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On the Lefschetz module

Ryousuke FuJjiTa
(Received September 2, 2005)

Abstract. Let G be a finite group. We define a Lefschets module L(G, II) which
consists of equivalent classes of all IT-maps and prove that it is isomorphic to the Burnside
module Q(G, II).
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1. Introduction and statement of results

The purpose of this paper is to define a Lefschets module and to show
that it is isomorphic to a Burnside module. R. Oliver and T. Petrie in-
troduced the Burnside module Q(G, II) to solve a topological problem [10],
where G is a finite group and II is a partially ordered set with a G-action.
This notion is a generalization of the Burnside ring Q(G). The study of this
direction is done by T. Yoshida [13], in which he presented an antecednt
such that the free abelian group (G, X) has a ring structure. On the other
hand, E. Laitinen and W. Liick defined the Lefschetz ring L(G) [8]. It is
well-known that the Burnside ring is isomorphic to the Lefschetz ring. In
this paper, we study the Lefschets module L(G, IT) which is a group version
of the Lefschetz ring.

Our main theorem is the following.

Theorem 1.1 Let (I1, p) be a G-poset. Then a map
p: (G, II) — L(G, II)

given by [(Ga/p(@))] = [id(G,/p))+)] is an group isomorphism, where
id(a, /p(a)t: (Ga/p(a))t = (Ga/p(a))* is the identity map on (Go/p(a)) ™.

The proof of Theorem 1.1 is carried out in Section 4. We set

S((@), )
— (K € S(G) | (K/p()) € B(Ga/p(a)) and K/p(a) is cyclic},
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where S(G) is the set of all subgroups of G, G, denotes an isotropy subgroup
of G at a (a € II) and ®(G) is the conjugacy class set of G. Applying the
above theorem, we have a Burnside relation for the Lefschetz module.

Corollary 1.2 Let a be an element of II. Given a lI-map f: X — X,
one has

0

Galp@] e g
X WKy e R

mod \Ga/P(O‘)‘
where (|Ga/p()])/(ING, /p(a

)(
(Ga/p(a)) /(NG /p) K/ pla))
tors of the cyclic group K/p(«

K/p(a))|) is the order of
) and ¢(|K/p(a)]) is the number of genera-
).

2. Notations and Preliminaries

Notations G always denotes a finite group. The set of all subgroups of
G is denoted by S(G). We regard S(G) as a G-set via the action (g, H) —
gHg (g € G and H € S(G)) and as a partially ordered set via

H<Kifandonlyif H DK (H, K € S(Q)).

By a G-complex we will mean a CW-complex X together with an action
of G on X which permutes the cells. Thus we have for each ¢ € G a
homeomorphism = — gx of X such that the image go of any cell o of X
is again a cell. For example, if X is a simplicial complex on which G acts
simplicially, then X is a G-complex.

Preliminaries. 1. A G-poset (=a partially ordered set with a G-action).
Suppose that II is a partially ordered set and G acts on it preserving the
partial order. For any a € II, we set

Iy ={Bell|B>a}, and G, ={g € G| ga = a}.

In particular, G, is called an isotropy subgroup of G at a. Let p: Il —
S(G) be an order preserving G-map. A pair (II, p) is called a G-poset if it
is satisfying the following condition: for any « € II,

pla) AGo and  p: Iy — S(G) ) s injective.
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Note that S(G)y@q) = S(p(a)) C S(Ga) and G, C G ) = Na(p(a)), the
normalizer of p(«) in G. As example of a G-poset, consider (S(G), id).

2. Burnside modules. References: Oliver-Petrie [10], Fujita [5]. Let a pair
(I1, p) be a G-poset. A finite G-complex X with a base point x is called a II-
complex if it is equipped with a specified set {X, | « € II} of subcomplexes
X, of X, satisfying the following four conditions:

(i) =€ Xa,

(ii) ¢gXo=Xg4o forge G, aell,

(ili) Xo & Xgif a = B inIl, and

(iv) for any H € S(G),

iv
XH = \/ Xo (the wedge sum of X,’s).
aell with p(a)=H

On some examples of II-complexes and its basic properties, see [4] for
details. Let F denote the family of all II-complexes and define the equiva-
lence relation ~ on F by

Z ~W if and only if x(Z,) = x(W,) forallaeIl (Z, W e F)

where x(Z,) is the Euler characteristic of Z,.
The set (G, II) = F/~ is an abelian group via

2]+ W) =[ZVW] (Z W eF)

The unit element is the equivalence class of a point. We call £2(G, 1I) the
Burnside module associated with a G-poset 11.

Let a be any element of II and X a II-complex. Construct a new space
X' by attaching a-cells G/p(a) x D¥s to X. Each attachment map

©: G/pla) x S = X

is defined such that ¢(gp(a) x S71) C X,,. The space X' is equipped with
a II-complex structure:

(X5 = X5 U (| Hgp(a) x D' | ga < 8, g€ G}) for Bell

Any Il-complex is constructed from one point by attaching a-cells for o €
IT.
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Proposition 2.1 ([10, Proposition 1.5]) One has

G~ Pz
acA
Any finite II-complex X is equivalent in Q(G, II) to a sum of the form
Y aea @al(G/p(a)t], and the map [X] — {aa}aca defines the group iso-
morphism.

3. Definitions

For a G-complex X and a self-map f: X — X, we define
o
A(f) =Y (=1) trace[fu: Hi(X;Q) — Hi(X;Q)],

i=0
which is called the Lefschetz number of f. Remark that each homology
group is a vector space over Q; moreover, f: X — X is continuous, then
fer Hi(X;Q) — H;(X;Q) can be seen to be a linear transformation, and
so the trace of f, is now the usual trace of linear algebra. If a self-map f is
an identity map, A(f) is equal to the Euler characteristic of X. Here we set
A(f) = A(f)—1, which is called the reduced Lefschetz number of f. If {x} €
X is a base point, and two base point preserving maps are homotopic, each
reduced Lefschetz number coincides. Let A be a base pointed G-subcomplex
of X. Then X/A is naturally equipped with a G-complex structure. Let f4
be the restriction of f to A and fx,4 the quotient map X/A — X/A. If the
following diagram

A—>X—>X/A

T

A—>X—>X/A

commutes, then we have A(f) = A(fa)+A(fx/4). Moreover let Y- f be the
suspension map of f. An easy computation shows that A(>_ f) = —A(f).

Let X, Y be Il-complexes. The map f is called a II-map if a map
f: X =Y be a base point preserving G-map such that

f(Xa) CY, forall aell

We denote by f, the restriction of f to X,. For self II-maps f: X — X,
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g: Y — Y, we define a equivalence relation by

A(fa) = A(ga) for all a € 11

Let Finap denote the set of all self II-maps. Then we let L(G, II) the quotient
set of Fmap by the equivalence relation. The quotient set is an abelian group
via

f1+1g=1fvgl (f g€ Fmap)
where a map fVg is the standard wedge map. We call L(G, II) the Lefschetz
module associated with a G-poset I1.
4. Proof of the main theorem
We need the following lemma to prove Theorem 1.1.

Lemma 4.1 Let X be a Il-complex with a subcomplex A and f: X — X
be a II-map with f(A) C A. Then for the commutative diagram

A—X ——>X/A
‘/fA if le/A
A X = X/A,

[f] = [fal + [fx/a]l € L(G, I), where fa is the restriction of f to A and
fx/a is the quotient map X/A — X/A.

Proof. Let a be any element of II. Consider the following cellular chain
complex

0 — Cu(Ay) — Cu(Xy) — Cu(Xo/An) — 0.

Since each term of this chain complex is a vevtor space over Q, it splits,
therefore C,(Xo) = Ci(Aa) ® Ci(Xa/Aq). To calculate trace(fq )y, consider
the following diagram:

C(X) = GA) 6 Ci(Xa/Ad
\L(fa)ﬁ l(an)n J/(fxa/Aa)n
X)) = ) 8 Ci(Xe/Ad).

Let (a, b) be an element of Cy(A44) ® Cx(Xa/As) and the image of (a, b) by
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(fa)n be (fi(a, b), fa(a, b)). Then

(ﬁgzi Zi) - ((f%m <fXjAa>ﬁ) <b> |

Hence we have trace(fa); = trace(fa,)s + trace(fx, a,)s- By [12, Lemma
9.18], A(fa) = A(fa.) + A(fx./a,)- Thus we get the assertion. O

Proof of Theorem 1.1. It is obvious that  is a group homomorphism.
Moreover since

X((Ga/p()T) = x(Ga/p(@) = A(ide, /p) = Aid(c, /p)+);
we easily verify that % is injective. We shall show the surjectivity of @. For
any [f: X — X] € L(G, II), we want to show Im® > [f]. We proceed by
induction on the number of G-cell. The II-complex X is composed with the
cell structure:

X = Xo Uy, ( H (G/p(a) x DO)Z’o)

ioE€lp
U Uy, ( [T (G/p(a) x Dmn),

where Xy is a subcomplex of X. Moreover we may suppose that p(«a) is
a minimum isotropy subgroup of X\{x} and Xy\{*} contains no cells the
isotropy type of which is (p(«)). It then follows that the II-map f: X —
X satisfies f(Xo) C Xo. Let fy be the restriction of f to Xy and f’ be
the quotient map X/Xo — X/Xo. By Lemma 2.1, we have [f] = [fo] +
[f'] € L(G, II). In the case of Xo\{*} # 0, the assertion is already done
by induction. As for the case where Xo\{*} = 0, namely, X = {x} U
{the cell’s of its isotropy type (p(«))}, X has the following cell structure:

X =x"1,, ( [T (/o) x D%) ,

where X1 is the (n — 1)-skeleton of X. By considering the map on the
homotopic level, we may assume that the II-map f is a cellular map, so
that, f(X"~!) ¢ X! (This is done by the cellular approximation theo-
rem). If X"~ # {x}, by Lemma 4.1 and induction, we have [f] € Im®.
Finally we consider the case of X"~ = {x}. (Remark that [f] = [fxn-1] +



On the Lefschetz module 117

[fX/Xn—1] € L(G, 1I) in this case, but we can not prove the surjectivity of @
by induction.) Then X is expressible as a wegde sum of some suspensions:

X =\ (@/pe)t nsm), =\ (X" (/o))

i€l el
where > is the n-th suspension operator. Next we compute the chain
complex of X.

Claim 4.2
Cn(X) = EP@IG/p()])s
el

Proof. We now compute:

Cu(X) =T <\/I (Z”(G/p<a>>+)>
- @5§<<G/p<a>>+>
- Q?HO ((G/p(0)":Q)
- %(@[G/pmm,

where each (Q[G/p(a)]); is the copy of Q[G/p(a)]. O

Let f; be a self-chain map on the cellular chain complex C,(X), where
fig: Ci(X) — Ci(X) is the i-th term of the chain map f;. Note that each
Ci(X) is a finite-dimensional vector space over Q and the map f; is a
linear transformation then a choice of basis of C;(X) associates a square
matrix A to fj. Let m be the order of the index set I. Let f;; be a linear
transformation from (Q[G/p(a)]); to (Q[G/p(a)]);. Then there exists the
following diagram:

Cn(X) = QIG/p(a)])1® - @ (QIG/p()])m
ifnu lfn lfmm
Cn(X) = QIG/p(e)])1 - @ (QIG/p()])m-

If {zi,, ..., 2, } is a basis of (Q[G/p(c)])i, one extends it to a basis of
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Cp(X). The matrix A of f,; with respect to the extended basis is

Ayp * * *

*
0 Ann

where A;; is the matrix of f;; with respect to {z;,, ..., x;, }. Hence we have

that trace(fng) = > iey trace(fi;), and so A(f) = (—=1)" >t trace(fi;). For

eachi =1, ..., m, we denote by A; the copy of the subset \/gEG (gp(a) A S™)

of X. A new map g; is the composition:
A x Lo x 9 g,

which is a II-map. In this diagram, i: A; — X denotes an inclusion map
and ¢;: X — A; is the i-th term projection map. It then follows that
git = fii: Cn(A;) — Cn(4;). Therefore A(f) = (=1)" Y7, trace(gis). By
restricting f to X, we have A(f,) = > ity A((gi)a), and so [f] = Y7, [g4]-
We show that each [¢;] € @P(2(G, II)). We also denote by f the II-map
SMG/p(a)T — D"(G/p(a))t without confusion. The desired map f; is
the composition:

gip(e)/pla) - 3S""(G/ple))t
L3NG pl) L gipla)/pla),

which is not a II-map. In this diagram, j: g;p(a)/p(a) — " (G/p(a))*
denotes an inclusion map and ¢;: >."(G/p(a))™ — gip(a)/p(c) is the i-th
term projection map. Let g; be the unit element of G. Now consider the
following diagram:

gip(@)/pla) x S* —L— gip(a)/p(a) x 5"

| Jo

gipl@)/pla) x 5" —— gipla)/pla) x 5.
Here the symbol f; denotes a map from g;p(«)/p(c) x S™ to itself and g; is
the left translation by g;. This diagram is obviously commutative. Moreover
g; is a homeomorphism. Hence A(f;) = A(f1). Let 8 be any element of II.
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Since Z"(G/p(oz));r = V{gip(a)/p(a) x S™ | giaw < B}, we see that

>
Z

A(f;) (the index i satisfies g;ae < f3)

I>\

(fONG/p(@))s]
(fOX((G/p(e))f),

and hence that [f] € Imp. This concludes the proof. O

K
A(f

We have a Burnside relation for the Lefschetz module. We set
S((G), o)
— (K € S(G) | (K/p(a)) € D(Ga/p(a)) and K/p(a) is cyclic}.
From Theorem 1.1, we have the following corollary (see [5, Theorem 1.6]).

Corollary 1.2 Let o be an element of II. Given a ll-map f: X — X,
one has

|Ga/p(a)| ALK o)) - AFEY = 0
Kes%)ya)’ Nor /oo (K p(@)) S| K/ p(a)]) - A(fa)

mod |Ga/p(e)].

where |Go/p(a)|/ING. /o) (K/p(c))| is the order of

Ga/p(a)/Ng, jp)(K/p(a )) and ¢(|K/p(a)|) is the number of generators of
the cyclic group K/p( ).

Proof. From Theorem 1.1, the group L(G,II) is generated by the isomor-
phism classes of the identity maps of the form [id(¢, /p(a))+]- It is sufficient
to prove for idx: X — X for a Il-complex X. Then clearly Y(XX) =
A(id xx), so that we have the desired result. O
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