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ABSTRACT. In this paper, we consider the second-order nonlinear neutral functional
dynamic equation

(PO((0) + (O =D ) + £ (8, 2(6(1)) =0,

on a time scale T and establish some new sufficient conditions for oscillation. Our
results improve oscillation results for neutral delay dynamic equations on time scales
and are new when d6(¢) > ¢ and/or 0 < y < 1. Furthermore our results can be applied
on the time scales T=AT, for 1 >0, T=¢N={r:t=¢"}, keN, ¢>1, T=N?=
{?:teN}, Tao={V/n:neNo}, Ts = {V/n:neNoy}, and when T=T, = {t, : n€ Ny}
where {7,} is the set of harmonic numbers, etc.

1. Introduction

The study of dynamic equations on time scales, which goes back to its
founder Stefan Hilger [6], is an area of mathematics that has recently received a
lot of attention. It has been created in order to unify the study of differential
and difference equations. Many results concerning differential equations carry
over quite easily to corresponding results for difference equations, while other
results seem to be completely different from their continuous counterparts.
The study of dynamic equations on time scales reveals such discrepancies. The
general idea is to prove a result for a dynamic equation where the domain of
the unknown function is a so-called time scale T, which may be an arbitrary
closed subset of the reals. This way results not only related to the set of real
numbers or set of integers but those pertaining to more general time scales are
obtained.

The three most popular examples of calculus on time scales are differential
calculus, difference calculus, and quantum calculus (see Kac and Cheung [9]),
ie, when T=R, T=N and T=¢™ = {¢':te Ny} where ¢ > 1. Dynamic
equations on a time scale have an enormous potential for applications such
as in population dynamics. For example, it can model insect populations
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that are continuous while in season, die out in say winter, while their eggs
are incubating or dormant, and then hatch in a new season, giving rise to
a nonoverlapping population (see [4]). There are applications of dynamic
equations on time scales to quantum mechanics, electrical engineering, neural
networks, heat transfer, and combinatorics. A recent cover story article in New
Scientist [14] discusses several possible applications. Since then several authors
have expounded on various aspects of this new theory [5]. The book on
the subject of time scale, i.e., measure chain, by Bohner and Peterson [4]
summarizes and organizes much of time scale calculus. For completeness, we
recall the following concepts related to the notion of time scales. A time scale
T is an arbitrary nonempty closed subset of the real numbers R. We assume
throughout that T has the topology that it inherits from the standard topology
on the real numbers R. The forward jump operator and the backward jump
operator are defined by:

o(t):=inf{seT:s> 1}, p(t) :=sup{seT:s<t},

where sup & =inf T. A point ¢ €T, is said to be left-dense if p(¢) =¢ and
t > inf T, is right-dense if a(¢) = ¢, is left-scattered if p(f) < ¢ and right-scattered
if o(t) >t A function g: T — R is said to be right-dense continuous (rd-
continuous) provided g is continuous at right-dense points and at left-dense
points in T, left hand limits exist and are finite. The set of all such rd-
continuous functions is denoted by C,;(T). The graininess function u for a
time scale T is defined by u(7) := o(¢) — ¢, and for any function f : T — R the
notation f?(¢) denotes f(a(?)).

DErFINITION 1. Fix t€ T and let x: T — R.  Define x“(t) to be the number
(if it exists) with the property that given any ¢ > 0 there is a neighborhood U of
t with

Ix(a(0)) — x(s)] — x(£)[a(£) — 5| < elo(t) —s|,  for all seU.

In this case, we say x4(t) is the (delta) derivative of x at t and that x is (delta)
differentiable at t.

We will frequently use the results in the following theorem which is due to
Hilger [6].

THEOREM 1. Assume that g: T — R and let teT.

(1) If g is differentiable at t, then g is continuous at t.

(ii) If g is continuous at t and t is right-scattered, then g is differentiable at t
with
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(i) If g is differentiable and t is right-dense, then

9(t) — g(s)

g%(1) = lim

(iv) If g is differentiable at t, then g(a(t)) = g(t) + u(t)g? ().

In this paper, we will refer to the (delta) integral which we can define as
follows:

DEFINITION 2. If GA(t) = g(t), then the Cauchy (delta) integral of g is
defined by

It can be shown (see [4]) that if g e Cy(T), then the Cauchy integral
G(1) = J"[; g(s)4s exists, ty € T, and satisfies G4 (¢) = g(t), t€ T. We will make
use of the following product and quotient rules for the derivative of the pro-
duct fg and the quotient f/g (where gg” # 0) of two differentiable functions f
and ¢
f)" I e

A:A o'A: A A o d
o) = fg+ 1797 = fg? + f4g°,  an (g -

An integration by parts formula reads

and infinite integrals are defined as

| rwar~ fim Jb f(na,

a

and the integration on discrete time scales is defined by

b
J Fdr="3" wnf ().

a tela,b)

For oscillation of second-order neutral dynamic equations, we refer the reader
to the papers [1], [2], [3], [7], [8], [L1], [12], [13], [15] and [16]. We note that all
the above results for neutral equations are given in the case when y > 1 and
0(t) <t and nothing is known regarding the oscillation of neutral dynamic
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equations when 0 < y < 1 and 6(¢) > ¢. So the natural question now is: If it
is possible to find new oscillation criteria to cover these cases? One of our
aims in this paper is to give an affirmative answer to this question.

In this paper, we consider the nonlinear neutral functional dynamic
equation

(1.1) (P(O) ([ (1) + r(@) y ()] + [ (1, 2(6(1))) = 0,

on a time scale T and we give some new sufficient conditions for oscillation.

Throughout this paper, we will assume the following hypotheses:

(h1) y>0 is an odd positive integer, r(¢f) and p(¢) are real valued rd-
continuous positive functions defined on T, t:T—T, 6:T—T,
() <t for all 1eT and lim,... 9(¢) = lim; . 7(r) = o0;

(h2) f,? (ﬁ)l At = o0, 0 < r(t) < 1;

(h3) f(t,u) : T x R — R is continuous function such that uf(¢,u) > 0 for all
u # 0 and there exists a positive rd-continuous function ¢(¢) defined on T
such that [f(¢,u)| > q(¢)|u?|.

Since we are interested in the oscillatory and asymptotic behavior of solu-

tions near infinity, we assume that sup T = oo, and define the time scale

interval [tp, 0)p by [tp, ) := [tp,0) NT. Throughout this paper these
assumptions will be supposed to hold. Let t*(¢) = min{z(¢),0(¢)} and let

To =min{t*(¢) : t = 0} and ¢*,(¢) =sup{s > 0: t*(s) < ¢t} for t > T. Clearly

if 7(¢) <t, then t*,(¢) = ¢ for t > Ty, 7*,(¢) is nondecreasing and coincides

with the inverse of 7*(¢) when the latter exists. Throughout the paper, we will
use the following notations:

(12)  x(0) == () +r()p(z(r)),  xM:=p(x1)7”,  and  xP .= (x[H7.

By a solution of (1.1) we mean a nontrivial real-valued function y which has
the properties x € CL[t*,(t), ), and xl e CL[c* (t), 0) where C, is the
space of rd-continuous functions. Our attention is restricted to those solutions
of (1.1) which exist on some half line [¢,, c0) and satisfy sup{|y(¢)|: ¢ > t;} >0
for any #; > t,. A solution y of (1.1) is said to be oscillatory if it is neither
eventually positive nor eventually negative. Otherwise it is called non-
oscillatory. The equation itself is called oscillatory if all its solutions are
oscillatory.

The results in the subsection 2.1 cover the case when d(f) > ¢ and the
results in the subsection 2.2 cover the case when J6(¢) < ¢. The results in this
paper can be applied to the equation (1.1) when 0 < y < 1 and/or 6(¢) > ¢ and
improve the results established in [15], in the sense that the results can be
applied on any time scale not only on discrete time scales when x(¢) # 0, which
is the case considered in [15].
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2. Main results

In this section, we state and prove the main oscillation results. We start
with the following Lemmas which play important roles in the proofs of the
main results.

Lemma 2.1.  Assume that (h))—(hs) hold and (1.1) has a nonoscillatory
solution y on [ty, o0)y and x is defined as in (1.2). Then there exists T > t such
that x(t)x" () >0 for t = T.

ProOF. Assume that y(r) is a positive solution of (1.1) on [fy, o0)y. Pick
11 € [ty, 00)p so that #; > 1y and so that y(¢) > 0, y(z(¢)) > 0, y(t(z(¢))) > 0 and
»(0(t)) >0 on [t;,00)r. (Note that in the case when y(¢) is negative the
proof is similar, since the transformation y(r) = —z(¢) transforms (1.1) into
the same form). Since y is a positive solution of (1.1) and ¢(¢) > 0, we have
(see (h3))

(2.1) (xM()? < —q(1)y?(6(1)) <0,  for te[t, o)y
Then x!(¢) is strictly decreasing on [t;,0);. We claim that x'(r) >0 on
[t;,00)p. Assume not. Then there is t € [t;, 00); such that (note x!(z) is

strictly decreasing), x!!/(z;) = ¢ < 0. Then from (2.1), we have x!!l(z) < ¢, for
t > t, and therefore

(2.2) (1) <

PR for t € [t2, 0)y.

Integrating the last inequality from #, to ¢, we find from (/) that

t

" As

— — — @ as t — oo
5] pl//(s) 7

(2.3) x(1) =x(t2) + J x4(s)4s < x(t2) + cJ

15]

which implies that x is eventually negative. This contradiction completes the
proof.

LemmA 2.2.  Assume that (h))—(hs) hold and (1.1) has a nonoscillatory
solution y on [ty, o0)y and x is defined as in (1.2). Then there exists T > ty such
that

(24) (p((xM () + P()x"(5(1)) <0,  for t> T,

where P(t) = q(t)(1 — r(5(z2)))".

ProoF. Assume that y(z) is a positive solution of (1.1) on [ty, c0)y. Pick
t1 € [ty, 00)p so that #; > t; and so that y(¢) > 0, y(z(¢)) > 0, y(z(z(¢))) > 0 and
y(©(t)) > 0 for t > ¢;. (Note that in the case when y(¢) is negative the proof
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is similar, since the transformation y(f) = —z(r) transforms (1.1) into the same
form). Since y is a positive solution of (1.1), then from Lemma 2.1, we see
that (note x[I(¢) >0 and p(¢) > 0)

25)  x(1)>0, x*t)>0, and (xN()? <0, for r>1.
Since 7(f) < ¢ and r(z) > 0, we have from (1.2) and (2.5) that
x(1) = y(0) + r(0) y(z(1)) < y(1) + r(0)x(z(1))
< y(t) +r(t)x(2), for t > 1.

Thus y(t) = (1 —r(¢))x(¢), for t > t;. Then for t > t,, where #, > t; is chosen
large enough, we have

(2.6) Y(0(1) = (1 = r(6(2)))x(6(1)).-

From (2.1) and the last inequality, we have inequality (2.4) and this completes
the proof.

2.1. The case when J(7) > ¢

In this subsection, we establish some sufficient conditions for oscillation of
(1.1) when 6(¢) > t. We start with the following theorem.

THEOREM 2.1.  Assume that (h)—(h3) hold. Let y be a nonoscillatory
solution of (1.1) and make the Riccati substitution

(2.7) w(t) = )

where x is defined as in (1.2).  Then w(t) > 0, for t > T (here T is as in Lemma
2.2) and

28)  wa(t)+ o) +p1/f,(t) W) <0, for te|T, o)y

where

. p\/7(t)P(1,T) v AR
(1) == yP(Z)(pl/V(Z)P(t,T)+J(t)_;)’ and  P(t,T):= JT(W) As

Proor. Let y be as above and without loss of generality, we assume that
there is #; > # such that y(¢) >0, y(z(¢)) > 0, y(z(z(¢))) > 0 and p(5(¢)) >0
for t>t. Then from Lemma 2.1 and (1.2), there exists 7" > #; such that

x(t) > 0, x>0, and xPl() <0, for t>T.
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By the quotient rule [4, Theorem 1.20] and the definition of w(z), we have

From Lemma 2.2, we see that

xé(t))y ()X
7 7

for t>T.
X (1) orts

(2.9) wi(1) < —P(z)(

By the Potzsche chain rule ([4, Theorem 1.90)), if f4(¢z) >0 and y > 1, (note
f? > f) we obtain

1

(2.10) (F1(0) = yj LF(0) + hf A(0) £ (1)

0
1
> yjo L) A0 dh = (£ (1)) (1),

Also by the Potzsche chain rule (4, Theorem 1.90]), if f4(f) >0and 0 <y <1,
we obtain

1

(2.11) (ST =y | [F@) + bl f 2 (0] dhf (1)

0
1

=7 | (L =h) S0+ R (0)] dhf (1)

Jo
1

27 (Fo0) dhf (1) = p(f7 (1)) f 4 (2).

0

Now from (2.10) and (2.11), using f(r) = x(¢) and the fact that x(r) is
increasing and x!'l(¢) is decreasing, we have for y > 1, that

((x())") % (z) - yxlU(2) (x1) 17 ()
(x(t))y(xg(t))y B pl/Vx(z)(xa(l))}'

@) (@)Y e
= PUrx (1) (xo (1)) —Vpl/y(t) (we ()7
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Also for 0 <y <1, we have

() 50 9l (e (0) " (xa)
OG0 = P (OG0

(e (0) 7 ()7 ())1/’_ 1 I
P )xe() | pli(a) (we ()",

Thus
(x7(0)“x (1)

x7(0)(x7(1))”

1
> ym(wv(z))“l/% for y > 0.

Substituting this inequality into (2.9), we have

)C(S 4
(2.12) wa(t) < —P(1) <X"E?)> - ypl/ly([) (wo) 17, for t>T.

Next consider the coefficient of P in (2.12). Since x = x + ux4, we have

x(t) X My
_l+ﬂ(t)%—1+pl/y(t) X

Also since x!(7) is decreasing, we have for ¢ > T, that

t 1/y
x(1) = x(T) + JT(xﬂl(s))”y <p(ls)) As

> x(T) + (x1(1)) /7 L <p<ls))l/yzis > () JT <p(ls)>wgs.

It follows that

x(1) (LN 4
(2.13) ) > L(p(s)) As=P(1,T), fort>T.
Hence

xo() XA (0 @'

S I O O

PP, T) + u(t)
< DAWOPET) for t>T

Hence, we have

x(1) p'1(t)P(1, T)
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Thus for ¢t > T, we have

x*(r) _ x°(1) x(1) (1) p()P(1,T)
e = w0 = () s s e
Now, since d(¢) > ¢ and x(#) is increasing, we have
(2.15) X2 (1) > x(1).
This and (2.14) guarantee that

(1) p'"()P(1, T)
(2.16) (1) = PP T) +o(t) — 1

Put (2.16) into (2.12) and we obtain inequality (2.8) and this completes the
proof.

for t>T.

THEOREM 2.2. Assume that (hy)—(hs3) hold. Furthermore, assume that

(2.17) JOC Q(s)4s = o0.

Io

Then every solution of (1.1) oscillates.

PrOOF. Suppose to the contrary and assume that y is a nonoscillatory
solution of equation (1.1). Without loss of generality we may assume that
y(t) >0, y(z(t)) >0, p(z(z(¢))) >0 and y(d(¢)) >0 for t > T (where T is as
in Theorem 2.1). We consider only this case, because the proof when y(¢) < 0
is similar. Let w be defined as in Theorem 2.1. Then from Theorem 2.1, we
see that w(7) >0 for r > T and satisfies the inequality

2.18)  —wa(t) = 0(1) + /Vy(t) W) > o), for t>T.

From the definition of x[!

’\”U

I(1), we see that

(1) = (X“]U))l/y.
p(1)
Integrating this from 7" to ¢, we obtain

x(t) = x(T) + J; (%s)xm (a“))l/yzls7 for t>T.

Taking into account that x['l(¢) is positive and decreasing, we get

t /
X(t) = x(T) +(x“](l))l/yJ <$)l Ss. fori=T.
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It follows that
¥

_x[ll(l) tr N\
w(t) = 0 < (JIO <m> As | for te [T, 0)q,

which implies, using (%), that lim,,, w(z) = 0. Integrating (2.18) from T to
oo and using lim,_,,, w(¢) =0, we obtain

w1 | o

T

which contradicts (2.17). The proof is complete.

In the following, we consider the case when

(2.19) Jw 0(s)4s < 0.

Iy
We introduce the following notations:

to(* 1 (st
P« = liminf —J Q(s)4s, ¢« := liminf —J Q(s)4s,
50 ), ) i TR

t
[ :=liminf —.
R 6(0)

THEOREM 2.3.  Assume that (hy)—(h3) hold and p? >0. Let y be a
positive solution of (1.1), and x is defined as in (1.2). Define

'wol(t t'w(t
7y := liminf W ), R :=limsup wo ()
= p(f) t— o0 p(1)

where w is defined as in (2.7). Then

(220) b <ra I,
and

Proor. Let y be as above and without loss of generality, we assume that
there is 7 > fy such that y(z) >0, y(z(¢)) >0, y(z(z(¢))) >0 and y(6(z)) >0
for t > T where T is chosen large enough. From Lemma 2.1, we know that x
satisfies (2.5) where x is defined as in (1.2). From Theorem 2.1, we get from
(2.8) that

(2.22) —wA (1) > 0(1) o - 0 W (NI for 1> T.
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First, we prove (2.20). Integrating (2.22) from o(z) to oo and using
lim,—o, w(¢) =0 (see the proof of Theorem 2.2), we obtain

* “ (wo(s) V7w () As
2.2 7 Y| fi T.
(2.23) w2 L(r) Q) S+yL(z> p(s) L=
It follows from (2.23) that
7w (r) 7 JOC e’ J“ (w ()W (s) As
2.24 > —— s)4s +— , for t > T.
250 2 00 20 ) T

Let ¢ be a sufficiently small positive quantity, then by the definition of p, and
r. we can pick T € [T, oo)r, sufficiently large, so that

>r.—e, fort>T).

o s . 'wo(r)
(2.25) Pt Lm O(s)4s = p. — ¢, and o0

From (2.24) and (2.25) and using the fact that p4 >0, it follows that

'w (1) (" s(w?(s)) 757w (s)
(226) p(t) = (l’* - 8) + Vp(t) Ja'(t) p]/y(s)sy-o—l
O 1)
> (e =9+ (=)™ W)Lm i1 48

L[ 24
= (P*—8)+(r*_8)1+1/V[/J<);)7_+‘j, for t > 7.
a(t

Using the Potzsche chain rule ([4, Theorem 1.90]), we see that

-1 ! 1 Ly y
(F) = VL s S ) <ﬁ> dh =G

This implies that

* = =1\ 1
(2.27) J A5 > J (—) As=——.
o(t) ST o) \ 87 a’(1)

Then from (2.26) and (2.27), we have

'w(1)
p(1)

y
Z(p*—a)—l—(r*—e)Hl/y(%), for t > T.
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Taking the liminf of both sides as ¢t — oo, we have
re>pe—e+ (ro—e) VD for 1> T.

Since ¢ > 0 is arbitrary, we get

(2.28) pe <r— D

and this completes the proof of (2.20). Next, we prove (2.21). Multiplying
both sides (2.22) by #"*!/p(¢), and integrating the new inequality from T to ¢
(t=T), we get

[ - [ sggemas [ (550 e

Using integration by parts, we obtain for ¢z > 7' that

() | TP w(T) J <s>'+1>"wr,(s)ds_ J §710(s) s

0 = M e

t V10,0 (+1)/y
3 VJ (s w (v)) s,
r\ p(s)

By the quotient rule and applying the Potzsche chain rule, we see that

SN (A et A (4 Dal(s) _ (r+ Da(s)
p<s>> T s ) S i) Pl

r p(s)

(2.29) (

since p4(¢) > 0. This leads to

7+ hw(1) T7+1W(T)_ ’ﬂ
oS | 29

()

L /YO (+1)/y
_ yJ <S i (S)) As, for t>T.
r\ p(s)

Let ¢ > 0 be given, then using the definition of /, we can assume, without loss
of generality, that T is sufficiently large so that aév) >[—¢ s>T. It follows
that

Then we get that
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p(1) p(T)
t o+l
<- |, seewss
! ,87w(s) B sTw(s) (+1)/y
—I—JT{(y—i— HK »0) y( »0) ) As, for t>T.

Let u(s) := s"w?(s)/p(s), so u’(s) = (s'w’(s)/p(s))", where 1 = %1 It follows
for t > T that

7+ hw(1) - T7w(T) J’ s7LQ(s
p() = p(T) r P

Using the inequality

s j;{w DK u(s) — ()} s

y' Bt

2
Bu — Au* < WT,

where A, B are constants, we get for ¢ > T that

thw(e) T w(T) J’ s7H1

O O

+Jt [+ 1)Ky]y+lgs

r(y+ 1) 24
%}V,gn - J;% 0(s)4s + K" (¢t — T).

It follows from this that

p()y = wp(T) ¢

From (2.8), we see that w is nonincreasing and this implies that w? < w, since
o(t) > t. This gives us that

y y+1 t o+l
t"w(t) - T w(T) lJ s Q((;)As+ K10+ <1 3 €>’ for t> T.
T P\S

t'w (1) - T w(T) _IJ’ s7T1Q(s)ds
pi) = (T t)r pB)

Taking the limsup of both sides as t — oo, we obtain

, T
+KV<”1>(1 —t), for t>T.

_ 0+ — - -
R<-q.+K o q*+(1_8)y(y+1>'
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Since &> 0 is arbitrary, we get that R < —¢, + (1//70+D).  Using this and
inequality (2.28), we get

1
g1y _ -
D <r.—1r, <rn<R<K q*+l?’(V+1>'

Therefore

1
p*+q*£m—+1>7

and this completes the proof of (2.21). The proof is complete.
From Theorem 2.3, we have the following result.

TuEOREM 2.4. Assume that (hy)—(h3) hold and p4 >0. Furthermore,
assume that

yy
2.30 o > .
( ) p ])’z(y + 1)}'+1

Then every solution of (1.1) oscillates.

PrOOF. Suppose to the contrary and assume that y is a nonoscillatory
solution of equation (1.1). Without loss of generality we may assume that
y() >0, y(z(t)) >0, y(z(z(r))) >0 and y(5(¢)) >0 for t > T where T is
chosen large enough. We consider only this case, because the proof when
y(t) <0 is similar. Let w and r, be as defined in Theorem 2.3. Then from
Theorem 2.3, we see that r, satisfies the inequality

pe <. — DO

Using
) y+1
Bu— Ay <« VBT
ICE VAR
we get that
y’
e v
P ey

which contradicts (2.30). This completes the proof. W

We also have as a consequence of Theorem 2.3 the following oscillation
result.
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THEOREM 2.5. Assume that (hy)—(h3) hold and p? >0. Furthermore,
assume that

1

Then every solution of (1.1) oscillates.

In the following, we give an example to illustrate the results in Theorem 2.4
for a mixed type equation. Note the following facts:

0 0
A, ifo<v<l, and Jff<oo, it > 1.
fo

(2.32) J

fo
For more details we refer the reader to [4, Theorem 5.68 and Corollary 5.71].

ExaMPLE 1. Consider the following second-order neutral dynamic equation
Aa(t) = 1)
to(t)(t—1)

where T is a time scale, y=1, ©(t) <t, and 6(t) > t, ©(¢t) and 6(¢) e T and
lim,_., 6(¢) = lim,o, 7(f) = 0, and A >0 is a constant. Now r(t)=1/2,
p(t) =1, f(t,u) = q(t)u, where

1 44
239 [0+ 50|+ YO(0) =0, for te[2,00)y,

_ Mo() - 1)
qt) = to(t)(t—1)
Take any T > 2, and since p(t) =1, we have P(t,T) = P(t,T)=t—T. This
gives
o P(t,T) _ Ma(r) - 1) t—T
0(1) = P(1) P(t,T)+a(t)—t to()(t—1)t—T+a(t)—t

_ Me(t)-1) t-T
C 2ta()(t—1) a(t) =T~

It is easy to see that assumptions (hy)—(h3) hold and also (2.19) is satisfied, since

=3[ 0 T

-1 s-T
-1

I I a(s)(s )o(s) =T

A -1 A () -1
= 2L 5o(s)(s = 1)"S<2J2 o) - -1

AJ"O 1 iro 1
=-| ——=4As<z| ——4s< .
2}y s(s=1) 2) (s=1)2
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To apply Theorem 2.4 it remains to discuss condition (2.30). Note

L A (P (Mol =1) s—T
h2£fmﬁhng®m2h3$f4m(%dﬂ( D os) - )m

A *© A T
> — liminf IJ ( )As
2 ) Bl T 26— 1)

. w s \4
> 2 liminf IJ (1) ds =21,
2 t— o0 0(0 S 2

since
lim inf IJ ————As > liminf tJ 2—As
m ) sels) = R ) ()

© =1\ t
> limi -1 ot
= hggglf ZL([) (2s2> hmglf 2020 =0
Hence, by Theorem 2.4 every solution of (2.33) oscillates if 1. > 1/2/%.

2.2. The case when J(7) <t

In this subsection, we establish some sufficient conditions for oscillation of
(1.1) when 6(¢) <¢. To prove the main results in this subsection we need the
following lemma.

LemMA 2.3.  Assume that (hi)—(h3) hold. Furthermore assume that
(2.34) p? >0, and J 67(s)g(s)[1 — r(d(s))]"4s = oo
fo

Let y be a nonoscillatory solution of (1.1) on [ty, o) and x is defined as in
(1.2).  Then there exists T € [ty, )y, sufficiently large, so that

(i) x(0) > tx4(2) for te[T,0)y

(i) x(2)/t is strictly decreasing on [T, c0)y.

ProOF. Assume that y is a positive solution of (1.1) on [fy, c0)y. Pick
t1 € [ty, 00)p so that #; > 1y and so that y(¢) > 0, y(z(¢)) > 0, y(z(z(¢))) > 0 and
»(0(2)) >0 on [t;,0)r. (Note that in the case when y(f) is negative the proof
is similar, since the transformation y(f) = —z(¢) transforms (1.1) into the same
form). Since y is a positive solution of (1.1), then from Lemma 2.1, we see
that x(¢) satisfies (2.5) for >t where #, > t; is chosen large enough. Let
U(t) :== x(1) — tx4(¢). This implies that U4(7) = —a(1)x44(z), for t € [tr, 00).
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To determine the sign of U4(s) we need to know the sign of x44(z). Since
(see (2.4) and (2.5)) (p(1)(x?(£))")* < 0 on [r, )y, we have after differentia-
tion that

(2.35) A (A1) + p°((x4(0))* <0,  for t > 15.

Using the Po6tzsche chain rule ([4, Theorem 1.90]),

1

(2.36) (7)) =» JO LF(0) + u(Ohf A (0] f (),
we have

1
(2.37) (")) =y JO (1) + hp(0)x (1))~ dhxc (1)

= yx4(1) J; [x4(£) + h[x? (1) — x(2)) " dh

= yx4(1) J [hx47 (1) + (1 — h)x?(2))" " dh.

From (2.35), we have that
PUA(0))! < —pA()(x*(1) <0, for =1,
since p4(¢) >0 and x4(7) >0 for 1 >1t,. It follows that
po((x?(1))* <0,  for t> 1.

This shows, see (2.37), that x44(r) < 0 for ¢ > t,, since the integral in (2.37) is
positive. This implies that U(¢) is strictly increasing on [t,00)y. To com-
plete the proof, we show that there is 4 € [t2, o) with U(ts) > 0, so since U(¢)
is strictly increasing, there exists #3 € [t2, c0) with U(f) > 0 for 7 > #3. Assume
not, then U(f) <0 on [t3,00); for any #3 > t,. Therefore,

X 4 XA — X
(2.38) (it)) _! (:()T(t) 0 __ Z—Eg >0, te[ts, 0)r,

which implies that x(7)/7 is strictly increasing on [t3,00)y. Pick # € [t3,00)1 so
that 0(¢) > (#3) > 0, for ¢ > t4 (note that lim, ., 5(f) = o0). Then x(6(¢))/(¢)
> x(0(#3))/0(t3) =: d > 0, so that x(d(¢)) > do(t) for t > t4. Now integrating
both sides of the dynamic inequality (2.4) from #4 to ¢, we have

t

p(O)(x? (1)) — plta) (x*(t2))" + J P(s)x7(d(s))4s <0, for 1> 1.

1y
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This implies for ¢ > 14, that

t t

P(s)x7(5(s)) s > d"/J P(5)07(5) .

21

239)  pl)i() = j

4

Letting t — oo, we obtain a contradiction to assumption (2.34). Hence there
exists #3 € [t2, c0) such that U(f) >0 on [t3,00);. Consequently,

(2.40) <x(l)>A A —x(n) U@

. = = — <0, tets, )y,

ta(t) to(t)

and we have that x(r)/¢ is strictly decreasing on [f3,00)p. This completes the
proof of the Lemma.

THEOREM 2.6. Assume that (h;)—(hs3) and (2.34) hold. Let y be a non-
oscillatory solution of (1.1) and x and w are defined as in (1.2) and (2.7). Then
w(t) >0, for t > T (here T is as in Lemma 2.3) and

(241) w4+ A0 +y w1 <0, for 1€[T, ).

(1)
where

y
A(t) == P(1) (%) and  P(t) = q(1)(1 —r(6(2)))”.

Proor. Let y be as above and without loss of generality we assume that
there is #; > 7 such that y(¢) >0, y(t(¢)) > 0, y(z(z(¢))) > 0 and p(5(¢)) >0
for 1>1. From Lemma 2.3, since p4(r) >0, we see that (see the proof of
Lemma 2.3) there exists 7 > f; such that

x(1) >0, x4(¢) > 0, and x(f) <0, for t>T.

From the definition of w, by quotient rule [4, Theorem 1.20] and as in the
proof of Theorem 2.1, we get

(1) )
(2.42)  wi(t) < —P(2) (XJZD - ypl/ly(t) (wo (1)) 17, for t>T.

Now, we consider the coefficient of P(¢) in (2.42). From Lemma 2.3, since
(x(2)/t) is decreasing and 6(¢) < ¢ < o(t), we have

() 80
> 20

xo(t) — o(r)

=

(2.43)
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Substituting (2.43) into (2.42), we have the inequality (2.41) and this completes
the proof.

The proof of the following theorem is similar to the proof of Theorem 2.2
(use inequality (2.41)).

THEOREM 2.7. Assume that (h))—(hy) and (2.34) hold.  Furthermore, as-
sume that

JOC A(s)4s = oo.

Io
Then every solution of (1.1) oscillates.
In the following we consider the case when
(2.44) JvA@Ms<mx
0]

We will use the following notations:
L (st
A, = liminf —J A(s)4s, B, :=liminf —J —— A(s)4s.
= p(t) Jo) =t ) p(s)

THEOREM 2.8. Assume that (h))—(hy) and (2.34) hold.  Furthermore, as-
sume that

Y
2.45 Ao>—" .
(245) 17 (y+ 1)

Then every solution of (1.1) oscillates.

Proor. The proof is similar to the proof of Theorem 2.4, by replacing
O(t) by A(z) and so is omitted.
Also we can obtain the following result.

THEOREM 2.9. Assume that (hy)—(h3) and (2.34) hold.  Furthermore, as-
sume that

1
(2.46) Ao+ B> oy

Then every solution of (1.1) oscillates.

In the following, we give an example to illustrate the results in Theorem 2.8.
To obtain the conditions for oscillation we will use the facts in (2.32).
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ExamMpPLE 2. Consider the following second-order nonlinear neutral delay
dynamic equation

N
o7l -1 “\ e
(2.47) (lyl ((y(f) +%J’(T(1))> ) ) +%J’}(5(l)) =0,

tell, o)y,

where >0, and y—2 >0 and is an odd positive integer, t(t), 6(t) € T with
lim, ., 8(t) = lim, ., ©(¢) = 0, and =(t) < t, 6(1) <t. We assume that 5~ (t)
(the inverse of the function 6(t)) exists, and T is a time scale such

© Vi
(2.48) J S%AK .
) ’
Here
_ o) -1 1 po2r—2
— 47 1 == _— -
p(y=0—", 1) 1) 1 1) and  q(t) )

It is easy to see that the assumptions (hy)—(h3) hold. To apply Theorem 2.8 we
must show that conditions (2.34), (2.44) and (2.45) are satisfied. Note (2.34) is
satisfied, since

S © 1\ o?-2
[ o6awn - oo as=p [ o0(;) G4

f 1 §
=p f(@)ya"/z(s)ds

0 0
> B a7 (s)ds = ﬁj 572 As = 0.
1 1

Now, we show that (2.44) holds. To see this note by (2.48) that

[, o= () o ()

0 _y-2 o0 b
:ﬁj a—yAs:ﬁJ T 4s

n S
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Finally we discuss (2.45). Note

t ooyt t y+l 7R A2y—2 y
lim inf lj il A(s)4s = liminf lJ 5 <l> ﬂ—a <@) As

=t fr p(s) i~ )51 \s/) 87(s) \a(s)
1! y—2 11! y—2
iy liminf—J Y As=p liminf—J T4
t—oo  f 1 s7 t—oo  f IS/

t—oo

t
> B liminflJ As = p.
1

Then by Theorem 2.8, every solution of (2.47) oscillates if > y7 /17 (y + 1)"1.
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