The Minimal Condition for Subideals of Lie Algebras Implies that Every Ascendant Subalgebra is a Subideal

Ian STEWART (Received June 16, 1978)

Tôgô [5] has shown that various minimal conditions on ascendant subalgebras of Lie algebras are equivalent to each other. These results generalize earlier ones on minimal conditions for subideals (Amayo and Stewart [2], Stewart [4]). The purpose of this note is to point out a stronger result:

THEOREM. If L is a Lie algebra satisfying the minimal condition for subideals, then every ascendant subalgebra of L is a subideal.

PROOF. We use the notation of Amayo and Stewart [1]. Suppose that A asc L. Let B be a subideal of L, minimal subject to $A \le B$. Then the ideal closure A^B of A in B must be B itself. Let K be the core of A in B (the largest ideal of B contained in A). Passing to the quotient B/K we may assume that A is corefree, and the condition $A^B = B$ remains valid. Let F be the unique ideal of B minimal with respect to B/F having finite dimension (see Amayo and Stewart [1] p. 165). Then F + A si B so, by definition of B, we have F + A = B.

Let $Z = \zeta_1(F)$. Then $Z \cap A$ is idealized both by F and by A, so is an ideal of B. Since A is corefree in B we have $Z \cap A = 0$.

If $F \neq Z$, choose M minimal subject to $M \triangleleft B$, $F \geq M > Z$. By [1] theorem 8.2.3 p. 165, M/Z is infinite-dimensional simple. If $A \cap M \neq 0$ then $(A \cap M) + Z/Z$ asc M/Z. By Levič [3] a simple Lie algebra can have no nontrivial ascendant subalgebras, so we have $A \cap M + Z = Z$ or $A \cap M + Z = M$. But in the first case $A \cap M = A \cap Z = 0$. In the second, $A \cap M \cong M/Z$ which is simple, and $A \cap M$ asc B. But [1] proposition 1.3.5 p. 11 implies that $A \cap M \triangleleft B$, contrary to A being corefree.

Hence $A \cap M = 0$. Now A + Z asc A + M. Consider an ascending series from A + Z to A + M, which must be of the form $(A + X_{\alpha})_{\alpha \le \sigma}$ where $(X_{\alpha})_{\alpha \le \sigma}$ is a series from Z to M. Since M/Z is simple, Levič [3] implies that $A + Z \lhd A + M$. It follows that $A \le C_B(M/Z)$, since $[M, A] \le M \cap (A + Z) = (M \cap A) + Z = Z$. But $C_B(M/Z) \lhd B = A^B$, so $B = C_B(M/Z)$, which is absurd since $M \le B$ and M/Z is simple and infinite-dimensional. This is a contradiction.

Thus the case $F \neq Z$ does not occur, so F = Z and $F = F^2 = Z^2 = 0$. Hence A = B and A is a subideal of L as claimed.

COROLLARY. If L satisfies Min-si over a field of characteristic zero, then the Gruenberg radical $\gamma(L)$ is a nilpotent finite-dimensional characteristic ideal, equal to each of $\beta(L)$, $\rho(L)$, $\nu(L)$.

In [5] Tôgô defines classes Min- \lhd^{σ} and Min-(asc of step $<\sigma$), where σ is an ordinal: these consist of Lie algebras satisfying the minimal condition for the relevant types of subalgebra. Now Min- \lhd^3 is equivalent to Min-si by Amayo and Stewart [2] (Min- \lhd^2 for characteristic zero), hence for $\sigma \ge 3$ we have Min- $\lhd^{\sigma} \le$ Min-si, and for $\sigma \ge 4$ we have Min-(asc of step $<\sigma$) \le Min-si. By the theorem, Min-si=Min-asc, hence all of the above classes are equal to Min-si. This improves the main theorem of Tôgô [5] p. 685.

References

- [1] R. K. Amayo and I. N. Stewart: Infinite-dimensional Lie algebras, Noordhoff, Leyden, 1974.
- [2] R. K. Amayo and I. N. Stewart: Descending chain conditions for Lie algebras of prime characteristic, J. Algebra 35 (1975), 86-98.
- [3] E. M. Levič: On simple and strictly simple rings, Latvijas PSR Zinātņu Akad. Vēstis Fiz. Tehn. Zinātņu Sēr. 6 (1965), 53-58.
- [4] I. N. Stewart: The minimal condition for subideals of Lie algebras, Math. Z. 111 (1969), 301-310.
- [5] S. Tôgô: The minimal condition for ascendant subalgebras of Lie algebras, Hiroshima Math. J. 7 (1977), 683-687.

Mathematics Department,
University of Connecticut,
Storrs CT 06268,
USA
and
Mathematics Institute,
University of Warwick,
Coventry CV4 7AL,
England