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REFINEMENTS OF SOME INEQUALITIES CONCERNING
THE POLAR DERIVATIVE OF A POLYNOMIAL

Nisar A. Rather, Suhail Gulzar

Abstract: If P (z) = anzn +
∑n
j=µ an−jz

n−j , 1 6 µ 6 n, is a polynomial of degree n having all
its zeros in |z| 6 k, k 6 1, then it was recently claimed by K. K. Dewan, Naresh Singh, Abdullah
Mir [Extensions of some polynomial inequalities to the polar derivative, J. Math. Anal. Appl.
352 (2009), 807–815] that for every real or complex number α, with |α| > kµ,

max
|z|=1

|DαP (z)| >
n (|α| − kµ)

1 + kµ
max
|z|=1

|P (z)|+
n (|α|+ 1)

kn−µ (1 + kµ)
m

+ n

(
kµ −Aµ
1 + kµ

)
max
|z|=1

|P (z)|+
n(Aµ − kµ)

kn(1 + kµ)
m

where m = min|z|=k |P (z)|, DαP (z) is a polar derivative of P (z) with respect to the point α ∈ C
and Aµ is given by (1.11). The proof of this result is not correct. In this paper, we present certain
more refined results which not only provides a correct proof of above inequality as a special case
but also yields a refinement of above and other related result.
Keywords: polynomials, inequalities in the complex domain, polar derivative, Bernstein’s in-
equality.

1. Introduction and statement of results

If P (z) is a polynomial of degree n, then

max
|z|=1

|P ′(z)| 6 nmax
|z|=1

|P (z)| . (1.1)

Inequality (1.1) is an immediate consequence of S. Bernstein’s Theorem on the
derivative of a trigonometric polynomial (for reference, see [13, p.531], [15, p.508]
or [17]) equality in (1.1) holds for P (z) = azn, a 6= 0.

If we restrict ourselves to the class of polynomials of degree n having no zero
in |z| < 1, then inequality (1.1) can be replaced by

max
|z|=1

|P ′(z)| 6 n

2
max
|z|=1

|P (z)| . (1.2)
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Inequality (1.2) was conjectured by Erdös and later verified by Lax [8].The result
is sharp and equality holds for P (z) = αzn + β, |α| = |β|.

For polynomials P (z) of degree n having all zeros in |z| 6 1, it was proved by
Turán [18] that

max
|z|=1

|P ′(z)| > n

2
max
|z|=1

|P (z)| . (1.3)

The inequality (1.3) is best possible and the extremal polynomial is P (z) = (z+1)n.
As an extension of (1.2), Malik [12] proved that if P (z) 6= 0 in |z| < k where

k > 1, then
max
|z|=1

|P ′(z)| 6 n

1 + k
max
|z|=1

|P (z)| , (1.4)

where as if P (z) has all its zeros in |z| 6 k where k 6 1, then

max
|z|=1

|P ′(z)| > n

1 + k
max
|z|=1

|P (z)| . (1.5)

By considering the class of polynomials P (z) = anz
n +

∑n
j=µ an−jz

n−j of
degree n having all their zeros in |z| 6 k, k 6 1, Aziz and Shah [4] proved

max
|z|=1

|P ′(z)| > n

1 + kµ

{
max
|z|=1

|P (z)|+ 1

kn−µ
min
|z|=k
|P (z)|

}
. (1.6)

On the other hand, for the more general class of polynomials P (z) = a0 +∑n
j=µ ajz

j , 1 6 µ 6 n, not vanishing in |z| < k where k > 1, Gardner, Govil,
Weems [9] proved

max
|z|=1

|P ′(z)| 6 n

1 + s0

{
max
|z|=1

|P (z)| −m
}

(1.7)

where m = min|z|=k|P (z)| and

s0 = kµ+1


(µ
n

) |aµ|
|a0| −m

kµ−1 + 1(µ
n

) |aµ|
|a0| −m

kµ+1 + 1

 . (1.8)

In the literature (see [2, 5, 9, 10, 11, 14]) there exist some refinements and
generalizations of all the above inequalities.

Let DαP (z) denote the polar derivative of the polynomial P (z) of degree n
with respect to the point α ∈ C, then

DαP (z) = nP (z) + (α− z)P ′(z).

The polynomial DαP (z) is of degree at most n− 1 and it generalizes the ordinary
derivative in the sense that

lim
α→∞

DαP (z)

α
= P ′(z)

uniformly with respect to z with |z| 6 R, R > 0.
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Dewan et al. [7] (see also [16]) extended inequality (1.6) to the polar derivative
and they proved that if P (z) = anz

n+
∑n
j=µ an−jz

n−j , 1 6 µ 6 n, is a polynomial
of degree n having all its zeros in |z| 6 k, k 6 1, then for every complex number
α with |α| > kµ,

max
|z|=1

|DαP (z)| > n (|α| − kµ)

1 + kµ
max
|z|=1

|P (z)|+ n (|α|+ 1)

kn−µ (1 + kµ)
min
|z|=k
|P (z)|. (1.9)

While seeking the desired refinement of inequality (1.9), recently Dewan et al.
[6] have made an incomplete attempt by claiming to have proved the following
result.

Theorem 1.1. Let P (z) = anz
n +

∑n
j=µ an−jz

n−j where 1 6 µ 6 n, be a poly-
nomial of degree n having all its zeros in |z| 6 k, k 6 1, then for every complex
number α with |α| > kµ, we have

max
|z|=1

|DαP (z)| > n (|α| − kµ)

1 + kµ
max
|z|=1

|P (z)|+ n (|α|+ 1)

kn−µ (1 + kµ)
m

+ n

(
kµ −Aµ
1 + kµ

)
max
|z|=1
|P (z)|+ n(Aµ − kµ)

kn(1 + kµ)
m (1.10)

where m = min|z|=k|P (z)| and

Aµ =
n (|an| −m/kn) k2µ + µ|an−µ|kµ−1

n (|an| −m/kn) kµ−1 + µ|an−µ|
. (1.11)

The proof of Theorem 1.1 given by Dewan et al. [6] is not correct. The reason
being that the authors in [6] deduce in lines 8 - 10 on page 814, that for every
complex number α with |α| > kµ, 1 6 µ 6 n, the polynomial Dα

[
P (z)− mλzn

kn

]
has all its zeros in |z| < k, k 6 1 by using Lemma 7 in [6] which is not true in general
for 1 6 µ 6 n. Here Lemma 7 of [6] is applicable only when µ = 1 (see [1, 13, 15]).
Thus the argument used to establish that all the zeros of Dα

[
P (z)− mλzn

kn

]
lie in

|z| < k for |α| > kµ is false.
The immediate counterexample P (z) = 4z2 − 1, µ = 2 having all its zeros

in |z| < k = 3/5 < 1 demonstrates, by taking α = 2/5 > kµ that the zero of
DαP (z) = 16z

5 − 2 lie in |z| > k = 3/5.
They [6] have also proved the following result.

Theorem 1.2. If P (z) = anz
n +

∑n
j=µ an−jz

n−j , 1 6 µ 6 n, is a polynomial of
degree n having all its zeros in |z| 6 k where k 6 1 and δ is any complex number
with |δ| 6 1, then for |z| = 1

|DδP (z)| 6 n
(
kµ + |δ|
1 + kµ

)
max
|z|=1

|P (z)| − n(1− |δ|)
kn−µ (1 + kµ)

min
|z|=k
|P (z)|. (1.12)

The result is best possible and equality in (1.12) holds for P (z) = (zµ + kµ)
n/µ

,
where n is a multiple of µ and δ > 0. The proof of Theorem 1.2 given by Dewan
et. al. [6] is valid only when P (0) 6= 0.
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For the class of polynomials P (z) = a0 +
∑n
j=µ ajz

j , 1 6 µ 6 n, not vanishing
in |z| 6 k where k > 1, N. A. Rather and M. I. Mir [16] proved the following
result.

Theorem 1.3. If P (z) = a0 +
∑n
j=µ ajz

j , 1 6 µ 6 n, is a polynomial of degree
n which does not vanish in |z| < k where k > 1, then for every complex number β
with |β| 6 kµ,

max
|z|=1
|DβP (z)| > n

1 + kµ

{
(kµ − |β|)max

|z|=1
|P (z)|+ (|β|+ 1)m

}
(1.13)

where m = min|z|=k|P (z)|.

The main aim of this paper is to present a correct proof of Theorem 1.1 and
establish some refinements of Theorems 1.1, 1.2, 1.3.

In this direction, we first present the following more general result which not
only provides a correct proof of Theorem 1.1 but also yields an improvement of
Theorem 1.1 and a refinement of inequality (1.6).

Theorem 1.1. Let P (z) = anz
n +

∑n
j=µ an−jz

n−j , 1 6 µ 6 n, be a polynomial
of degree n having all its zeros in |z| 6 k where k 6 1, then for every complex
number α with |α| > Aµ

max
|z|=1

|DαP (z)| > n
(
|α| −Aµ
1 +Aµ

)
max
|z|=1
|P (z)|+ nAµ

kn

(
1 + |α|
1 +Aµ

)
m (1.14)

where Aµ is given by (1.11) and m = min|z|=k |P (z)|.

By Lemma 2.7, Aµ 6 kµ, therefore, Theorem 1.1 holds for every α with |α| > kµ
as well. Also the right hand side of inequality (1.14) can be written as

n (|α| − kµ)

(1 + kµ)
max
|z|=1

|P (z)|+ n (|α|+ 1)

kn−µ (1 + kµ)
m

+ n

(
kµ −Aµ
1 + kµ

)
max
|z|=1
|P (z)|+ n(Aµ − kµ)

kn(1 + kµ)
m

+
n (kµ −Aµ) (|α| −Aµ)

(1 + kµ) (1 +Aµ)

{
max
|z|=1
|P (z)| − m

kn

}
,

therefore, the following interesting result which is a refinement of Theorem 1.1
follows immediately from Theorem 1.1.

Corollary 1.2. Let P (z) = anz
n +

∑n
j=µ an−jz

n−j , 1 6 µ 6 n, be a polynomial
of degree n having all its zeros in |z| 6 k, k 6 1, then for every complex number α
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with |α| > kµ, we have

max
|z|=1

|DαP (z)| > n (|α| − kµ)

(1 + kµ)
max
|z|=1

|P (z)|+ n (|α|+ 1)

kn−µ (1 + kµ)
m

+ n

(
kµ −Aµ
1 + kµ

)
max
|z|=1
|P (z)|+ n(Aµ − kµ)

kn(1 + kµ)
m

+
n (kµ −Aµ) (|α| −Aµ)

(1 + kµ) (1 +Aµ)

{
max
|z|=1
|P (z)| − m

kn

}
(1.15)

where Aµ is given by (1.11).

In fact, except the cases k = 1 or µ
n

(
|an−µ|

|an|−m/kn

)
= kµ the bound obtained in

Corollary 1.2 is always sharp than the bound obtained from Theorem 1.1 and for
this it needs to show that

n (kµ −Aµ) (|α| −Aµ)

(1 + kµ) (1 +Aµ)

{
max
|z|=1
|P (z)| − m

kn

}
> 0. (1.16)

In view of inequality (2.13), the inequality (1.16) becomes equivalent to

max
|z|=1
|P (z)| > m

kn
,

which is true by Lemma 2.5 and hence inequality (1.16) holds.

Remark 1.3. Corollary 1.2 establishes a correct proof of a result due to Dewan
et al. [6, Theorem 3] and also provides its refinement.

If we divide both sides of inequality (1.15) by |α| and let |α| → ∞, we get the
following result which is a refinement of inequality (1.6).

Corollary 1.4. Let P (z) = anz
n +

∑n
j=µ an−jz

n−j , 1 6 µ 6 n, be a polynomial
of degree n having all its zeros in |z| 6 k, k 6 1, then

max
|z|=1

|P ′(z)| > n

1 + kµ

{
max
|z|=1

|P (z)|+ 1

kn−µ
min
|z|=k
|P (z)|

}
+

n (kµ −Aµ)

(1 + kµ) (1 +Aµ)

{
max
|z|=1
|P (z)| − 1

kn
min
|z|=k
|P (z)|

}
(1.17)

where Aµ is given by (1.11).

We next present the following result which is the refinement of theorem 1.2.

Theorem 1.5. Let P (z) = anz
n +

∑n
j=µ an−jz

n−j , 1 6 µ 6 n, a0 6= 0, be a
polynomial of degree n having all its zeros in |z| 6 k, k 6 1, and δ is any complex
number with |δ| 6 1, then

max
|z|=1
|DδP (z)| 6 n(Aµ + |δ|)

1 +Aµ
max
|z|=1
|P (z)| − nAµ(1− |δ|)

(1 +Aµ)kn
min
|z|=k
|P (z)| (1.18)

where Aµ is given by (1.11).
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It is easy to verify that Theorem 1.5 provides a refinement of Theorem 1.2. By
Lemma 2.8,

n

(
x+ |δ|
1 + x

)
max
|z|=1
|P (z)| − n

(
(1− |δ|)x
(1 + x)kn

)
min
|z|=k
|P (z)|

is non-decreasing function of x. Combining this fact with Lemma 2.7, according
to which Aµ 6 kµ for µ > 1, it follows that Theorem 1.5 is a refinement of
Theorem 1.2.

As an application of Theorem 1.1, we finally present the following result which
yields a refinement of Theorem 1.3.

Theorem 1.6. If P (z) = a0 +
∑n
j=µ ajz

j , 1 6 µ 6 n, is a polynomial of degree n
which does not vanish in |z| < k where k > 1, then for every complex number β
with |β| 6 s0,

max
|z|=1
|DβP (z)| > n

1 + s0

{
(s0 − |β|)max

|z|=1
|P (z)|+ (|β|+ 1)m

}
(1.19)

where s0 is given by (1.8) and m = min|z|=k |P (z)|.

By Lemma 2.4, s0 > kµ. Therefore, Theorem 1.6 is also valid for |β| 6 kµ and
the right hand side of inequality (1.19) is equivalent to

n

1 + kµ

{
(kµ − |β|)max

|z|=1
|P (z)|+ (|β|+ 1)m

}

+
n(s0 − kµ)(1 + |β|)

(1 + kµ)(1 + s0)

(
max
|z|=1
|P (z)| −m

)
.

Thus, in view of Lemma 2.6, Theorem 1.6 leads to the following refinement of
Theorem 1.3.

Corollary 1.7. If P (z) = a0 +
∑n
j=µ ajz

j , 1 6 µ 6 n, is a polynomial of degree
n which does not vanish in |z| < k where k > 1, then for every complex number β
with |β| 6 kµ,

max
|z|=1
|DβP (z)| > n

1 + kµ

{
(kµ − |β|)max

|z|=1
|P (z)|+ (|β|+ 1)m

}
+
n(s0 − kµ)(1 + |β|)

(1 + kµ)(1 + s0)

(
max
|z|=1
|P (z)| −m

)
(1.20)

where s0 is given by (1.8) and m = min|z|=k |P (z)|.
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2. Lemmas

For the proof of our theorems, we need the following lemmas.

Lemma 2.1. If P (z) = anz
n +

∑n
j=µ an−jz

n−j , 1 6 µ 6 n, is a polynomial of
degree n having all its zeros in |z| 6 k where k 6 1 and Q(z) = znP (1/z), then on
|z| = 1

|Q′(z)| 6 Sµ|P ′(z)| (2.1)

where

Sµ =
n|an|k2µ + µ|an−µ|kµ−1

n|an|kµ−1 + µ|an−µ|
(2.2)

and
µ

n

∣∣∣∣an−µan

∣∣∣∣ 6 kµ. (2.3)

The above lemma is due to Aziz and Rather [3].

Lemma 2.2. If P (z) = anz
n +

∑n
j=µ an−jz

n−j , 1 6 µ 6 n, is a polynomial of
degree n having all its zeros in |z| 6 k where k 6 1, then for every complex α with
|α| > Sµ,

|DαP (z)| > n
(
|α| − Sµ
1 + Sµ

)
|P (z)| for |z| = 1. (2.4)

Proof. If Q(z) = znP (1/z), then it can be easily verified that for |z| = 1,

|Q′(z)| = |nP (z)− zP ′(z)|
> |nP (z)| − |zP ′(z)|,

which is equivalent to

|Q′(z)|+ |P ′(z)| > n|P (z)| for |z| = 1. (2.5)

For |z| = 1, we have by using Lemma 2.1 and inequality (2.5),

(1 + Sµ) |P ′(z)| = |P ′(z)|+ Sµ|P ′(z)|
> |P ′(z)|+ |Q′(z)|
> n|P (z)|,

which implies,
|P ′(z)| > n

1 + Sµ
|P (z)| for |z| = 1. (2.6)

Now, for every complex number α with |α| > Sµ,

|DαP (z)| = |nP (z) + (α− z)P ′(z)|
> |α||P ′(z)| − |nP (z)− zP ′(z)|,
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which implies that for |z| = 1,

|DαP (z)| > |α||P ′(z)| − |Q′(z)|. (2.7)

Inequality (2.7) when combined with Lemma 2.1 gives,

|DαP (z)| > (|α| − Sµ) |P ′(z)| for |z| = 1.

The above inequality in conjunction with inequality (2.6) yields,

|DαP (z)| > n
(
|α| − Sµ
1 + Sµ

)
|P (z)| .

This proves Lemma 2.2. �

Lemma 2.3. If P (z) = a0 +
∑n
j=µ ajz

j , 1 6 µ 6 n, is a polynomial of degree n
having no zeros in |z| < k where k > 1, then for every complex number α with
|α| > 1

max
|z|=1
|DαP (z)| 6 n

1 + s0

{
(|α|+ s0)max

|z|=1
|P (z)| − (|α| − 1)m

}
(2.8)

where m = min|z|=k |P (z)| and s0 is as defined in (1.8).

The above Lemma is due to Dewan et al. [6, Theorem 1] and the following
Lemma is due to Gardner, Govil and Weems [9].

Lemma 2.4. If P (z) = a0 +
∑n
j=µ ajz

j , 1 6 µ 6 n, is a polynomial of degree n
having no zeros in |z| < k, k > 1, then

s0 > k
µ (2.9)

where s0 is given by (1.8).

Lemma 2.5. If P (z) =
∑n
j=1 ajz

j is a polynomial of degree n having all its zeros
in |z| 6 k, k 6 1 and m = min|z|=k |P (z)|, then

max
|z|=1
|P (z)| > m

kn
(2.10)

and, in particular,
|an| >

m

kn
. (2.11)

Proof. Since the polynomial P (z) has all its zeros in |z| 6 k, k 6 1, the polynomial
Q(z) = znP (1/z) has no zero in |z| < 1/k, 1/k > 1. We can assume without loss
of generality that Q(z) has no zero on |z| = 1/k, for otherwise the result holds
trivially. Since Q(z), being polynomial, is analytic for |z| 6 1/k and has no zeros
in |z| 6 1/k, by the Minimum Modulus Principle

|Q(z)| > min
|z|=1/k

|Q(z)| for |z| 6 1/k where 1/k > 1.
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This in particular gives,

|Q(z)| > 1

kn
min
|z|=k
|P (z)| for |z| = 1 and |Q(0)| > 1

kn
min
|z|=k
|P (z)|,

which implies,

max
|z|=1
|P (z)| = max

|z|=1
|Q(z)| > m

kn
and |an| >

m

kn
.

This completes the proof of Lemma 2.5. �

Lemma 2.6. If P (z) =
∑n
j=1 ajz

j is a polynomial of degree n which does not
vanish in |z| < k where k > 1, then

max
|z|=1
|P (z)| > min

|z|=k
|P (z)|. (2.12)

Proof. We can assume without loss of generality that P (z) has no zero on |z| = k,
for otherwise, the result holds trivially. Since P (z) is analytic for |z| 6 k and has
no zeros in |z| 6 k, by the Minimum Modulus Principle

|P (z)| > min
|z|=k
|P (z)| for |z| 6 k where k > 1,

which in particular gives,

|P (z)| > min
|z|=k
|P (z)| for |z| = 1.

This proves Lemma 2.6. �

Lemma 2.7. If P (z) = anz
n +

∑n
j=µ an−jz

n−j , 1 6 µ 6 n, is a polynomial of
degree n having all its zeros in |z| 6 k, k 6 1, then

Aµ 6 k
µ (2.13)

where Aµ is defined in (1.11).

The above result is due to Dewan et. al [6].

Lemma 2.8. The function

A(x) = n

(
x+ |δ|
1 + x

)
max
|z|=1
|P (z)| − n

(
(1− |δ|)x
(1 + x)kn

)
min
|z|=k
|P (z)| (2.14)

is a non-decreasing function of x for every δ with |δ| 6 1.

Proof. The derivative of A(x) with respect to x is

A′(x) =
n(1− |δ|)
(1 + x)2

[
max
|z|=1
|P (z)| − 1

kn
min
|z|=k
|P (z)|

]
,

by Lemma 2.5 for every δ with |δ| 6 1, A′(x) > 0 for all x 6= −1. Hence A(x) is
non-decreasing function of x. �
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Lemma 2.9. The function

Sµ(x) =
nxk2µ + µ|an−µ|kµ−1

nxkµ−1 + µ|an−µ|
, (2.15)

where k 6 1 and µ > 1, is a non-increasing function of x.

Proof. The proof follows by considering the first derivative test for Sµ(x). �

3. Proof of Theorems

Proof of Theorem 1.1. By hypothesis, the polynomial P (z) = anz
n +∑n

j=µ an−jz
n−j , 1 6 µ 6 n, has all its zeros in |z| 6 k, k 6 1. If P (z) has

a zero on |z| = k, then m = 0 and the result follows from Lemma 2.2. Hence, we
suppose that all the zeros of P (z) lie in |z| < k, k 6 1, so that m > 0.

Now m 6 |P (z)| for |z| = k, therefore, if λ is any complex number such that
|λ| < 1, then ∣∣∣∣mλznkn

∣∣∣∣ < |P (z)| for |z| = k.

Since all the zeros of P (z) lie in |z| < k, it follows by Rouche’s theorem that all
the zeros of

F (z) = P (z)− mλzn

kn
=

(
an −

λm

kn

)
zn +

n∑
j=µ

an−jz
n−j

also lie in |z| < k, k 6 1. Applying Lemma 2.1 to the polynomial F (z), we get for
|z| = 1,

S′µ|F ′(z)| > |G′(z)| (3.1)

where G(z) = znF (1/z) = znP (1/z) + mλ
kn and

S′µ =
n
∣∣an − mλ

kn

∣∣ k2µ + µ|an−µ|kµ−1

n
∣∣an − mλ

kn

∣∣ kµ−1 + µ|an−µ|
. (3.2)

Since by Lemma 2.5, |an| > m
kn , therefore, for every λ with |λ| < 1, we have∣∣∣∣an − mλ

kn

∣∣∣∣ > |an| − m|λ|
kn
> |an| −

m

kn
. (3.3)

Now combining (3.2), (3.3) and Lemma 2.9 for every λ with |λ| < 1, we get

S′µ =
n
∣∣an − mλ

kn

∣∣ k2µ + µ|an−µ|kµ−1

n
∣∣an − mλ

kn

∣∣ kµ−1 + µ|an−µ|

6
n
(
|an| − m

kn

)
k2µ + µ|an−µ|kµ−1

n
(
|an| − m

kn

)
kµ−1 + µ|an−µ|

= Aµ (say). (3.4)
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Using inequality (3.4) in inequality (3.1), we obtain

Aµ|F ′(z)| > |G′(z)| for |z| = 1. (3.5)

Equivalently for |z| = 1, we have

Aµ

∣∣∣∣P ′(z)− λmnzn−1

kn

∣∣∣∣ > |Q′(z)| (3.6)

where Q(z) = znP (1/z). Since all the zeros of polynomial F (z) = P (z)− mλzn

kn lie
in |z| < k, where k 6 1, it follows by Gauss-Lucas Theorem that all the zeros of
the polynomial T (z) = P ′(z)− λmnzn−1

kn also lie in |z| < k, k 6 1 for every λ with
|λ| < 1. This implies

|P ′(z)| > mn|z|n−1

kn
for |z| > k. (3.7)

If inequality (3.7) is not true, then there exists a point z0 with |z0| > k such that

|P ′(z0)| < mn|z0|n−1

kn
.

We take λ = knP ′(z0)/mnzn−1
0 , then |λ| < 1 and with this choice of λ we get

T (z0) = 0, |z0| > k which is clearly a contradiction to the fact that all the zeros
of T (z) lie in |z| < k. Thus inequality (3.7) holds.
Now choosing the argument of λ in the left hand side of inequality (3.6) such that

Aµ

∣∣∣∣P ′(z)− λmnzn−1

kn

∣∣∣∣ = Aµ

{
|P ′(z)| − |λ|mn|z|

n−1

kn

}
for |z| = 1,

which is possible by (3.7), we get

Aµ|P ′(z)| −Aµ
|λ|mn|z|n−1

kn
> |Q′(z)| for |z| = 1. (3.8)

Letting |λ| → 1, we obtain

Aµ|P ′(z)| −Aµ
mn

kn
> |Q′(z)| for |z| = 1. (3.9)

Since Q(z) = znP (1/z), it can be easily seen that

|Q′(z)| = |nP (z)− zP ′(z)| for |z| = 1.

This gives for every α with |α| > Aµ and for |z| = 1,

|DαP (z)| = |nP (z) + (α− z)P ′(z)|
> |α||P ′(z)| − |nP (z)− zP ′(z)|
= |α||P ′(z)| − |Q′(z)|. (3.10)
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Combining inequality (3.10) with inequality (3.9), we get for |z| = 1,

|DαP (z)| > (|α| −Aµ) |P ′(z)|+Aµ
mn

kn
. (3.11)

Also, from (3.10), we have

Aµ|DαP (z)| > |α|Aµ|P ′(z)| −Aµ|Q′(z)| for |z| = 1,

which gives with the help of (3.9) for |z| = 1 and |α| > Aµ,

Aµ|DαP (z)| > |α|
{
|Q′(z)|+Aµ

mn

kn

}
−Aµ|Q′(z)|

= (|α| −Aµ) |Q′(z)|+Aµ|α|
mn

kn
. (3.12)

Adding (3.11) and (3.12), we obtain for every complex number α with |α| > Aµ
and for |z| = 1,

(1 +Aµ) |DαP (z)| > (|α| −Aµ) {|P ′(z)|+ |Q′(z)|}+Aµ
mn(|α|+ 1)

kn

= (|α| −Aµ) {|zP ′(z)|+ |nP (z)− zP ′(z)|}+Aµ
mn(|α|+ 1)

kn

> (|α| −Aµ) {|zP ′(z) + nP (z)− zP ′(z)|}+Aµ
mn(|α|+ 1)

kn

= n (|α| −Aµ) |P (z)|+Aµ
mn(|α|+ 1)

kn
,

which implies,

max
|z|=1

|DαP (z)| > n
(
|α| −Aµ
1 +Aµ

)
max
|z|=1
|P (z)|+ n

kn

(
(1 + |α|)Aµ

1 +Aµ

)
m.

This completes the proof of Theorem 1.1. �

Proof of Theorem 1.5. By hypothesis the polynomial P (z) = anz
n +∑n

j=µ an−µz
n−µ, 1 6 µ 6 n, has all its zeros in |z| 6 k, k 6 1, therefore the poly-

nomial Q(z) = znP (1/z) has no zero in |z| < 1/k, 1/k > 1. Applying Lemma 2.3
to Q(z), we get for every complex α with |α| > 1,

|DαQ(z)| 6 n

1 + s′0

{
(|α|+ s′0)max

|z|=1
|Q(z)| − (|α| − 1) min

|z|=1/k
|Q(z)|

}
, (3.13)

where

s′0 =
1

kµ+1


µ
n

(
|an−µ|

|an|− min
|z|=1/k

|Q(z)|

)
1

kµ−1 + 1

µ
n

(
|an−µ|

|an|− min
|z|=1/k

|Q(z)|

)
1

kµ+1 + 1


=

µ|an−µ|+ n
(
|an| − m

kn

)
kµ−1

µ|an−µ|kµ−1 + n
(
|an| − m

kn

)
k2µ

=
1

Aµ
. (3.14)
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Using (3.14) in (3.13), we obtain for |α| > 1 and |z| = 1

|DαQ(z)| 6 n

1 + 1
Aµ

{(
|α|+ 1

Aµ

)
max
|z|=1
|P (z)| − |α| − 1

kn
min
|z|=k
|P (z)|

}
=
n(|α|Aµ + 1)

1 +Aµ
max
|z|=1
|P (z)| − nAµ(|α| − 1)

(1 +Aµ)kn
min
|z|=k
|P (z)|. (3.15)

If |z| = 1 so that zz = 1, then we have

|DαQ(z)| = |nQ(z) + (α− z)Q′(z)|

=
∣∣∣nznP (1/z) + (α− z)

{
nzn−1P (1/z)− zn−2P ′(1/z)

}∣∣∣
=
∣∣∣α{nzn−1P (1/z)− zn−2P ′(1/z)

}
+ zn−1P ′(1/z)

∣∣∣
=
∣∣∣α(nP (z)− zP ′(z)

)
+ P ′(z)

∣∣∣
= |αnP (z) + (1− αz)P ′(z)| = |α||D1/αP (z)|.

This gives,

|DαQ(z)| = |α||D1/αP (z)| for |α| > 1 and |z| = 1. (3.16)

Inequality (3.16) in conjunction with (3.15) implies for |α| > 1 and |z| = 1,

|α||D1/αP (z)| 6 n(|α|Aµ + 1)

1 +Aµ
max
|z|=1
|P (z)| − nAµ(|α| − 1)

(1 +Aµ)kn
min
|z|=k
|P (z)|.

Replacing 1/α by δ, we obtain for |δ| 6 1 and |z| = 1,

|DδP (z)| 6 n(Aµ + |δ|)
1 +Aµ

max
|z|=1
|P (z)| − nAµ(1− |δ|)

(1 +Aµ)kn
min
|z|=k
|P (z)|, (3.17)

which proves Theorem 1.5. �

Proof of Theorem 1.6. Since all the zeros of polynomial P (z) = a0+
∑n
j=µ ajz

j ,
1 6 µ 6 n, lie in |z| > k, where k > 1, all the zeros of polynomial Q(z) =
znP (1/z) = a0z

n +
∑n
j=µ ajz

n−j , 1 6 µ 6 n lie in |z| 6 1/k 6 1. Apply-
ing Theorem 1.1 to the polynomial Q(z) and noting that min|z|=1/k |Q(z)| =
1/kn min|z|=k |P (z)|, we get for |α| > A′µ,

max
|z|=1

|DαQ(z)| > n
( |α| −A′µ

1 +A′µ

)
max
|z|=1
|Q(z)|+ nkn

(
(1 + |α|)A′µ

1 +A′µ

)
min
|z|=1/k

|Q(z)|



282 Nisar A. Rather, Suhail Gulzar

where

A′µ =

n

(
|a0| − kn min

|z|=1/k
|Q(z)|

)
1
k2µ + µ|aµ| 1

kµ−1

n

(
|a0| − kn min

|z|=1/k
|Q(z)|

)
1

kµ−1 + µ|aµ|

=
1

kµ+1


(
µ
n

) |aµ|
|a0|−mk

µ+1 + 1(
µ
n

) |aµ|
|a0|−mk

µ−1 + 1

 =
1

s0
.

Equivalently,

max
|z|=1

|DαQ(z)| > n
(
|α|s0 − 1

1 + s0

)
max
|z|=1
|P (z)|+ n

(
1 + |α|
1 + s0

)
min
|z|=k
|P (z)|. (3.18)

Using (3.16) in (3.18), we get

max
|z|=1

(
|α|
∣∣D1/αP (z)

∣∣) > n( |α|s0 − 1

1 + s0

)
max
|z|=1
|P (z)|+ n

(
1 + |α|
1 + s0

)
min
|z|=k
|P (z)|.

Setting β = 1/α so that |β| 6 s0, we obtain

max
|z|=1

|DβP (z)| > n
(
s0 − |β|
1 + s0

)
max
|z|=1
|P (z)|+ n

(
|β|+ 1

1 + s0

)
min
|z|=k
|P (z)|.

This proves Theorem 1.6. �
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