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Abstract. A class of Crouzeix-Raviart type nonconforming finite element methods are

proposed for the parabolic variational inequality problem with moving grid on anisotropic

meshes. By using some novel approaches and techniques, the same optimal error estimates

are obtained as the traditional ones. It is shown that the classical regularity condition or

quasi-uniform assumption on meshes is not necessary for the finite element analysis.
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1. Introduction

Variational inequality(VI) theory was introduced by Hartman and Stam-
pacchina [15] as a tool for the study of partial differential equations(PDEs).
Now the VI theory is playing an important role in contact problem, obsta-
cle problem, elasticity problem, traffic problem, and so on. Finite element
method(FEM) for solving VI problems has attracted more and more atten-
tions, see [1, 3-5, 9, 14-16, 21, 30, 32, 37-38]. In 1974, Strang [30] suggested
that the error between the exact solution and the approximate solution of
the obstacle problem using piecewise quadratic finite elements should be
O(h3/2). Brezzi and Sacchi [6] first obtained the error bound O(h3/2−ε),
for any ε > 0, for the above finite element approximation to the obstacle
problem, when the obstacle vanished. Then through a detailed analysis,
Brezzi, et al [5] obtained the same error bound as [6] under the hypothesis
that the free boundary has finite length. Later, Wang L.H. [37] obtained
the same error bound as [5] for the same element without the hypothesis
of finite length of the free boundary. Mark A., et al [21] compared several
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numerical methods for solving the discrete contact problem arising from the
FEMs by using the above element. Computational tests illustrate the use
of these methods for a large collection of elastic bodies, such as a simplified
bidimensional wall made of bricks or stone blocks, deformed under volume
and surface forces. Hua D.Y. and Wang L.H. [17] used P2−P1 finite element
to approximate the displacement field and the normal stress component on
the contact hypotheses and proposed a new mixed finite element approxi-
mation of the VI resulting from the unilateral contact problem in elasticity
was obtained. The same optimal convergence rates as [16] were gained with
fewer freedom degrees. Numerical test showed that it was better than P1 −
P1 method [4] under the reasonable regularity hypotheses. Recently, An-
dreas K., et al [1] introduced a p-version FEM for some quasi-linear elliptic
variational inequalities by partitioning the domain Ω into a finite number
of curvilinear quadrilateral, and derived a priori error estimate. Dietrich B.
[14] derived a posterior estimate for the obstacle problem from the theory
for linear equations, but the theory was simpler only if the Lagrange multi-
plier does not have a nonconforming contribution as it has in actual finite
element computations. Chen Z.M. [10] gave discussion on the augmented
Lagrangian approach to Signorini elastic contact problem by transforming
it into a saddle point problem and derived the optimal error estimates for
general smooth domains which were not necessarily convex. The key in [10]
is a discrete inf-sup condition which guarantees the existence of the saddle
point. Zhang Y.M. [40] discussed the free boundary obstacle problem by
using a piecewise linear finite element and analyzed the convergence under a
stability condition on the obstacle in a defined distance(the maximal radius
of balls contained in the difference set of two regions enclosed by the exact
discrete free boundaries). And also in [38], Wang L.H. obtained the error
bound O(h) for Crouzeix-Raviart type nonconforming linear triangular el-
ement approximation to the obstacle problem. Based on these research,
Suttmeimer F.T. [32] employed the finite element Galerkin method to ob-
tain approximate solutions of VIs, and a unified framework for VIs was
developed. At the same time, adaptive mesh was designed for the FEM
models, and the posteriori error estimates were obtained.

Moving grid methods have been proved powerful for solving time-de-
pendent PDEs, see [12-13, 17, 21, 31]. The general idea [18] is to apply
FEMs in space and choose difference methods with respect to the time
variable, but the grid can vary with time interval. For instance, when we
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consider a time-dependent obstacle problem, since the contact part varies
with time, finer meshes near the contact part is usually used. [12, 35, 13]
applied this technique to the parabolic inegro-differential equation and the
nerve conductive equation in 2-space variables with conforming element,
and the stokes equation with nonconforming element, respectively. The
optimal L2-norm and energy norm error estimates were derived.

Recently, Baines M.J., et al [3] proposed a moving mesh finite element
algorithm for the adaptive solution of time-dependent PDEs with moving
boundaries, the optimal error estimates were obtained. In order to reduce
the computational time and the computer memory, Sutthisak P., et al [31]
proposed a nodeless variable FEM for two-dimensional steady-state and
transient heat transfer problem. The effectiveness of the combined proce-
dure was demonstrated by a heat transfer problem which has exact solution.
Chen H.R., et al [7] suggested a self-adaptive grid moving scheme to predict
the delamination growth process by using a virtual crack closure technique.
The contact effect along the delamination front is considered. The numeri-
cal results showed that the influences of the distribution and location of the
stiffeners, the configuration and the size of the delamination, the boundary
condition and the contact upon the failure behavior of the plates were signif-
icant. [23] have studied the conforming linear triangular FEM for parabolic
VI problems with moving grid. But all of the above studies are based on the
regular assumption or quasi-uniform assumption on the meshes [24,25], i.e.,
hK/ρK ≤ C or h/hmin ≤ C, where denote by hK the diameter of K and by
ρK the largest inscribed circle in K, h = maxK hK , hmin = minK hK and
C is a positive constant which is independent of h and K. However, the
domain considered may be narrow and irregular. For example, in modeling
a gap between rotor and stator in an electrical machine, or in modeling a
cartilage between a joint and hip, if we employ the regular partition, the
cost of calculation will be very high. So for simplicity in the application,
it is an obvious idea to employ the anisotropic partition which has fewer
freedom degrees than the traditional one. But in the anisotropic case, the
above ratio h/hmin may be very large, even tends to infinity, which results
in some difficulties in the estimates of interpolation error and consistency
error for both conforming and nonconforming finite element methods. The
Bramble-Hilbert lemma, i.e., the traditional interpolation theory in Sobolev
spaces, can not be directly applied to the interpolation error estimates. On
the other hand, when we estimate the consistency error on the longer or
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longest side F of the element K, there will appear a term |F |/|K|, which
may tend to infinity and makes the estimate in vain. Recently, there ap-
peared a lot of articles focused on the narrow meshes and anisotropic meshes
for the second order elliptic problems, and some valuable results on conver-
gence and superconvergence were obtained, for example [7,8,24-27]. [28]
investigated an anisotropic Wilson’s element and Carey’s element approx-
imation to the second order obstacle problem. Moreover they relaxed the
restriction of interpolation and simplified the proof in [36] and [37]. Then,
[27] applied a class of anisotropic Crouzeix-Raviart type finite element to
Signorini VI problem and [29] was devoted to a nonconforming finite ele-
ment schemes with moving grid for velocity-pressure mixed formulations of
the nonstationary Stokes problem in 2-D. However, to our best knowledge,
there are few papers devoting to the anisotropic nonconforming FEMs for
the parabolic VI problem.

In this paper, we will discuss a class of anisotropic nonconforming
Crouzeix-Raviart type FEMs for the parabolic VI problem with moving
grid. The Crouzeix-Raviart type element has the least degrees of freedom
among the nonconforming ones. By using some novel approaches, the op-
timal error estimates are obtained. It is shown that the classical regularity
assumption or quasi-uniform assumption on meshes mentioned above is not
necessary for the finite element analysis, and the use of anisotropic meshes
allows to achieve optimal results with fewer degrees of freedom. Moreover,
in the previous studies for time-dependent PDEs and VI problems with
moving grid, the Ritz projection was indispensable in the error analysis, for
example, in [12, 13, 17, 21, 31]. However, with the property of the finite
element spaces, we replace the interpolation of Ritz injection directly [20].
Hence, the proof can be simplified greatly. The idea provided in this pa-
per is helpful to design adaptive algorithms for numerical solutions of the
corresponding problems.

2. Construction and anisotropy of the Crouzeix-Raviart type fi-
nite elements

Let K̂ = [0, 1] × [0, 1] be a rectangular reference element in ξ − η

plane with vertices M̂1(0, 0), M̂2(1, 0), M̂3(1, 1), M̂4(0, 1) and barycenter
M̂5(1/2, 1/2). The four edges are denoted by l̂1 = M̂1M̂2, l̂2 = M̂2M̂3,
l̂3 = M̂3M̂4 and l̂4 = M̂4M̂1. If K̂ is a triangular element with vertices
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M̂1(0, 0), M̂2(1, 0) and M̂4(0, 1), then the three edges are denoted by l̂1 =
M̂1M̂2, l̂2 = M̂2M̂4 and l̂3 = M̂4M̂1. We consider two Crouzeix-Raviart
type elements (K̂, P̂ ,

∑̂
) which are defined on K̂ as follows:

Σ̂ = {v̂1, v̂2, v̂3, v̂4, v̂5}, P̂ = span{1, ξ, η, ϕ(ξ), ϕ(η)} [19], (1)

Σ̂ = {v̂1, v̂2, v̂3}, P̂ = span{1, ξ, η} [34], (2)

where v̂i = (1/|l̂i|)
∫
l̂i

v̂dŝ, i = 1, 2, 3, 4, v̂5 = (1/|K̂|) ∫
K̂ v̂dξdη, ϕ(t) =

(
√

5/2)[3(2t − 1)2 − 1], 0 ≤ t ≤ 1.
For convenience, we remark the above two elements in formulas (1)

and (2) as FE1 and FE2, respectively. Then it can be checked that the
interpolations of them are well-posed and can be expressed as

Π̂v̂ = v̂5 +
1
2
(v̂1 − v̂2 + v̂3 − v̂4) + (v̂2 − v̂4)ξ + (v̂3 − v̂1)η

+
1

2
√

5
(v̂1 + v̂3 − 2v̂5)ϕ(ξ) +

1
2
√

5
(v̂2 + v̂4 − 2v̂5)ϕ(η)

(3)

and

Π̂v̂ = v̂3 + v̂1 − v̂2 + 2(v̂2 − v̂3)ξ + 2(v̂2 − v̂1)η, (4)

respectively.
For the sake of convenience, we assume that Ω ⊂ R2 is a convex polygon,

Jh is a rectangular(or triangular) partition of Ω, which does not need to
satisfy the classical regularity condition or quasi-uniform assumption. But
Jh should satisfy the following maximum angle condition proposed in [2],
i.e., there exists 0 < σ < π such that each interior angle of the elements
is bounded from above by σ. Let K ∈ Jh be a rectangle with vertices
M1(0, 0), M2(hx, 0), M3(hx, hy) and M4(0, hy) in x− y plane, l1 = M1M2,
l2 = M2M3, l3 = M3M4, l4 = M4M1. Without loss of generality, let hx �
hy. We divide each rectangle, along the diagonal, into two triangles to form
triangular subdivision (see Fig. 1). The affine transformation FK : K̂ → K

is defined by{
x = hxξ,

y = hyη.
(5)

The associated finite element is then defined by

Vh =
{

vh : v̂ = vh|K · FK ∈ P̂ ,

∫
F
[vh]ds = 0, for any F ⊂ ∂K

}
, (6)
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Fig. 1. Partitioned meshes

where [vh] denote the jump of vh on F , and [vh] = vh if F ⊂ ∂Ω.
[34] and [26] have proven that the above elements have the anisotropic

property, i.e., for any v̂ ∈ H2(K̂), α = (α1, α2), |α| = 1, there holds

‖D̂α(v̂ − Π̂v̂)‖0,K̂ ≤ C|D̂αv̂|1,K̂ . (7)

Here and below, the positive constant C will be used as a generic constant,
which is independent of hK/ρK and h.
It is easy to prove that ‖ · ‖h = (

∑
K | · |21,K)1/2 is a norm on Vh.

Define the interpolation operator Π: H1(Ω) → Vh as follows, for any v ∈
H1(Ω),

Π|K = ΠK , ΠKv = (Π̂v̂) · F−1
K , (8)

then for any u ∈ H2(Ω), we have

‖u − Πu‖h ≤ Ch|u|2, ‖u − Πu‖0 ≤ Ch2|u|2. (9)

Consider the following parabolic variational inequality problem [23]:⎧⎪⎨
⎪⎩

Find u(x, y, t) : J → V, such that(∂u

∂t
, v − u

)
+ a(u, v − u) ≥ (f, v − u), for any v ∈ V, t ∈ J,

u(x, 0) = u0, for any (x, y) ∈ Ω,

(10)

where J = (0, T ], V = {v ∈ H1
0 (Ω) ∩ H2(Ω): v ≥ 0 a.e. Ω}, a(u, v) =∫

Ω ∇u∇vdxdy, f(v) =
∫
Ω fvdxdy, ∂u/∂t denotes the right derivation of u

with respect to t.
Suppose f ∈ C(J, L∞(Ω)), ∂f/∂t ∈ L2(J, L∞(Ω)) and u0 ∈ H2(Ω) ∩

H1
0 (Ω), then (11) has a unique solution u satisfying [23]

u ∈ L∞(J, H2(Ω)),
∂u

∂t
∈ L2(J, H1

0 (Ω)) ∩ L∞(J, L∞(Ω)) (11)
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with ‖v‖Lp(J,X) = (
∫ T
0 ‖v(t)‖p

Xdt)1/p, ‖v‖L∞(J,X) = supt∈J ‖v(t)‖X .
The following important lemma which is usually used in consistency

error estimate of nonconforming finite element methods can be found in
[34].

Lemma 2.1 For any F ⊂ ∂K, q ∈ H1(K), vh ∈ Vh, there holds∣∣∣∫
F
(q − MF q)(vh − MF vh)ds

∣∣∣
≤ C

|F |
|K|

(
h2

x

∥∥∥∂q

∂x

∥∥∥2

0,K
+ h2

y

∥∥∥∂q

∂y

∥∥∥2

0,K

)1/2

×
(
h2

x

∥∥∥∂vh

∂x

∥∥∥2

0,K
+ h2

y

∥∥∥∂vh

∂y

∥∥∥2

0,K

)1/2
, (12)

where MF q = (1/|F |) ∫
F qds.

It can be seen that the term of order h2
x/hy will appear in the estimate

of (12) when F is a longer edge of K. Thus under the anisotropic meshes,
when hy is small enough, the estimate of (12) will tend to infinity. This
is the essential difference between the anisotropic finite elements and the
conventional elements, and also the key to carry out the consistency error es-
timates for anisotropic nonconforming finite elements. In order to overcome
the above difficulty, we introduce an auxiliary finite element (K, P̃K ,

∑̃
K)

on K as

P̃K = span{1, y},
∑̃

K
=

{
vi =

1
|li|

∫
li

ṽds
}

, (13)

where i = 1, 2 (or i = 1, 3) when K is a triangular (or a rectangular)
element.

Then we set the space Ṽh as

Ṽh =
{

ṽh ∈ L2(Ω): ṽh|K ∈ P̃K ,

∫
li

[ṽh]ds = 0
}

. (14)

Let
∏̃

h : Vh → Ṽh be an interpolation operator defined by

vh �→
∏̃

h
vh = ṽh, (15)

where ∫
li

ṽhds =
∫

li

vhds, i = 1, 2 or i = 1, 3. (16)
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Then it is easy to see that ∂vh/∂y and ∂ṽh/∂y are constants. Even better, by
Green’s formula and (16) we can obtain ∂vh/∂y = ∂ṽh/∂y. Since ∂vh/∂y−
∂ṽh/∂y = 1/|K| ∫K(∂vh/∂y − ∂ṽh/∂y) = 1/|K| ∫∂K(vh − ṽh)nyds = 0.

Now we are ready to estimate the consistency error.

Lemma 2.2 For any ω ∈ H2(Ω), vh ∈ Vh, we have∣∣∣∑
K

∫
∂K

∂ω

∂n
vhds

∣∣∣ ≤ Ch|ω|2‖vh‖h. (17)

Proof. The desired result has been proven for the FE1 in [8]. However,
since the property and construction of the triangular element are quite
different from the rectangular ones, the techniques provided in [8] can not be
employed directly to estimate (17) for the FE2 and we have to develop some
novel approaches to prove it based on the definition of Π̃h and ∂vh/∂y =
∂ṽh/∂y.

Since ∑
K

∫
∂K

∂ω

∂n
vhds =

∑
K

∫
∂K

∂ω

∂n
vhds −

∑
K

∫
K

∂ω

∂y

(∂vh

∂y
− ∂ṽh

∂y

)

=
∑
K

∫
K

∂2ω

∂y2
(vh − ṽh) +

∑
K

∫
∂K

(∂ω

∂x
nxvh +

∂ω

∂y
nyvh

)
ds

−
∑
K

∫
∂K

∂ω

∂y
(vh − ṽh)nyds

=
∑
K

∫
K

∂2ω

∂y2
(vh − ṽh) +

∑
K

∫
∂K

(∂ω

∂x
nxvh

)
ds

+
∑
K

∫
∂K

(∂ω

∂y
nyṽh

)
ds = E1 + E2 + E3,

where E1 =
∑

K

∫
K ∂2ω/∂y2(vh − ṽh), E2 =

∑
K

∫
∂K ∂ω/∂xnxvhds, E3 =∑

K

∫
∂K ∂ω/∂ynyṽhds.

Noticing that ∂vh/∂y = ∂ṽh/∂y and ∂ ˜̂vh/∂ξ = 0, by Poincaré inequal-
ity, we have

‖vh − ṽh‖0,K = h1/2
x h1/2

y ‖v̂h − ˜̂vh‖0,K̂

≤ Ch1/2
x h1/2

y |v̂h − ˜̂vh|1,K̂ ≤ Chx

∥∥∥∂vh

∂x

∥∥∥
0,K

,
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thus

E1 =
∑
K

∫
K

∂2ω

∂y2
(vh − ṽh) ≤ Ch|ω|2‖vh‖h.

By Lemma 2.1, we have

E2 =
∑
K

∫
∂K

∂ω

∂x
nxvhds

=
∑
K

∫
∂K

(∂ω

∂x
− MF

∂ω

∂x

)
nx(vh − MF vh)ds

≤ C
∑
K

∑
F⊂∂K

|F |
hxhy

hy

|F |
(
h2

x

∥∥∥∂2ω

∂x2

∥∥∥2

0,K
+ h2

y

∥∥∥ ∂2ω

∂x∂y

∥∥∥2

0,K

)1/2
h‖vh‖h

≤ Ch|ω|2‖vh‖h.

On the other hand,

E3 =
∑
K

∫
∂K

∂ω

∂y
nyṽhds

=
∑
K

∑
F⊂∂K

∫
F

(∂ω

∂y
− MF

∂ω

∂y

)
(ṽh − MF ṽh)nyds

≤C
∑
K

|F |
|K|

hx

|F |
(
h2

x

∥∥∥ ∂2ω

∂x∂y

∥∥∥2

0,K
+ h2

y

∥∥∥∂2ω

∂y2

∥∥∥2

0,K

)1/2

×
(
h2

x

∥∥∥∂ṽh

∂x

∥∥∥2

0,K
+ h2

y

∥∥∥∂ṽh

∂y

∥∥∥2

0,K

)1/2

≤C
∑
K

hx

hxhy

(
h2

x

∥∥∥ ∂2ω

∂x∂y

∥∥∥2

0,K
+ h2

y

∥∥∥∂2ω

∂y2

∥∥∥2

0,K

)1/2
hy

∥∥∥∂ṽh

∂y

∥∥∥
0,K

≤Ch|ω|2‖vh‖h.

Collecting the above estimates of E1, E2, E3, there yields the desired result.
�

Lemma 2.3 For any vh ∈ Vh, we have

‖vh‖0 ≤ C‖vh‖h. (18)
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Proof. Let ω be the solution of the following second order elliptic problem,{−Δω = g, for any x ∈ Ω,

ω = 0, for any x ∈ ∂Ω.
(19)

By the PDE theory, we have ω ∈ H2(Ω)∩H1
0 (Ω) and ‖ω‖2 ≤ C‖g‖0. Hence,

by Green’s formula and Lemma 2.2,∣∣∣∫
Ω

gvh

∣∣∣ =
∣∣∣−∫

Ω
Δωvh

∣∣∣
≤

∣∣∣∑
K

∫
K
∇ω∇vh

∣∣∣ +
∣∣∣∑

K

∫
∂K

∂ω

∂n
vhds

∣∣∣
≤C‖ω‖2‖vh‖h ≤ C‖g‖0‖vh‖h.

Taking g = vh in the above inequality, there yields the desired result.
Now we introduce the moving grid for the two elements on anisotropic

meshes. Divide the time axis to N parts with points tn (0 = t0 < t1 < · · · <

tN = T ), and let Jn = (tn, tn+1], V h
n = {v(x, tn) ∈ Vh : v is positive at each

nodal of elements} be the associated space with respect to tn, which does
not need to satisfy the above regularity or quasi-uniform assumption.

We choose the approximation solution space Sh of u(x, t) as follows
[23]: the function uh(x, t) in the space Sh has N interpolation functions,
which are determined by the N+1 nodal values of uh(x, t). For each interval
tn < t ≤ tn+1, uh(x, t) is a linear interpolation of uh(x, tn) and uh(x, tn+1).

The value uh
n = uh(x, tn) is determined by the following scheme with

moving grid: For any v ∈ V h
n+1,⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

‖u0 − uh
0‖0 ≤ Ch,

(ûh
n − uh

n, v − ûh
n) ≥ 0,

(uh
n+1 − ûh

n, v − uh
n+1/2) + ah(uh

n+1/2, v − uh
n+1/2)Δtn

≥ (fn+1/2, v − uh
n+1/2)Δtn,

(20)

where

ah(uh, vh) =
∑
K

∫
K
∇uh∇vhdxdy,

uh
n = uh(x, tn), uh

n+1/2 =
(1

2

)
(ûh

n + uh
n+1),

fn+1/2 =
(1

2

)
(f(x, tn) + f(x, tn+1)), n = 0, 1, . . . , N − 1,
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and ûh
n is a correction of uh

n in V h
n+1.

The minimum theory of the second order functional on convex set shows
that uh

n+1 determined by (20) uniquely exists.
Now we divide the domain Ω into two parts:

Ω+(t) = {x ∈ Ω : u(x, t) > 0}, Ω0(t) = {x ∈ Ω : u(x, t) = 0}.
Denote the difference between Ω+(tn) and Ω+(tn+1) by Dn, the Lebesgue

measure of Dn by m(Dn). Like [23], we assume that

N−1∑
n=0

m(Dn) < C, (21)

which means that u does not change quickly from zero to positive. �

3. Error estimates

The error between the exact solution u(x, t) and the approximation
uh(x, t) contains three parts: approximation error by finite element method
in space, finite difference error in time direction and the error due to mesh
changing.

First, we prove the following very important fact. For any u ∈ H1(Ω),
ϕ ∈ V h

n , K ∈ Jh,

ah(u − Πu, ϕ) = 0. (22)

In fact, it is easy to check that, for FE1,
∫
K(u−Πu) =

∫
∂K(u−Πu)ds = 0,

∂ϕ/∂n|∂K and Δϕ|K are two constants, and for FE2, Δϕ|K =
∫
∂K(u −

Πu)ds = 0, ∂ϕ/∂n|∂K is a constant. So we have

ah(u−Πu, ϕ) =
∑
K

∫
∂K

∂ϕ

∂n
(u−Πu)ds−

∑
K

∫
K

Δϕ(u−Πu) = 0.

For convenience, we also introduce the following remarks as [18]:

vn = uh
n − Πnun, en = un − Πnun, n = 0, 1, . . . , N,

v̂n = ûh
n − Πn+1un, ên = un − Πn+1un, n = 0, 1, . . . , N − 1,

vn+1/2 =
1
2
(vn+1 + v̂n), en+1/2 =

1
2
(en+1 + ên),

n = 0, 1, . . . , N − 1,

(23)

where Πn is the restriction of Π when t = tn.
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Lemma 3.1 There holds the following inequality:

(vn+1 − v̂n, vn+1/2) + ah(vn+1/2, vn+1/2)

≤ (en+1 − ên, vn+1/2) + ah(en+1/2, vn+1/2)Δtn +
8∑

j=1

ρj , (24)

where

ρ1 = ah(un+1 − un+1/2, vn+1/2)Δtn,

ρ2 =−1
2
[(un+1 − un, un+1 − Πn+1un+1)

+ ah(un+1, un+1 − Πn+1un+1)Δtn

− (fn+1, un+1 − Πn+1un+1)Δtn],

ρ3 =−1
2
[(un+1 − un, un+1 − Πn+1un)

+ ah(un+1, un+1 − Πn+1un)Δtn

− (fn+1, un+1 − Πn+1un)Δtn],

ρ4 = (fn+1/2 − fn+1, vn+1/2)Δtn,

ρ5 =
1
2

[
(un+1 − un, un+1 − Πn+1un+1)

−
(∂u

∂t
(tn+1), un+1 − Πn+1un+1

)
Δtn

]
,

ρ6 =−
[
(un+1 − un, vn+1/2) −

(∂u

∂t
(tn+1), vn+1/2

)
Δtn

]
,

ρ7 =
1
2

[
(un+1 − un, un+1 − Πn+1un)

−
(∂u

∂t
(tn+1), un+1 − Πn+1un

)
Δtn

]
,

ρ8 =
1
2
[Γh(un+1, uh

n+1 − un+1) + Γh(un+1, ûh
n − un+1)]Δtn,

here Γh(u, v) =
∑

K

∫
∂K(∂u/∂n)vds.

Proof. Substituting vh ∈ V h
n+1 for v ∈ V in (10), we have

(∂u

∂t
(tn+1), vh − un+1

)
+ ah(un+1, vh − un+1)

≥ (fn+1, vh − un+1) + Γh(un+1, vh − un+1). (25)
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So

(un+1 − un, vh − un+1) + ah(un+1, vh − un+1)Δtn

≥ (fn+1, vh − un+1)Δtn + Γh(un+1, vh − un+1)Δtn + E(vh),
(26)

where

E(v) = (un+1 − un, vh − un+1) −
(∂u

∂t
(tn+1), vh − un+1

)
Δtn. (27)

Using the definition vn+1/2 = (1/2)(uh
n+1 − Πn+1un+1 + ûh

n − Πn+1un), we
have

(un+1 − un, vn+1/2) + ah(un+1/2, vn+1/2)Δtn

=
1
2
[(un+1 − un, uh

n+1 − Πn+1un+1)

+ ah(un+1/2, uh
n+1 − Πn+1un+1)Δtn]

+
1
2
[(un+1 − un, ûh

n − Πn+1un) + ah(un+1/2, ûh
n − Πn+1un)Δtn].

(28)

Taking vh = uh
n+1 and vh = ûh

n in (26), respectively, it results in two
inequalities, and then substituting them into (28), there yields

(un+1 −un, vn+1/2) + ah(un+1/2, vn+1/2)Δtn

≥ 1
2
[(un+1 −un, un+1 −Πn+1un+1) + (un+1 −un, un+1 −Πn+1un)]

+
1
2
[ah(un+1/2, un+1 −Πn+1un+1)Δtn

+ ah(un+1/2, un+1 −Πn+1un)Δtn]

+
1
2
ah(un+1/2 −un+1, uh

n+1 + ûh
n − 2un+1)Δtn

+
1
2
(fn+1, uh

n+1 + ûh
n − 2un+1)Δtn +

1
2
[E(uh

n+1) + E(ûh
n)]

+
1
2
[Γh(un+1, uh

n+1 −un+1) + Γh(un+1, ûh
n −un+1)]

= ah(un+1/2 −un+1, vn+1/2)Δtn + (fn+1, vn+1/2)Δtn

+
1
2
[(un+1 −un, un+1 −Πn+1un+1)

+ ah(un+1, un+1 −Πn+1un+1)Δtn

− (fn+1, un+1 −Πn+1un+1)Δtn]

+
1
2
[(un+1 −un, un+1 −Πn+1un) + ah(un+1, un+1 −Πn+1un)Δtn
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− (fn+1, un+1 −Πn+1un)Δtn] +
1
2
[E(uh

n+1) + E(ûh
n)]

+
1
2
[Γh(un+1, uh

n+1 −un+1) + Γh(un+1, ûh
n −un+1)], (29)

where

1
2
[E(uh

n+1) + E(ûh
n)]

=
[
(un+1 − un, vn+1/2) −

(∂u

∂t
(tn+1), vn+1/2

)
Δtn

]
− 1

2

[
(un+1 − un, un+1 − Πn+1un+1)

−
(∂u

∂t
(tn+1), un+1 − Πn+1un+1)Δtn

]
− 1

2

[
(un+1 − un, un+1 − Πn+1un)

−
(∂u

∂t
(tn+1), un+1 − Πn+1un

)
Δtn

]
.

(30)

Similarly, taking v = Πn+1un+1 and v = Πn+1un in (20), respectively, we
have

(uh
n+1 − ûh

n, vn+1/2) + ah(uh
n+1/2, vn+1/2)Δtn

≤ (fn+1/2, vn+1/2)Δtn. (31)

From (29) and (31), we have

(uh
n+1 − ûh

n, vn+1/2) + ah(uh
n+1/2, vn+1/2)Δtn

≤ ah(un+1/2 − un+1, vn+1/2)Δtn + (fn+1/2 − fn+1, vn+1/2)Δtn

+(un+1 − un, vn+1/2) + ah(un+1/2, vn+1/2)Δtn

−1
2
[(un+1 − un, un+1 − Πn+1un+1)

+ ah(un+1, un+1 − Πn+1un+1)Δtn

− (fn+1, un+1 − Πn+1un+1)Δtn]

−1
2
[(un+1 − un, un+1 − Πn+1un) + ah(un+1, un+1 − Πn+1un)Δtn

− (fn+1, un+1 − Πn+1un)Δtn] − 1
2
[E(uh

n+1) + E(ûh
n)]

−1
2
[Γh(un+1, uh

n+1 − un+1) + Γh(un+1, ûh
n − un+1)].

(32)

Notice that
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(vn+1 − v̂n, vn+1/2) + ah(vn+1/2, vn+1/2)Δtn

= (uh
n+1 − ûh

n, vn+1/2) + ah(uh
n+1/2, vn+1/2)Δtn

+ (en+1 − ên, vn+1/2) + ah(en+1/2, vn+1/2)
− (un+1 − un, vn+1/2) − ah(un+1/2, vn+1/2)Δtn

(33)

and substitute (32) into (33), there yields the desired result. �

Lemma 3.2 If f ∈ C(J, L∞(Ω)), ∂f/∂t ∈ L2(J, L∞(Ω)), u0 ∈ H2(Ω) ∩
H1

0 (Ω), and (21) satisfied, then we have the following estimate:

‖vN‖2
0 +

N−1∑
n=0

ah(vn+1/2, vn+1/2) ≤ C[(M2h2 + 1)h2 + Δt], (34)

where M is the times of grid changing, and Mh is bounded,
Δt = max0≤n≤N−1 Δtn.

Proof. First, we estimate ρi (i = 1, . . . , 8) in (24), respectively.
By the coerciveness of ah(u, v) and Cauchy inequality, we can deduce

that

ρ1 =
1
2
ah(un+1 − un, vn+1/2)Δtn

=
1
2
ah

(∫ tn+1

tn

∂u

∂t
dt, vn+1/2

)
Δtn

≤ 1
2

∫ tn+1

tn

∥∥∥∂u

∂t

∥∥∥
1
dt‖vn+1/2‖hΔtn

≤ C
∥∥∥∂u

∂t

∥∥∥2

L2(Jn,H1
0 (Ω))

(Δtn)2 +
1
9
ah(vn+1/2, vn+1/2)Δtn

≤ C(Δtn)2 +
1
9
ah(vn+1/2, vn+1/2)Δtn,

(35)

ρ2 ≤ 1
2

[∫ tn+1

tn

∥∥∥∂u

∂t

∥∥∥
0
dt‖en+1‖0

+ ‖un+1‖1‖en+1‖hΔtn + ‖fn+1‖0‖en+1‖0Δtn

]
≤ [Ch2(Δtn)1/2 + ChΔtn + Ch2Δtn]

≤ C(h2 + Δtn)

(36)

and
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ρ3 = −1
2
[(un+1 − un, un+1 −Πn+1un)

+ ah(un+1, un+1 −Πn+1un)Δtn

− (fn+1, un+1 −Πn+1un)Δtn]

= −1
2

[
(un+1 − un, un −Πn+1un) + ah(un+1, un −Πn+1un)Δtn

− (fn+1, un −Πn+1un)Δtn

+
(∫ tn+1

tn

∂u

∂t
dt,

∫ tn+1

tn

∂u

∂t
dt

)
+ a

(
un+1,

∫ tn+1

tn

∂u

∂t
dt

)
Δtn

−
(
fn+1,

∫ tn+1

tn

∂u

∂t
dt

)
Δtn

]
≤ C[h2(Δtn)1/2 + hΔtn + h2Δtn + Δtn + (Δtn)3/2]

≤ C[h2 + Δtn].

(37)

By ‖vn+1/2‖2
0 ≤ ‖vn+1/2‖2

h ≤ ah(vn+1/2, vn+1/2) and Cauchy inequality, we
have

ρ4 = −1
2

(∫ tn+1

tn

∂f

∂t
dt, vn+1/2

)
Δtn

≤ C

∫ tn+1

tn

∥∥∥∂f

∂t

∥∥∥
0
dt‖vn+1/2‖0Δtn

≤ C
∥∥∥∂f

∂t

∥∥∥2

L2(Jn,L2(Ω))
(Δtn)2 +

1
9
ah(vn+1/2, vn+1/2)

≤ C(Δtn)2 +
1
9
ah(vn+1/2, vn+1/2)Δtn.

(38)

Noticing that ∂u/∂t ∈ L∞(J, L∞(Ω)), like [23], ρ5, ρ6 and ρ7 can be esti-
mated as

ρ5 ≤ C(h2 + Δtn), (39)

ρ6 ≤ 1
9
ah(vn+1/2, vn+1/2) + CΔtn (40)

and

ρ7 ≤ C(Δtn + h2), (41)

respectively.
By (1/2)(uh

n+1 + ûh
n)−un+1 = vn+1/2 +(1/2)(Πn+1un+1 +Πnun)−un+1
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and Lemma 2.2, we can immediately obtain

ρ8 =
1
2
[Γh(un+1, uh

n+1 − un+1) + Γh(un+1, ûh
n − un+1)]Δtn

≤ 1
9
ah(vn+1/2, vn+1/2)Δtn + C[h4 + (Δtn)2].

(42)

So
8∑

i=1

ρi ≤ 4
9
ah(vn+1/2, vn+1/2)Δtn + qn+1 (43)

with
N−1∑
n=0

qn+1 ≤ C(Δt + h2). (44)

On the other hand,

(vn+1 − v̂n, vn+1/2) + ah(vn+1/2, vn+1/2)Δtn

=
1
2
(vn+1 − v̂n, vn+1 + v̂n) + ah(vn+1/2, vn+1/2)Δtn

=
1
2
‖vn+1‖2

0 −
1
2
‖v̂n‖2

0 + ah(vn+1/2, vn+1/2)Δtn,

(ûh
n − uh

n, v − ûh
n) ≥ 0, for any v ∈ V h

n+1

and

ûh
n − uh

n = (v̂n − vn) − (ên − en),

we can observe that

(v̂n − vn, v − ûh
n) ≥ (ên − en, v − ûh

n).

Taking v = Πn+1un in the above inequality, there yields

(v̂n − vn, v̂n) ≤ (ên − en, v̂n),

which implies that

‖v̂n‖2
0 − (vn, v̂n) ≤ (ên − en, v̂n).

Thus for 0 < ξ < 1,

1
2
(‖v̂n‖2

0 − ‖vn‖2
0) ≤ (ên − en, v̂n) ≤ ξ

2
‖v̂n‖2

0 +
1
2ξ

‖ên − en‖2
0,
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i.e.,

(1 − ξ)‖v̂n‖2
0 − ‖vn‖2

0 ≤ 1
ξ
‖ên − en‖2

0, (45)

where we can assume that Sn+1 = Sn. In fact, when Sn+1 = Sn, ên = en,
the right hand side of the above inequality vanishes, then the estimate can
be simplified by choosing ξ = 0.
By Lemma 3.1 and (43)–(45), we have

(1− ξ)‖vn+1‖2
0 −‖vn‖2

0 + 2(1− ξ)ah(vn+1/2, vn+1/2)Δtn

≤ 1
ξ
‖ên − en‖2

0

+ 2(1− ξ)
[
(en+1 − ên, vn+1/2) + ah(en+1/2, vn+1/2)Δtn +

8∑
i=1

ρi

]

≤ 1
ξ
‖ên − en‖2

0 + C(‖en+1 − ên‖2
0 + ‖en+1/2‖2

hΔtn)

+ (1− ξ)ah(vn+1/2, vn+1/2)Δtn + 2(1− ξ)qn+1.

Thus

(1 − ξ)‖vn+1‖2
0 − ‖vn‖2

0 + (1 − ξ)ah(vn+1/2, vn+1/2)Δtn

≤ 1
ξ
‖ên − en‖2

0 + C(‖en+1 − ên‖2
0 + ‖en+1/2‖2

hΔtn + qn+1).
(46)

We rewrite (46) as

ηn+1‖vn+1‖2
0 − ‖vn‖2

0 + ηn+1ah(vn+1/2, vn+1/2)Δtn

≤ 1
ξ
‖ên − en‖2

0 + C(‖en+1 − ên‖2
0 + ‖en+1/2‖2

hΔtn + qn+1),

where, if Sn+1 = Sn, ηn+1 = 1 − ξ, otherwise, ηn+1 = 1.
Multiplying

∏n
i=1 ηi (≤ 1) to the left hand side of the above formula, we

have
n+1∏
i=1

ηi‖vn+1‖2
0 −

n∏
i=1

ηi‖vn‖2
0 +

n+1∏
i=1

ηiah(vn+1/2, vn+1/2)Δtn

≤ 1
ξ
‖ên − en‖2

0 + C(‖en+1 − ên‖2
0 + ‖en+1/2‖2

hΔtn + qn+1).
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Summing it for n, there yields
N∏

i=1

ηi

[
‖vN‖2

0 +
N−1∑
n=0

ah(vn+1/2, vn+1/2)Δtn

]

≤ ‖v0‖2
0 +

1
ξ

N−1∑
n=0

‖ên − en‖2
0

+ C
N−1∑
n=0

(‖en+1 − ên‖2
0 + ‖en+1/2‖2

hΔtn + qn+1).

(47)

On the other hand,

en+1 − ên = (I − Πn+1)
∫ tn+1

tn

∂u

∂t
dt,

thus
N−1∑
n=0

‖en+1 − ên‖2
0 ≤

N−1∑
n=0

∫ tn+1

tn

h2
∥∥∥∂u

∂t

∥∥∥2

1
dtΔtn

≤ C(h4 + (Δt)2)
∥∥∥∂u

∂t

∥∥∥
L2(J,H1

0 (Ω))
.

Since
∏N

i=1 ηi = (1 − ξ)M , it follows from (44) and (47) that

‖v0‖2
0 ≤ Ch4‖u0‖2

2,
N−1∑
n=0

‖en+1/2‖2
hΔtn ≤ Ch2 max

0≤n≤N−1
‖un‖2

2.

Substituting the above estimates into (47), there yields

‖vN‖2
0 +

N−1∑
n=0

ah(vn+1/2, vn+1/2)Δtn

≤ (1 − ξ)−Mξ−1
N−1∑
n=0

‖ên − en‖2
0 + (1 − ξ)−MC(h2 + Δt). (48)

Choosing ξ = 1/(M + 1) in (48), we have

‖vN‖2
0 +

N−1∑
n=0

ah(vn+1/2, vn+1/2)Δtn

≤ C
N−1∑
n=0

(M + 1)‖ên − en‖2
0 + C(h2 + Δt).
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Even since
N−1∑
n=0

‖ên − en‖2
0 ≤ M max

0≤n≤N−1
‖ên − en‖2

0 ≤ CMh4 max
0≤n≤N

‖un‖2
2,

we have

‖vN‖2
0 +

N−1∑
n=0

ah(vn+1/2, vn+1/2)Δtn ≤ C[M(M + 1)h4 + h2 + Δt]

≤ C[(M2h2 + 1)h2 + Δt].

The proof is completed. �

Now we are ready to state our main conclusion of this paper.

Theorem 3.3 Under the assumption of Lemma 3.2, the error between
the approximate of (20) and the exact solution of (10) can be estimated as
follows:

max
0≤n≤N

‖uh
n − un‖2

0 +
N−1∑
n=0

ah(uh
n+1/2 − un+1/2, uh

n+1/2 − un+1/2)Δtn

≤ C(M2h2 + 1)h2 + Δt.

Proof. By the triangle inequality, we have

‖uh
n − un‖2

0 = ‖vn − en‖2
0 ≤ ‖vn‖2

0 + ‖en‖2
0 (49)

and

ah(uh
n+1/2 − un+1/2, uh

n+1/2 − un+1/2)

≤ 1
2
ah(vn+1/2, vn+1/2) +

1
2
ah(en+1/2, en+1/2). (50)

From (9) we can derive

‖en+1/2‖2
h ≤ C[‖un+1 − Πn+1un+1‖2

h + ‖un − Πn+1un‖2
h]

≤ Ch2 max
0≤n≤N−1

‖un‖2
2 ≤ Ch2. (51)

By Lemma 3.2, combining (50) and (51), there yields

N−1∑
n=0

ah(uh
n+1/2 − un+1/2, uh

n+1/2 − un+1/2)Δtn

≤ C[(M2h2 + 1)h2 + Δt]. (52)
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Similarly,

max
0≤n≤N

‖uh
n − un‖2

0 ≤ C max
0≤n≤N

{ah(vn, vn) + h4 max
0≤n≤N−1

‖un‖2
2}

≤ C[(M2h2 + 1)h2 + Δt + h4]. (53)

Thus the desired result follows from (52) and (53). �

Remark We can observe from the above theorem that the grid can not be
changed arbitrarily and the orders of the error estimates are optimal only
if Mh is a bounded constant.
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