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On the Lefschetz module

Ryousuke Fujita
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Abstract. Let G be a finite group. We define a Lefschets module L(G, Π) which

consists of equivalent classes of all Π-maps and prove that it is isomorphic to the Burnside

module Ω(G, Π).
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1. Introduction and statement of results

The purpose of this paper is to define a Lefschets module and to show
that it is isomorphic to a Burnside module. R. Oliver and T. Petrie in-
troduced the Burnside module Ω(G, Π) to solve a topological problem [10],
where G is a finite group and Π is a partially ordered set with a G-action.
This notion is a generalization of the Burnside ring Ω(G). The study of this
direction is done by T. Yoshida [13], in which he presented an antecednt
such that the free abelian group Ω(G, X) has a ring structure. On the other
hand, E. Laitinen and W. Lück defined the Lefschetz ring L(G) [8]. It is
well-known that the Burnside ring is isomorphic to the Lefschetz ring. In
this paper, we study the Lefschets module L(G, Π) which is a group version
of the Lefschetz ring.

Our main theorem is the following.

Theorem 1.1 Let (Π, ρ) be a G-poset. Then a map

ϕ : Ω(G, Π) −→ L(G, Π)

given by [(Gα/ρ(α))+] 7→ [id(Gα/ρ(α))+)] is an group isomorphism, where
id(Gα/ρ(α))+ : (Gα/ρ(α))+→ (Gα/ρ(α))+ is the identity map on (Gα/ρ(α))+.

The proof of Theorem 1.1 is carried out in Section 4. We set

S((G), α)

= {K ∈ S(G) | (K/ρ(α)) ∈ Φ(Gα/ρ(α)) and K/ρ(α) is cyclic},
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where S(G) is the set of all subgroups of G, Gα denotes an isotropy subgroup
of G at α (α ∈ Π) and Φ(G) is the conjugacy class set of G. Applying the
above theorem, we have a Burnside relation for the Lefschetz module.

Corollary 1.2 Let α be an element of Π. Given a Π-map f : X → X,
one has

∑

K∈S((G), α)

|Gα/ρ(α)|
|NGα/ρ(α)(K/ρ(α))| · φ(|K/ρ(α)|) · Λ(fK

α ) ≡ 0

mod |Gα/ρ(α)|.
where (|Gα/ρ(α)|)/(|NGα/ρ(α)(K/ρ(α))|) is the order of
(Gα/ρ(α))/(NGα/ρ(α)(K/ρ(α))) and φ(|K/ρ(α)|) is the number of genera-
tors of the cyclic group K/ρ(α).

2. Notations and Preliminaries

Notations G always denotes a finite group. The set of all subgroups of
G is denoted by S(G). We regard S(G) as a G-set via the action (g, H) 7→
gHg−1(g ∈ G and H ∈ S(G)) and as a partially ordered set via

H ≤ K if and only if H ⊇ K (H, K ∈ S(G)).

By a G-complex we will mean a CW -complex X together with an action
of G on X which permutes the cells. Thus we have for each g ∈ G a
homeomorphism x 7→ gx of X such that the image gσ of any cell σ of X

is again a cell. For example, if X is a simplicial complex on which G acts
simplicially, then X is a G-complex.

Preliminaries. 1. A G-poset (=a partially ordered set with a G-action).
Suppose that Π is a partially ordered set and G acts on it preserving the
partial order. For any α ∈ Π, we set

Πα = {β ∈ Π | β ≥ α}, and Gα = {g ∈ G | gα = α}.
In particular, Gα is called an isotropy subgroup of G at α. Let ρ : Π →
S(G) be an order preserving G-map. A pair (Π, ρ) is called a G-poset if it
is satisfying the following condition: for any α ∈ Π,

ρ(α) C Gα and ρ : Πα → S(G)ρ(α) is injective.
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Note that S(G)ρ(α) = S(ρ(α)) ⊂ S(Gα) and Gα ⊂ Gρ(α) = NG(ρ(α)), the
normalizer of ρ(α) in G. As example of a G-poset, consider (S(G), id).

2. Burnside modules. References: Oliver-Petrie [10], Fujita [5]. Let a pair
(Π, ρ) be a G-poset. A finite G-complex X with a base point ∗ is called a Π-
complex if it is equipped with a specified set {Xα | α ∈ Π} of subcomplexes
Xα of X, satisfying the following four conditions:
( i ) ∗ ∈ Xα,
( ii ) gXα = Xgα for g ∈ G, α ∈ Π,
(iii) Xα j Xβ if α 5 β in Π, and
(iv) for any H ∈ S(G),

XH =
∨

α∈Π with ρ(α)=H

Xα (the wedge sum of Xα’s).

On some examples of Π-complexes and its basic properties, see [4] for
details. Let F denote the family of all Π-complexes and define the equiva-
lence relation ∼ on F by

Z ∼W if and only if χ(Zα) = χ(Wα) for all α ∈ Π (Z, W ∈ F)

where χ(Zα) is the Euler characteristic of Zα.
The set Ω(G, Π) = F/∼ is an abelian group via

[Z] + [W ] = [Z ∨W ] (Z, W ∈ F).

The unit element is the equivalence class of a point. We call Ω(G, Π) the
Burnside module associated with a G-poset Π.

Let α be any element of Π and X a Π-complex. Construct a new space
X ′ by attaching α-cells G/ρ(α)×Di’s to X. Each attachment map

ϕ : G/ρ(α)× Si−1 → X

is defined such that ϕ(gρ(α)×Si−1) ⊂ Xgα. The space X ′ is equipped with
a Π-complex structure:

(X ′)β = Xβ ∪
(⋃

{gρ(α)×Di | gα ≤ β, g ∈ G}
)

for β ∈ Π.

Any Π-complex is constructed from one point by attaching α-cells for α ∈
Π.
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Proposition 2.1 ([10, Proposition 1.5]) One has

Ω(G, Π) ∼=
⊕

α∈A
Z.

Any finite Π-complex X is equivalent in Ω(G, Π) to a sum of the form∑
α∈A aα[(G/ρ(α))+], and the map [X] → {aα}α∈A defines the group iso-

morphism.

3. Definitions

For a G-complex X and a self-map f : X → X, we define

Λ(f) =
∞∑

i=0

(−1)i trace[f∗ : Hi(X;Q) → Hi(X;Q)],

which is called the Lefschetz number of f . Remark that each homology
group is a vector space over Q; moreover, f : X → X is continuous, then
f∗ : Hi(X;Q) → Hi(X;Q) can be seen to be a linear transformation, and
so the trace of f∗ is now the usual trace of linear algebra. If a self-map f is
an identity map, Λ(f) is equal to the Euler characteristic of X. Here we set
Λ(f) = Λ(f)−1, which is called the reduced Lefschetz number of f . If {∗} ∈
X is a base point, and two base point preserving maps are homotopic, each
reduced Lefschetz number coincides. Let A be a base pointed G-subcomplex
of X. Then X/A is naturally equipped with a G-complex structure. Let fA

be the restriction of f to A and fX/A the quotient map X/A → X/A. If the
following diagram

A //

fA

²²

X

f

²²

// X/A

fX/A

²²
A // X // X/A

commutes, then we have Λ(f) = Λ(fA)+Λ(fX/A). Moreover let
∑

f be the
suspension map of f . An easy computation shows that Λ(

∑
f) = −Λ(f).

Let X, Y be Π-complexes. The map f is called a Π-map if a map
f : X → Y be a base point preserving G-map such that

f(Xα) ⊂ Yα for all α ∈ Π.

We denote by fα the restriction of f to Xα. For self Π-maps f : X → X,
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g : Y → Y , we define a equivalence relation by

Λ(fα) = Λ(gα) for all α ∈ Π.

Let Fmap denote the set of all self Π-maps. Then we let L(G, Π) the quotient
set of Fmap by the equivalence relation. The quotient set is an abelian group
via

[f ] + [g] = [f ∨ g] (f, g ∈ Fmap),

where a map f∨g is the standard wedge map. We call L(G, Π) the Lefschetz
module associated with a G-poset Π.

4. Proof of the main theorem

We need the following lemma to prove Theorem 1.1.

Lemma 4.1 Let X be a Π-complex with a subcomplex A and f : X → X

be a Π-map with f(A) ⊂ A. Then for the commutative diagram

A

fA

²²

// X

f

²²

// X/A

fX/A

²²
A // X // X/A,

[f ] = [fA] + [fX/A] ∈ L(G, Π), where fA is the restriction of f to A and
fX/A is the quotient map X/A → X/A.

Proof. Let α be any element of Π. Consider the following cellular chain
complex

0 −→ C∗(Aα) −→ C∗(Xα) −→ C∗(Xα/Aα) −→ 0.

Since each term of this chain complex is a vevtor space over Q, it splits,
therefore C∗(Xα) ∼= C∗(Aα)⊕C∗(Xα/Aα). To calculate trace(fα)], consider
the following diagram:

C∗(Xα)

(fα)]

²²

∼= C∗(Aα)

(fAα )]

²²

⊕ C∗(Xα/Aα)

(fXα/Aα )]

²²
C∗(Xα) ∼= C∗(Aα) ⊕ C∗(Xα/Aα).

Let (a, b) be an element of C∗(Aα)⊕C∗(Xα/Aα) and the image of (a, b) by
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(fα)] be (f1(a, b), f2(a, b)). Then
(

f1(a, b)
f2(a, b)

)
=

(
(fAα)] ∗

0 (fXα/Aα
)]

)(
a

b

)
.

Hence we have trace(fα)] = trace(fAα)] + trace(fXα/Aα
)]. By [12, Lemma

9.18], Λ(fα) = Λ(fAα) + Λ(fXα/Aα
). Thus we get the assertion. ¤

Proof of Theorem 1.1. It is obvious that ϕ is a group homomorphism.
Moreover since

χ((Gα/ρ(α))+) = χ(Gα/ρ(α)) = Λ(idGα/ρ(α)) = Λ(id(Gα/ρ(α))+),

we easily verify that ϕ is injective. We shall show the surjectivity of ϕ. For
any [f : X → X] ∈ L(G, Π), we want to show Im ϕ 3 [f ]. We proceed by
induction on the number of G-cell. The Π-complex X is composed with the
cell structure:

X = X0 ∪ϕ0

( ∐

i0∈I0

(G/ρ(α)×D0)i0

)

∪ · · · ∪ϕn

( ∐

in∈In

(G/ρ(α) ×Dn)in

)
,

where X0 is a subcomplex of X. Moreover we may suppose that ρ(α) is
a minimum isotropy subgroup of X\{∗} and X0\{∗} contains no cells the
isotropy type of which is (ρ(α)). It then follows that the Π-map f : X →
X satisfies f(X0) ⊂ X0. Let f0 be the restriction of f to X0 and f ′ be
the quotient map X/X0 → X/X0. By Lemma 2.1, we have [f ] = [f0] +
[f ′] ∈ L(G, Π). In the case of X0\{∗} 6= ∅, the assertion is already done
by induction. As for the case where X0\{∗} = ∅, namely, X = {∗} ∪
{the cell’s of its isotropy type (ρ(α))}, X has the following cell structure:

X = Xn−1 ∪ϕn

( ∐

in∈In

(G/ρ(α)×Dn)in

)
,

where Xn−1 is the (n − 1)-skeleton of X. By considering the map on the
homotopic level, we may assume that the Π-map f is a cellular map, so
that, f(Xn−1) ⊂ Xn−1 (This is done by the cellular approximation theo-
rem). If Xn−1 6= {∗}, by Lemma 4.1 and induction, we have [f ] ∈ Im ϕ.
Finally we consider the case of Xn−1 = {∗}. (Remark that [f ] = [fXn−1 ] +
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[fX/Xn−1 ] ∈ L(G, Π) in this case, but we can not prove the surjectivity of ϕ

by induction.) Then X is expressible as a wegde sum of some suspensions:

X =
∨

i∈I

(
(G/ρ(α))+ ∧ Sn

)
i
=

∨

i∈I

(∑n
(G/ρ(α))+

)
i
,

where
∑n is the n-th suspension operator. Next we compute the chain

complex of X.

Claim 4.2

Cn(X) =
⊕

i∈I

(Q[G/ρ(α)])i

Proof. We now compute:

Cn(X) = Cn

(∨

i∈I

(∑n
(G/ρ(α))+

))

=
⊕

i∈I

C0((G/ρ(α))+)

=
⊕

i∈I

H0

(
(G/ρ(α))+;Q

)

=
⊕

i∈I

(Q[G/ρ(α)])i,

where each (Q[G/ρ(α)])i is the copy of Q[G/ρ(α)]. ¤

Let f] be a self-chain map on the cellular chain complex C∗(X), where
fi] : Ci(X) → Ci(X) is the i-th term of the chain map f]. Note that each
Ci(X) is a finite-dimensional vector space over Q and the map fi] is a
linear transformation then a choice of basis of Ci(X) associates a square
matrix A to fi]. Let m be the order of the index set I. Let fij be a linear
transformation from (Q[G/ρ(α)])i to (Q[G/ρ(α)])j . Then there exists the
following diagram:

Cn(X)

fn]

²²

∼= (Q[G/ρ(α)])1⊕· · ·
f11

²²

· · ·⊕ (Q[G/ρ(α)])m

fmm

²²
Cn(X) ∼= (Q[G/ρ(α)])1⊕· · · · · ·⊕ (Q[G/ρ(α)])m.

If {xi1 , . . . , xin} is a basis of (Q[G/ρ(α)])i, one extends it to a basis of
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Cn(X). The matrix A of fn] with respect to the extended basis is



A11 ∗ ∗ ∗
A22 ∗ ∗

. . . ∗
0 Ann




,

where Aii is the matrix of fii with respect to {xi1 , . . . , xin}. Hence we have
that trace(fn]) =

∑m
i=1 trace(fii), and so Λ(f) = (−1)n

∑m
i=1 trace(fii). For

each i = 1, . . . , m, we denote by Ai the copy of the subset
∨

g∈G (gρ(α)∧Sn)
of X. A new map gi is the composition:

Ai
i−→ X

f−→ X
qi−→ Ai,

which is a Π-map. In this diagram, i : Ai → X denotes an inclusion map
and qi : X → Ai is the i-th term projection map. It then follows that
gi] = fii : Cn(Ai) → Cn(Ai). Therefore Λ(f) = (−1)n

∑m
i=1 trace(gi]). By

restricting f to Xα, we have Λ(fα) =
∑m

i=1 Λ((gi)α), and so [f ] =
∑m

i=1[gi].
We show that each [gi] ∈ ϕ(Ω(G, Π)). We also denote by f the Π-map∑n(G/ρ(α))+ → ∑n(G/ρ(α))+ without confusion. The desired map fi is
the composition:

giρ(α)/ρ(α)
j−→

∑n
(G/ρ(α))+

f−→
∑n

(G/ρ(α))+
qi−→ giρ(α)/ρ(α),

which is not a Π-map. In this diagram, j : giρ(α)/ρ(α) → ∑n(G/ρ(α))+

denotes an inclusion map and qi :
∑n(G/ρ(α))+ → giρ(α)/ρ(α) is the i-th

term projection map. Let g1 be the unit element of G. Now consider the
following diagram:

g1ρ(α)/ρ(α)× Sn f1−−−−→ g1ρ(α)/ρ(α)× Sn

gi

y
ygi

giρ(α)/ρ(α)× Sn −−−−→
fi

giρ(α)/ρ(α)× Sn.

Here the symbol fi denotes a map from giρ(α)/ρ(α)× Sn to itself and gi is
the left translation by gi. This diagram is obviously commutative. Moreover
gi is a homeomorphism. Hence Λ(fi) = Λ(f1). Let β be any element of Π.
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Since
∑n(G/ρ(α))+β = ∨{giρ(α)/ρ(α)× Sn | giα ≤ β}, we see that

Λ(fβ) =
∑

i

Λ(fi) (the index i satisfies giα ≤ β)

=
∑

i

Λ(f1)

= Λ(f1)|(G/ρ(α))β|
= Λ(f1)χ((G/ρ(α))+β ),

and hence that [f ] ∈ Im ϕ. This concludes the proof. ¤

We have a Burnside relation for the Lefschetz module. We set

S((G), α)

= {K ∈ S(G) | (K/ρ(α)) ∈ Φ(Gα/ρ(α)) and K/ρ(α) is cyclic}.
From Theorem 1.1, we have the following corollary (see [5, Theorem 1.6]).

Corollary 1.2 Let α be an element of Π. Given a Π-map f : X → X,
one has

∑

K∈S((G), α)

|Gα/ρ(α)|
|NGα/ρ(α)(K/ρ(α))| · φ(|K/ρ(α)|) · Λ(fK

α ) ≡ 0

mod |Gα/ρ(α)|.
where |Gα/ρ(α)|/|NGα/ρ(α)(K/ρ(α))| is the order of
Gα/ρ(α)/NGα/ρ(α)(K/ρ(α)) and φ(|K/ρ(α)|) is the number of generators of
the cyclic group K/ρ(α).

Proof. From Theorem 1.1, the group L(G, Π) is generated by the isomor-
phism classes of the identity maps of the form [id(Gα/ρ(α))+ ]. It is sufficient
to prove for idX : X → X for a Π-complex X. Then clearly χ(XK

α ) =
Λ(idXK

α
), so that we have the desired result. ¤
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