unitary subring of \mathcal{P}=

\mathbb{C}[\tau_{1}, ., \tau_{k}, \zeta_{1}, ., \zeta_{n}] . Given then a \prime p-module \mathcal{M} we denote by (\mathcal{M})_{n}

the set \mathcal{M} considered as a P_{n}-module by change of base ring.
We say that: \Sigma is formally non-characteristic for \mathcal{M} if (\mathcal{M})_{n} is a P_{n}-

module of finite type; \Sigma is quasi-free for \mathcal{M} if (\mathcal{M})_{n} is a torsion free P_{n}-

module.
To every prime ideal \wp of P we associate the affine algebraic variety

V(\wp)=\{\theta=(\tau, \zeta)\in \mathbb{C}^{k}\cross \mathbb{C}^{n} : p(\theta)=0\forall p\in\wp\} .

We denote by Supp(M) and Ass(M) respectively the support of \mathcal{M} and
the set of all prime ideals associated to \mathcal{M} . Then we recall that a necessary
and sufficient condition in order that \Sigma is formally non-characteristic and
quasi-free is that the following conditions are satisfied (cf. [BN2], [B]):

i) there exists real constants \lambda , b such that

|\tau|\leq\lambda(1+|\zeta|)^{b} \forall(\tau, \zeta)\in V(\wp) , \forall\wp\in Supp(\mathcal{M}) , (1.2)

ii) the natural projection maps

\pi_{n} : V(\wp)arrow \mathbb{C}_{\zeta}^{n}

(\tau, \zeta)\mapsto\zeta

are surjective, finite and dominant, for all \wp\in Ass(\mathcal{M}) .
The smallest number b such that (1.2) is valid for some \lambda>0 is called

the reduced order of \Sigma for \mathcal{M} , and is denoted by p_{0} (this number exists and
is rational by the Tarski-Seidenberg theorem).
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1.2. Spaces of (small) Gevrey functions
We shall be concerned, in the following, with spaces of (small) Gevrey

(Whitney) functions. In the study of evolution from the affine subspace \Sigma it
is natural to consider also spaces of (Whitney) functions satisfying different
regularity requirements in the t and the x variables. This can be done by
considering topological tensor product spaces. We briefly recall here the
main notions, referring to [BN2] for more details.

For an open subset \Omega of \mathbb{R}^{N} , the space of (small) Gevrey functions of
order s>1 in \Omega is defined by

\gamma^{(s)}(\Omega)=\{f\in \mathcal{E}(\Omega) : \forall K\subset\subset\Omega\forall\epsilon>0\exists c>0 :

\sup_{K}|D^{\alpha}f|\leq c\epsilon^{|\alpha|}(|\alpha|!)^{s}\forall\alpha\in \mathbb{N}^{N}\} ,

where \mathcal{E}(\Omega) is the space of complex valued smooth functions on \Omega .
Then we split \mathbb{R}^{N}\simeq \mathbb{R}_{t}^{k}\cross \mathbb{R}_{x}^{n} and consider, as topological tensor product

spaces (cf. [BN2], [B]), the classes \tilde{\gamma}^{(s)} of smooth functions which belong
uniformly, with their t-derivatives, as functions of the x-variables, to the
(small) Gevrey class of order s>1 , and \gamma^{(r,s)} of (small) Gevrey functions
of order r>1 in t and s>1 in x :

\tilde{\gamma}^{(s)}(\Omega)=\{f\in \mathcal{E}(\Omega) : \forall K\subset\subset\Omega\forall\epsilon>0\forall\beta\in \mathbb{N}^{k}\exists c>0 :

\sup_{K}|D_{t}^{\beta}D_{x}^{\alpha}f(t, x)|\leq c\epsilon^{|\alpha|}(|\alpha|!)^{s}\forall\alpha\in \mathbb{N}^{n}\} ,

\gamma^{(r,s)}(\Omega)=\{f\in \mathcal{E}(\Omega) : \forall K\subset\subset\Omega\forall\epsilon>0\exists c>0 :

\sup_{K}|D_{t}^{\beta}D_{x}^{\alpha}f(t, x)|\leq c\epsilon^{|\alpha|+|\beta|}(|\beta|!)^{r}(|\alpha|!)^{s}\forall\beta\in \mathbb{N}^{k}\forall\alpha\in \mathbb{N}^{n}\} .

We have Paley-Wiener-type theorems (cf. [K1], [K2], [BN2]):

Theorem 1.1 Let K be a compact convex subset of \mathbb{R}^{N}

A necessary and suffiffifficient condition for an entire function U\in O(\mathbb{C}^{N})

to be the Fourier-Laplace lransfom of an element u\in(\tilde{\gamma}^{(s)}(\mathbb{R}^{N}))’ (resp.:
u\in(\gamma^{(r,s)}(\mathbb{R}^{N}))’) with support contained in K is that there exists constants
c, L , L’\geq 0 such that

|U(\tau, \zeta)|\leq c(1+|\tau|)^{L’}\exp { L|\zeta|^{1/s}+H_{K} (Im \tau , Im \zeta) }
\forall(\tau, \zeta)\in \mathbb{C}^{k}\cross \mathbb{C}^{n}\simeq \mathbb{C}^{N}
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(resp. : |U(\tau, ()|\leq c\exp{ L’|\tau|^{1/r}+L|\zeta|^{1/s}+H_{K} (Im \tau , Im \zeta) }
\forall(\tau, \zeta)\in \mathbb{C}^{k}\cross \mathbb{C}^{n}) ,

where H_{K}( \cdot)=\sup_{x\in K}\langle x, \cdot\rangle is the supporting function of K

We finally consider, for a locally closed subset F of \mathbb{R}^{N} , the spaces of
(small) Gevrey Whitney functions on F : \gamma_{F:}^{(s)}\tilde{\gamma}_{F}^{(s)} and \gamma_{F}^{(r,s)} , defined by
the exact sequence

0arrow I(F, \Omega)\cap\gamma^{*}(\Omega)arrow\gamma^{*}(\Omega)arrow\gamma_{F}^{*}arrow 0 ,

where \Omega is an open neighbourhood of F in \mathbb{R}^{N} and I(F, \Omega) is the space of
smooth functions in \Omega which vanish with all their derivatives on F (here
\gamma^{*}(\Omega) and \gamma_{F}^{*} denote one of the spaces \gamma^{(s)}(\Omega),\tilde{\gamma}^{(s)}(\Omega) , \gamma^{(r,s)}(\Omega) and, re-
spectively, \gamma_{F}^{(s)},\tilde{\gamma}_{F}^{(s)} , \gamma_{F}^{(r,s)} ).

These spaces are endowed with the natural quotient space topology.

1.3. The overdetermined Cauchy problem and the Phragm\’en-
Lindel\"of principle for evolution

Let K_{1}\subset K_{2} be a pair of closed convex subsets of \mathbb{R}^{N}\simeq \mathbb{R}_{t}^{k}\cross \mathbb{R}_{x}^{n} with
K_{1}\subset\Sigma\simeq \mathbb{R}_{x}^{n} , and A_{0}(D) an a_{1}\cross a_{0} matrix of linear partial differential
operators with constant coefficients.

If \gamma^{*} is one of the classes of (small) Gevrey (Whitney) functions previ-
ously considered, we are interested in the following (overdetermined) Cauchy
problem:

\{\begin{array}{l}fi ndu\in(\gamma_{K_{2}}^{*})^{a_{0}}s.t.A_{0}(D)u=f\in(\gamma_{K_{2}}^{*})^{a_{1}}u|_{K_{1}}=g\in(\gamma_{K_{1}}^{*})^{a_{0}}\end{array} (1.3)

for all initial data (f, g)\in(\gamma_{K_{2}}^{*})^{a_{1}}\cross(\gamma_{K_{1}}^{*})^{a_{0}} satisfying the compatibility
conditions

\{

A_{0}(D)g=f|_{K_{1}}

A_{1}(D)f=0 .
(1.4)

Such a set of initial data satisfying (1.4) will be called compatible.

Definition 1.2 We say that the pair (K_{1}, K_{2}) is of evolution (resp.: of
causality, hyperbolic) for A_{0}(D) (or for \mathcal{M}=coker{}^{t}A_{0}(\theta) ) in the class \gamma^{*} ,
if the above Cauchy problem (1.3) admits at least a solution (resp.: at most
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one solution, one and only one solution), for each set of compatible initial
data.

Remark 1.3 By Whitney’s extension theorem every datum g\in(\gamma_{K_{1}}^{*})^{a_{0}}

extends to an element \tilde{g}\in(\gamma_{K_{2}}^{*})^{a_{0}} , and hence we can reduce to the Cauchy
problem (1.3) with zero initial data (g=0) . In this case the compatibility
conditions (1.4) reduce to:

\{

f\in(\gamma_{K_{2}}^{*})^{a_{1}}\cap I(K_{1}, K_{2})

A_{1}(D)f=0 ,

where I(K_{1}, K_{2}) is the ideal of Whitney functions on K_{2} which identically
vanish with all their derivatives on K_{1} .

In [BN2] we proved the following:

Theorem 1.4 Let \mathcal{M} be a unitary fifinitely generated \prime p -module and con-
sider, for \wp\in Ass(\mathcal{M}) , the associated affiffiffine algebraic varieties

V=V(\check{\wp})=\{\theta\in \mathbb{C}^{N} : _{p}(-\theta)=0\forall p\in\wp\} . (1.5)

Let K_{1}\subset K_{2} be a pair of closed convex subsets of \mathbb{R}^{N}\simeq \mathbb{R}_{t}^{k}\cross \mathbb{R}_{x}^{n} with
K_{1}\subset\Sigma\simeq \mathbb{R}_{x}^{n} , and fifix two increasing sequences \{K_{1}^{(\alpha)}\}_{\alpha\in N} and \{K_{2}^{(\alpha)}\}_{\alpha\in N}

of compact convex subsets of \mathbb{R}^{N} with K_{1}= \bigcup_{\alpha}K_{1}^{(\alpha)} and K_{2}= \bigcup_{\alpha}K_{2}^{(\alpha)}

Then the following statements are equivalent:
(1) the pair (K_{1}, K_{2}) is of evolution for \mathcal{M} in the class \tilde{\gamma}^{(s)} with s>1 ;
(2) the pair (K_{1}, K_{2}) is of evolution for P/\wp in the class \tilde{\gamma}^{(s)} with s>1 ,

for all \wp\in Ass(\mathcal{M}) ;

(3) Ext_{P}^{1}(\mathcal{M},\tilde{\gamma}_{K_{2}}^{(s)}\cap I(K_{1}, K_{2}))=0 ;

(4) Ext_{P}^{1}(P/\wp,\tilde{\gamma}_{K_{2}}^{(s)}\cap I(K_{1}, K_{2}))=0 for all \wp\in Ass(\mathcal{M}) ;
(5) the homomorphism

Ext_{P}^{0}(\mathcal{M},\tilde{\gamma}_{K_{2}}^{(s)})arrow Ext_{P}^{0}(\mathcal{M},\tilde{\gamma}_{K_{1}}^{(s)})

is onto;
(6) the homomorphisms

Ext_{P}^{0}(P/\wp,\tilde{\gamma}_{K_{2}}^{(s)})arrow Ext_{P}^{0}(P/\wp,\tilde{\gamma}_{K_{1}}^{(s)})

are onto for all \wp\in Ass(\mathcal{M}) ;
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(7) the dual homomorphism

(Ext_{P}^{0}(\mathcal{M},\tilde{\gamma}_{K_{1}}^{(s)}))’ – (Ext_{P}^{0}(\mathcal{M},\tilde{\gamma}_{K_{2}}^{(s)}))’

has a closed image;

(8) the dual homomorphisms

(Ext_{P}^{0}(P/\wp,\tilde{\gamma}_{K_{1}}^{(s)}))’ – (Ext_{P}^{0}(P/\wp,\tilde{\gamma}_{K_{2}}^{(s)}))’ (1.6)

have a closed image, for all \wp\in Ass(\mathcal{M}) ;

(9) the following Phragm\’en-Lindel\"of principle for evolution holds on V=
V(\check{\wp}) , for all \wp\in Ass(\mathcal{M}) :
– (s)

(Ph-L)

\{_{thenitalsosatisfifies}^{iff\in \mathcal{O}(V)satisfifies}|\forall\alpha\in \mathbb{N}\exists\beta\in \mathbb{N},c>..’ 0suchtha\{\begin{array}{l}|f(\theta)|\leq(1+|\tau|)^{\alpha}exp\{\alpha|\zeta|^{1/s}+H_{K_{2}^{(\alpha)}}(Im\theta)\}\forall\theta=(\tau,\zeta)\in V|f(\theta)|\leq c_{f}(1+|\tau|)^{\alpha_{f}}exp\{\alpha_{f}|\zeta|^{1/s}+H(Im\theta)\}K_{1}^{(\alpha_{f})}\forall\theta=(\tau,\zeta)\in V\end{array}tf(\theta)|\leq c(1+|\tau|)^{\beta}\exp\{\beta|\zeta|^{1/s}+H_{K_{1}^{(\beta)}}({\rm Im}\theta)\}..\forall\theta=(\tau, \zeta)\in V,\cdot

(10) the following Phragm\’en-Lindel\"of p rinciple for plurisubharmonic func-
tions holds on V=V(\check{\wp}) , for all \wp\in Ass(\mathcal{M}) :

\{_{|u(\theta)|\leq c+\beta 1og(1+}^{ifu\in P(V)satisfifies}t\forall\alpha\in \mathbb{N}\exists\beta\in \mathbb{N},c>.’ 0\{\begin{array}{l}|u(\theta)|\leq\alpha log(1+|\tau|)+\alpha|\zeta|^{1/s}+H_{K_{2}^{(\alpha)}}(Im\theta)\forall\theta=(\tau,\zeta)\in V|u(\theta)|\leq c_{u}+\alpha_{u}log(1+|\tau|)+\alpha_{u}|(|^{1/s}+H_{K_{1}^{(\alpha_{u})}}(Im\theta)\forall\theta=(\tau,\zeta)\in V\end{array}henitalsosatisfifies

.

forsome\alpha_{u}\in \mathbb{N},cu_{\forall\theta=(\tau,\zeta)\in V}|\tau|

)

+\beta|\zeta|^{1/s}+H_{K_{1}^{(\beta)}}(Im\cdot.\theta)>0suchthat

.

(1.7)
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Theorem 1.5 Let \mathcal{M} be a unitary fifinitely generated P-module and con-
sider, for \wp\in Ass(\mathcal{M}) , the associated affiffiffine algebraic varieties V=V(\check{\wp})

defifined by (1.5).
Let K_{1}\subset K_{2} be a pair of closed convex subsets of \mathbb{R}^{N}\simeq \mathbb{R}_{t}^{k}\cross \mathbb{R}_{x}^{n} with

K_{1}\subset\Sigma\simeq \mathbb{R}_{x}^{n} , and fifix two increasing sequences \{K_{1}^{(\alpha)}\}_{\alpha\in N} and \{K_{2}^{(\alpha)}\}_{\alpha\in N}

of compact convex subsets of \mathbb{R}^{N} with K_{1}= \bigcup_{\alpha}K_{1}^{(\alpha)} and K_{2}= \bigcup_{\alpha}K_{2}^{(\alpha)}

Then the following statements are equivalent:

(1) the pair (K_{1}, K_{2}) is of evolution for \mathcal{M} in the class \gamma^{(r,s)} of (small)
Gevrey functions of order r>1 in t and s>1 in x ;

(2) the pair (K_{1}, K_{2}) is of evolution for P/\wp in the class \gamma^{(r,s)} with r , s>
1 , for all \wp\in Ass(\mathcal{M}) ;

(3) Ext_{P}^{1}(\mathcal{M}, \gamma_{K_{2}}^{(r,s)}\cap I(K_{1}, K_{2}))=0 ;

(4) Ext_{P}^{1}(P/\wp, \gamma_{K_{2}}^{(r,s)}\cap I(K_{1}, K_{2}))=0 for all \wp\in Ass(\mathcal{M}) ;

(5) the homomorphism

Ext_{P}^{0}(\mathcal{M}, \gamma_{K_{2}}^{(r,s)}) -arrow Ext_{P}^{0}(\mathcal{M}, \gamma_{K_{1}}^{(r,s)})

is onto;

(6) the homomorphisms

Ext_{P}^{0}(P/\wp, \gamma_{K_{2}}^{(r,s)})arrow Ext_{P}^{0}(P/\wp, \gamma_{K_{1}}^{(r,s)})

are onlo for all \wp\in Ass(\mathcal{M}) ;

(7) the dual homomorphism

(Ext_{P}^{0}(\mathcal{M}, \gamma_{K_{1}}^{(r,s)}))’arrow(Ext_{P}^{0}(\mathcal{M}, \gamma_{K_{2}}^{(r,s)}))’

has a closed image;

(8) the dual homomorphisms

(Ext_{P}^{0}(P/\wp, \gamma_{K_{1}}^{(r,s)}))’arrow(Ext_{P}^{0}(\mathcal{P}/\wp, \gamma_{K_{2}}^{(r,s)}))’ (1.8)

have a closed image, for all \wp\in Ass(\mathcal{M}) ;

(9) the following Phragm\’en-Lindel\"of principle for evolution holds on V=
V(\check{\wp}) , for all \wp\in Ass(\mathcal{M}) :
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(Ph-L)^{(r,s)}\{\begin{array}{l}\forall\alpha\in N\exists\beta\in \mathbb{N},c>0suchthatiff\in \mathcal{O}(V)satisfi es,forsome\alpha_{f}\in \mathbb{N},c_{f}>0\cdot.\{thenitalsosatisfi es\cdot.|f(\theta)|\leq cexp\{\beta|\tau|^{1/r}+\beta|\zeta|^{1/s}+H_{K_{1}^{(\beta)}}(Im\theta)\}\forall\theta=(\tau,\zeta)\in V\cdot,\end{array}

(10) the following Phragm\’en-Lindel\"of principle for plurisubharmonic func-
tions holds on V=V(\check{\wp}) , for all \wp\in Ass(\mathcal{M}) :

\{_{thenitalsosatisfifies}^{ifu\in P(V)satisfifies}|\forall\alpha\in \mathbb{N}\exists\beta\in \mathbb{N},c>.\cdot’ 0such\{\begin{array}{l}|u(\theta)|\leq\alpha|\tau|^{1/r}+\alpha|(|^{1/s}+H_{K_{2}^{(\alpha)}}(Im\theta)\forall\theta=(\tau,\zeta)\in V|u(\theta)|\leq c_{u}+\alpha_{u}|\tau|^{1/r}+\alpha_{u}|\zeta|^{1/s}+H_{K_{1}^{(\alpha_{u})}}(Im\theta)\forall\theta=(\tau,\zeta)\in V\end{array}.\cdot(1.9)thatu(\theta)|\leq c+\beta|\tau|^{1/r}+\beta|\zeta|^{1/s}+H_{K_{1}^{(\beta)}}({\rm Im}\theta)\forall\theta=(\tau,\zeta)\in V

.

Remark 1.6 When K_{1} or K_{2} are compact, we can take in Theorems 1.4
and 1.5 the constant sequences K_{1}^{(\alpha)}=K_{1} or K_{2}^{(\alpha)}=K_{2} , respectively.

In [BN2] we proved analogous theorems also for hyperbolicity and
causality. However, we consider here only the evolution case.

Using the Phragm\’en-Lindel\"of principles above we shall prove, in the
following sections, H\"ormander’s type necessary and/or sufficient conditions
for existence of solutions of the (overdetermined) Cauchy problem with
initial data on a formally non-characteristic and quasi-free affine subspace
of \mathbb{R}^{N}

It will be usefull, to this aim, the following classical Phragm\’en-Lindel\"of
principle:

Proposition 1.7 Let A, C, D , L be some fifixed non-negative constants.
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Then, if u is a plurisubharmonic function in \mathbb{C}^{N} satisfying, for some
positive constants B_{u} , m_{u} , L_{u}

\{

u(\theta)\leq A|\theta|+B_{u}+m_{u}\log(1+|\theta|)+L_{u}|\theta|^{1/s} \forall\theta\in \mathbb{C}^{N}

u(\theta)\leq C\log(1+|\theta|)+L|\theta|^{1/s}+D \forall\theta\in \mathbb{R}^{N} ,

it must also satisfy:

u(\theta)\leq A| Im \theta|+4NC\log(1+|\theta|)+\ell|\theta|^{1/s}+D \forall\theta\in \mathbb{C}^{N} ,

where

\ell=\frac{2N}{\cos\frac{\pi}{2s}}L .

The proof of this proposition follows from standard arguments, similar
to those we shall use in the proof of Proposition 2.10, and will therefore be
omited (see also [B], Theorem 3.5.8). The constants \ell and C’=4NC above
are not really the “best” constants, but we do not need sharper estimates
of them here.

2. The Cauchy problem with data on a formally non-character-
istic and quasi-free affine subspace of \mathbb{R}^{N}

In [H\"o3] H\"ormander proved a necessary and sufficient condition in order
that the pair consisting of a hyperplane of \mathbb{R}^{N} and one of the half-spaces it
bounds is of evolution, in the C^{\infty} class, for a P-module of the form P/I,
where I =(p) is a principal ideal generated by a polynomial p\in P .

In [BN1] we extended this result to the case of overdetermined sys-
tems and initial data on an affine subspace of \mathbb{R}^{N} of arbitrary codimension,
showing how conditions generalizing the one in [H\"o3] are related to the
Phragm\’en-Lindel\"of principle.

In this paper we give analogous results in the class of (small) Gevrey
functions.

Let \Sigma\simeq \mathbb{R}_{x}^{n}\subset \mathbb{R}^{N}\simeq \mathbb{R}_{t}^{k}\cross \mathbb{R}_{x}^{n} , and \Gamma\subset \mathbb{R}_{t}^{k} a closed convex cone with
non-empty interior and vertex in 0.

The following lemmas will be usefull in the sequel:

Lemma 2.1 Let \Sigma be formally non-characteristic and quasi-free for the
unitary fifinitely generated P -module \mathcal{M} .

For each pair F_{1}\subset F_{2} of closed convex subsets of \Sigma , we have that if
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the pair (F_{2}, \Gamma\cross F_{2}) is of evolution for \mathcal{M} in the class \tilde{\gamma}^{(s)} (resp.: in \gamma^{(r,s)} ),
then also the pair (F_{1}, \Gamma\cross F_{1}) is of evolution for \mathcal{M} in the class \tilde{\gamma}^{(s)} (resp.:
in \gamma^{(r,s)} ), for r, s>1 .

Proof. By the assumtpion that \Sigma is formally non-characteristic and quasi-
free for \mathcal{M} , all compatible data on F_{1} and \Gamma\cross F_{1} can be extended to
compatible data on F_{2} and \Gamma\cross F_{2} (cf. also [BN2], [B]). \square

Lemma 2.2 Let \Sigma be formally non-characteristic and quasi-free for the
unitary fifinitely generated \mathcal{P} -module \mathcal{M} , with reduced order p_{0} .

For each closed convex subset F of \Sigma , we have that if the pair (F, \Gamma\cross

F) is of evolution for \mathcal{M} in the class \tilde{\gamma}^{(s)} , then the pair (F, \Gamma\cross F) is of
evolution for \mathcal{M} also in the classes \gamma^{(r,s)} for all r\geq p_{0}s (with r, s>1 ).

Proof. It easily follows from the Phragm\’en-Lindel\"of principle for evolution
(Theorems 1.4 and 1.5).

Let, indeed, \{K_{\alpha}\}_{\alpha\in N} be an increasing sequence of compact convex
subsets of \mathbb{R}^{N} with \bigcup_{\alpha\in N}K_{\alpha}=F . and note that the supporting function
of K_{2}^{(\alpha)}=(\Gamma\cap B_{k}(0, \alpha))\cross K_{\alpha}=(\Gamma\cap\{|t|\leq\alpha\})\cross K_{\alpha} is given by

H_{K_{2}^{(\alpha)}} (Im \tau , Im \zeta ) =H_{K_{\alpha}} (Im \zeta ) +\alpha\kappa_{\Gamma}(\tau) , (\tau, ()\in \mathbb{C}^{k}\cross \mathbb{C}^{n} .

where

\kappa_{\Gamma}(\tau)=

|t| \leq 1\sup_{t\in\Gamma},

\langle t, {\rm Im}\tau\rangle , \tau\in \mathbb{C}^{k}- (2.1)

Fix \wp\in Ass(\mathcal{M}) and V=V(\check{\wp}) . Let r\geq p_{0}s and u\in P(V) satisfying

\{

u(\theta)\leq\alpha|\tau|^{1/r}+\alpha|(|^{1/s}+H_{K_{\alpha}} (Im \zeta ) +\alpha\kappa_{\Gamma}(\tau) \forall\theta=(\tau, \zeta)\in V

u(\theta)\leq c_{u}+\alpha_{u}|\tau|^{1/r}+\alpha_{u}|\zeta|^{1/s}+H_{K_{\alpha_{u}}} (Im \zeta ) \forall\theta=(\tau, \zeta)\in V.

By assumption, (1.2) is satisfied on V for b=p_{0} , and hence

|\tau|^{1/r}\leq c(1+|(|^{1/s}) \forall(\tau, \zeta)\in V

for some c>0 , if r\geq p_{0}s . Therefore:

\{

u(\theta)\leq\alpha(1+c)|\zeta|^{1/s}+H_{K_{\alpha}} (Im \zeta ) +\alpha\kappa_{\Gamma}(\tau)+\alpha c \forall\theta=(\tau, \zeta)\in V

u(\theta)\leq(c_{u}+\alpha_{u}c)+\alpha_{u}(1+c)|\zeta|^{1/s}+H_{K_{\alpha_{u}}} (Im \zeta ) \forall\theta=(\tau, \zeta)\in V.
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Since the pair (F, \Gamma\cross F) is of evolution for \mathcal{M} in \tilde{\gamma}^{(s)} by assumption, by
the Phragm\’en-Lindel\"of principle for evolution (Theorem 1.4) u must then
satisfy an estimate of the form

u(\theta)\leq\beta’\log(1+|\tau|)+\beta’|\zeta|^{1/s}+H_{K_{\beta’}} (Im \zeta ) +c’

\leq\beta’r|\tau|^{1/r}+\beta’|\zeta|^{1/s}+H_{K_{\beta’}} (Im ()+c’ \forall\theta=(\tau, \zeta)\in V,

for some \beta’\in \mathbb{N} and c’>0 depending only on \alpha and c .
It follows that the pair (F, \Gamma\cross F) is of evolution for \mathcal{M} also in the class

\gamma^{(r,s)} with r\geq p_{0}s , by Theorem 1.5. \square

Remark 2.3 The condition that \Sigma is quasi-free is indeed not necessary
in Lemma 2.2, since it can be proved that (1.2) is equivalent to the only
assumption that \Sigma is formally non-characteristic for \mathcal{M} (cf. [BN2]).

2.1. A necessary H\"ormander’s type condition for evolution
We give in this subsection a necessary condition for evolution, which

naturally generalizes the one given by H\"ormander in [H\"o3].
Let \mathcal{M} be a unitary finitely generated \mathcal{P}-module, and assume that \Sigma\simeq

\mathbb{R}_{x}^{n} is formally non-characteristic and quasi-free for \mathcal{M} . Then, as we already
recalled in \S 1.1, for each \wp\in Ass(\mathcal{M}) the natural projection map

\pi_{n} : V(\check{\wp})\ni(\tau, \zeta)\mapsto\zeta\in \mathbb{C}^{n}

is surjective, finite and dominant, and there is a smallest positive constant
p_{0} such that, for some k>0 :

|\tau|\leq k(1+|\zeta|)^{p_{0}} \forall(\tau, ()\in V=V(\check{\wp}). (2.2)

Moreover, there is a proper affine algebraic variety Z\subset \mathbb{C}^{n} such that
V\backslash \pi_{n}^{-1}(Z) is smooth and

V\backslash \pi_{n}^{-1}(Z)\ni(\tau, \zeta)\mapsto\pi_{n}\zeta\in \mathbb{C}^{n}\backslash Z

is an m-sheeted covering of \mathbb{C}^{n}\backslash Z .
For s>1 we consider then the following H\"ormander’s type condition

on V :
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(H)^{s} \{

\exists R , c_{1} , c_{2}>0 such that for every \rho\in \mathbb{R}^{n}

with B_{n}(\rho, R|\rho|^{1/s})=\{|\zeta-\rho|\leq R|\rho|^{1/s}\}\subset \mathbb{C}^{n}\backslash Z

and for every connected component \omega of \pi_{n}^{-1}(B_{n}(\rho, R|\rho|^{1/s}))

there is \theta=(\tau, \zeta)\in\omega such that
\kappa_{\Gamma}(\tau)\leq c_{1}|\zeta|^{1/s}+c_{2} ,

where \kappa_{\Gamma}(\tau) is defined by (2. 1).

Remark 2.4 Comparing condition (H)^{s} above with condition (H) in
[BN1] for the C^{\infty} case, we note that for the class of (small) Gevrey functions
here we require not only a growth of the form |\zeta|^{1/s} for \kappa_{\Gamma}(\tau) (in (H) we
had bounded \kappa_{\Gamma}(\tau)) , but also a growth of the form R|\rho|^{1/s} for the radius of
the ball (in (H) we had a fixed radius R).

Rs’ em_{Sa}\leq.rk 2.5 Note that condition (H)^{s} implies condition (H)^{s’} for alll <

We have the following:

Theorem 2.6 Let \mathcal{M} be a unitary fifinitely generated P-module, for which
\Sigma\simeq \mathbb{R}_{x}^{n} is formally non-characteristic and quasi-free, with reduced order
p_{0} .

Let F be a closed convex subset of \Sigma with a non-empty interior in \mathbb{R}_{x}^{n}

and \Gamma a closed convex cone of \mathbb{R}_{t}^{k} with non-empty interior and vertex in 0.
Then a necessary condition in order that the pair (F, \Gamma\cross F) is of ev0-

lution for \mathcal{M} in the class \gamma^{(r,s)} , for r, s>1 with r\geq p_{0}s , is that condition
(H)^{q} is satisfified on V(\check{\wp}) for all \wp\in Ass(\mathcal{M}) and q\in \mathbb{Q} with 1<q\leq s .

Proof Let [mathring]_{F} denote the non-empty relative interior of F in \mathbb{R}_{x}^{n} . It is not

restrictive to assume 0\in[mathring]_{F} , so that F contains a closed ball B_{n}(0, A) of \mathbb{R}_{x}^{n} ,
for some A>0 . By the assumption that \Sigma is formally non-characteristic and
quasi-free and Lemma 2.1 it is then no restrictive to assume F=B_{n}(0, A) .

The assumption that the pair (F, \Gamma\cross F) is of evolution for \mathcal{M} in the
class \gamma^{(r,s)} is thus equivalent, by Theorem 1.5 (and Remark 1.6), to the
validity of the following Phragm\’en-Lindel\"of principle for plurisubharmonic
functions, for all \wp\in Ass(\mathcal{M}) :

\forall\alpha\in \mathbb{N}\exists\beta\in \mathbb{N} , c>0 such that
if u\in P(V(\check{\wp})) satisfies, for some constants \alpha_{u}\in \mathbb{N} and c_{u}>0
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\{

u(\theta)\leq\alpha|\tau|^{1/r}+\alpha|\zeta|^{1/s}+\alpha\kappa_{\Gamma}(\tau)+A| Im \zeta| \forall\theta=(\tau, \zeta)\in V(\check{\wp})

(2.4)
u(\theta)\leq c_{u}+\alpha_{u}|\tau|^{1/r}+\alpha_{u}|\zeta|^{1/s}+A| Im \zeta| \forall\theta=(\tau, \zeta)\in V(\check{\wp})

then it also satisfies:
u(\theta)\leq c+\beta|\tau|^{1/r}+\beta|\zeta|^{1/s}+A| Im \zeta| \forall\theta=(\tau, \zeta)\in V(\check{\wp}) . (2.4)

Let us assume by contradiction that there exists q\in \mathbb{Q} with 1<q\leq s

such that condition (H)^{q} is not satisfied for some \wp\in Ass(\mathcal{M}) .
Set V=V(\check{\wp}) and, for each \sigma>1 :

\mathcal{U}_{\sigma}=\{(\rho, r)\in \mathbb{R}^{n}\cross \mathbb{R}^{+} : B_{n}(\rho, r|\rho|^{1/\sigma})\subset \mathbb{C}^{n}\backslash Z ,
\exists a connected component \omega of \pi_{n}^{-1}(B_{n}(\rho, r|\rho|^{1/\sigma}))

in Vs.t . \kappa_{\Gamma}(\tau)>r|\zeta|^{1/\sigma}+r \forall(\tau, \zeta)\in\omega\} .

This set \mathcal{U}_{\sigma} is semi-algebraic if \sigma\in \mathbb{Q} . We consider then

f_{\sigma}(t)= \sup\{r\in \mathbb{R} : (\rho, r)\in \mathcal{U}_{\sigma}, |\rho|=t\} ,

which is a semi-algebraic function when \sigma\in \mathbb{Q} .
Condition (H)^{q} is equivalent to the fact that f_{q}(t) is bounded for tarrow

+\infty . Assuming the contrary, applying the Tarski-Seidenberg theorem (The-
orem A.2.5 of [H\"o3] ) to the semi-algebraic function f_{q}(t) , we can find R>0 ,
0<p\in \mathbb{Q} and t_{0}\geq 0 such that

f_{q}(t)=t^{p}(2R+o(1)) for t>t_{0} . (2.5)

We can then find t_{1}\geq t_{0} such that

f_{s}(t)\geq f_{q}(t)=t^{p}(2R+o(1)) \forall t>t_{1}

and hence:

\forall t>t_{1}\exists\rho_{t}\in \mathbb{R}^{n} with |\rho_{t}|=t , B_{n}(\rho_{t}, Rt^{p+\frac{1}{s}})\subset \mathbb{C}^{n}\backslash Z

\exists a connected component \omega_{t} of \pi_{n}^{-1}(B_{n}(\rho_{t}, Rt^{p+\frac{1}{s}}))s.t .
\kappa_{\Gamma}(\tau)>Rt^{p}(|\zeta|^{1/s}+1) \forall(\tau, \zeta)\in\omega_{t} . (2.6)

Let us now fix a (small) Gevrey function \chi\in\gamma^{(s’)}(\mathbb{R}_{x}^{n}) with supp \chi\subset

B_{n}(0, \frac{A}{2}) and \hat{\chi}(0)=1 , with s’>1 to be choosen in the following. Its
Fourier-Laplace transform is characterized by (cf. [K1]):



16 c. Boiti

\forall h>0\exists c_{h}>0 : |\hat{\chi}(()|\leq c_{h} exp \{-\frac{1}{h}|\zeta|^{1/s’}+\frac{A}{2}| Im \zeta|\} \forall\zeta\in \mathbb{C}^{n} .

(2.7)

Consider then the plurisubharmonic functions

u_{t,\ell}(\theta)=\log|\hat{\chi}(\zeta-\rho_{t})|+\ell|\tau|^{1/r}+\ell|\zeta|^{1/s}’. \theta=(\tau, ()\in \mathbb{C}^{k}\cross \mathbb{C}^{n}

for t>t_{1} , \ell\in \mathbb{N} .
Since supp \chi

\subset B(0, \frac{A}{2}) and \hat{\chi}(0) = 1, we have that |\hat{\chi}(()| \leq

exp { \frac{A}{2}| Im \zeta| } for all ( \in \mathbb{C}^{n} and hence

u_{t}, \ell(\theta)\leq\frac{A}{2}| Im \zeta|+\ell|\tau|^{1/r}+\ell|\zeta|^{1/s} \forall\theta=(\tau, \zeta)\in \mathbb{C}^{k}\cross \mathbb{C}^{n} .

Moreover, by the assumption on \Sigma , the inequality (2.2) is valid for some
k>0 , and hence, if r\geq p_{0}s , from (2.6):

\forall B>0\exists t_{2}\geq t_{1}s.t . \forall t>t_{2}

u_{t},\ell(\theta)\leq A| Im \zeta|+B\kappa_{\Gamma}(\tau) \forall(\tau, \zeta)\in\omega_{t} .

On the other hand, for r\geq p_{0}s by (2.7) we can find h>0 sufficiently
small and t_{3}\geq t_{2} such that for all t>t_{3} and (\tau, \zeta) near the boundary of
\omega_{t} :

u_{t}, \ell(\theta)\leq\log c_{h}-\frac{1}{h}|\rho_{t}+Rt^{p+\frac{1}{s}}z-\rho_{t}|^{1/s’}+\frac{A}{2}| Im (|

+\ell’|\rho_{t}+Rt^{p+\frac{1}{s}}z|^{1/s}+\ell’

\leq A| Im \zeta| ,

for z near the boundary of B_{n}(0,1)\subset \mathbb{C}^{n} and for some \ell/\in \mathbb{N} , if 1<s’<
\min\{s, ps+1\} .

We define then on V the plurisubharmonic function:

v_{t},\ell(\theta)=\{
\max{ u_{t},\ell(\theta) , A| Im \zeta| } \theta\in\omega_{t}

A| Im \zeta| \theta\in V\backslash \omega_{t} .
(2.7)

When t>t_{3} we have that v_{t,\ell}\in P(V) satisfies:

\{

v_{t},\ell(\theta)\leq A| Im (|+B\kappa r(\tau) \forall\theta=(\tau, \zeta)\in V

v_{t},\ell(\theta)\leq A| Im \zeta|+\ell|\tau|^{1/r}+\ell|\zeta|^{1/s} \forall\theta=(\tau, \zeta)\in V,
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but (2.4) cannot hold true, since for every \ell\in \mathbb{N} and t>t_{3} we can find
\theta_{t}=(\tau_{t}, \zeta_{t})\in\omega_{t} with \pi_{n}(\theta_{t})=\rho_{t} and

v_{t,\ell}(\theta_{t})\geq\log|\hat{\chi}(0)|+\ell|\tau_{t}|^{1/r}+\ell|\zeta_{t}|^{1/s}=\ell|\tau_{t}|^{1/r}+\ell|\zeta_{t}|^{1/s} .

This contradicts the validity of the Phragm\’en-Lindel\"of principle (2.3)-
(2.4), and hence condition (H)^{q} must be satisfied for alll <q\leq s , on every
V(\check{\wp}) for \wp\in Ass(\mathcal{M}) . \square

By Lemma 2.2 and Theorem 2.6 we immediately obtain:

Theorem 2.7 Let \mathcal{M} be a unitary fifinitely generated P -module, for which
\Sigma\simeq \mathbb{R}_{x}^{n} is formally non-characteristic and quasi-free.

Let F be a closed convex subset of \Sigma with a non-empty interior in \mathbb{R}_{x}^{n}

and \Gamma a closed convex cone of \mathbb{R}_{t}^{k} with non-empty interior and vertex in 0.
Then a necessary condition in order that the pair (F, \Gamma\cross F) is of ev0-

lution for \mathcal{M} in the class \tilde{\gamma}^{(s)} , for s>1 , is that condition (H)^{q} is satisfied
on V(\check{\wp}) for all \wp\in Ass(\mathcal{M}) and q\in \mathbb{Q} with 1<q\leq s .

Example 2.8 Let us consider the following system in \mathbb{R}_{t}^{2}\cross \mathbb{R}_{x} :

\{\begin{array}{l}\frac{\partial}{\partial t_{1}}-i( )^{2}\frac{\partial}{\partial t_{2}}+\frac{\partial^{3}}{\partial x^{3}},\end{array}

and set \Gamma=\{t\in \mathbb{R}^{2} : t_{1}\geq 0, t_{2}\geq 0\} .
The associated affine algebraic variety is given by

V=\{(\tau_{1}, \tau_{2}, ()\in \mathbb{C}^{3} _{:} _{\tau_{1}}=(\zeta-i)^{2}, \tau_{2}=\zeta^{3}\} .

For (\tau, \zeta)\in V we have that

\kappa_{\Gamma}(\tau)=({\rm Im}\tau_{1})^{+}+({\rm Im}\tau_{2})^{+}

=2\{{\rm Re}(({\rm Im}\zeta-1)\}^{+}+\{{\rm Im}\zeta[3({\rm Re} ()^{2}- ({\rm Im} \zeta)^{2}]\}^{+}

We can easlity see that condition (H)^{s} cannot be satisfied for any s>
1 , R, c_{1} , c_{2}>0 when \frac{2}{3}\pi<\arg\zeta<\frac{5}{3}\pi . By Theorems 2.6 and 2.7 it thus
follows that any pair of the form (F, \Gamma\cross F) , for a closed convex subset F
of \Sigma\simeq \mathbb{R}_{x} , cannot be of evolution for the given system in any class \tilde{\gamma}^{(s)} or
\gamma^{(r,s)} .
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2.2. The case of algebraic curves
We take, in this subsection, the case n=1 . Then, for a unitary finitely

generated P-module \mathcal{M} , for each \wp\in Ass(\mathcal{M}) the associated affine algebraic
variety V(\check{\wp}) is an algebraic curve.

We consider the following condition for \wp\in Ass(\mathcal{M}) and R’>0 :

(h)^{s}\{\{\{(\tau_{\nu},(_{\nu})\}_{\nu\in N}w.ith|\zeta_{\nu}|arrow+\infty.for\nuarrow+\infty and\exists c_{0},c_{1},R>0s.t.oneveryconnectedcomponentof\kappa r(\tau_{\nu})\leq c_{0}|\zeta_{\iota},|^{1/s}+c_{1}\forall\nu\in \mathbb{N}(\tau,\zeta)\in V(\check{\wp})\cdot|{\rm Im}\zeta|\leq R|{\rm Re}\zeta|^{1/s},|\zeta|\geq R’\}thereis

a sequence

Remark 2.9 Condition (h)^{s} implies condition (h)^{s’} for all 1<s’\leq s .

We have the following:

Proposition 2.10 Let \mathcal{M} be a fifinitely generated unitary P -module, for
which \Sigma\simeq \mathbb{R}_{x} is formally non-characteristic and quasi-free. Let K be a

compact convex subset of \Sigma with non-empty interior in \mathbb{R}_{x} , and \Gamma a closed
convex cone of \mathbb{R}_{t}^{k} with non-empty interior and vertex in 0. Then:

i) if condition (h)^{s} is satisfified for some s>1 on V(\check{\wp}) for all \wp\in

Ass(\^A) and for all R’>0 , then the pair (K, \Gamma\cross K) is of evolution

for \mathcal{M} in the classes \tilde{\gamma}^{(s’)} for all s’\in \mathbb{R} with 1<s’\leq s ;
ii) if the pair (K, \Gamma\cross K) is of evolution for \mathcal{M} in the class \tilde{\gamma}^{(s)} for some

s>1 , then condition (h)^{q} is satisfified for all \wp\in Ass(\mathcal{M}) , R’>0 and
q\in \mathbb{Q} with 1<q\leq s .

Proof 1) Let us first prove i). By Remark 2.9 it is sufficient to prove
that for every fixed real s>1 condition (h)^{s} implies evolution in the class
\tilde{\gamma}^{(s)} .

Fix \wp\in Ass(\mathcal{M}) and let us make some remarks about the irreducible
affine algebraic curve V=V(\check{\wp}) in \mathbb{C}^{k+1} (cf. also [S], [BN1], [B]).

By assumption the natural projection map

\pi : Varrow \mathbb{C}_{\zeta}

(\tau, \zeta)\mapsto\zeta

is surjective, finite and dominant.
The closure \overline{V} of V in \mathbb{C}P^{k+1} is an irreducible projective curve, and \pi
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extends to a surjective, finite and dominant map

\overline{\pi} : \overline{V}arrow \mathbb{C}P^{1}=\mathbb{C}\cup\{\infty\} .

We note that \overline{V}\backslash V=\overline{\pi}^{-1}(\infty) .
The normalization \tilde{V}\underline{\sigma}\overline{V} is an irreducible smooth projective curve

and the birational isomorphism \sigma is regular. Let \sigma^{-1}0\overline{\pi}^{-1}(\infty) =
\{P_{1}, ., P_{\ell}\} . Then we can fix pairwise disjoint connected open neighbour-
hoods \tilde{V}_{1} , ., \tilde{V}_{\ell} of P_{1} , \ldots , P_{\ell} respectively in \tilde{V} , in such a way that, setting
V_{j}=\sigma(\tilde{V}_{j}\backslash \{P_{j}\})\subset V , for j=1 , . ., \ell , we obtain:
(i) V_{j}\cap V_{h}=\emptyset for 1\leq j<h\leq\ell ;

(ii) \sigma : \tilde{V}_{j}\backslash \{P_{j}\} -arrow V_{j} is biholomorphic;
(iii) \pi : V_{j}arrow\pi(V_{j})\subset \mathbb{C}_{\zeta} is an m_{j}-sheeted covering for some integer m_{j}\geq

1 ;
(iv) \pi(V_{j})\cup\{\infty\} is an open neighbourhood of \infty in \mathbb{C}P^{1} ;
(v) for each j\in\{1, ., \ell\} , \pi^{-1}(\mathbb{R})\cap V_{j} consists of 2m_{j} connected comp0-

nents.
We can also assume that for a fixed r>1 and every j=1 , . ’

\ell we have:

\pi(V_{j})=\{\zeta\in \mathbb{C} : |\zeta|>r\} .

For each j=1 , . ., \ell we obtain a Puiseux parametric description of V_{j}

of the form:

\{\zeta\tau_{h}=\sum_{\alpha\leq\nu(h,j)}c_{h,j,\alpha}z^{\alpha}=z^{m_{j}}

, for h=1 , ., k .

A) Let us first assume s\in \mathbb{Q} . Then the set

E_{R,R’}= { ( \tau , \zeta)\in V : | Im \zeta|\leq R| Re (|^{1/s}. |\zeta|\geq R’ }

is semi-algebraic, and for R’>r sufficiently large for each j=1 , \ldots , \ell the
intersection V_{j}\cap E_{R,R’} consists of 2m_{j} connected components.

It is not restrictive to assume in the following R>1 .
For \nu sufficiently large, condition (h)^{s} implies that for every j=1 , ., \ell ,

on each of the 2m_{j} connected components of V_{j}\cap E_{R,R’} we can find a
sequence \{(\tau_{\nu}, \zeta_{\nu})\}_{\nu\in \mathbb{N}} with |\zeta_{\nu}|arrow+\infty for lJ arrow+\infty and such that

\kappa_{\Gamma}(\tau_{\nu})\leq c_{0}|\zeta_{\nu}|^{1/s}+c_{1} \forall\nu\in \mathbb{N} .
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Let us fix j\in\{1, ., \ell\} and omit the index j for simplicity.
Up to rotations, we can thus find 2m sequences \{z_{\nu}^{(h)}\}_{\nu\in N} , for h=

0 , ., 2m-1 , such that:

\{\begin{array}{l}z_{\nu}^{(h)}\in \mathbb{C}\backslash B(0,r),|Im(z_{\nu}^{(h)}e^{-i\frac{h\pi}{m}})|\leq R|Re(z_{\nu}^{(h)}e^{-i\frac{h\pi}{m}})|^{1/s}\forall\nu\in \mathbb{N},h=0,.,2m-1|z_{\nu}^{(h)}|\nearrow+\infty for\nuarrow+\infty, \forall h=0,..,2m-1\kappa_{\Gamma}(\tau(z_{\nu}^{(h)}))\leq c_{0}|z_{\nu}^{(h)}|^{m/s}+c_{1} \forall\nu\in \mathbb{N},h=0,.,2m-1.\end{array}

Let

E=\{(t, z^{(0)}, \ldots, z^{(2m-1)})\in[r, +\infty)\cross \mathbb{C}^{2m} : |z^{(h)}|\geq t ,

|{\rm Im}(z^{(h)}e^{-i\frac{h\pi}{m}})|\leq R|{\rm Re}(z^{(h)}e^{-i\frac{h\pi}{m}})|^{1/s} ,
\kappa_{\Gamma}(\tau(z^{(h)}))\leq c_{0}|z^{(h)}|^{m/s}+c_{1}\forall h=0 , ., 2m-1 }.

This set is semi-algebraic, and by assumption the projection map

\pi : Earrow[r, +\infty)

is onto for large t .
Then, by Theorem A.2.8 of [H\"o3], we can find 2m Puiseux series

z^{0}(t) , . ., z^{(2m-1)}(t) converging for large positive t and such that
(t, z^{(0)}(t) , ., z^{(2m-1)}(t))\in E . We can next extend these curves up to
0\in \mathbb{C} , in such a way to obtain 2m real analytic curves w_{h}(t) which di-
vide the \mathbb{C}_{\zeta}-plane into 2m connected components, and such that, for some
positive constants c_{0}’ and c_{1}’ :

|{\rm Im}(w_{h}(t)e^{-i\frac{h\pi}{m}})|\leq R|{\rm Re}(w_{h}(t)e^{-i\frac{h\pi}{m}})|^{1/s} ,
\kappa_{\Gamma}(\tau(w_{h}(t)))\leq c_{0}’|w_{h}(t)|^{m/s}+c_{1}’ , (2.9)

- \frac{\pi}{m}\sigma<\arg w_{h}(t)e^{-ih\frac{\pi}{m}}<\frac{\pi}{m}\sigma \forall h=0 , \ldots , 2m-1 , t\geq 0 ,

(2.10)

for 0<\sigma<1/2 to be choosen in the following.
By assumption K is compact and hence contained in some ball B(0, A)\subset

\mathbb{R}_{x} for A>0 . By Lemma 2.1 we can then assume, without loss of generality,
K=B(0, A)\subset \mathbb{R}_{x} , and prove the validity of the following Phragm\’en-
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Lindel\"of principle:

\forall\alpha\in \mathbb{N}\exists\beta\in \mathbb{N} , c>0 such that
if u\in P(V) satisfies, for some \alpha_{u}\in \mathbb{N} and c_{u}>0 :

\{\begin{array}{l}u(\theta)\leq\alpha log(1+|\tau|)+\alpha|\zeta|^{1/s}+\alpha\kappa_{\Gamma}(\tau)+A|Im\zeta|\forall\theta=(\tau,()\in Vu(\theta)\leq c_{u}+\alpha_{u}log(1+|\tau|)+\alpha_{u}|\zeta|^{1/s}+A|Im\zeta|\forall\theta=(\tau,\zeta)\in V\end{array} (2.11)

then it also satisfies:
u(\theta)\leq c+\beta\log(1+|\tau|)+\beta|\zeta|^{1/s}+A|{\rm Im}\zeta| \forall\theta=(\tau, \zeta)\in V. (2.12)

To this aim it’s enough to prove the following, because of (2.2) and
(2.9):

\forall\alpha\in \mathbb{N}\exists\beta\in \mathbb{N} , c>0s.t .
if u\in P(\mathbb{C}) satisfies, for some \alpha_{u}\in \mathbb{N} and c_{u}>0 :

\{

u(z)\leq A| Im z^{m}|+\alpha|z|^{m/s} for z=w_{h}(t) , h=0 , ., 2m-1
(2.12)

u(z)\leq A|z|^{m}+\alpha_{u}|z|^{m/s}+c_{u} for z\in \mathbb{C}

then it also satisfies:
u(z)\leq A| Im z^{m}|+\beta|z|^{m/s}+c for z\in \mathbb{C} . (2.14)

a) Let us first assume \alpha_{u}=0 . We want to apply the maximum
principle to each one of the 2m connected components in which \mathbb{C}_{\zeta} is divided
by the curves w_{h}(t) . Since the arguments are the same on each of these
components, we give here the proof of the estimate in the component S_{0,1}

bounded by w_{0}(t) and w_{1}(t) .
Let us first work in the sector S bounded by w_{0}(t) and the half-ray

\{\rho e^{i\frac{\pi}{2m}} : \rho\geq 0\} .
Consider, for \epsilon>0 , the subharmonic function

v_{\xi j}(z)=u(z)-\epsilon{\rm Re}((ze^{-i\varphi})^{m+k})-L{\rm Re}(z^{m/s})-A{\rm Im} z^{m}-c_{u} ,

for some L>0 to be choosen in the following and k>0 and \varphi such that
for \theta=\arg z , with z\in S :

- \frac{\pi}{2}<(m+k)(\theta-\varphi)<\frac{\pi}{2} .
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Note that by (2.10) we always have that - \frac{\pi}{2}<\frac{m}{s}\theta<\frac{\pi}{2} for \theta=\arg z with
z\in S , since s>1 and 0<\sigma<1/2 .

We shall then choose in the following

0<k< \frac{1-2\sigma}{1+2\sigma}m , \varphi=\frac{1-2\sigma}{4m}\pi .

Then, for z=w_{0}(t)=\rho_{0}(t)e^{i\theta_{0}(t)} we have:

v_{\epsilon}(z)=u(w_{0}(t))-\epsilon\rho_{0}^{m+k}(t)\cos[(m+k)(\theta_{0}(t)-\varphi)]

-L\rho_{0}(m/st) cos ( \frac{m}{s}\theta_{0}(t))-A Im w_{0}^{m}(t)-c_{u}

\leq A| Im w_{0}^{m}(t)|+\alpha\rho_{0}^{m/s}(t)-L^{m/s}\rho_{0}(t) cos ( \frac{m}{s}\theta_{0}(t))-A Im w_{0}^{m}(t)

\leq 2AR| Re w_{0}^{m}(t)|^{1/s}+ \alpha\rho_{0}^{m/s}(t)-L^{m/s}\rho_{0}(t)\cos\frac{\pi}{2s}

\leq\rho_{0}^{m/s}(t)(2AR+\alpha-L\cos\frac{\pi}{2s})

\leq 0

if

L \geq\frac{2AR+\alpha}{\cos\frac{\pi}{2s}}
. (2.15)

For z=\rho e^{i\frac{\pi}{2m}} :

v_{\epsilon}(z)=u(z)-\epsilon\rho^{m+k} cos [(m+k)( \frac{\pi}{2m}-\varphi)]

-L \rho\cos m/s(\frac{m}{s}\frac{\pi}{2m})-A\rho-mc_{u}

\leq A\rho+mc_{u}-A\rho-mc_{u}=0 .

Moreover, for z=\rho e^{i\theta}\in S we have that

2A|z|^{m}=2A\rho m\leq\epsilon\rho^{m+k}\cos[(m+k)(\theta-\varphi)]

for

|z|= \rho\geq(\frac{2A}{\epsilon_{\theta\in[-\frac{\min_{\pi}}{m}\sigma,\frac{\pi}{2m}]}\cos[(m+k)(\theta-\varphi)]})1/k=R_{\epsilon} ,
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and hence, for z=\rho e^{i\theta}\in S with |z|\geq R_{\epsilon} :

v_{\epsilon}(z)=u(z)-\epsilon\rho^{m+k}\cos[(m+k)(\theta-\varphi)]

-L\rho m/s cos ( \frac{m}{s}\theta)-A Im z^{m}-c_{u}

\leq A|z|^{m}+c_{u}-\epsilon\rho^{m+k}\cos[(m+k)(\theta-\varphi)]+A|z|^{m}-c_{u}

\leq 0 .

It follows, by the maximum principle, that

v_{\epsilon}(z)\leq 0 \forall z\in S , \forall\epsilon>0 .

For \epsilonarrow 0 we thus obtain that

u(z)\leq L|z|^{m/s}+A| Im z^{m}|+c_{u} \forall z\in S .

Arguing in the same way in the other sectors, we have that

u(z)\leq A| Im z^{m}|+L|z|^{m/s}+c_{u} \forall z\in \mathbb{C} . (2.16)

To eliminate now the constant c_{u} we consider, for z\in S_{0,1} , the plurisub-
harmonic function

w(z)=u(z)-A Im z^{m}-ML{\rm Re}((ze^{-i\theta’})^{m/s}) ,

with L satisfying (2.15) and M>1 to be choosen in the following, and \theta’

such that

- \frac{\pi}{2}<\frac{m}{s}(\theta-\theta’)<\frac{\pi}{2} \forall\theta\in[-\frac{\pi}{m}\sigma, \frac{\pi}{m}+\frac{\pi}{m}\sigma]

To this aim we can take \theta’=\frac{\pi}{2m} for 0< \sigma<\min\{\frac{1}{2}, \frac{s-1}{2}\} .
Then, for z=w_{0}(t)=\rho_{0}(t)e^{i\theta_{0}(t)} or z=w_{1}(t)=\rho_{1}(t)e^{i\theta_{1}(t)} :

w(z)=u(w_{j}(t))-A Im w_{j}^{m}(t)-ML\rho_{j}(m/st) cos [ \frac{m}{s}(\theta_{j}(t)-\theta’)]

\leq A| Im w_{j}^{m}(t)|+\alpha\rho_{j}^{m/s}(t)-A Im w_{j}^{m}(t)-L \rho_{j}(m/st)\cos\frac{1+2\sigma}{2s}\pi

\leq\rho_{j}^{m/s}(t)(2AR+\alpha-L\cos\frac{1+2\sigma}{2s}\pi)

\leq 0
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if

L \geq\frac{2AR+\alpha}{\cos\frac{1+2\sigma}{2s}\pi}\geq\frac{2AR+\alpha}{\cos\frac{\pi}{2s}}
,

for 0< \sigma<\min\{\frac{1}{2}, \frac{s-1}{2}\} .
Moreover, for z=\rho e^{i\theta}\in S_{0,1} we have that

c_{u}\leq L\rho m/s cos [ \frac{m}{s}(\theta-\theta’)] if \rho\geq[\frac{c_{u}}{L\cos(\frac{1+2\sigma}{2s}\pi)}]^{s/m}=R_{u} .

Therefore, for z=\rho e^{i\theta}\in S_{0,1} with |z|\geq R_{u} , by (2.16):

w(z)=u(z)-A Im z^{m}-ML^{m/s}\rho cos [ \frac{m}{s}(\theta-\theta’)]

\leq A| Im z^{m}|+L\rho m/s+c_{u}-A Im z^{m}

-(M-1)L^{m/s} \rho\cos\frac{1+2\sigma}{2s}\pi-L^{m/s}\rho\cos[\frac{m}{s}(\theta-\theta’)]

\leq\rho^{m/s}[2AR+L-(M-1)L\cos\frac{1+2\sigma}{2s}\pi]

\leq 0

if

M \geq 1+\frac{2AR+L}{L\cos\frac{1+2\sigma}{2s}\pi}
.

By the maximum principle we thus obtain that

w(z)\leq 0 \forall z\in S_{0,1} ,

and hence, arguing in the same way in the other sectors, we finally obtain
that

u(z)\leq A| Im z^{m}|+ML|z|^{m/s} \forall z\in \mathbb{C} .

b) Let us now consider the general case \alpha_{u}\in \mathbb{R} and prove the validity
of the Phragm\’en-Lindel\"of principle (2.13)-(2.14).

Since s>1 , for every \epsilon>0 there is B_{u,\epsilon}>0 such that

\alpha_{u}|z|^{m/s}\leq\epsilon|z|^{m}+B_{u,\epsilon} \forall z\in \mathbb{C} .
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Then, if u\in P(\mathbb{C}) satisfies (2.13):

\{

u(z)\leq A| Im z^{m}|+\alpha|z|^{m/s} for z=w_{h}(t) , h=0 , ., 2m-1
u(z)\leq(A+\epsilon)|z|^{m}+(c_{u}+B_{u,\epsilon}) for z\in \mathbb{C} ,

and hence, by step a):

u(z)\leq(A+\epsilon)| Im z^{m}|+ML|z|^{m/s} \forall z\in \mathbb{C} .

For \epsilonarrow 0 we finally obtain the thesis with \beta=ML , for

L cos ( \frac{1+2\sigma}{2s}\pi)

’
M\geq 1+

2AR+L
L \geq\frac{2AR+\alpha}{\cos(\frac{1+2\sigma}{2s}\pi)}

with 0< \sigma<\min\{\frac{1}{2}, \frac{s-1}{2}\} .

B) Let us now consider the general case s\in \mathbb{R} . For every \epsilon>0 there
is p\in \mathbb{Q} such that

p- \epsilon\leq\frac{1}{s}\leq p .

By assumption condition (h)^{s} is valid, and hence also condition (h)\frac{1}{p} is
satisfied by Remark 2.9. By part A) we deduce that the pair (K, \Gamma\cross K)

with K=B(0, A) is of evolution in the class \tilde{\gamma}^{(\frac{1}{p})} .
Then the Phragm\’en-Lindel\"of principle (2.11)-(2.12) is valid, since every

u\in P(V) satisfying

u(\theta)\leq\alpha\log(1+|\tau|)+\alpha|\zeta|^{1/s}+\alpha\kappa_{\Gamma}(\tau)+A| Im \zeta|

\leq\alpha\log(1+|\tau|)+\alpha|\zeta|^{p}+\alpha\kappa_{\Gamma}(\tau)+A| Im \zeta|+\alpha\forall\theta=(\tau, \zeta)\in V

u(\theta)\leq\alpha_{u}\log(1+|\tau|)+\alpha_{u}|\zeta|^{1/s}+A| Im \zeta|+c_{u}

\leq\alpha_{u}\log(1+|\tau|)+\alpha_{u}|\zeta|^{p}+A| Im \zeta|+c_{u}+\alpha_{u}\forall\theta=(\tau, \zeta)\in V

also satisfies, because of the evolution in the class \tilde{\gamma}^{(\frac{1}{p})} ,

u(\theta)\leq\beta\log(1+|\tau|)+\beta|\zeta|^{p}+A| Im \zeta|+c

\leq\beta\log(1+|\tau|)+\beta|\zeta|^{\frac{1}{s}+\epsilon}+A| Im \zeta|+c+\beta\forall\theta=(\tau, \zeta)\in V.

For \epsilonarrow 0 we obtain (2.12) and hence evolution in the class \tilde{\gamma}^{(s)} .

2) Statement ii ) easily follows from Theorem 2.7 and the fact that
condition (H)^{s} trivially implies condition (h)^{s} . \square
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Corollary 2.11 Under the same assumptions of Proposition 2.10_{f} if 1<
s\in \mathbb{Q} , then a necessary and suffiffifficient condition in order that the pair
(K, \Gamma\cross K) is of evolution for \mathcal{M} in the class \tilde{\gamma}^{(s)} is that (h)^{s} is satisfified on
V(\check{\wp}) for all \wp\in Ass(\mathcal{M}) and for all R’>0 .

Also, a necessary and suffiffifficient condition in order that the pair (K, \Gamma\cross

K) is of evolution for \mathcal{M} in the class \tilde{\gamma}^{(s)} is that H\"ormander’s type condition
(H)^{s} is satisfied on V(\check{\wp}) for all \wp\in Ass(\mathcal{M}) .

Remark 2.12 As a consequence of Corollary 2.11, conditions (h)^{s} and
(H)^{s} are equivalent when n =1 and s \in \mathbb{Q} .

Analogously, in the class \gamma^{(r,s)} :

Proposition 2.13 Let \mathcal{M} be a fifinitely generated unitary \mathcal{P} -module, for
which \Sigma\simeq \mathbb{R}_{x} is formally non-characteristic and quasi-free, with reduced
order p_{0} . Let K be a compact convex subset of \Sigma with non-empty interior
in \mathbb{R}_{x} , and \Gamma a closed convex cone of \mathbb{R}_{t}^{k} with non-empty interior and vertex
in 0. Then:

i) if condition (h)^{s} is satisfified for some s>1 on V(\check{\wp}) for all \wp\in

Ass(M) and for all R’>0 , lhen the pair (K, \Gamma\cross K) is of evolution
for \mathcal{M} in the classes \gamma^{(r,s’)} for all real r , s’>1 with 1<s’\leq s and
r\geq p_{0}s^{/};

ii) if the pair (K, \Gamma\cross K) is of evolution for \mathcal{M} in the class \gamma^{(r,s)} for
some r, s>1 with r\geq p_{0}s , then condition (h)^{q} is satisfified for all
\wp\in Ass(\mathcal{M}) , R’>0 and q\in \mathbb{Q} with 1<q\leq s .

Proof Statement i) follows from Proposition 2.10 and Lemma 2.2. The
proof of ii ) follows from Theorem 2.6. \square

Corollary 2.14 Under the same assumptions of Proposition 2.13, if 1<
s\in \mathbb{Q} , then a necessary and sufficient condition in order that the pair
(K, \Gamma\cross K) is of evolution for \mathcal{M} in the class \gamma^{(r,s)} , for r>1 with r\geq p_{0}s ,
is that (h)^{s} is satisfified on V(\check{\wp}) for all \wp\in Ass(\mathcal{M}) and for all R’>0 .

Equivalently, a necessary and suffiffifficient condition in order that the pair
(K, \Gamma\cross K) is of evolution for \mathcal{M} in the class \gamma^{(r,s)} , for r>1 with r\geq p_{0}s ,
is that H\"ormander’s type condition (H)^{s} is satisfified on V(\check{\wp}) for all \wp\in

Ass(M).

Remark 2.15 We proved in [BN2] (see Theorems 7.2 and 7.4) that a
sufficient condition in order that the pair (K,\Gamma\cross K) is of evolution for \mathcal{M}
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in the classes \tilde{\gamma}^{(s)} or \gamma^{(r,s)} (for r, s>1 with r\geq p_{0}s ) is that the following
Petrowski-type condition for evolution is satisfied for some c_{1} , c_{2}>0 and
for all \wp\in Ass(\mathcal{M}) :

(P)^{s} \kappa_{\Gamma}(\tau)\leq c_{1}|\xi|^{1/s}+c_{2} \forall(\tau, \zeta)\in V(\check{\wp}) with \zeta=\xi\in \mathbb{R} .

Clearly condition (P)^{s} implies condition (h)^{s} . However, condition (h)^{s}

does not imply, in general, condition (P)^{s} (see Example 2.17 below).

Example 2.16 Let us consider, for some integers p, q\geq 1 , the following
system in \mathbb{R}_{t}^{2}\cross \mathbb{R}_{x} :

\{\begin{array}{l}\frac{\partial}{\partial t_{1}}+i^{p+1}\frac{\partial^{p}}{\partial x^{p}}\frac{\partial}{\partial t_{2}}+i^{q+1}\frac{\partial^{q}}{\partial x^{q}}.\end{array} (2.17)

The associated affine algebraic variety is given by

V=\{(\tau_{1}, \tau_{2}, \zeta)\in \mathbb{C}^{3} : \tau_{1}=\zeta^{p}, \tau_{2}=\zeta^{q}\} ,

and the reduced order of the system is p_{0}= \max\{p, q\} . Clearly

Im \tau_{1}={\rm Im}\tau_{2}=0 \forall(\tau, \zeta)\in V with \zeta=\xi\in \mathbb{R} ,

and hence every pair of the form (K, \mathbb{R}_{t}^{2}\cross K) , for a compact convex subset
K of \mathbb{R}_{x} , is of evolution for the system (2.17) in the classes \tilde{\gamma}^{(s)} and \gamma^{(r,s)}

for all s>1 and r \geq s\max\{p, q\} .

In the example above, not only condition (h)^{s}.
, but also condition (P)^{s}

was satisfied. Let us now consider an example of an evolution operator
satisfying (h)^{s} , but not (P)^{s} .

Example 2.17 Let us consider the following operator

\frac{\partial}{\partial t}+(\frac{\partial}{\partial x}+1)^{3} (2.18)

in \mathbb{R}_{t}^{+}\cross \mathbb{R}_{x} . The associated affine algebraic variety is given by

V=\{(\tau, \zeta)\in \mathbb{C}^{2} : \tau=((+i)^{3}\} ,

and the reduced order of the system is p_{0}=3 .
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Setting \Gamma=\mathbb{R}_{t}^{+} . we thus obtain that

\kappa_{\Gamma}(\tau)=({\rm Im}\tau)^{+}=(3\xi^{2}-1)^{+} \forall(\tau, ()\in V with \zeta=\xi\in \mathbb{R} ,

and hence the Petrowski-type condition (P)^{s} cannot be satisfied for any
s>1 . However,

\kappa_{\Gamma}(\tau)=0 \forall(\tau, ()\in V with Im \zeta=-1 ,

and hence condition (h)^{s} is satisfied for all s>1 .
By Propositions 2.10 and 2.13 it follows that, for every compact convex

subset K of \mathbb{R}_{x} , the pair (K, \mathbb{R}_{t}^{+}\cross K) is of evolution for the given operator
(2.18) in \tilde{\gamma}^{(s)} and \gamma^{(r,s)} with s>1 and r\geq 3s .

In the two examples above we had in fact evolution also in the C^{\infty}

class (cf. [BN1]). Let us now consider an example of operator which is of
evolution in some (small) Gevrey classes, but not in the C^{\infty} class.

Example 2.18 The operator \partial_{tt}-\partial_{x} in \mathbb{R}_{t}^{+}\cross \mathbb{R}_{x} has associated affine
algebraic variety

V=\{(\tau, \zeta)\in \mathbb{C}^{2} : _{\mathcal{T}}^{2}=i\zeta\}

and reduced order p_{0}=1/2 . For (\tau, \zeta)\in V we have that

({\rm Im} \tau)^{+}=\frac{|\xi|^{1/2}}{\sqrt{2}} \forall(\tau, ()\in V with \zeta=\xi\in \mathbb{R} .

Setting \Gamma=\mathbb{R}_{t}^{+} , we thus obtain that condition (P)^{s} and hence (h)^{s} are
satisfied for all 1<s\leq 2 .

Therefore, for every compact convex subset K of \mathbb{R}_{x} , the pair (K, \mathbb{R}_{t}^{+}\cross

K) is of evolution for the given operator in the classes \tilde{\gamma}^{(s)} and \gamma^{(r,s)} for all
1<s\leq 2 and r>1 (p_{0}s=s/2\leq 1 for 1<s\leq 2 ).

Note that the pair (K, \mathbb{R}_{t}^{+}\cross K) is not of evolution for the operator
\partial_{tt}-\partial_{x} in the C^{\infty} class (cf. [BN1]).

We always considered r\geq p_{0}s in the preceding results about evolution
in the class \gamma^{(r,s)} . Nevertheless, we shall see, by the following example, that
we can have evolution in the class \gamma^{(r,s)} for s>1 even if 1<r<p_{0}s .

Example 2.19 Let us consider the system
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\{\begin{array}{l}\frac{\partial^{2}}{\partial t_{1}^{2}}+i\frac{\partial}{\partial x}\frac{\partial^{2}}{\partial t_{2}^{2}}-\frac{\partial^{2}}{\partial x^{2}}\end{array}

in \mathbb{R}_{t}^{2}\cross \mathbb{R}_{x} , with associated affine algebraic variety

V=\{(\tau_{1}, \tau_{2}, \zeta)\in \mathbb{C}^{3} : \tau_{1}^{2}=(, \tau_{2}^{2}=\zeta^{2}\}

and reduced order p_{0}=1 . For \Gamma=\mathbb{R}_{t}^{2} we have that

\kappa_{\Gamma}(\tau)\leq|\zeta|^{1/2}+| Im \zeta| \forall(\tau, \zeta)\in V.

It follows (cf. [BN2], Theorem 8.1) that the pair (\mathbb{R}_{x}, \mathbb{R}_{t}^{2}\cross \mathbb{R}_{x}) is hyper-
bolic, and hence of evolution, for the given system in the classes \tilde{\gamma}^{(s)} and
\gamma^{(r,s)} for all 1<s\leq 2 and r>1 .

We thus have evolution also for 1<r<p_{0}s=s\leq 2 .

In Examples 2.18 and 2.19 we had evolution and also hyperbolicity.
Let us now consider an example where we have evolution in some spaces of
(small) Gevrey functions (but not in the C^{\infty} class), but not hyperbolicity.

Example 2.20 Let us consider the operator

\frac{\partial^{2}}{\partial t^{2}}-2i\frac{\partial^{3}}{\partial t\partial^{2}x}-\frac{\partial^{4}}{\partial x^{4}}-i\frac{\partial}{\partial x}

in \mathbb{R}_{t}\cross \mathbb{R}_{x} , with assocaited affine algebraic variety

V=\{(\tau, \zeta)\in \mathbb{C}^{2} : (\tau-\zeta^{2})^{2}+(=0\} .

For (\tau, \zeta)\in V we have that \tau=(^{2}\pm i\sqrt{\zeta} , where \pm\sqrt{\zeta} denote the two
complex roots of \zeta .

The reduced order of the system is then p_{0}=2 and

| Im \tau|\leq|\xi|^{1/2} \forall(\tau, \zeta)\in V with \zeta=\xi\in \mathbb{R} .

Therefore condition (h)^{s} is satisfied for \Gamma=\mathbb{R}_{t} and 1<s\leq 2 , and
hence for every compact convex subset K of \mathbb{R}_{x} the pair (K, \mathbb{R}_{t}\cross K) is of
evolution for the given operator in the classes \tilde{\gamma}^{(s)} and \gamma^{(r,s)} for 1<s\leq 2

and r\geq 2s .
Note that the pair (K, \mathbb{R}_{t}\cross K) is not of evolution in the C^{\infty} class (cf.

[BN1] ) and, moreover, it is not hyperbolic in any class of (small) Gevrey
functions (cf. [BN2]).
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Let us now show, by the following example, that condition (h)^{s} is suffi-
cient only for “local evolution”, i.e. for evolution of pairs of the form (K, \Gamma\cross

K) for a compact convex subset K of \Sigma , but not for pairs of the form (\Sigma, \Gamma\cross

\Sigma) .

Example 2.21 Let us consider the following system in \mathbb{R}_{t}^{3}\cross \mathbb{R}_{x} :

\{

\frac{\partial}{\partial t_{1}}-i\frac{\partial^{2}}{\partial x^{2}}

\frac{\partial}{\partial l_{2}}+i\frac{\partial^{2}}{\partial x^{2}}

\frac{\partial}{\partial t_{3}}-\frac{\partial^{2}}{\partial x^{2}} .

(2.19)

The associated affine algebraic variety is given by

V=\{(\tau_{1}, \tau_{2}, \zeta)\in \mathbb{C}^{3} : \tau_{1}=\zeta^{2}, \tau_{2}=-(^{2}, \tau_{3}=-i\zeta^{2}\} ,

and the reduced order of the system is p_{0}=2 .
For \Gamma=\{t\in \mathbb{R}^{3} : t_{j}\geq 0\forall j=1,2,3\} we obtain that

\kappa_{\Gamma}(\tau)=0 \forall(\tau, \zeta)\in V with \zeta=\xi\in \mathbb{R} ,

and hence condition (h)^{s} is satisfied for all s>1 (also condition (P)^{s} is
satisfied), and for every compact convex subset K of \mathbb{R}_{x} the pair (K, \Gamma\cross K)

is of evolution for the given system in the classes \tilde{\gamma}^{(s)} and \gamma^{(r,s)} for all s>1 ,
r\geq 2s .

We shall see, however, that the pair (\mathbb{R}_{x}, \Gamma\cross \mathbb{R}_{x}) is not of evolution for
the given system in any class of (small) Gevrey functions.

Consider, indeed, the following sequence of plurisubharmonic functions
on \mathbb{C}^{4}\simeq \mathbb{C}_{\tau}^{3}\cross \mathbb{C}_{\zeta} :

u_{n}(\tau, \zeta)=\{\begin{array}{l}0 ifIm\zeta\leq 0\frac{1}{n}Im\zeta if0\leq Im(\leq nnIm\zeta+1-n^{2} ifIm\zeta\geq n.\end{array}

Note that

u_{n}( \tau, \zeta)\leq({\rm Im}\zeta)^{2}+1\leq\frac{4}{3}\kappa r(\tau)+1 \forall(\tau, \zeta)\in V,
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since (cf. also [BN1]):

\kappa_{\Gamma}(\tau)=\sum_{j=1}^{3}(Im \tau_{j})^{+}=2| Re ( | | Im \zeta|+(({\rm Im}\zeta)^{2}- ({\rm Re} \zeta)^{2})^{+}

\geq\frac{3}{4}({\rm Im} \zeta)^{2} \forall(\tau, \zeta)\in V.

We can thus find constants A_{u} , c_{u}>0 such that

\{\begin{array}{l}u_{n}(\tau,\zeta)\leq\frac{4}{3}\kappa_{\Gamma}(\tau)+1u_{n}(\tau,\zeta)\leq A_{n}|Im(|+c_{n}\end{array}

\forall(\tau,\zeta)\in V\forall(\tau,\zeta)\in V

,

but we cannot find fixed constants A , L , c>0 such that

u_{n}(\tau, ()\leq A| Im \zeta|+L|\tau|^{1/r}+L|\zeta|^{1/s}+c \forall(\tau, \zeta)\in V.

This means that the Phragm\’en-Lindel\"of principles for evolution (1.7)
and (1.9) are violated, and hence the pair (\mathbb{R}_{x}, \Gamma\cross \mathbb{R}_{x}) is not of evolution
for the given system (2.19) neither in the class \tilde{\gamma}^{(s)} nor in the class \gamma^{(r,s)} ,
for any r , s>1 .

2.3. A sufficient H\"ormander’s type condition for evolution
We use here the same notation as in \S 2.1, and consider the following

H\"ormander’s type condition:

(H’)^{s} \{\begin{array}{l}\exists R,r,c_{1},c_{2}>0suchthatforevery\rho\in \mathbb{R}^{n}with|\rho|\geq randB_{n}(\rho,R|\rho|^{1/s})\subset \mathbb{C}^{n}\backslash Zandforeveryconnectedcomponent\omega of\pi_{n}^{-1}(B_{n}(\rho,R|\rho|^{1/s}))thereisB_{n}(\zeta_{\rho},r)\subset B_{n}(\rho,R|\rho|^{1/s})suchthat\kappa_{\Gamma}(\tau)\leq c_{1}|(|^{1/s}+c_{2} \forall(\tau,\zeta)\in\pi_{n}^{-1}(B_{n}((_{\rho},r))\cap\omega.\end{array}

Remark 2.22 Condition (H’)^{s} implies condition (H’)^{s’} for all real 1<
s’\leq s .

Remark 2.23 Condition (H’)^{s} is in general stronger than condition (H)^{s} ,
and it can be proved, as in Lemma 12.8.8 of [H\"o3], that it is equivalent to
(H)^{s} if n=N-1 .

Theorem 2.24 Let \mathcal{M} be a unitary fifinitely generated P -module, for which
\Sigma\simeq \mathbb{R}_{x}^{n} is formally non-characteristic and quasi-free. Let K be a compact
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convex subset of \Sigma with a non-empty interior in \mathbb{R}_{x}^{n} and \Gamma a closed convex
cone of \mathbb{R}_{t}^{k} with non-empty interior and vertex in 0.

Then, if condition (II’)^{s} is satisfified for some s>1 on all V(\check{\wp}) for
\wp\in Ass(\mathcal{M}) , it follows that the pair (K, \Gamma\cross K) is of evolution for \mathcal{M} in
the classes \tilde{\gamma}^{(s’)} for all 1<s’\leq s .

Proof. By Remark 2.22 it is sufficient to prove that condition (H’)^{s} is
sufficient for evolution in the class \tilde{\gamma}^{(s)} . Moreover, by Lemma 2.1 it is not
restrictive to assume K=B_{n}(0, A) for some A>0 , since K is compact.
Up to translations, we can also assume c_{2}=0 .

Let us fix \wp\in Ass(\mathcal{M}) , set V=V(\check{\wp}) and prove the validity of the
Phragm\’en-Lindel\"of principle for evolution (2. 11)-(2. 12).

Note that if condition (H’)^{s} is valid for some R>0 , then it is also
satisfied for any larger R. This means that it will not be restrictive to
choose in the following R>r sufficiently large.

By Hadamard’s three-circles theorem (cf. [H\"o3], Lemma 12.8.6; [A]), we
can then fix R_{1}>0 with R_{1}<R such that B_{n}(\zeta_{\rho}, r)\subset B_{n}(\rho, R_{1}|\rho|^{1/s}) for
all |\rho|\geq r , and find \delta=\delta(R)\in(0,1) such that for every plurisubharmonic
function u satisfying (2.11):

u(\tau(\zeta), \zeta)\leq(1-\delta) sup u+\delta sup u
B_{n}(\rho,R|\rho|^{1/s}) B_{n}(\zeta_{\rho},r)

\forall(\in B_{n}(\rho, R_{1}|\rho|^{1/s}), (\tau, \zeta)\in\omega . (2.20)

By assumption

|\tau|\leq\lambda(1+|\zeta|)^{p_{0}}-1 \forall(\tau, \zeta)\in V

for some \lambda>1 , and hence from (2.11) we obtain, for |\rho|\geq R^{\frac{s}{s-1}} :

sup u\leq sup { \alpha_{u}\log(1+|\tau|)+\alpha_{u}|(|^{1/s}+A| Im \zeta|+c_{u} }
B_{n}(\rho,R|\rho|^{1/s}) B_{n}(\rho,R|\rho|^{1/s})

\leq sup { \alpha_{u} log \lambda+\alpha_{u}p_{0}\log(1+|\zeta|)

B_{n}(\rho,R|\rho|^{1/s})

+\alpha_{u}|\zeta|^{1/s}+A| Im \zeta|+c_{u} }
\leq\alpha_{u}(p_{0}s+1)(|\rho|+R|\rho|^{1/s})^{1/s}+AR|\rho|^{1/s}+\alpha_{u} log \lambda+c_{u}

\leq[2^{1/s}\alpha_{u}(p_{0}s+1)+AR]|\rho|^{1/s}+\alpha_{u} log \lambda+c_{u} , (\tau, \zeta)\in\omega ,

(2.21)
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and, by (H’)^{s} :

\sup_{B_{n}}u\leq\sup_{B_{n}(\zeta_{\rho},r)(\zeta_{\rho},r)}\{\alpha\log(1+|\tau|)+\alpha|\zeta|^{1/s}+\alpha\kappa_{\Gamma}(\tau)+A|{\rm Im}\zeta|\}

\leq sup { \alpha log \lambda+\alpha p_{0}s|\zeta|^{1/s}+\alpha|\zeta|^{1/s}+\alpha c_{1}|\zeta|^{1/s}+A| Im \zeta| }
B_{n}(\zeta_{\rho},r)

\leq\alpha(p_{0}s+1+c_{1})(|\rho|+R|\rho|^{1/s})^{1/s}+AR|\rho|^{1/s}+\alpha\log\lambda

\leq[2^{1/s}\alpha(p_{0}s+1+c_{1})+AR]|\rho|^{1/s}+\alpha log \lambda , (\tau, \zeta)\in\omega .

(2.22)

For \zeta\in B_{n}(\rho, R_{1}|\rho|^{1/s}) with |\rho|\leq R^{\frac{s}{s-1}} , form (2. 11) and (2.2):

u(\tau(\zeta), \zeta)

\leq sup { \alpha log \lambda+\alpha(p_{0}s+1)|\zeta|^{1/s}+\alpha\kappa_{\Gamma}(\tau)+A| Im \zeta| }
\zeta\in B_{n}(\rho,R_{1}|\rho|^{1/s})

\underline{s}

|\rho|\leq R^{s-1}

\leq sup { \alpha log \lambda+\alpha(p_{0}s+1)(|\rho|+R_{1}|\rho|^{1/s})^{1/s}

|\rho|\leq R^{\frac{s}{s-1}}

+\alpha k(1+|\rho|+R_{1}|\rho|^{1/s})^{p_{0}}+AR_{1}|\rho|^{1/s}\}

\leq C(R) , (\tau, \zeta)\in\omega , (2.23)

for some positive constant C(R) depending on R.
From (2.20), (2.21), (2.22) and (2.23) we finally obtain, for \zeta\in

B_{n}(\rho, R_{1}|\rho|^{1/s}) , \rho\in \mathbb{R}^{n} :

u(\tau(\zeta), \zeta)\leq(1-\delta) { [2^{1/s}\alpha_{u}(p_{0}s+1)+AR]|\rho|^{1/s}+\alpha_{u} log \lambda+c_{u} }
+\delta { [2^{1/s}\alpha(p_{0}s+1+c_{1})+AR]|\rho|^{1/s}+\alpha log \lambda }
+C(R) .

This holds, in particular, for all \theta=(\tau, \zeta)\in V with \pi_{n}(\theta)=\rho\in \mathbb{R}^{n} ,
and therefore the function \varphi(\eta)=\sup_{\theta\in V\cap\pi_{n}^{-1}(\eta)}u(\theta) satisfies:

\varphi(\eta)\leq\{(1-\delta)[2^{1/s}\alpha_{u}(p_{0}s+1)+AR]

+\delta[2^{1/s}\alpha(p_{0}s+1+c_{1})+AR]\}|\eta|^{1/s}

+(1-\delta) ( \alpha_{u} log \lambda+c_{u} ) +\delta\alpha log \lambda+C(R) \forall\eta\in \mathbb{R}^{n}

and, by the second inequality of (2.11):

\varphi(\eta)\leq\alpha_{u}(p_{0}s+1)|\eta|^{1/s}+A| Im \eta|+\alpha_{u} log \lambda+c_{u} \forall\eta\in \mathbb{C}^{n} .
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It follows, by the classical Phragm\’en-Lindel\"of principle (Proposition
1.7), that

\varphi(\eta)\leq A| Im \eta|+\ell_{u}|\eta|^{1/s}+\sigma_{u}+\sigma \forall\eta\in \mathbb{C}^{n} .

where

\ell_{u}=\frac{2n}{\cos\frac{\pi}{2s}}\{(1-\delta)[2^{1/s}\alpha_{u}(p_{0}s+1)+AR]

+\delta[2^{1/s}\alpha(p_{0}s+1+c_{1})+AR]\}

\sigma_{u}=(1-\delta) ( \alpha_{u} log \lambda+c_{u} )
\sigma=\delta\alpha log \lambda+C(R) .

Then v(\theta)=u(\theta)-\sigma satisfies:

v(\theta)\leq A| Im \zeta|+\frac{2n}{\cos\frac{\pi}{2s}}\{(1-\delta)[2^{1/s}\alpha_{u}(p_{0}s+1)+AR]

+\delta[2^{1/s}\alpha(p_{0}s+1+c_{1})+AR]\}|\zeta|^{1/s}

+(1-\delta) ( \alpha_{u} log \lambda+c_{u} ) \forall\theta=(\tau, \zeta)\in V.

After \ell steps we obtain that

v(\theta)\leq A| Im (|+M_{\ell}|\zeta|^{1/s}+\lambda_{\ell} \forall\theta=(\tau, \zeta)\in V,

with

\{\begin{array}{l}M_{0}=\alpha_{u}(p_{o}s+1)M_{\ell}=\frac{2n}{cos\frac{\pi}{2s}}\{(1-\delta)[2^{1/s}M_{\ell-1}+AR]+\delta[2^{1/s}\alpha(p_{o}s+1+c_{1})+AR]\}\end{array} (2.24)

\{

\lambda_{0}=\alpha_{u} log \lambda+c_{u}

\lambda_{\ell}=(1-\delta)\lambda_{\ell-1} .
(2.25)

It is now possible to take R sufficiently large to choose then \delta=\delta(R)\in

(0,1) such that

\frac{2^{1+\frac{1}{s}}n}{\cos\frac{\pi}{2s}}(1-\delta)<1 , i.e . \delta>1-\frac{\cos\frac{\pi}{2s}}{2^{1+\frac{1}{s}}n} .
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For such \delta the sequence \{M_{\ell}\}_{\ell\in N} converges and, by (2.24),

\lim_{\ellarrow+\infty}M_{\ell}=M=\frac{2n}{\cos\frac{\pi}{2s}}\{(1-\delta)2^{1/s}M+(1-\delta)AR

+\delta[2^{1/s}\alpha(p_{0}s+1+c_{1})+AR]\} ,

that is

M=[mathring]_{\frac{(1-\delta)AR+\delta[2^{1/s}\alpha(ps+1+c_{1})+AR]}{1-\frac{2^{1+\frac{1}{s}}n}{\cos\frac{\pi}{2s}}(1-\delta)}}<+\infty

.

Moreover, from (2.25) we have that \lim_{\ellarrow+\infty}\lambda_{\ell}=0 .
For \ellarrow+\infty we finally obtain that

u(\theta)\leq A| Im \zeta|+M|(|^{1/s}+\sigma \forall\theta=(\tau, \zeta)\in V,

and hence (2.12), with \beta=M and c=\sigma . \square

By Remark 2.23, from Theorems 2.7 and 2.24 we have in particular:

Corollary 2.25 Let \mathcal{M} be a unitary fifinitely generated V -module, for
which \Sigma\simeq \mathbb{R}_{x}^{N-1}\subset \mathbb{R}^{N} is formally non-characteristic and quasi-free. Let
K be a compact convex subset of \Sigma with a non-empty interior in \mathbb{R}_{x}^{N-1} and
\Gamma a closed cone of \mathbb{R}_{t} with non-empty interior and vertex in 0.

Then, for 1<s\in \mathbb{Q} , condition (H)^{s} is necessary and suffiffifficient in
order that the pair (K, \Gamma\cross K) is of evolution for \mathcal{M} in the class \tilde{\gamma}^{(s)} .

From Lemma 2.2 and Theorem 2.24 we immediately obtain:

Theorem 2.26 Let \mathcal{M} be a unitary fifinitely generated P -module, for
which \Sigma\simeq \mathbb{R}_{x}^{n} is formally non-characteristic and quasi-free, with reduced
order p_{0} . Let K be a compact convex subset of \Sigma with a non-empty inte-
rior in \mathbb{R}_{x}^{n} and \Gamma a closed convex cone of \mathbb{R}_{t}^{k} with non-empty interior and
vertex in 0.

Then, if condition (H’)^{s} is satisfified for some s>1 on all V(\check{\wp}) for
\wp\in Ass(\mathcal{M}) , it follows that the pair (K, \Gamma\cross K) is of evolution for \mathcal{M} in
the classes \gamma^{(r,s’)} for all real r, s’>1 with 1<s’\leq s and r\geq p_{0}s’

By Remark 2.23:

Corollary 2.27 Let \mathcal{M} be a unitary finitely generated P -module, for
which \Sigma\simeq \mathbb{R}_{x}^{N-1}\subset \mathbb{R}^{N} is formally non-characteristic and quasi-free, with
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reduced order p_{0} . Let K be a compact convex subset of \Sigma with a non-empty
interior in \mathbb{R}_{x}^{N-1} and \Gamma a closed cone of \mathbb{R}_{t} with non-empty interior and
vertex in 0.

Then, for 1<s\in \mathbb{Q} , condition (H)^{s} is necessary and suffiffifficient in
order that the pair (K, \Gamma\cross K) is of evolution for \mathcal{M} in the class \gamma^{(r,s)} for
r>1 with r\geq p_{0}s .

Example 2.28 Let us consider the heat operator \partial_{t}-\triangle_{x} in \mathbb{R}_{t}^{+}\cross \mathbb{R}_{x}^{n} .
The associated affine algebraic variety is given by

V=\{(\tau, \zeta)\in \mathbb{C}\cross \mathbb{C}^{n} : \tau=-i\sum_{j=1}^{n}\zeta_{j}^{2}\} ,

and the reduced order of the system is p_{0}=2 .
Consider \Gamma=\{t\in \mathbb{R} : t\geq 0\}=\mathbb{R}_{t}^{+} For (\tau, ()\in V with ( =\xi\in \mathbb{R}^{n} we

have that

\kappa_{\Gamma}(\tau)=({\rm Im}\tau)^{+}=0 \forall(\tau, \zeta)\in V with (=\xi\in \mathbb{R}^{n} .

This means that condition (H)^{s} with k=1 is satisfied for all s>1 .
Therefore, every pair of the form (K, \mathbb{R}_{t}^{+}\cross K) , for a compact convex subset
K of \mathbb{R}_{x}^{n} , is of evolution for the heat operator in the classes \tilde{\gamma}^{(s)} and \gamma^{(r,s)}

for all s>1 and r\geq 2s .

Example 2.29 Let us consider the wave operator \partial_{tt}-\triangle_{x} in \mathbb{R}_{t}\cross \mathbb{R}_{x}^{n} ,
with associated affine algebraic variety

V=\{(\tau, \zeta)\in \mathbb{C}\cross \mathbb{C}^{n} : \tau^{2}=\sum_{j=1}^{n}\zeta_{j}^{2}\} ,

and reduced order p_{0}=1 . If (\tau, \zeta)\in V and \zeta=\xi\in \mathbb{R}^{n} . we have that
Im \tau=0 .

Then condition (H)^{s} with k=1 is satisfied for \Gamma=\mathbb{R}_{t} and s>1 , and
hence for every compact convex subset K of \mathbb{R}_{x}^{n} the pair (K, \mathbb{R}_{t}\cross K) is of
evolution for the wave operator in the classes \tilde{\gamma}^{(s)} and \gamma^{(r,s)} for all s>1
and r\geq s .

We shall see by the following example that condition (H’)^{s} is sufficient,
but in general not necessary, for evolution.
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Example 2.30 Let us consider the following operator in \mathbb{R}_{t}^{2}\cross \mathbb{R}_{x} :

\{\begin{array}{l}\frac{\partial}{\partial t_{1}}-i\frac{\partial^{2}}{\partial x^{2}}\frac{\partial}{\partial t_{2}}+i\frac{\partial^{2}}{\partial x^{2}}.\end{array}

The associated afEne algebraic variety is given by

V=\{(\tau_{1}, \tau_{2}, \zeta)\in \mathbb{C}^{3} : \tau_{1}=\zeta^{2}. \tau_{2}=-\zeta^{2}\}

with reduced order p_{0}=2 . Consider \Gamma=\{t\in \mathbb{R}^{2} : t_{1}\geq 0, t_{2}\geq 0\} . By
Propositions 2.10 and 2.13, for every compact convex subset K of \mathbb{R}_{x} the
pair (K, \Gamma\cross K) is of evolution for the given system in the classes \tilde{\gamma}^{(s)} and
\gamma^{(r,s)} with s>1 and r\geq 2s , since

\kappa_{\Gamma}(\tau)=({\rm Im}\tau_{1})^{+}+({\rm Im}\tau_{2})^{+}=2| Re \zeta| | Im \zeta|=0

\forall(\tau, ()\in V with \zeta=\xi\in \mathbb{R} .

However, condition (H’)^{s} is not satisfied for any s>1 .
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