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0. Introduction

The class Max-< of Lie algebras with ascending chain condition on
ideals, otherwise known as noetherian Lie algebras, has been studied by several
authors, see Aldosray [1], Amayo and Stewart [3, 4], Kawamoto [10], Kubo
and Honda [12], and Stewart [14, 15]. Less stringent chain conditions can
be imposed by requiring the ascending chain condition only on certain special
classes of ideals. For example Aldosray and Stewart [2] study the class
Max-c of Lie algebras with ascending chain condition on centralizer ideals;
and Ikeda [6], Kubo [11], and Togo [17] study ascending chain conditions
on generalized soluble ideals.

Here we consider the classes Max-ci, Max-Ess, and Max-SMi of Lie alge-
bras with the ascending chain condition on complement ideals, essential
ideals, and small ideals, defined respectively in §§1, 2, 5 below. Our aim is
to elucidate the basic properties of these classes and the relations between
them.

In § 1 we study the ascending chain condition on complement ideals and
give a number of examples to show that most standard properties of Max- <
fail for such algebras. In §2 we introduce the 'dual' concepts of essential
ideals and small ideals, and the singular ideal. The main result, Theorem
2.8, shows that the Lie product of a pair of essential ideals is always essential
if and only if the Lie algebra is semisimple. §3 is devoted to questions of
the following kind. Suppose that every quotient L/I of L by nonzero ideals
/ (possibly of some special type) satisfies some ascending chain condition.
Does L also satisfy this chain condition? We show that the answer is affirma-
tive for Max-<3 (/ any ideal); Max-ci (/ a complement ideal); and Max-SMi
(/ a small ideal). It is negative for Max-c (even if / may be any nonzero ideal),
answering Question 3 of Aldosray and Stewart [2]. However, it is affirmative
for Max-c when L is semisimple (/ any centralizer ideal).

Camillo [5] proves that a commutative ring in which every quotient is
Goldie must be noetherian. In § 4 we show that the natural Lie algebra
analogue of Camillo's theorem is false. However, using results of Shock [13]
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we prove a substitute: L is in Max-< if and only if every quotient is in
Max-ci and Max-SMI.

Most notation used is standard, and may be found in Amayo and Stewart

[4] or Aldosray and Stewart [2]. In particular Ln and L(w) denote respectively

the nth terms of the lower central and derived series of L, and d(L) is the

centre of L. We write I < L if / is an ideal of L, and I < L if I is a

subalgebra. Any other notation is defined as it is needed. The end (or

absence) of a proof is signalled by a box Π

1. The maximal condition for complement ideals

Recall from Aldosray and Stewart [2] that an ideal K of a Lie algebra
L is a complement ideal if there exists an ideal J of L such that J Π K = 0,

and if K' is any ideal of L such that K £ K' then J Π K' Φ 0. In fact in

[2] it is further required that J be nonzero, but we relax this condition

here. In particular L and 0 are always complement ideals (take J = 0, L
respectively).

In this section we study the class Max-ci of Lie algebras satisfying the

ascending chain condition on complement ideals. We begin with an obvious

but useful remark:

REMARK 1.1. If L is abelian with Max-ci, then L is finite-dimensional.

D

A similar result trivially holds for algebras in Max-<. However, we now
show by several examples that Max-ci does not have several other properties

analogous to Max-<ι.

EXAMPLE 1.2. Let L e Max-ci and let / be an ideal of L. Then L/I

need not satisfy Max-ci.
Let A = F[x1,x2, ...] be a polynomial algebra in an infinite number of

indeterminates Xj . Considered as an abelian Lie algebra, A has derivations

The δt commute. Let # = (^ : ί > 1> and form the split extension L = A 4- H.
Then L e Max-ci and A < L. However, L/A ̂  H which is infinite-dimen-

sional abelian, so L/A φ Max-ci by Remark 1.1. Π

EXAMPLE 1.3. Nilpotent Lie algebras with Max-ci need not be finite-

dimensional.
Let L be the infinite Heisenberg algebra, with basis

{z, x£, y{ : i e N}
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such that |X, yj = z and all other elements commute. Then L is nilpotent
of class 2, and its centre d(L) = <z>. Every nonzero ideal contains <z>, so
the only complement ideals are 0 and L. Therefore L e Max-ci. Π

EXAMPLE 1.4. Locally nilpotent Lie algebras with Max-ci need not be
soluble.

In fact we show considerably more. The algebra we use is an alternative
version of the McLain algebra J^F(Z), see Amayo and Stewart [4]. We define
it as follows. Begin with an associative algebra A having generators xn (n e Z)
and multiplication relations

xmxn = 0 unless n = m + 1 .

Define monomials

Clearly the monomials form a basis for A. Since sufficiently long products
in a finite set of generators must repeat an element, A is locally nilpotent. Let
L = Lie(A) be the Lie algebra formed by A under the commutator [α, b] =
ab — ba. Then L is locally nilpotent.

We claim that every nonzero Lie ideal of L contains a monomial. To
prove this, observe that

'*,Λ n = m + 1

-xnxm n = m-\

0 otherwise.

Let / < L, containing an element

If n = max n then / contains

where J — {j: η = n}. If m = min m, then / contains
'

where k is the unique integer such that mk = m. Therefore / contains a
monomial and the claim is proved.

By direct calculation Imn = <xmπ>
L is spanned by all monomials xm,n, with

m' < m and n' > n. Clearly Imn is abelian, so L is a Fitting algebra. Since
every ideal contains a monomial, every nonzero ideal contains some Imn.
Moreover if m' < m and n' > n then Imn ^ /mV. Since
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it follows that any two nonzero ideals of L have nonzero intersection.

In particular the only complement ideals of L are 0 and L, whence

L e Max-ci.
An easy induction shows that

so L is not soluble.
Since xmn does not commute with xn+1 it follows that d(L) = 0.
On the other hand, L has many nontrivial centralizer ideals. In particu-

lar CL(Imn) ^ Imn since Imn is abelian. More precisely

cL(imn)= Σ 4*, (i)
m<k<n

which is nilpotent of class \m — n\ + 1. Therefore every proper centralizer
ideal of L is nilpotent.

From (1) there exists an infinite ascending chain of centralizers, so

L φ Max-c. D

EXAMPLE 1.5. Example 1.4 shows that Max-ci φ Max-c. Moreover, all
infinite-dimensional abelian Lie algebras belong to Max-c but not to Max-ci,

hence Max-c φ Max-ci. Thus the neither of the two classes is contained in
the other, and there are no generally valid implications between Max-c and
Max-ci. D

EXAMPLE 1.6. If L is hypercentral with Max-ci then L need not be
soluble.

To answer this negatively it is sufficient to find an insoluble hypercentral

Lie algebra L such that dimζ1(L)=l. Then d(L) is contained in every

nonzero ideal, so the only complement ideals are 0 and L.

We construct such an algebra as follows. Suppose that we have a se-

quence of Lie algebras Nn such that dim d Wi) = 1 for all n, and whose derived
length d(n) (and hence also nilpotency class c(ή)) tends to infinity with n. To

be specific, let Nn be the Lie algebra of all upper triangular n x n matrices

with zero diagonal, which is easily seen to satisfy the required conditions. Let
Q^znGζί(Nn). Form the direct sum with amalgamated centre

where / is the subspace of S = ©*=1 Nn spanned by all zt — zj9 i, yeN. This
is contained in the centre of 5, so is an ideal of S.
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We claim that L is hypercentral and insoluble, and that dimζ^L) = 1.
Since S is a direct sum of nilpotent algebras, it is hypercentral, hence

so is L. In fact JVΛ Π / = 0, so each Nn embeds naturally in L, and the central
height of L is precisely ω because c(n) -» oo. In the same way L is not soluble

since d(ή) -*> oo.
Let x e S be such that its image x under the natural map S -> S/I is

central. We claim xeζ^S). To see this, write x = (xn) where xneNn and

observe that

[(*,,MjΊ,)]e/ for all yneNH.

Now every element of / is of the form £ju,,z« where Σμn = 0, therefore

IX, >>J = /Vn where ΣμM = 0. Replacing yn by 2^ we deduce that μn = 0.
(This follows even if char F = 2, when we replace yn by 0.) Therefore [xπyn] =
0 so xeίι(S) as claimed. Thus xeζ^S)/!, which has dimension 1. Π

Recall that L is semisimple if it has no non-zero abelian ideal.

QUESTION 1.7. If L is semisimple and /, J are complement ideals of L,

then / Π J always a complement ideal of /?
If the answer is affirmative, then the following result holds: Let L be

semisimple, with / a complement ideal of L, such that / e Max-ci and L/I e
Max-ci. Then L e Max-ci. Note that in the circumstances described / ΠJ
is a complement ideal of L, since in semisimple algebras complement ideals
are centralizers. However, we do not know that / is semisimple.

THEOREM 1.8. Let L be semisimple with Max-ci. Then every complement
ideal in L is a finite intersection of maximal complement ideals in L, and these
are minimal prime ideals.

PROOF. Since / is semisimple, / is a complement ideal if and only if /
is a centralizer ideal, by Aldosray and Stewart [2] Lemma 2.3. The result
follows from Theorem 4.6 of Aldosray and Stewart [2]. Π

2. Essential and small ideals

We define two types of ideal, that are in a sense 'dual' to each other. An
ideal E of L is essential if it has nonzero intersection with every nonzero
ideal of L. An ideal S of L is small if for all ideals K of L the equation
S + K = L implies K = L. In this section we establish some basic properties
of essential and small ideals.

LEMMA 2.1. (a) // 5 and T are small ideals of L, then S + T is small
(b) // S is a small ideal of L and T c S, then T is small.

(c) // E and F are essential ideals then E + F is essential.
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(d) // E and F are essential ideals then EΓ\F is essential
(e) // E is essential in L and F 2 E, then F is essential. Π

We also need the concept of the singular ideal, analogous to a ring-
theoretic idea of Johnson [8]. The singular ideal of L is

Z(L) = {x e L : [x, E~\ = 0 for some essential ideal E of L} .

If M is an L-module then the singular submodule of M is

Z(M) = {x e M: xE = 0 for some essential ideal E of L} .

Equivalently, x e Z(L) if and only if CL«x>L) is an essential ideal of
L. Clearly Z(L) < L.

LEMMA 2.2. L is semisimple if and only if Z(L) = 0.

PROOF. Suppose L is semisimple, with a e Z(L). Then <α>L Π CL«α>L) =
0 by semisimplicity, but CL«α>L) is an essential ideal of L, so a = 0.

Conversely suppose that Z(L) = 0, and let A < L, A2 = 0. We claim
that A = 0. Let x e L. Then either [A, x] = 0 in which case x e CL(A\ or
[>1, x] Φ 0 in which case [A, x] c CL(A). Therefore <x>L Π CL(A) Φ 0, so CL(A)
is essential in L. Hence A = 0. Π

LEMMA 23. Let I be an ideal of L, and let E 2 / foe an ideal such that
E/I is an essential ideal of L/I. Then E is an essential ideal of L.

PROOF. Let 0 Φ J < L. Either (/ + J)/I = I/I or not. In the first case,
J < Ξ / so J Π / ^ 0 so J Π E / 0 . In the second, / £ (/+ J)ΠE = / + (JΠE)

so J n E Φ 0. Π

The dual of Lemma 23 is also true.

LEMMA 2.4. If S is a small ideal of L and I < L, then (S + /)// is small
in L/I.

PROOF. Assume (S + /)// + P/I = L/I where P < L, P 2 /. Then S +
1 + P = L. Since S is small, / + P = L, so P = L since / c p. Therefore
P// = L//, so S// is small. D

LEMMA 2.5. Let /, J < L be such that I ^ J. Then J is small in L if
and only if

(a) / is small in L, and
(b) J/I is small in L/I.

PROOF. If J is small in L then Lemma 2.1(b) and Lemma 2.4 imply
that (a) and (b) hold.
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Conversely assume (a) and (b). Suppose that J + K = L, K < L. Then
J + K + / = L, so J/I + (K + /)// = L/L By (b) K + I = L, and then by (a)

K = L. Hence J is small in L. Π

PROPOSITION 2.6. (a) If I <L then I + CL(/) is essential in L.
(b) // / is a hypercentral ideal of L then CL(I) is essential in L.

PROOF, (a) Let C = I + CL(I) and let 0 φ J < L. If J Π / Φ 0 then
JΠ C 7* 0. Otherwise JΠ/ = 0 so J c CL(/) and again J Π C ^ 0.

(b) Let 0 φ J < L. If J Π / = 0 then J <Ξ CL(I). If J Π / / 0 then JΠ

d(/)^0, so J intersects CL(I) nontrivially. D

PROPOSITION 2.7. Let L be semisimple and suppose that every essential

ideal in L is finitely generated. Then LeMax-<3.

PROOF. Let I < L. Then / 4- CL(I) is essential in L by Proposition

2.6(a). Therefore / + CL(I) is a finitely generated ideal. Hence (/ + CL(/))/
CL(I) is a finitely generated L-module. Therefore //(/ΠCL(/)) is a finitely

generated L-module. Since L is semisimple / Π CL(I) = 0, so / is a finitely
generated L-module, that is a finitely generated ideal. Π

In contrast to Lemma 2.1(c), (d) we have:

THEOREM 2.8. Let L be a Lie algebra. Then [F, F] is essential for all
essential ideals E and F if and only if L is semisimple.

PROOF. Suppose L is semisimple and F, F are essential in L. Let 0 φ
I <L and suppose for a contradiction that / Π [F, F] = 0. Then [/, [F, F]] =

0. Let B = IΠ E Π F which is nonzero by Lemma 2.1(d). We have [£2, F] c

[/, [F, F]] = 0. Now B2 φ 0 by semisimplicity, so CL(F) ̂  0. But now
F Π CL(F) / 0 since F is essential, contradicting semisimplicity.

For the converse, suppose that L is not semisimple: we construct essential
ideals E and F such that [F, F] is not essential. Let 0 φ A < L where A is

abelian, and take a maximal A with this property. If A is essential in L then

0 = [4, v4] is not essential and we are done. If A is not essential then

A Π K = 0 for 0 / X < L. We may take K to be maximal with this property,
hence a complement of A. We claim that A + X is essential. Note that
A + X = A 0 K. If there exists an ideal J ^ 0 such that (/I 0 K) Π J = 0
then (A®K) + J = (A®K)@J = A®(K®J). Then J®K^.K and A Π

(J © X) = 0, contradicting K being a complement. Since A Π X2 = 0 and A Φ

0, we know that K2 is not essential. Hence \_A ® K, A ® K] = K2 is not
essential. Π

Let Max-Ess be the class of Lie algebras satisfying the ascending chain

condition for essential ideals. We have
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LEMMA 2.9. The class Max-Ess is Q-closed.

PROOF. This is an easy consequence of Lemma 2.3. Π

Recall that the socle soc(L) is the sum of the minimal ideals of L.

PROPOSITION 2.10. Let S = soc(L). Then S c Z(L) if and only if S is

abelian.

PROOF. First suppose that S c Z(L). By definition S is the sum of all

minimal ideals M of L. Let 0 ̂  x e M, so that M = <x>L. By the remark

immediately before Lemma 2.2, CL(M) is essential in L. Therefore MΠ

CL(M) / 0, so M <Ξ CL(M), so M2 = 0. Therefore S2 = 0.

Conversely suppose S2 = 0. Then CL(S) = S + CL(S) is essential by Prop-

osition 2.6(a), hence S c Z(L). Π

THEOREM 2.11. Suppose that L has socle S.

(a) // L is semisimple then S2 = S.

(b) // 5 is essential and S2 = S then L is semisimple.

PROOF, (a) The socle S is a direct sum of minimal ideals M of L, for

which either M2 = M or M2 = 0. If L is semisimple then M2 = M for all

such M, hence S2 = S.

(b) If L is not semisimple then it has a nonzero abelian ideal A. Since

S is essential, S Π A Φ 0. Then some direct summand M of S is abelian, so

S2 Φ S. Π

PROPOSITION 2.12. Suppose that P is a prime ideal of L but not a minimal

prime ideal. Then P is an essential ideal of L.

PROOF. Since P is not a minimal prime, there exists a prime ideal β

of L such that β £ P. Let / <α L with / Π P = 0. Then [/, P] = 0 c ρ. But

P §£ Q, so / ̂  β by primality. Therefore 7 = 0. Thus P is essential in L. Π

PROPOSITION 2.13. Let L be semisimple, I < L, swcfc ίfcαί Z(L/I) = L/I.

Then I is essential in L.

PROOF. Let 0 φ x e L. Let bars denote images modulo /. Since Z(L) =

L we have [<x>r, E] = 0 for some essential ideal E of L. Therefore

[<x>L, E] c /. By Lemma 2.3 £ is essential in L. Therefore [<x>L, E] φ 0

by semisimplicity. Hence <x>L Π / φ 0 and / is essential in L. Π

QUESTION 2.14. Is the converse of Proposition 2.13 true? If this is the

case we have the following result: if L is semisimple and / is essential in L,

with J ^ /, then J/I is essential in L/7.
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3. Properties inherited from proper quotients

In this section we study the following type of question: if every proper

quotient of a Lie algebra (perhaps by an ideal of some restricted type) has

some property, does L itself inherit that property? Our first result is an

abstract formulation of a general principle which we apply in several different

cases.

THEOREM 3.1. Suppose that to each Lie algebra L there is associated a

set 3£(L) of ideals of L, partially ordered by inclusion. Assume that $C preserves

quotients in the following sense: if I ε &(L) then

X(L/T) = {J/I : J ε <T(L) and J c /} . (2)

Then &(L) satisfies the ascending chain condition if and only if &(L/I) satisfies

the ascending chain condition for every nonzero ideal I ε

PROOF. Suppose 2£(L) satisfies the ascending chain condition. By (2),

is order-isomorphic to a subset of 3C(L\ hence also satisfies the ascend-

ing chain condition.

Conversely, suppose that 0 φ /0 ^ 1^ ^ is an ascending chain in &(L).

Then /o//0 ^ /!//() ̂  ••• is an ascending chain in #*(L//0), which must stop.

Hence the chain in &(L) stops, so SC(L) satisfies the ascending chain condition.

D

COROLLARY 3.2. Let L be a Lie algebra such that L/I ε Max- < for all

nonzero ideals I of L. Then L ε Max- < . Π

The analogue of Corollary 3.2 does not hold for Max-c. Since Max-c

= Min-c this answers Question 3 of Aldosray and Stewart [2] in the

negative.

EXAMPLE 3.3. If L/I ε Max-c for all nonzero ideals / of L, then L need

not satisfy Max-c.

Let L be the infinite Heisenberg algebra as in Example 1.3. Then L is

nilpotent of class 2, and its centre d(L) = <z>. Every nonzero ideal / contains

<z>, so L/I is abelian, hence satisfies Max-c. However,

<z> £ <z, X0> ^ <z, x0, *!>$:•••

is a strictly ascending chain of centralizer ideals. Indeed

<z, x0, . . . , xfc> = CL«Λ+I, yk+2, . . .>L). D

However, an analogue of Corollary 3.2 does hold for Max-c if L is

semisimple, and indeed the statement can be strengthened:
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THEOREM 3.4. // L is semisimple and L/I e Max-c for all nonzero central-

izer ideals I of L, then L e Max-c.

For the proof, we first require:

LEMMA 3.5. Let L be a semisimple Lie algebra with A < L. Let I 3 A

be a centralizer ideal in L. Then I/A is a centralίzer ideal in L/A.

PROOF. Let bars denote images modulo A. Suppose that / = CL(J)

where J < L. Then / c Cr(J). We claim that / = Cr(J). If not, choose

x E CL(J)\l Then [x, J] = 0 so [x, J] c A, and xφl. Thus [x, J] c A Π J c

/ Π J = 0 since L is semisimple, which is a contradiction. Q

PROOF OF THEOREM 3.4. Let /0 c /χ c c /π c - be an ascending chain

of centralizer ideals of L. Then 1^1 IQ ^ /2//0 — '" is an ascending chain of
centralizer ideals of L//0, by Lemma 3.5. But L//0 e Max-c, so the chain

stops. Π

Next we consider complement ideals.

LEMMA 3.6. Let L be a Lie algebra and let I be a complement ideal in

L. Then the complement ideals in L/I are in bijective correspondence with the

complement ideals of L that contain I.

PROOF. Let L = L/I and let bars denote images modulo /. Let J 2 /

be a complement ideal in L. Then J Π K = 0 for some K < L. Therefore

JΓiK = 0. Let Ή be a complement of K in L such that Ή ̂  J. We have

ΪΪΓiK = 0, so that HΠK ^IΓiK^JΓ}K = 0. Since J is a complement of

K and H 2 J it follows that H = J. Therefore H = J and J is a complement

ideal in L.

Conversely, suppose that J is a complement of K in L. Let / be a

complement of H in L. Then clearly J Π K Π H = 0. Let Λ be a complement

of K Π H such that # 2 J. Then R Π X Π H = 0 implies that # Π K = /, which

implies that R Π K = δ. Therefore R = J. Thus R — J and J is a comple-

ment ideal in L. Π

THEOREM 3.7. L e Max-ci if and only if L/I e Max-ci for any nonzero

complement ideal I of L.

PROOF. Let &(L) be the set of all complement ideals of L and apply

Theorem 3.1, using Lemma 3.6 to verify condition (2). Π

Finally we turn to small ideals. Say that a Lie algebra L € Max-SMI if
L satisfies the ascending chain condition for small ideals of L.

THEOREM 3.8. L/I E Max-SMI for all nonzero small ideals I of L if and
only if Le Max-SMI.
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PROOF. In one direction let %(L) be the set of all small ideals of L and
apply Theorem 3.1, using Lemma 2.4 to verify condition (2). For the converse

use Lemma 2.5. Π

4. Camillo's theorem and Shock's theorems

Camillo [5] proves that a commutative ring R is Noetherian if and only

if R/I is a Goldie ring for all ideals /. A natural analogue of this result for

Lie algebras is the following: L 6 Max- < if and only if L/I e Max-ci Π Max-c

for every ideal /. We show that this analogue is false, even if L is semisimple.

EXAMPLE 4.1. Let V be a vector space over F of infinite dimension d,

where d is a limit cardinal. For example, well-order the cardinals as Kμ for

ordinals μ and let d = Kω. Define &(V9 V) to be the Lie algebra of all linear

maps V-+V, and let Z = {d : c e F}. By Stewart [18] L = &(V, V)/Z has a

unique ascending chain of ideals

where

Iμ = {A e &(V9 V) : rank(A) < Kμ} + Z .

Each factor in the chain is simple and non-abelian, so L is semisimple. In

each quotient L/Iμ the only centralizer ideals are Iμ/Iμ and L//μ, and these

are also the only complement ideals. Therefore L/Iμ ε Max-ci Π Max-c for all

μ. But clearly L φ Max- < . Π

In view of this example we may ask whether some alternative characteriza-

tion of Lie algebras with Max- < exists, in terms of weaker chain conditions

on all quotient algebras. We establish such a result in Theorem 5.6 be-

low. To state and prove it we first observe that Lie algebra analogues of

some module- theoretic results due to Shock [15] are true. The statements

and proofs are easily obtained from the following observation. Let L be a

Lie algebra and let M be an L-module. Then M has a natural structure as

C/(L)-module, where U(L) is the universal enveloping algebra of L, Jacobson

[7]. This construction preserves submodules, quotient modules, and module

generating sets. We may therefore transfer ring-theoretic results about general

β-modules, where R is an associative ring, to L-modules. In particular the

results of Shock [13] carry over to L-modules without extra effort. In conse-

quence we obtain the following substitute for Camillo's Theorem:

THEOREM 4.2. A Lie algebra L e Max- < if and only if L/I belongs to

Max-SMI Π Max-ci for any ideal I of L.
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PROOF. If LeMax-< then every quotient algebra L/I satisfies Max-<α,
hence certainly lies in Max-SMi Π Max-ci.

For the converse, suppose that every quotient algebra L/I belongs to
Max-SMi Π Max-ci. The sum of two small ideals is small, hence by Max-SMi
the Jacobson radical rad(L/I) of L/I is small for all ideals / of L. (See Kamiya
[9] for the definition and basic properties of rad(L).) Since L/I e Max-ci the
socle s(L/I) is finitely generated, by Aldosray and Stewart [2] Lemma 2.2.
Now apply the Lie analogue of Theorem 3.8 of Shock [13]. Π
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