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Introduction

In the paper [4] it was shown that a connection problem for the hyper-

geometric system of linear differential equations

(0.1) (t-BΪ-ΊX.-AX,

where X is an n-dimensional column vector, £ = diag [Λ,l5 A2,..., λ^\ and A e Mn(C),

can be solved by the global analysis of the system of linear difference equations

(0.2) (B-λ)(z+l)G(z+l) = (z-Λ)G(z),

which determines coefficients of power series solutions of (0.1). The method of

[4] was effectively applied to solve the connection problem for a system of linear
differential equations corresponding to a one-dimensional section of AppelΓs
F3(α, α', β, β'9 y; x, y) in [8]. In this paper, dealing with the complete solution
of a connection problem for (0.1) with A which is diagonalizable and has only two
distinct eigenvalues, we shall clear up the relation between solutions of (0.1) and
(0.2), and the structure of connection coefficients in more detail.

In Section 1 we shall be concerned with power series solutions of (0.1) near

singularities. In Section 2 we study the system (0.2). In Section 3 we analyze

Barnes-integral representations of solutions of (0.1) and characterize the con-
nection coefficients between solutions of (0.1) near a finite singularity and near

the infinity. It will be shown that these coefficients are given by solutions of an

(n — l)-dimensional hypergeometric system obtained from (0.1). In the last
section, §4, we deal with some examples.

As for other investigations related to this paper, we refer the reader to [1],

[3], [6] and [7].
Hereafter we assume that the diagonal elements λj (_/=! , . . . , n) of B are all

distinct and A = \_ajk] is similar to

Denoting ajΊ by v, (/=!,..., fi), we furthermore assume the following:
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[A0] No three λj lie on a line.
[Aj] None of the quantities

is an integer.

This implies that there appear no logarithmic solutions.

[A2] None of the quantities

μk (fc = l,2), μk-vj (fc = l, 2; ; = !,..., n)

is an integer.

This condition is related to the reducibility of (0.1) (see [I] and [6]).

§ 1. Power series solutions of (0.1)

Since (0.1) is a Fuchsian system with regular singularities t = λj (7 = !,..., n)

and oo, (0.1) has convergent power series solutions at each singularity. Let t = λ

be one of the finite singularities. For brevity of the notation we may assume

that λn = λ. This can always be done by interchanging the components in (0.1)
by the linear transformation X = PY with a permutation matrix P. Furthermore,

without loss of generality, we may assume that

arg(λ,-λ) < arg(A 2-A) <•••< arg^^-A) < a r g ( A j - A ) + 2π

by the assumption [A0].

Near t = λ (λ = λn), there exists a non-holomorphic solution of (0.1) of the form

(1.1)

where v = vn and R = min{\λj — λ\',j = l,...9n — l}. The coefficient vectors G(m)
(m>0) are determined uniquely up to a constant factor by the system of linear

difference equations

(B-λ)(m+ l + v)o(m+l) = (m + v-4)6(wi) (m>0)
(1-2)

Besides there exist n — i holomorphic solutions of (0.1) of the form

where the coefficient vectors are characterized by the system of linear difference

equations replacing v by 0 in (1.2), i.e., (0.2).

Near f=oo, there exist n linearly independent solutions of (0.1) of the form
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(1.3) Ykl(t) = (t-λY*Σ?=oHkl(r)(t-λΓr ( | f - λ | > R ' ; f c = l , 2; /=!,..., W j k),

where Rf = max{\λj-λ\\j=\,...,n-\}. The coefficient vectors Hkl(r) (r^l)

are determined by the system of linear difference equations

(1.4) (r

subject to the initial condition

(1.5)

For each k (= 1, 2), since rank (A — μk) = n — nk, we can choose H k I ( Q ) ( l = 1,..., nΛ)

as w fc linearly independent eigenvectors of /ί corresponding to μfc.

§ 2. Solutions of (0.2)

In this section, for Barnes-integral representation of X(t) and X(t), we

consider the system of linear difference equations (0.2), where z is a complex

variable and λ = λn.

We first show the following lemma.

LEMMA.

PROOF. Since A is similar to diag [μ1?..., μ1? μ2,..., μ2], we have

(2.1) (μι-A)(μ2-A) = 0.

Then we have

(z-μί-μ2 + A)(z-A) = (z-μι)(z-μ2)I9

which proves the Lemma.

Using this formula, we can rewrite (0.2) as

(2.2) . (z-μι-μ2 + A)(B-λ)G(z+\) = G(z).
v z ~^ι) (z ~ ^2)

Then, putting

(2.3) G(z) = Ώ f c f e ) G(z) ,

we can transform (2.2) into
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which is rewritten in the form

(2.4) (z-μt-μz + BAuB-Wz + l) = BG(z)

and

(2.5) A2lB-*G(z+l) = g(z),

where

0=1,..., ii-l),

and G(z) and #(z) are the vectors which consist of the first n — \ components and

the last one of G(z), respectively. Namely, as the system of difference equations,

(2.4) is an essential part. We observe that the dimension of (2.4) is equal to n — 1 .

2.1. Principal solutions in the right half plane

By the Mellin-transformation

p being a complex parameter, (2.4) is transformed into an (n — l)-dimensional

hypergeometric system

(2.6) (ί-β) = (p-l-μ1-/

In order to define the arguments of ί — i,, we put

Then, for te®, we take the value between argly — In and argly (argly = —

arg(λ -λ)) for arg(f-!;) 0=1,..., n-1). Let Ψ j(p; t) 0=1,..., n-1) be so-

lutions of (2.6) in & which are developed as

J(P; 0

near t = ly, where Cj(m) (m ̂  0) are the vectors determined uniquely by the systems

of linear difference equations
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βj being the j th unit (n — l)-vector (7= 1,..., n — 1). Using these Ψj(p\ ί), we
define

(2.7) δ/z) = Γ(zz7) ί*"""1 */p; OΛ 0= i,..., Λ- i)

for z satisfying Re(z — p)>0, where the path of integration is the straight line
from 0 to Ay, arg t = arg λj and the parameter p is selected as Re (p — 1 — μ l — μ2 + v7 )
>0 (for every 7 = 1,..., n — 1). We here observe that, under the assumption [A0],
arg I,- ̂  arg λj (mod 2π) (i φj). Concerning these (//(z), we obtain the following

PROPOSITION, (i) C//(z) is holomorphic and is a solution of (2 A) in Re(z —

p)>0, therefore an entire solution (7 = !.,..., n — 1).
(ii) Gj(z)=Ψj(z; 0) for every zeC. Therefore (//(z) does not depend

on p (7 = !,. ..,«-!).
(Hi) As z-*oo, |argz|<π/2 + ε/or sufficiently small ε>0,

w/iere F/z) is a formal solution of (2.4) of the form

ί F/Z) = Γ(Z)-1 Ij-l-Mi-^+v^μ.^-v^^J^φ-^

1 7/0) = 2; (7 = l,.,n-l).

PROOF, (i) It is trivial that S/z) is holomorphic and is a solution of (2.4)
in Re(z — p)>0. Then (j/z) is analytically continued into the left half plane by
the equation (2.4).

(ii) For Re(z-p)>0 and ίe^, we put

where the path of integration is a curve in ̂  from t to lj and arg (τ — t) is taken

continuously along the path of integration as arg (Ay — ί) = arg(ί — λj) + π at the
endpoint λj. For \t — λj\ sufficiently small, we have

= Ψj(z; 0

by termwise integration. Since both (//z; ί) and ?/z; ί) are holomorphic in ̂ ,
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we obtain (j/z; t) = Ψj(z\ t) for te& and Re(z —p)>0, in particular

Moreover, since both (j/z) and Ψj(z 0) are holomorphic in C, we obtain the above
formula for every z e C.

(iii) This asymptotic expansion for |argz|<π/2 is immediately seen by
applying Watson's lemma (e.g. [5 p. 4]) to the integral representation of (ϊ/z) with

~τ

and by using Stirling's formula. Then, putting τ = eiθζ for |0| sufficiently small,
we have the asymptotic expansion in the enlarged half plane as stated above
(cf. [5; p. 6 Lemma 2]). Π

REMARK, (i) As to the holomorphy of Ψj(z; 0) in z e C, see [7].
(ii) According to the general theory of difference equations, the fundamental

set of solutions of (2.4) characterized by the asymptotic behavior in (iii) is uniquely
determined.

Now we shall denote by G/z) the solution of (0.2) constructed by Gj(z) with
(2.5) and (2.3) (;' = !,..., n — 1), which will be used for Barnes-integral repre-
sentation of the holomorphic solutions of (0.1) near t = λ in §3.

2.2. Solution having zeros in the left half plane

For the solution of (1.2) we next consider a solution of (2.4) which has zeros
in the left half plane. We first calculate Casorati's determinant of G/z) (/=!,...,
n — 1). Since from the Lemma we have

(z-μι)(z-μ2)
1 y

(z-μι)(z-μ2)
 A^

1
(z-A)

-A2ί z-A
22 J

„_! being the (n — l)-dimensional identity matrix, we then obtain

Therefore we have
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where [G/z)] denotes [(̂ (z), G2(z),..., fl^^z)] for short and p(z) is a periodic
function of period 1. From Proposition (iii) and Stirling's formula it is easy to
see that

P(z) ^ ΠJ=1 Ij1-*'-*^

as z-*oo, |argz|<π/2 + ε. Hence p(z) is indeed a constant equal to the right
hand side of this formula. We consequently obtain

*• '" - rc'
Observing from the (1, 2)-block of (2.1) that

(2.8) (v-μι-μ2 + BAllB-*)BA12 = 0,

we can define the constants y7 (7 = 1,..., n — ϊ) as the solution of the system of

linear equations

y-1 v ff ίv + n - -Σ ,=ι yjGj(v + 1) -

In fact, since det [G/(v+ 1)] ̂ 0, these constants are uniquely determined. Using
these γj9 we define a solution G0(z) of (2.4) by

Then it is easy to see that G0(v — r) = 0 for r = 0, 1, 2, ____

Now we shall denote by G0(z) the solution of (0.2) constructed by G0(z) with

(2.5) and (2.3), and put

Then it is immediately seen that G( — r) = 0 for r = 1 . , 2, .... Observing that

en being the n-th unit n-vector, and det (v- ,4)^0 by the assumption [A2], we

obtain

Hence G(z) is a (non-trivial) solution of (1.2), which will be used for Barnes-

integral representation of the non-holomorphic solution of (0.1) near t = λ in §3.

The solution δ0(z) of (2.4) will be considered again at the last part of §3.
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§ 3. Barnes-integral representation

We consider a Barnes-integral

where the path of integration C is a Barnes-contour running along the straight

line z = — ia from -f oo — ia to 0 — ia, a curve from 0 — ia to 0+ ia and the straight
line z — ia from 0+/<3 to +oo + /α such that the points z = w (ra = 0, 1, 2,...) lie
to the right of C and the points z = μk-r (r = 0, 1, 2,...; fe=l, 2) lie to the left
of C. The constant a is taken as α>max {|Imμ fc |; fe = l, 2}. In view of the

asymptotic behavior of G/z), the above integral is absolutely convergent for

\t-λ\<\λj-λ\ (=1/12,1) and equal to the sum of residues at z = m (w = 0, 1, 2,...),
i.e.,

which is a holomorphic solution of (0.1) near t = λ.

Now let ξ be an arbitrary negative number not equal to Re(μfc-r) (r = 0, 1,

2,... k= 1, 2). We take the positive integer Nk(k=l,2) such that

- ( Λ Γ t + l ) < f - R e μ k < -Nt ( fc=l,2) .

Replacing the path C by the rectilinear contour Lξ which runs first from + oo — ia
to ξ — ia, next from ξ — ia to ξ + ia and finally from ξ -I- ia to +00 + iα, we obtain

[ ~rs>-πiz ~j
Gj(z)^ - (ί-A)z ,/ v 7 sm πz v J

where the summation covers all poles in the domain encircled by Lξ and the curve
from -ia to ia of C. Since G/-r) = 0(r=l, 2,...) by (2.3), z=-r(r=l, 2,...)
are no longer poles. Then, by (2.3), the integrand has simple poles only at z =
μk — r (r = 0, 1,..., Nk\ fc=l, 2) in that domain. Hence we obtain

where

H)(r) = lim2^k_Γ[(z-μ,-hr)Gχz)] (r = 0, 1, 2,...; fe = l, 2),

which is a solution of the system of linear difference equations (1.5) and (1.4).
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In fact, since C/y(z) is holomorphic at z = μk+ 1, we have

l)(z-μk)Gj(z+ 1)] = 0.

For r> 1, we have

Hence there exist the constants Tkjl (k = l, 2; 1=1,..., nk) such that

Actually these constants are uniquely determined by the system of linear equations

Σ?*, Tk,lHkl(0) = - ™—-k- Hk,(0)
^l~l J ' sin πμk

 J '

(// k /(0)(fc=l, 2; /=!,..., /7k) are given in advance). This, in turn, is equivalent to

Γ(2μk~~μ\ ~ 1*2) ψ(ιι. c\\_____.___.. Ψj(μk,0)
πe

— ______._

where Hkl(Q) denotes the vector which consists of the first n— 1 components of
Hkl(0), since for an eigenvector H of Λ corresponding to μk we have

where /? and /ϊ denote the vectors which consist of the first n — 1 components and
the last one of H, respectively. We therefore obtain

We here apply the results of B. L. J. Braaksma [2; pp. 271-278] to the last term.

The integral

1 Γξ + i°° 7Γέ?~~πIZ

— \ G"/(z) —.- (ΐ — λ)z dz
2ni jξ-iao sin πz

is the analytic continuation of the above integral for t which, in view of the
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asymptotic behavior of G/z), lies in the sector

S'j = {teC; *ιg(λj-λ) + ε'< arg(ί-/l)<

Moreover we have

sin πz
(t-λydz \<K\t-λ\*v ' ' '

as f->oo, t e S ' j , where K is a positive constant independent of t (but depending

on ξ). Hence A'/ί) is analytically continued into C\{λ + s(λj — λ); s^l} and has
the asymptotic expansion

as ί->oo, f e S y = {ίeC; arg(λj-λ)< arg(f-/l)< arg(λy-λ)4 2π}. Since ί=oo

is a regular singularity of (0.1) and 7fc/(r) (fc=l, 2; / = !,..., nΛ) are convergent,
we therefore obtain

for f e S y . Consequently the connection coefficients between Xj(t) and

(fc=l, 2; /=!,..., nfc) are given by 9fyιk 9 0) (fc = l, 2).

As to the non-holomorphic solution of (0.1) near t = λ, we analyze the Barnes-
integral

X(t)=- *v 7 sm πz

where the path of integration C is a suitable Barnes-contour defined in a way
similar to the above consideration. Then, for \t — λ\ <R9 we have

and

— v)

sm πz

where L'^ is a suitable rectilinear contour and N'k (fe=l, 2) are suitable positive
integers. Hence the above X(t) is the non-holomorphic solution of (0. 1) near t = λ

and is analytically continued into the sector

and we have
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(3.2) *(r) = Σ2-t ΣPι{*"' sin
Si"JfivT Σj=i

for f e ΛJ=ι Sy . In order to obtain an analytic continuation of X(t) into another
sector, we anew take

where <5y (7 = !,..., n — 1) are suitable integers, instead of

Then we obtain the analytic continuation of X(i) into ΠJΞ} Sj(δj), where

(3.3) S/<5;) = {ί e C; arg (λ, - A) - 2π<57 < arg (t-λ)< arg (̂  - λ) - 2πδj + 2π}

Now, in order to characterize y, and the coefficients in (3.2), we shall investi-
gate the solution 50(z) of (2.4). Let Φ(p; t) be a solution of (2.6) near ί=oo
corresponding to the exponent — (p — 1 — v). Then it is easy to see that Φ(p; r)

has an expansion of the form

Φ(p i) = (e«>ty-ι-* Σ,°ί

near ί=oo, where X(r) (r>l) are the vectors determined uniquely by the system
of linear difference equations

(3.4) (r+l + v-μi-μ2 + BAilB-ί)it(r+l) = BK(r)

subject to the initial condition

Observing (2.8), we here define

Then, since (3.4) is equivalent to (2.4), we have

£(r) = S0(r+l + v) (r = 0, 1,2,...)-

We therefore consider a Barnes-integral

where
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the path of integration C" is a suitable Barnes-contour and we temporarily assume
that p φ v (mod 1). By an analysis similar to the above we obtain

π yoo

sin n(p — v) ^Γ=0

sin π(p —v)

for |ί|>max {|Iy|; j = l,..., n —1} (observe that e 2 π ί <V=l for reZ). Moreover
we obtain

- ^ , <50(z + 1 + v) Γ(z - p + 1 + v) ™-^L tp-ι-v-z dz2πι )L", ov / v P 7 sm πz

where L'^« is a suitable rectilinear contour and N" is a suitable positive integer.

Since

we have

Then, observing the asymptotic behavior of C?/z) and that the last summation in

the above is the sum of the first N"+ 1 terms of Taylor's series of *P/p; 0> we see
that Φ(p; ί) is analytically continued into the sector Λ"=l S/ )̂, where

argί<

and we have

(3.5) Φ(p; 0 = Σ3=i yyβ

for ί e ΠJΞi Sj(δj). Consequently y.e

2ΊtiδJ(p-^ (j = 1,..., « — 1) are the connection

coefficients between Φ(p; ί) and Ψj(ρ; t) (j = 1,..., n — 1) in the sector Π"Ξ} $j(δj)>
Since we can drop the assumption that p^v (mod 1) in (3.5) by the holomorphy

of Φ(p; ί) and ^/p; ί) in p e C, we therefore obtain
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G0(z) (= Σ3=! y/2πl'^(z-v)G/z)) = Φ(z; 0)

for every zeC, where Φ(z; •) means the analytic continuation through the
sector Γ\"j=\ Sj(δj). Hence the coefficients

(3.6) f "(5,,..., «„_,) = *«" - n ~ l v) ΣS=! 7y^«">««-') Γ}'

(fc= I, 2; /=!,..., nt),

which correspond to the analytic continuation of X(t) into the sector ΛJi} S/<5, ),
are characterized as the unique solutions of the systems of linear equations

(3.7) Σ?^ι ffc^ι,...,ίπ-ι)#kl(0)

sinπ(μ k -v)

where Φ(μfc; •) means the analytic continuation through the sector Γ\"=\ Sj(δj).
Consequently the connection coefficients between X(t) and Y k l ( t ) ( f c = l , 2 ;

/=!,..., nk) are given by Φ(μfc; 0) (fc = l, 2), of which the sector of analytic con-
tinuation corresponds to that of X(t).

We summarize all results derived above in the following

THEOREM. Let Ykl(t)(k=\, 2; /=!,..., nk) be solutions of (0.1) of the form
(1.3) near r=oo, αnί/ /eί S/57 ) (7 = !,..., n — 1) 6e sectors defined by (3.3), w/ϊere
the δj are integers.

( i ) For each j ( = 1,..., n — 1), the holomorphic solution Xj(t) of (QΛ) near

t = λ which is characterized by Xj(λ) = G/0), where G/(0) is constructed by (2.7)
with (2.4), (2.5) and (2.3), is holomorphic in C\{λ + s(λj-λ); 5> 1} and

/ιo/ί/5, where the constants T* l ( fe=l, 2; /=!,..., «fc) «re determined by (3.1).
(ii) T/ίβ non-holomorphίc solution X(t) of (0.1) near ί = λ of the form (1.1)

w/ί/i G(0) = en zs analytically continued into a sector Π"ΞJ 5/

= Σ2-ι Σ?£, f "(ίL-.^.-Oy^'W (ίen r

5, w/iere ί/ze constants fkl(δί,...,δn_l)(k=\, 2; /=!,..., W Λ ) are determined

by (3.7) (or (3.6)).
(iii) Xj(t) (7 = !,..., w — 1) and X(t) form a fundamental set of solutions of

(0.1).

REMARK, (i) About the integers δj (j = 1,..., n - 1) in (ii) we actually choose

them as Λ = } S
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(ii) The fact in (iii) is immediately seen by det [5/0)] /O.

REMARK. The system (2.6) with ρ = μk, whose solutions give the connection

coefficients as above, is indeed reducible to an ^^-dimensional system of linear

differential equations (which is no longer a hypergeometric system in general).

This fact is easily seen by rank (μk — μ1 — μ2 + A) = nk (k = 1 , 2).

§ 4. Examples

EXAMPLE 1 (1-dimensional section of AppelΓs F3).

B = diag[λ0, λθ9 λί9 A2],

^ = [a,*] ~ diag [μ1? μl9 μ29 μ2] with α12 = a2i = 0.

See [8] in detail.

EXAMPLE 2 (Jordan-Pochhammer system).

(4.1) ( t - B ) = p + . . . . . . χ,
an an--an

where β = diag[λ1,...J AJ. In this case the (n — l)-dimensional hypergeometric

system corresponding to (2.6) becomes again a Jordan-Pochhammer system. We

here describe connection formulas only for non-holomorphic solutions near finite

singularities: Assume the assumptions corresponding to [A0~A2]. Let

JP* (p ^1'"'' λn I Λ(k = 1,..., π) be solutions of (4.1) characterized by
\ ^lί ? an\ /

t ) a n dwhere efc denotes the /c-th unit n-vector. Besides let Qn(p\ *''"' ''aί9...9an

k

n

J(p\ λί''"' ^n\t\k,j = l, .., nj^k) be solutions of (4.1) characterized by

«'«•(-fc ί l - ) = ' •
where a = aί-\ ----- \-an, and

respectively. Then we have
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_ Γ(ct)Γ(p+ak + l) _ a j A A!,..., λa- \

~ Γ(p + l)Γ(£+\+-l) [βi 'W - δ-'^HO, Qϊ 4+1(0,.. , Qi 'W]

~ - / Jfc Jfc Tfc Jfe \
xB^.-/-*-!; £'••••' ^-''J +' ' £" 0),

\ fll> , α Jt-l> βfc + l > » α« /

where ρ* /(ί) denotes β£'' p; ̂ ''"' ^" Λ for short, Ij=(λ ι/-λfc)-1OVfc) and

The paths of analytic continuation in these formulas are taken as in §3.
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