
HIROSHIMA MATH. J.
11 (1981), 493-498

Subideals and serial subalgebras of Lie algebras

Ian STEWART

(Received March 24, 1981)

The purpose of this note is to record several facts about the interplay between
finiteness conditions on a Lie algebra, and the structure of its subideals and serial
subalgebras (in the sense of [2] pp. 9, 258). Wielandt [16] has shown that a
subgroup H of a finite group G is subnormal in G if and only if H is subnormal
in <//, #> for every g e G. This, and related criteria given by Wielandt in the
same paper, have been extended to various classes of infinite groups by Hartley
and Peng [7] and Whitehead [14, 15]. We obtain similar results for various
classes of Lie algebras, though with somewhat different proofs owing to the
unavailability of conjugacy arguments. In particular we prove an analogue of
Wielandt's theorem for finite-dimensional Lie algebras over a field of characteristic
zero. Chao and Stitzinger [3] prove a similar result for finite-dimensional soluble
Lie algebras in arbitrary characteristic: their proof can be greatly simplified, and
we do this in Theorem 2.

A generalization to locally finite Lie algebras leads to a criterion for a sub-
algebra of a locally finite Lie algebra to be serial, implying that a simple locally
finite Lie algebra cannot have non-trivial serial subalgebras. (The group-
theoretic analogue of this result appears to be unknown.) This is reminiscent of a
theorem of Levic [9] and Amayo [1] on the nonexistence of ascendant subalgebras
in arbitrary simple Lie algebras.

Notation for Lie algebras will follow Amayo and Stewart [2]. In particular
'<','<]', 'si', 'asc', and 'ser' denote the relations 'subalgebra', 'ideal', 'subideaΓ,
'ascendant subalgebra', 'serial subalgebra' respectively (see [2] pp. 9, 10, 258).
Triangular brackets < > denote the subalgebra generated by their contents. If
L is a Lie algebra the Fitting radical v(L) is the sum of the nilpotent ideals of L
(equal to the nil radical in finite dimensions) and the Hirsch-Plotkin radical
ρ(L) is the unique maximal locally nilpotent ideal. If L is finite-dimensional
we write σ(L) for the soluble radical. In characteristic zero both v(L) and σ(L)
are characteristic ideals (that is, invariant under derivations, see Jacobson [8]

p. 74 and [2] p. 116). If L has finite dimension and the ground field has char-
acteristic zero then v(L) contains every nilpotent subideal of L ([2] p. 114). If
x, y e L we write

[*> »)>] = [x, y, JV , )>] (n repetitions of y)

with similar notation for subspaces. We put
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If H si L then #ω<ι L (Schenkman [11], or [2] p. 10). This very useful fact does

not work for groups. We write H + K to denote the split extension of an ideal
H by a subalgebra K (under suitably specified K-action on //).

1. Finite dimensions

Our results are most satisfactory over fields of characteristic zero:

THEOREM 1. Let L be a finite-dimensional Lie algebra over a field of
characteristic zero. Then a subalgebra H of L is a subideal of L if and only
if H is a subideal of <//, x> for every xeL.

PROOF. If H si L then H si <//, x> for every x e L. For the converse we
argue for a contradiction, assuming L to be a counterexample of minimal dimen-
sion. We have H si <//, x> for all x e L, but H not a subideal of L. By
Schenkman [11] (or [2] Lemma 3.2 p. 10) we have //ω<ι<//, x> for all xeL,
so that //ω<ιL. If Hω^0 then by minimality H/HωsiL/Hω, and //siL, a con-

tradiction. Therefore //ω = 0 and H is nilpotent.
Therefore if heH then </ι>si/Γ, by [2] Lemma 3.7 p. 12. Hence </ι> si

</ι, x> for all x e L. If the theorem were true for the case dim H =1 it would fol-
low that </ι>siL for all heH, hence that //<v(L). Therefore H would be a
subideal. It follows that we may assume dim//=l, so that // = </ι> for some
heL. For all xeL we have [x, n/ι]=0 for some n>0, because </ι> si </ι, x>.
Since Lhas finite dimension, [L, π/ι]=0 for some n>0.

Let S = σ(L). If S = L then every element h for which /ι* is nilpotent lies in
v(L) by Mal'cev [10] (cf. [2] Theorem 4.2(a) p. 341). Therefore //<v(L), so H
siL, which again is a contradiction. Hence S^L. It follows that S + H^L<
since S + H is soluble. By minimality, we have HsiS + H. If 5^0 then (S +
H)/S si L/S by minimality, which implies H si L. Therefore S = 0 and L is semi-
simple. By Jacobson [8] Theorem 8 p. 79 and Theorem 17(1) p. 100, there is an
element fceL such that </z, /c> is a 3-dimensional split simple Lie algebra. But
this contradicts </z> si </ί, /c>, and the theorem is proved.

This proof fails in characteristic p>Q. For soluble algebras the result
remains true, as is proved by Chao and Stitzinger [3]. Their method of proof
can be simplified, as we now show in the case of interest here.

THEOREM 2. Let L be a finite-dimensional soluble Lie algebra over any
field. Then a subalgebra H of L is a subideal ofL if and only if H is a subideal
of <//, x> for every xeL.
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PROOF. Assume L to be a counterexample of minimal dimension. Let B
be a maximal subalgebra of L such that H<B. By minimality, H siB. Let C
be the core in L of B. If C^O then H + C/CsiL/C by minimality. But # +
C<BsoH si //+ C, a contradiction. Therefore C = 0. It follows easily (cf. [13])
that there is a minimal ideal M of L such that L = M + B. Now if

Then

H + M = H0 + Λ f o <α Hn + M = L

so that

// + M si L.

If H + M^L then HsiH + M, a contradiction. But if H + M = L then // = £,
so if xeL\B we have //si <//, x> = <J3, x> = L since £ is maximal. This is the
final contradiction, and the theorem is proved.

(Note that this argument can be used instead of appealing to MaΓcev [10] in
Theorem 1.)

As regards the other criteria in Wielandt [16] : only (e) does not involve

conjugacy in its statement. However, the Lie analogue is false for finite-
dimensional algebras in characteristic zero. It merely asserts that every element

of H acts nilpotently on L. The split 3-dimensional simple algebra provides the
required counterexample. It is of course true for finite-dimensional soluble

algebras in characteristic zero by the result of MaΓcev [10] quoted above.
Theorem 1 would, of course, be immediate if it were the case that in a Lie

algebra L every subalgebra H has a subidealizer, that is, a unique S>H maximal
with respect to H si S. However, as in finite groups, this is in general untrue.
Examples are easy to come by: perhaps the most straightforward is the simple
algebra of type A2. If {α, β} is a system of simple roots (in the terminology of
Jacobson [8] pp. 110, 120) then the subalgebra # = <eα> satisfies

whereas <eα, eβ, eΛ+β, e.β9 £_«_£> is the whole of A2. This is simple, so <eα>
cannot be a subideal.

It is a minor curiosity that in the simple subalgebra of type A ί9 every sub-
algebra has a subidealizer. This is because the ideal relation is transitive in Aί

and its subalgebras, so the idealizer is the same as the subidealizer. For
subalgebras H of a finite-dimensional soluble Lie algebra over a field of char-

acteristic .zero subjdealizers exist, and may be characterized as the full inverse
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image in L of the Fitting null-component of H/Hω acting on IL(Hω)/Hω, using
the methods of Theorem 1. For the soluble characteristic p case they also exist,
as proved by Chao and Stitzinger [3] Theorem 6.

2. Infinite dimensions

For infinite-dimensional Lie algebras we do not expect a result like Theorem 1
in general. Thus let L be any locally nilpotent Lie algebra and O^x eL. Then
<x> is a subideal of <x, }>> for any y e L because <x, y> is nilpotent. But if L
is not Baer (see [2] p. 119) then we can choose x so that <x)> is not a subideal of
L; and if L is not Gruenberg (see [2] p. 126) we can even ensure that <x> is not
ascendant. By restricting attention to locally finite Lie algebras we can turn this
situation to advantage: it is in a sense possible to trace any failure of Theorem 1
to a 'locally nilpotent situation'.

To do this we need a theorem due, for groups, to Hartley [6]. The proof can
be modified to work for Lie algebras (see [2] p. 258). The result is:

LEMMA 3. Let L be a locally finite Lie algebra. Then a subalgebra H is
serial in L if and only if H Π F is serial in F for every finite-dimensional sub-
algebra F of L.

This immediately gives a generalization of Theorem 1:

THEOREM 4. If Lis a locally finite Lie algebra over afield of characteristic
zero and H is a subalgebra, then H SQT L if and only if H ser <ff, x> for every
xeL.

PROOF. One implication is trivial. Suppose now that H ser <#, x> for
every xeL. Let F be any finite-dimensional subalgebra of L, and let xeF.
Then H ser <H, jc>, so

H Π Fser <#, x> n F > <# n F, x>

so H Π F ser <# n F, x>. The latter has finite dimension, so H n F si <H n F, x>
for all x e F. By Theorem 1, H n F si F. This being true for all F we may appeal

to Lemma 3 to deduce that H ser L.

A similar argument works in characteristic p > 0 provided we assume L
locally soluble.

Lemma 3 gives us strong control over the serial subalgebras of a locally finite
Lie algebra when coupled with Schenkman's result mentioned in the introduction.
In fact Schenkman's result generalizes. Amayo [1] has obtained such a gen-

eralization for ascendant subalgebras. We must replace Lω by the locally
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nilpotent residual λL3l(L), defined to be the intersection of the ideals /<ιL for
which Ljl is locally nilpotent.

THEOREM 5. IfL is a locally finite Lie algebra and H ser L then

PROOF. Define a subalgebra K of L by

K = ΣF(F D

where the sum is over all F<L with dim F< oo. In fact K is an ideal of L. For
let xeL, ke(F Γ\H)ω. We can put G = <F, x> which is finite-dimensional, and
then k e (F n H)ω<(G n #)ω<α G, since G n H si G and Schenkman's result applies.
Hence [fc, x]eK, soX<ιL. It remains to note that K = λLm(H). Clearly HjK
is locally nilpotent, so K>λL3l(H); but on the other hand each (F Π H)ω is contained
in λm(H)(]F, because (H n F)/(λm(H) n F) is nilpotent; so K<λL^(H\ This
proves the theorem.

COROLLARY 6. Lef L fre locally finite over a field of characteristic zero.
Then H ser L ι/ and only if H/λm(H) < p(L/λm(HJ).

PROOF. One implication follows because every subalgebra of a locally nilpo-
tent Lie algebra is serial (use Lemma 3 again). The other follows from the fact
that in a locally finite Lie algebra of characteristic zero, the Hirsch-Plotkin radical
contains every locally nilpotent serial subalgebra ([2] p. 261).

COROLLARY 7. Let L be locally finite over a field of characteristic zero,
and suppose that whenever U and V are ideals of L with V <U and U/V locally
nilpotent, it follows that U/V has finite dimension. If H ser <//, x) for every
xeL then H si L.

PROOF. Let K = λm(H) <ι L. Then H/K < p(L/K) and this has finite dimen-
sion by hypothesis, so is nilpotent, and it follows that H si L.

Corollary 7 applies in particular if L (in addition to being locally finite)
satisfies either of the chain conditions Min-o2 or Max~=α2 (see [2] pp. 174, 177),
and also if L is semisimple (defined by insisting that for [7, Fas in Corollary 7 we
have U = V). This reduces to the usual concept in finite dimensions. In particular
a simple locally finite Lie algebra is semisimple. Thus we have proved :

THEOREM 8. Over any field of characteristic zero, a locally finite simple
Lie algebra can have no non-trivial serial subalgebras.

Amayo [1] has proved that a simple Lie algebra can never have a non-trivial
ascendant subalgebra (see also Levic [9]). This is in contrast to a result of Hall
[5] for groups. In fact for groups one must distinguish between simple groups,
strictly simple groups (with no non-trivial ascendant subgroups) and absolutely
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simple groups (no non-trivial serial subgroups). Chehata [4] constructs a non-
absolutely simple group. It is not known if a non-absolutely simple Lie algebra
can exist.

Theorem 4 can be extended to locally finite groups by the same method.
Theorem 5 is false for locally finite groups, because it is false even for finite
groups. The group-theoretic analogue of Theorem 8 appears to be open.

Many of the results of Whitehead [14, 15] extend to Lie algebras, with no
essential changes in their proofs.
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