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Introduction

In the paper [4] it was shown that a connection problem for the hyper-
geometric system of linear differential equations

0.1) (t—B) "ii)z(’ - AX,

where X is an n-dimensional column vector, B=diag [4,, 4,,..., 4,]and A e M (C),
can be solved by the global analysis of the system of linear difference equations

(0.2) (B=2)(z+1)G(z+1) = (z— A)G(z),

which determines coefficients of power series solutions of (0.1). The method of
[4] was effectively applied to solve the connection problem for a system of linear
differential equations corresponding to a one-dimensional section of Appell’s
Fy(a, o', B, B, y; x, y) in [8]. In this paper, dealing with the complete solution
of a connection problem for (0.1) with 4 which is diagonalizable and has only two
distinct eigenvalues, we shall clear up the relation between solutions of (0.1) and
(0.2), and the structure of connection coefficients in more detail.

In Section 1 we shall be concerned with power series solutions of (0.1) near
singularities. In Section 2 we study the system (0.2). In Section 3 we analyze
Barnes-integral representations of solutions of (0.1) and characterize the con-
nection coefficients between solutions of (0.1) near a finite singularity and near
the infinity. It will be shown that these coefficients are given by solutions of an
(n—1)-dimensional hypergeometric system obtained from (0.1). In the last
section, §4, we deal with some examples.

As for other investigations related to this paper, we refer the reader to [1],
[3], [6] and [7].

Hereafter we assume that the diagonal elements 4; (j=1,..., n) of B are all
distinct and A=[a ;] is similar to

nt n2

. ——t— e,
d]ag [ﬂla--" His Haseens 1“2] (nl +n2=n)-

Denoting a;; by v; (j=1,..., n), we furthermore assume the following:
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[Ao] No three 4, lie on a line.
[A;] None of the quantities
v G=lewn). py— i
is an integer.
This implies that there appear no logarithmic solutions.
[A;] None of the quantities
W (k=1,2), p—v; (k=1,2;j=1,.,n)

is an integer.
This condition is related to the reducibility of (0.1) (see [1] and [6]).

§1. Power series solutions of (0.1)

Since (0.1) is a Fuchsian system with regular singularities t=4; (j=1,..., n)
and oo, (0.1) has convergent power series solutions at each singularity. Let t=41
be one of the finite singularities. For brevity of the notation we may assume
that 4,=A. This can always be done by interchanging the components in (0.1)
by the linear transformation X = PY with a permutation matrix P. Furthermore,
without loss of generality, we may assume that

arg(4, —A) <arg(,—A) <---<arg(4,_,—4) <arg(4,—2) + 2n
by the assumption [Ag].
Near t =1 (1=1,), there exists a non-holomorphic solution of (0.1) of the form
(1.1 () = (1=2) Tim=o Gm)(t =2y (It—2I<R),

where v=v, and R=min {|A;—A|; j=1,...,n—1}. The coefficient vectors G(m)
(m >0) are determined uniquely up to a constant factor by the system of linear
difference equations

(B=A(m+1+vG(m+1) = (m+v—A)G(m) (m=0)

1.2
(13 (B—A)vG(0) = 0.

Besides there exist n— 1 holomorphic solutions of (0.1) of the form
X(1) = Xy=0 G(m)(t—A)",

where the coefficient vectors are characterized by the system of linear difference
equations replacing v by 0 in (1.2), i.e., (0.2).

Near t= o0, there exist n linearly independent solutions of (0.1) of the form
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(1.3) YH(@) = (=) T2 H' ()@= (t—=A>R'; k=1,2;1=1,...,n),

where R'=max {|4;—4[; j=1,...,n—1}. The coeflicient vectors H*(r) (r=1)
are determined by the system of linear difference equations

(1.4) (r—w+ AH(r) = (B=A)(r—1=p)H*"(r—1) (r>1)
subject to the initial condition
(1.5) (A= pw)H*'(0) = 0.

For each k (=1, 2), since rank (A — u,)=n — n,, we can choose H¥(0) (I=1,..., n,)
as n, linearly independent eigenvectors of A corresponding to y.

§2. Solutions of (0.2)

In this section, for Barnes-integral representation of X(f) and X(r), we
consider the system of linear difference equations (0.2), where = is a complex
variable and 1=4,.

We first show the following lemma.

LEMMA.

= = Gy oy Gl ha A,
PrROOF. Since A is similar to diag [i,,..., 4y, Us,-.., L], We have
(2.0 (u—A)(n—A4) = 0.
Then we have
(z—py—pa+ A)(z—A) = (z—p)(z—py)l,
which proves the Lemma. 0

Using this formula, we can rewrite (0.2) as

z+1
(2.2) (=) (z=1i) (z—py—pu, +A)(B-2)G(z+ 1) = G(2).

Then, putting

(2.3) G(z) = .Cﬁ.z_—.rff(gz){(,lz): 1) Gz,

we can transform (2.2) into

(z—p =+ A)(B-2)G(z +1) = G(2),
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which is rewritten in the form

(2.4) (z—u,—u,+BA,;B-)G(z+1) = BG(z)

and

(2.5) A, B 1G(z+1) = §(2),

where
- ayy o Qp—1 . A1y }
A11 = | @ eesass N AIZ = : >

L Gn-11"""Ay—1n-1 _ Qu—1n

“TZI = [anl"'ann—l]’ A~22 = [ann]ﬂ

B=diag[1,,.. 7, ], == (=l..,n=1),

and G(z) and §(z) are the vectors which consist of the first n — 1 components and
the last one of G(z), respectively. Namely, as the system of difference equations,
(2.4) is an essential part. We observe that the dimension of (2.4) is equal to n—1.

2.1. Principal solutions in the right half plane
By the Mellin-transformation

8 = =0y S 12=r-19(1)d,

p being a complex parameter, (2.4) is transformed into an (n— 1)-dimensional
hypergeometric system

(2.6) =B 4F = (=1 -~y + BA, B,

In order to define the arguments of t—lj, we put
2 = C\\Unzi{sl;; s>1}.

Then, for te 2, we take the value between arg1,—2n and argi; (arg ;= —
arg(4;—2)) for arg(t—1;) (j=1,..., n—1). Let ¥(p; 1) (j=1,...,n—1) be so-
lutions of (2.6) in 2 which are developed as

qjj(P; 1)

= (emi(t— Ay~ t-mmmtviy

m=0" *l ~'. __~. m
=0 T(p— ;= sy + v, +my CiMUE—4)

neart=41 j» where C {(m) (m >0) are the vectors determined uniquely by the systems
of linear difference equations
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[ (B-7,)Cym+1) = (m+v;—BA; B-")C(m) (m>0)
C0) = ¢,

é; being the j-th unit (n—1)-vector (j=1,...,n—1). Using these ‘T’j(p; ), we
define

— ,,,,l,_,__ jj z—p—1 . j —

@.7) G4 = 1) go =1 P (o dt (j=1,.., n—1)

for z satisfying Re(z—p)>0, where the path of integration is the straight line
from 0 to Zj, argt=arg /Tj and the parameter p is selected as Re (p— 1 —p; — i, +v))
>0 (for every j=1,..., n—1). We here observe that, under the assumption [A,],

arg 1;#arg 1; (mod 2m) (i#j). Concerning these G (z), we obtain the following

PROPOSITION. (i) Gl-(z) is holomorphic and is a solution of (2.4) in Re (z—
p)>0, therefore an entire solution (j=1,...,n—1).

(ii) Gj(z)= ‘T’j(z; 0) for every ze C. Therefore Gj(z) does not depend
onp(j=1,...,n=1).

(iii) As z— oo, |arg z| <m/2+¢ for sufficiently small >0,

G2) ~ F(2),
where Fj(z) is a formal solution of (2.4) of the form
Ffz) = P2yt Iy i-mmmatvsgmtmss 50, Fr)z,
7o) =¢ (j=L...,n-1).

Proor. (i) It is trivial that G (z) is holomorphic and is a solution of (2.4)
in Re(z—p)>0. Then G(z) is analytically continued into the left half plane by
the equation (2.4).

(ii) For Re(z—p)>0and te 2, we put

G A z=p=1{J
20 =Fz =4y S: (=t~ 1¥(p; D)dr,
where the path of integration is a curve in 2 from ¢ to 1; and arg(t—1) is taken
continuously along the path of integration as arg(;—t)=arg(t—,)+n at the
endpoint 4;. For |t—1;| sufficiently small, we have

Giz; 0
= (em'(t_Ij))z—l—m-u1+v12:___o e ”‘ :;lzz'+v17-{—7n_)_ Cl(m) (¢ —Ij)m
= '71(2; 1)

by termwise integration. Since both G #(z; ) and 4 j(z; t) are holomorphic in 2,
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we obtain G,(z; )=P (z; 1) for te 2 and Re (z—p)>0, in particular
Gj(z; 0= Gj(z) = f’j(z; 0).

Moreover, since both G {(z)and ' {(z; 0) are holomorphic in C, we obtain the above
formula for every ze C.

(iii) This asymptotic expansion for |argz|<m/2 is immediately seen by
applying Watson’s lemma (e.g. [5; p. 4]) to the integral representation of G i(z) with
t=1je—', i.e.,

— Z;—p ® —(z—p)t 17 .7t
G = p—oy [ e p; Leydn
and by using Stirling’s formula. Then, putting t=¢!%( for |6| sufficiently small,
we have the asymptotic expansion in the enlarged half plane as stated above
(cf. [5; p. 6 Lemma 2]). 0

REMARK. (i) As to the holomorphy of ¥ (z; 0) in z € C, see [7].

(i1) According to the general theory of difference equations, the fundamental
set of solutions of (2.4) characterized by the asymptotic behavior in (iii) is uniquely
determined.

Now we shall denote by G(z) the solution of (0.2) constructed by G #(z) with
(2.5) and (2.3) (j=1,..., n—1), which will be used for Barnes-integral repre-
sentation of the holomorphic solutions of (0.1) near t=24 in §3.

2.2. Solution having zeros in the left half plane

For the solution of (1.2) we next consider a solution of (2.4) which has zeros
in the left half plane. We first calculate Casorati’s determinant of G 2 0G=1,..,
n—1). Since from the Lemma we have

1 ~ 1 -
o — (r—y. — e - A4
| oGy Gt A G ey A (2—4)
0 1
L0 |
—221 Z"zzzJ

I,_, being the (n— 1)-dimensional identity matrix, we then obtain
det (z—py —p,+ BA B7Y) = (z—v) (z—p;)" "z = po)" .

Therefore we have
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I_In—-l
det [G,(Z)] v)r(z_#l)nz—lr(z Z )il p(2),

where [G(z)] denotes [Gl(z), Gy(2),..., G,_(z)] for short and p(z) is a periodic
function of period 1. Frem Proposition (iii) and Stirling’s formula it is easy to
see that

p(z) ~ I‘I;’;% )‘:J—.l‘m-ﬂz‘*"i

as z— oo, |argz|<m/2+¢ Hence p(z) is indeed a constant equal to the right
hand side of this formula. We consequently obtain

I'In 1 ;L z=1—py—prtvj
TG W)z = )" Tz = )T

Observing from the (1, 2)-block of (2.1) that

det [G(2)] =

(2.8) (v—p,—p,+BA, B1)BA,, =0,

we can define the constants y; (j=1,..., n—1) as the solution of the system of
linear equations

rv+1)
TTOFI=p) TOFT=p)

A,

Uoz

"z 1y,G,(v+1)

In fact, since det [Gj(v+ 1)]#0, these constants are uniquely determined. Using
these ;, we define a solution G(z) of (2.4) by
Go(2) = 1= YjGj(Z)-

Then it is easy to see that Go(v—r)=0 for r=0, 1, 2,....
Now we shall denote by G(z) the solution of (0.2) constructed by G,(z) with
(2.5) and (2.3), and put

G(2) = Go(z+V).
Then it is immediately seen that G(—r)=0 for r=1, 2,.... Observing that
(v=A)Go(v) = (B=A) (v+ 1)Go(v+1) = (v—A)e,,

e, being the n-th unit n-vector, and det (v—A)#0 by the assumption [A,], we
obtain

G(0) = Go(v) = e,.
Hence G(z) is a (non-trivial) solution of .(1.2), which will be used for Barnes-

integral representation of the non-holomorphic solution of (0.1) near t=21in §3.
The solution G,(z) of (2.4) will be considered again at the last part of §3.
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§3. Barnes-integral representation

We consider a Barnes-integral

X,(t) = — é%gcsj(z) T (1= Didz (j=1em n—1),
where the path of integration C is a Barnes-contour running along the straight
line z= —ia from + o0 —ia to 0—ia, a curve from 0—ia to 0+ ia and the straight
line z=ia from O+ia to + oo+ia such that the points z=m (m=0, 1, 2,...) lie
to the right of C and the points z=y,—r (r=0, 1, 2,...; k=1, 2) lie to the left
of C. The constant a is taken as a>max {|Imy]; k=1,2}. In view of the
asymptotic behavior of G;(z), the above integral is absolutely convergent for
[t=Al<|d;—A] (= 1/|Zj|) and equal to the sum of residues at z=m (m=0, 1, 2,...),
ie.,

X{() = T2 Gmy(t—m (1= <|4,—2),
which is a holomorphic solution of (0.1) near t=A.

Now let £ be an arbitrary negative number not equal to Re (u,—r) (r=0, 1,
2,...; k=1,2). We take the positive integer N, (k=1, 2) such that

- (Ne+1) <& —Repy, < =N, (k=1,2).
Replacing the path C by the rectilinear contour L, which runs first from + oo —ia
to £ —ia, next from £ —ia to £+ia and finally from & +ia to + oo +ia, we obtain

X,(0) = = e ghc,.(z) meT i i)edz

Sin wz

sin nz

— YRes [Gj(z) meT (t—l)’}

where the summation covers all poles in the domain encircled by L, and the curve
from —ia to ia of C. Since G(—r)=0(r=1, 2,...) by (2.3), z=—r (r=1, 2,...)
are no longer poles. Then, by (2.3), the integrand has simple poles only at z=
w—r(r=0,1,..., N; k=1, 2) in that domain. Hence we obtain

me T mikk
sin 7,

S Res| G,(2) B2 (1= 1) | = To Ti

k — \—-rt
sin 7z Hi(r) (e —a)7ree,

where
H¥r) =lm,,, ,[(z—=wm+r)G(z)] (r=0,1,2,..;k=1,2),

which is a solution of the system of linear difference equations (1.5) and (1.4).
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In fact, since G(z) is holomorphic at z=y, + 1, we have
(A_,Uk)H',"(O) = limz—»yk [—(Z—A)(Z‘llk)cj(z)]
=lim,,, [-(B=A)(z+1)z—p)G(z+1)] = 0.
For r>1, we have
(r—m+AHYr) =lim_,, _, [—(z— ANz~ +1r)G(2)]
=lim,,,, ., [—(B=A)(z+)(z—m+r)G(z+1)]
= (B=2)(r—1=p) im, s o1y [+ 1=+ r= )Gz +1)]
= (r—1—=p)HY(r—1).

Hence there exist the constants T%! (k=1, 2; [=1,..., n;) such that

_,,zzfi""“: H&(r) = X, TYHM() (r=0,1,2,...;k=1,2).
Actually these constants are uniquely determined by the system of linear equations
Yk, TKH*(0) = ?E?:",,if“‘ H¥(0)
(H*(0)(k=1, 2; I=1,..., n,) are given in advance). This, in turn, is equivalent to

ne Tkl fJk = nfv"ii FQu—u—1y) : =
(1) g, THAME) = - 2 LR g 0) (=1,2),

where A*!(0) denotes the vector which consists of the first n—1 components of
H*!(0), since for an eigenvector H of A corresponding to u, we have

h = (w—v)'4,,H,

where H and h denote the vectors which consist of the first n— 1 components and
the last one of H, respectively. We therefore obtain

Xj() = L=y Xty TH{(E— Dpe XMk HH(r)(1—2)77}

1 —miz
_ jﬁ;.ngG,(z) e =z (i-<1d—2).

We here apply the results of B. L. J. Braaksma [2; pp. 271-278] to the last term.
The integral

1 E+io0 Te Tz .
~ S¢-iw G2 Gin gz (A7 d2

is the analytic continuation of the above integral for ¢ which, in view of the



234 Toshiaki YOKOYAMA

asymptotic behavior of G;(z), lies in the sector
S;={teC;arg(};—A)+e'<arg(t—A) << arg(A;—)+2n—¢'} (¢>0).
Moreover we have

—ni

<Kt - A8

=2 (5776, 22 (1 iy

me
! E-iw sin ©z

as t—o00, te S}, where K is a positive constant independent of ¢ (but depending
on ). Hence X (1) is analytically continued into C\{A+s(1;—4); s>1} and has
the asymptotic expansion

Xi(0) ~ Xk=1 2k, TS'YH(D)

as to o0, teS;={te C; arg(;—A)< arg(t—A)< arg(1;—A)+2n}. Since t=00
is a regular singularity of (0.1) and Y*!(t) (k=1, 2; I=1,..., n,) are convergent,
we therefore obtain

X)) = X3 Xk THYH(D)
for teS;. Consequently the connection coefficients between X (f) and Y*!(r)
(k=1,2; I=1,..., n,) are given by ¥ (1,; 0) (k=1, 2).

As to the non-holomorphic solution of (0.1) near t=A, we analyze the Barnes-
integral

N 1 ~ —-niz
R0 = — TmSC'G(Z)”snig S

where the path of integration C’ is a suitable Barnes-contour defined in a way
similar to the above consideration. Then, for [t—A| <R, we have

X0 = X2 G(m) (1= A+
and
R(0) = S5t v, {Shey Digerts GO0 T T SN HNG) (1= )

_ 1
2ni

Ee-m’z vz
SL;, Gj(z+) sin nz (t—4) dz},

where L} is a suitable rectilinear contour and N; (k=1, 2) are suitable positive
integers. Hence the above X(t) is the non-holomorphic solution of (0.1) near t=A
and is analytically continued into the sector

NA1Z1S; = {te C; arg (4, — ) < arg (t—A) < arg (4, — 1) +2n} ,

and we have
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— $°2 ni Jpmiv sin mp, _Sa-1 4. Tkl yri
(D) R() = Ti Ten e I Sty T v

for te N\7z1 S;. 1In order to obtain an analytic continuation of X(t) into another
sector, we anew take

6(z) = Syl y,e2i9G (2 +),
where §; (j=1,..., n—1) are suitable integers, instead of
G(z) = Tn219,G(z+v).
Then we obtain the analytic continuation of X(¥) into N4=1 S;(6;), where
(3.3) Si0))={teC; arg(4;—A)—2nd;< arg(t—A)< arg(4;—A)—2nd;+2n}
(j=1,...,n—1).

Now, in order to characterize y; and the coefficients in (3.2), we shall investi-
gate the solution Gy(z) of (2.4). Let &(p; t) be a solution of (2.6) near t=co
corresponding to the exponent —(p—1—v). Then it is easy to see that &(p; 1)
has an expansion of the form

Blps 1) = (et~ o T Ry

near t= o0, where K(r) (r>1) are the vectors determined uniquely by the system
of linear difference equations

(3.4) (r+1+v—p;—p,+BA B-HR(r+1) = BK(r)
subject to the initial condition
(v—py—p,+BA;  B-HR(0) = 0.

Observing (2.8), we here define

5o r(v+1) =~ _
K@) = — N CES TR K CES BN BA,, (=G,(v+1)).

Then, since (3.4) is equivalent to (2.4), we have

R(r) = Gy(r+1+v) (r=0,1,2,..).
We therefore consider a Barnes-integral
n.e—m'z
in

d(p;t) = — .2-17?1,— SC" Goz+14+V) T(z—p+1+v) e tp=1-v=z gz,

where
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Go(z+14v) = Xzl y,e2nidzG (z+1+v) (3¢ Z),

the path of integration C” is a suitable Barnes-contour and we temporarily assume
that p#v (mod 1). By an analysis similar to the above we obtain

P(p;t)=3%, Go(r+1+v)F(r—p+1+v)tf’“‘“"
1) p—1—v—r
sin n(p—v) 220 F(p —r) (1

ne""i(ﬂ_") ~

for |t| >max {Iij];j= 1,...,n—1} (observe that e?"i%ir=1 for re Z). Moreover
we obtain

s metHe <—1) m
‘D(P, t) - sin TL'(p—V) m=0 G (p m)t
1

'SL G (Z+1+V) F(Z—p-'—l-*-v)*, e 1P 1—-v— de

2mi nmnz

where L%~ is a suitable rectilinear contour and N” is a suitable positive integer.
Since

0 = -
5‘1’;(1); N=-Y¥Y(p—1;1)

we have

=0 { —ml!)"L Go(p—m)tm

- i8:(p—v v 1 m
= Z;g:}yjeZma,(p ) YN — o at"' (p t) O.I .

Then, observing the asymptotic behavior of G (z) and that the last summation in
the above is the sum of the first N+ 1 terms of Taylor’s series of ¥ ip; D), we see

that $(p; ?) is analytically continued into the sector Nzl S 1((5 ), where

§j(5j) = {te 9; arg /Tj+21r5j—27r< argt< arg Zj+2n6j} (j=1,...,n-1),
and we have
(3.5) B(p; 1) = Tl yermio e ¥ (p; 1)

for te M1z} Sl(éj). Consequently y;e2i%:(0=v) (j=1,..., n—1) are the connection
coefficients between &(p; t) and ¢j(p; ) (j=1,..., n—1) in the sector N7} §j(6j).
Since we can drop the assumption that p#v (mod 1) in (3.5) by the holomorphy
of &(p; t) and t.‘f’j(p; t) in p € C, we therefore obtain



Hypergeometric systems 237

Gol) (= Xjl 7,058 (2) = Bz 0)

for every ze C, where &(z; -) means the analytic continuation through the
sector "z} §,(8;). Hence the coefficients

k1 — pmiv sin m, n=1 . ,2mid;(ux—v) Tkl
(3.6) T(0,,..., 0,_y) =€ sin 7(u, —v) Ziyje KV TR

(k=1,2;1=1,....n),

which correspond to the analytic continuation of X(t) into the sector MN1Z1 S46,),
are characterized as the unique solutions of the systems of linear equations

(3.7) Sy, TH(Sy,..., 8,-,)H(0)
o me ) TQu— i — 1) ey -
sin ”(ﬂk—") r(#k+l) (:ukvo) (k 1,2),
where @(u,; -) means the analytic continuation through the sector Y= §j(5j).
Consequently the connection coefficients between X(t) and Y*!(t) (k=1, 2;

I=1,..., n,) are given by &(y,; 0) (k=1, 2), of which the sector of analytic con-
tinuation corresponds to that of X(t).

We summarize all results derived above in the following

THEOREM. Let Yk(t) (k=1, 2; I=1,..., n,) be solutions of (0.1) of the form
(1.3) near t=o00, and let S(6;) (j=1,..., n—1) be sectors defined by (3.3), where
the 6; are integers.

(i) For each j(=1,..., n—1), the holomorphic solution X (t) of (0.1) near
t=2A which is characterized by X ()= G 0), where G (0) is constructed by (2.7)
with (2.4), (2.5) and (2.3), is holomorphic in C\ {A+s(A;—A); s>1} and

Xj(1) = XRoy Xiky 20 0mTHYk(1) (1€ 5,(6;)

holds, where the constants TX! (k=1, 2; I=1,..., n,) are determined by (3.1).
(ii) The non-holomorphic solution X(t) of (0.1) near t=A of the form (1.1)
with G(0)=e, is analytically continued into a sector N1z S4(6;) and

X(t) = X3y Ty TH(Sy,e.e, 8, ) YHU) (1 NZ) SH6,)

holds, where the constants T*(5,,...,6,_,) (k=1,2; I=1,..., n,) are determined
by (3.7) (or (3.6)).

(iii) X 0 (j=1,...,n—1) and X(t) form a fundamental set of solutions of
(0.1).

REMARK. (i) About the integers 6; (j=1,..., n—1) in (ii) we actually choose
them as N1Z] S(6;)#9.
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(i) The fact in (iii) is immediately seen by det [G (0)]#£0.

ReMARK. The system (2.6) with p=p,, whose solutions give the connection
coefficients as above, is indeed reducible to an n,-dimensional system of linear
differential equations (which is no longer a hypergeometric system in general).
This fact is easily seen by rank (u, —u, —u, + A)=n, (k=1, 2).

§4. Examples

ExampLE 1 (1-dimensional section of Appell’s F3).
B = diag [4g, 49> 415 421,
A = [a,] ~ diag [uy, py, pa, po] With ay, = a,; =0.
See [8] in detail.
ExampPLE 2 (Jordan-Pochhammer system).
@.1) (- 4X <p+[ el D X,
a, a,a,

where B=diag[4,,..., 4,]. In this case the (n—1)-dimensional hypergeometric
system corresponding to (2.6) becomes again a Jordan-Pochhammer system. We
here describe connection formulas only for non-holomorphic solutions near finite
singularities: Assume the assumptions corresponding to [A,~A,]. Let

Pk <p; i“""" i" t)(k: 1,..., n) be solutions of (4.1) characterized by
1,...’ n

fim,...,, (t— A,)~(#*ai) Pk <p; Frovers B t) —e (k=1,.,n),
1 n

geeey

Alyenes Ay
ag,..., a,

where e, denotes the k-th unit n-vector. Besides let 0, <p; t) and

Qﬂ‘,’f<p; A B t)(k, j=1,...,n, j#k) be solutions of (4.1) characterized by
192y Yp
. ot A Afyeres A a1
lim,_, ot (P+°‘)Q,,<p; Loeee> %n t> ={ : },
! aig,..., a, a,

where a=a, +---+a,, and

Mooy 2y

ai,..., a,

lim, - o t‘PQ’,:'f<p; t> —e;—e (kj=l,.n,j#k),

respectively. Then we have

Alyenes 4
k . 195
P,,(p, a,...,a, t)
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— F(“)F(P"‘ak“‘l) _ 7k ajA( ./11’ "An >
IF(p+a+1)I'(a,+1) ,l;[k( 450 P ag,..., a, !
_ I'(=o)I'(p+a+1) ko1 kok—1 kok+1 k,n
FoD ot o [0 (0., Q510 Q4 1(0)...., Q47(0)]

1,{""’ z’Iz—la Zl’g‘f'l""’ Ik 0>’

X Ean—l<-a_l. "
t) for short, Zk=(;—4)"'(j#k) and

’ Ayyeeny Ag—15 Agt15---5 Ay

,An

b n

where Q%-i(t) denotes Q’;J(,,;iun-
Laee

B, = diag[A%,..., 2k _, Xk, (..., 7¥] (k=1,..., n).
The paths of analytic continuation in these formulas are taken as in §3.
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