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REFINEMENTS OF SOME INEQUALITIES CONCERNING
THE POLAR DERIVATIVE OF A POLYNOMIAL

NISAR A. RATHER, SUHAIL GULZAR

Abstract: If P(z) = anz™ + Z;‘L:u an—;2"7, 1< p < n, is a polynomial of degree n having all
its zeros in |z| < k, k < 1, then it was recently claimed by K. K. Dewan, Naresh Singh, Abdullah
Mir [Eztensions of some polynomial inequalities to the polar derivative, J. Math. Anal. Appl.
352 (2009), 807-815| that for every real or complex number «, with |a| > k¥,
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where m = min|,|—, |P(2)|, Da P(2) is a polar derivative of P(z) with respect to the point o € C
and A, is given by (1.11). The proof of this result is not correct. In this paper, we present certain
more refined results which not only provides a correct proof of above inequality as a special case
but also yields a refinement of above and other related result.

Keywords: polynomials, inequalities in the complex domain, polar derivative, Bernstein’s in-
equality.

1. Introduction and statement of results
If P(z) is a polynomial of degree n, then

max |P'(2)] < n max |P(2)]|. (1.1)
Inequality (1.1) is an immediate consequence of S. Bernstein’s Theorem on the
derivative of a trigonometric polynomial (for reference, see [13, p.531], [15, p.508]
or [17]) equality in (1.1) holds for P(z) = az™, a # 0.

If we restrict ourselves to the class of polynomials of degree n having no zero
in |z| < 1, then inequality (1.1) can be replaced by

max |P'(2)| < 2 max |P(2)|. (1.2)

|z]=1 2 |z|=1
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Inequality (1.2) was conjectured by Erdds and later verified by Lax [8].The result
is sharp and equality holds for P(z) = az™ + 8, |a] = |8].
For polynomials P(z) of degree n having all zeros in |z| < 1, it was proved by
Turan [18] that
max |P'(2)| > S max|P(z)| . (1.3)
|z|=1 2 |z|=1
The inequality (1.3) is best possible and the extremal polynomial is P(z) = (z+1)™.
As an extension of (1.2), Malik [12] proved that if P(z) # 0 in |z| < k where
k > 1, then

n
P’ < — P 14
max | P(2)| < 7 max (P2l (1.4)
where as if P(z) has all its zeros in |z| < k where k < 1, then
n
P’ > — P . 1.5
max | P(2)] > g7 max |P(2)) (1.5)

By considering the class of polynomials P(2) = an2" + >0 an—jz""7 of
degree n having all their zeros in |z| < k, k < 1, Aziz and Shah [4] proved

min|P(z)|} . (1.6)

, n
max|P'(2)| > 3 {rnl IP(2)| + e min

|z|=1

On the other hand, for the more general class of polynomials P(z) = ag +

Z?:u ajz?, 1 < p < n, not vanishing in |z| < k where k > 1, Gardner, Govil,
Weems [9] proved

max |P'(2)] <
|z|=1 I ( )I 1+ 59

{max IP(2)] - m} (1.7)
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where m = min, | P(z)| and
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n
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In the literature (see [2, 5, 9, 10, 11, 14]) there exist some refinements and
generalizations of all the above inequalities.
Let D, P(z) denote the polar derivative of the polynomial P(z) of degree n
with respect to the point « € C, then
DoP(z) =nP(z) + (o — 2) P'(2).
The polynomial D, P(z) is of degree at most n — 1 and it generalizes the ordinary
derivative in the sense that
D,P
lim DaP(2) = P'(2)
a—o00 o

uniformly with respect to z with |z] < R, R > 0.
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Dewan et al. [7] (see also [16]) extended inequality (1.6) to the polar derivative
and they proved that if P(z) = a, 2" +Z?:u an—jz"9,1 < pp < n, is a polynomial
of degree n having all its zeros in |z| < k, k& < 1, then for every complex number
a with |af > kH,

n(laf — k) n(laf +1)

D,P > —r —_—— P(2)|. 1.9

PP > e e (g k) i PEL - (19)
While seeking the desired refinement of inequality (1.9), recently Dewan et al.

[6] have made an incomplete attempt by claiming to have proved the following

result.

Theorem 1.1. Let P(2) = anz" + 3 7_, an—;2" 7 where 1 < p < n, be a poly-
nomial of degree n having all its zeros in |z| < k, k < 1, then for every complex
number o with |a] > k¥, we have

n(|a| — k") n(laf +1)
Do P(2)| > —————"max |P T (1 = o)
B R T - B T e T
'y n(A, — k")
" P —r 7 1.1
+n( 14 jon )glﬁ)% (Z)|+ k"(l—l—k“)m ( O)

where m = min, - |P(2)| and

O L0 L e |
“ = T lan] — m/E R plan]

(1.11)

The proof of Theorem 1.1 given by Dewan et al. [6] is not correct. The reason
being that the authors in [6] deduce in lines 8 - 10 on page 814, that for every
complex number « with |a| > k*, 1 < p < n, the polynomial D, [P(z) — m,i‘fn]
has all its zeros in |z| < k, k < 1 by using Lemma 7 in [6] which is not true in general
for 1 < p < n. Here Lemma 7 of [6] is applicable only when =1 (see [1, 13, 15]).
Thus the argument used to establish that all the zeros of D, [P(z) — m,i‘,fn] lie in
|z| < k for || > k* is false.

The immediate counterexample P(z) = 422 — 1, u = 2 having all its zeros
in |2|] < k = 3/5 < 1 demonstrates, by taking o = 2/5 > k* that the zero of
DoP(z) = 12 — 2 lie in |2| > k = 3/5.

They [6] have also proved the following result.

Theorem 1.2. If P(z) = a,2" + Z?:H an—;z2"79, 1 < p < n, is a polynomial of
degree n having all its zeros in |z| < k where k < 1 and § is any complex number
with |8 < 1, then for |z| =1

kH + 18] n(1 —1d]) in|P(z)]. (1.12)

_ T
pspe) < n (T30 ) s P00 - ey i

The result is best possible and equality in (1.12) holds for P(z) = (2" + k”)n/“,
where n is a multiple of  and § > 0. The proof of Theorem 1.2 given by Dewan
et. al. [6] is valid only when P(0) # 0.
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For the class of polynomials P(z) = ag + Z?:# ajzj7 1 < p < n, not vanishing
in |z| < k where & > 1, N. A. Rather and M. I. Mir [16] proved the following
result.

Theorem 1.3. If P(z) = ag + Z?:u a;jz’, 1 < p < n, is a polynomial of degree
n which does not vanish in |z| < k where k > 1, then for every complex number 8
with | 8] < kH,

n
1+ ko

ma>§|DﬁP(z)| >

2|

{o = hma P+ (314 m) 19

where m = min|,|—,|P(2)].

The main aim of this paper is to present a correct proof of Theorem 1.1 and
establish some refinements of Theorems 1.1, 1.2, 1.3.

In this direction, we first present the following more general result which not
only provides a correct proof of Theorem 1.1 but also yields an improvement of
Theorem 1.1 and a refinement of inequality (1.6).

Theorem 1.1. Let P(z) = ap2™ + Z;L:u an—;2"9, 1 < p < n, be a polynomial
of degree n having all its zeros in |z| < k where k < 1, then for every complex
number a with |a] > A,

la] — A, nA, (1+|a
D.P > 14— Ap j2) il e b § 1.14
Iril‘i)ﬂ WP(2)| = n ( 114, gl‘i)ﬂ ()| + L 1+ A, m ( )

where A, is given by (1.11) and m = min|;— [P(2)|.

By Lemma 2.7, A,, < k*, therefore, Theorem 1.1 holds for every a with |a| > k#
as well. Also the right hand side of inequality (1.14) can be written as

n(Ja] — k) ety
WInzalfgIP(Z)l Ry )
kH (A = k)

— A,
o (S maxlPa) + e

n(k — 4,) (o] - A,) m
T AT Ay {Eﬁ’%'P (Z”‘k"}’

therefore, the following interesting result which is a refinement of Theorem 1.1
follows immediately from Theorem 1.1.

Corollary 1.2. Let P(z) = a,2" + Z?:N an—jz" 9, 1 < p < n, be a polynomial
of degree n having all its zeros in |z| < k, k < 1, then for every complex number «
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with |a| > k", we have

n(|o| — k") n (o) +1)
B0 P> Sy me PO s ™
kH — AA‘u n(A# —_ kl»’«)
o (W) P+ Tt oy
n(k" —Au) (laf — Ay) m
* (1+ k) (14 A,) {gll%)ﬂp(zﬂ - k:”} (1.15)

where A, is given by (1.11).

n \ |an,|—m/k™
Corollary 1.2 is always sharp than the bound obtained from Theorem 1.1 and for
this it needs to show that

n (B = A,) (o] - 4,) m
e e UGl (116)

In fact, except the cases k=1 or £ (M) = k" the bound obtained in

In view of inequality (2.13), the inequality (1.16) becomes equivalent to
m

P >7a
lgllégl () =55

which is true by Lemma 2.5 and hence inequality (1.16) holds.

Remark 1.3. Corollary 1.2 establishes a correct proof of a result due to Dewan
et al. [6, Theorem 3] and also provides its refinement.

If we divide both sides of inequality (1.15) by |«| and let |a| — 0o, we get the
following result which is a refinement of inequality (1.6).
Corollary 1.4. Let P(z) = a,z" + Z?:# an—jz"9, 1 < p < n, be a polynomial
of degree n having all its zeros in |z| < k, k < 1, then

n
P> —
max [P > o

{mx P + o i P

n(k* —A,) 1
(1 n k-p.) (1 I Au) {gﬁi}ﬂp('z” - knlfzrlllzILP(ZM} (1.17)

where A, is given by (1.11).
We next present the following result which is the refinement of theorem 1.2.

Theorem 1.5. Let P(2) = an2" + 37, an—2"7, 1 < p < n, ag # 0, be a
polynomial of degree n having all its zeros in |z| <k, k < 1, and ¢ is any complex
number with |6] < 1, then
A 0
max|Ds P(2)| < Ay +19])
=1

|z|=

nAu(—1o))
P(z)| — —H——— P 11
Ty e S e i

where A, is given by (1.11).
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It is easy to verify that Theorem 1.5 provides a refinement of Theorem 1.2. By

Lemma 2.8,
x + |0] (1—16)= .
P — —_— P
n( Ttz ) ‘rg‘fgl (2)] n((1+x)k” ‘g‘nzgl (2)]

is non-decreasing function of x. Combining this fact with Lemma 2.7, according
to which A, < k* for p > 1, it follows that Theorem 1.5 is a refinement of
Theorem 1.2.

As an application of Theorem 1.1, we finally present the following result which
yields a refinement of Theorem 1.3.

Theorem 1.6. If P(z) = ag+ Z;:u ajzj7 1 < p < n, is a polynomial of degree n
which does not vanish in |z| < k where k > 1, then for every complex number
with |8] < so,

n
1+ 59

maxDsP(2) > 1o {0~ 3DmaxdPG)| + (814 | (1.9

where sq is given by (1.8) and m = min|;— [P(2)|.

By Lemma 2.4, sg > k*. Therefore, Theorem 1.6 is also valid for 8] < k* and
the right hand side of inequality (1.19) is equivalent to

n
1+ Kk

{(k“Iﬂl)gllg>§lp(2)l+(5l+1)m}

n(so — k*)(1+ |5) o
AR T ) (fﬁ?’i'P )l >

Thus, in view of Lemma 2.6, Theorem 1.6 leads to the following refinement of
Theorem 1.3.

Corollary 1.7. If P(z) = ag + Z?:u a;jz?, 1 < p < n, is a polynomial of degree
n which does not vanish in |z| < k where k > 1, then for every complex number
with | 8] < kM,

n

s {0 = hmaxtPG + 1+ 1 |

n(so — k*)(1 + |B])
* (1 + k)1 + so) (IDZ“I%’%P(Z” - m) (1.20)

ma>§|D5P(z)| >

2|

where sq is given by (1.8) and m = min|,|— |P(2)].
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2. Lemmas
For the proof of our theorems, we need the following lemmas.

Lemma 2.1. If P(2) = a,2™ + 37_ an—2"7, 1 < p < n, is a polynomial of

degree n having all its zeros in |z] < k where k < 1 and Q(z) = 2" P(1/Z), then on
|2l =1

Q' (2)] < Sl P'(2)] (2.1)
where ) )
W -
S, = nlan k™ + plan—|k (2.2)
Alanl b+ iln ]
and
Bzl < ke, (2.3)
n| ap,

The above lemma is due to Aziz and Rather [3].

Lemma 2.2. If P(z) = a,2" + Z?:u an—;z" 7,1 < p < n, is a polynomial of
degree n having all its zeros in |z| < k where k < 1, then for every complex a with
laf > Sy

o] = Sy

>
|D,P(2)] = n ( T3,

) |P(2)] for |z| =1. (2.4)

Proof. If Q(z) = 2" P(1/Z), then it can be easily verified that for |z| = 1,

Q" (2)| = InP(2) — 2P'(2)]
> [nP(2)] — [2P'(2)],

which is equivalent to
Q' ()| + [P'(2)| 2 n|P(2)]  for |z =1. (2.5)
For |z| = 1, we have by using Lemma 2.1 and inequality (2.5),

1+ S [P'(2)] =P (2)] + Sul P'(2)]
|P(

> |P'(2)| +1Q'(2)]
> n|P(2)],
which implies,
1P (2)] > 1fSH IP(z)|  for |z = 1. (2.6)

Now, for every complex number a with |a| > S,

[DaP(2)| = [nP(2) + (o — 2) P'(2)|
> |a||P'(2)| = [nP(2) — 2P'(2)],
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which implies that for |z| =1,
[DaP(2)| = |al|P'(2)] = |Q'(2)]. (2.7)
Inequality (2.7) when combined with Lemma 2.1 gives,
DaP(:)| > (Jal = ) [P/(=)] for |2 = 1.

The above inequality in conjunction with inequality (2.6) yields,

Dur )= 0 (28 ) P

This proves Lemma 2.2. |

Lemma 2.3. If P(z) = ag + Z?:u a;jz?, 1 < p < n, is a polynomial of degree n
having no zeros in |z| < k where k > 1, then for every complex number a with
lal > 1

n
<— —(la] — :
wax D, PG| < 12 { ol + somaxlPG)| - ol - Um - (28)
where m = min||— |P(z)| and so is as defined in (1.8).

The above Lemma is due to Dewan et al. [6, Theorem 1] and the following
Lemma is due to Gardner, Govil and Weems [9].

Lemma 2.4. If P(z) = ap + E?:u a;jz?, 1 < p < n, is a polynomial of degree n
having no zeros in |z| < k, k > 1, then

So 2 k” (29)
where sg s given by (1.8).

Lemma 2.5. If P(z) = Z?Zl ajz? is a polynomial of degree n having all its zeros

in |z| <k, k<1 and m = min|;—, |[P(2)|, then

m
P > — 2.1
max|P(:)| > 7 (2.10)
and, in particular,
m
Jan| > 25 (2.11)

Proof. Since the polynomial P(z) has all its zeros in |z| < k, k < 1, the polynomial
Q(z) = z"P(1/Z) has no zero in |z| < 1/k, 1/k > 1. We can assume without loss
of generality that Q(z) has no zero on |z| = 1/k, for otherwise the result holds
trivially. Since Q(z), being polynomial, is analytic for |z| < 1/k and has no zeros
in |z| < 1/k, by the Minimum Modulus Principle

Q(=)| = | I‘l'illI}IJQ(Z)‘ for |z| <1/k where 1/k > 1.
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This in particular gives,

QG| > prminlPG) for =1 and  [Q(O)]> g min|P(2)]

k™ |z| k™ |z|=k
which implies,
max|P(e)| = max|Q()| > 17 and o] > 4
This completes the proof of Lemma 2.5. |

Lemma 2.6. If P(z) = Z;;l a;jz? is a polynomial of degree n which does not
vanish in |z| < k where k > 1, then

max| P()] > min |P(:)]. (2.12)

Proof. We can assume without loss of generality that P(z) has no zero on |z| = k,
for otherwise, the result holds trivially. Since P(z) is analytic for |z| < k and has
no zeros in |z| < k, by the Minimum Modulus Principle

|P(2)| > |H|1H£‘P(Z)| for |z| <k where k >

which in particular gives,

|P(2)] = min|P(z)] for |z] =1.

|z|=k
This proves Lemma 2.6. u

Lemma 2.7. If P(z) = a,2" + Z;-L:M an—jz"9, 1 < p < n, is a polynomial of
degree n having all its zeros in |z| < k, k < 1, then

Ay <K (2.13)
where A, is defined in (1.11).
The above result is due to Dewan et. al [6].

Lemma 2.8. The function

(el (-l
Aw) =0 (T magp) 0 (G000) w20

is a non-decreasing function of x for every § with |6| < 1
Proof. The derivative of A(x) with respect to x is
n(l —14]) 1
Al(z) = W glgﬂp(z)\ - kjmln|P( 2

by Lemma 2.5 for every ¢ with [§] < 1, A'(x) > 0 for all  # —1. Hence A(z) is
non-decreasing function of x. |
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Lemma 2.9. The function

Nk + plan_ k"1

2.15
Rk + el (2.15)

)

Su(x) =

where k < 1 and p > 1, is a non-increasing function of x.

Proof. The proof follows by considering the first derivative test for S,(x). |

3. Proof of Theorems

Proof of Theorem 1.1. By hypothesis, the polynomial P(z) = a,2" +
> @n—jz" 7, 1 < p < n, has all its zeros in [2| < k, k < 1. If P(z) has
a zero on |z| = k, then m = 0 and the result follows from Lemma 2.2. Hence, we
suppose that all the zeros of P(z) lie in |z| < k, k < 1, so that m > 0.
Now m < |P(z)| for |z| = k, therefore, if X is any complex number such that
|A] <1, then
mAz"
kn

Since all the zeros of P(z) lie in |z| < k, it follows by Rouche’s theorem that all
the zeros of

< |P(z)| for |z| = k.

F(z)=P(z) — = (an - X:) 2"+ Zan,jz”_j
Jj=p

also lie in |z| < k, k < 1. Applying Lemma 2.1 to the polynomial F(z), we get for
2| =1,
SuIF'(2)] = |G'(2)] (3.1)

where G(z) = 2"F(1/Z) = 2" P(1/Z) + ZL"X and

on |a” — ZL—N K+ plan—, kPt

S, = 7 Jan — PNk plan_| (3.2)
Since by Lemma 2.5, |a,,| > 7%, therefore, for every A with [A| < 1, we have
an = 72 > faal = B > o] - (33
Now combining (3.2), (3.3) and Lemma 2.9 for every A with || < 1, we get
S,: _n ‘an — ZL—N E2H —i— /L|an,u|k“_1
n|an — 22 k1 plan—p|
ol = B oy

n (|a'n| - kﬂn) fr—t + U‘an—u|
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Using inequality (3.4) in inequality (3.1), we obtain
AL F'(2)] = |G'(2)] for |z| =1. (3.5)

Equivalently for |z| = 1, we have

A n—1
4, |P'(2) = | > 1Q'(2)] (3.6)

where Q(z) = 2" P(1/Z). Since all the zeros of polynomial F(z) = P(z) — 22" lie
in |z| < k, where k < 1, it follows by Gauss-Lucas Theorem that all the Zeros of
the polynomial T'(z) = P'(z) — Amziinfl also lie in |z] < k, k < 1 for every A with
|A| < 1. This implies

mn|z|" 1

P >
P> —p

for |z| > k. (3.7

If inequality (3.7) is not true, then there exists a point zo with |z9| > k such that

mn|zo|" !

[P (z0)] < T2

We take A = k" P’(zp)/mnz{ "', then |[A\| < 1 and with this choice of A we get
T(z0) = 0, |z0| = k which is clearly a contradiction to the fact that all the zeros
of T(z) lie in |z| < k. Thus inequality (3.7) holds.

Now choosing the argument of X in the left hand side of inequality (3.6) such that

Amnz"1

n—1
| = e - B o -

which is possible by (3.7), we get

A, |P'(z) —

Amn|z|" !
AP - AT ) o = (3.5)
Letting [A| — 1, we obtain
AP - 4,2 Q] for o =1 (3.9)

Since Q(z) = 2" P(1/Z), it can be easily seen that
Q(9) = [nP(z) — 2P(s)]  for |2 =1.
This gives for every a with |a| > A, and for |z| =1,

[DaP(2)] = [nP(2) + (o = 2) P'(2))|
> |a||P'(2)| = [nP(z) — 2P'(2)]
= |a||P'(2)] - 1Q"(2)]. (3.10)
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Combining inequality (3.10) with inequality (3.9), we get for |z| =1,

mn

[DaP(2)] = (Jaf = Au) [P'(2)] + A (3.11)

Also, from (3.10), we have
Au|DaP(2)] Z o] Au|P'(2)] = Au|Q'(2)] for [2] =1,
which gives with the help of (3.9) for |z| =1 and |a| > 4,

A,DaP(2)] > [o] {|Q'(2)] + A1 | = AulQ(2)]
= (Jal = 4,)1Q'(2)| + Aulal 5 (3.12)

Adding (3.11) and (3.12), we obtain for every complex number a with |a| > A,
and for |z] =1,

mn(|o| +1
(14 4 1DaP()] > (lal - 4, 1P ()] + Q' ()} + 4,712 1)
mn(|la|l + 1
= (Jal = 4 {2P'(2) + InP(z) - 2P ()]} + 4, 2lel £ 1
1
> (Jal ~ 4) {2P'(2) + nP(z) - 2P(2)} + 4,00 D
mn(lal +1
= n(la] - A,) [P(z)] + 4,220 D,
which implies,
o] — A, n ((+la)4,
> L . R S i iy o}
s e P > n () mag P + g (U5 )
This completes the proof of Theorem 1.1. |
Proof of Theorem 1.5. By hypothesis the polynomial P(z) = a,z" +

Z;L:H an—pz2" ", 1 < p < n, has all its zeros in |z| < k, k < 1, therefore the poly-
nomial Q(z) = 2" P(1/Z) has no zero in |z| < 1/k, 1/k > 1. Applying Lemma 2.3

to Q(z), we get for every complex a with |a] > 1,

[DaQ(2)] <

< 7 { Gl smaQEo)l = (ol =) i Q1. (319

|z|=1/k

where

SIS

|an—ul 1
1 (|an—|zrgilnfk|Q(z>|> ot 1

T ke |an—ul 1
" <|an|_zln.1n:LkQ(z) kprtl + 1

50

=

plan—p| +n (|an| - %) ket _ 1

B = 3.14
plan—u k=t +n (la,| — Z) k2 A, (3.14)
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Using (3.14) in (3.13), we obtain for |a| > 1 and |z| =1

& ! ol =1
D <—— = P _ P
|DaQ(2)] 1+/3ﬂ{<a|+A#)|ri1&>§ ()] o \Izr\u:rﬁ (z)|}
nlaf A, + 1) ndy(lal - 1)
114, PR -4 1y P(2)|. 1
1+ A, \z\i}ﬂ (=)l (14 A,)k" |121|11:1}€| (2)] (3.15)

If |z| = 1 so that 2z = 1, then we have

1DaQ(2)] = [nQ(2) + (o — 2)Q' ()]

= ’nz”P(l/z) + (o —2) {nz”flm - z"iQWH

~[a {nr PAFET - PO + 2 PO

:@Qm@yapgg+P@ﬂ
= [anP(z) + (1 — @2) P'(z)| = [@||D1/aP(2)|.

This gives,
|1DaQ(2)| = |a||DyjzP(2)] for o/ >1 and |z]=1. (3.16)
Inequality (3.16) in conjunction with (3.15) implies for |a] > 1 and |z| = 1,

n(lalA, +1) nAel =1 1Pl

Dyj=P(2)| <
lollPyaP (@) < = —max (L4 Ak fz1=k

Replacing 1/@ by §, we obtain for |§] < 1 and |z| =1,

n(A, +19]) nA,(1—14]) .
DsP g —4£ Y P - U P 1
|DsP(2)] 1+ A4, \z\i)i (2)] (1+A,)k" |g|nzr}c‘ @), (3.17)
which proves Theorem 1.5. |

Proof of Theorem 1.6. Since all the zeros of polynomial P(z) = ao—i—Z?:u ajz,
1 < p < nliein |z| > k, where k > 1, all the zeros of polynomial Q(z) =
z"P(1/z) = agz" + E;L:u?jzn_j, 1 < p < nliein |z] < 1/k < 1. Apply-
ing Theorem 1.1 to the polynomial Q(z) and noting that min,|—/ [Q(2)] =
L/k" min|, . |P(2)], we get for [a] > A,

min |Q(z)]

|z|=1/k

la| — A, n
max [ D,Q(2)] > n( )lrﬁaj@(zﬂ Tk (

(1+]al)A;,
B 1+ A,

1+ 4,
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where
kn
A/:n(|ao| i 10 ) g + ol
kn
o (Jaol = b i, QL) ) g +
o [
k/’b'i'l (E) la| ku—1+1 o So
n/ lag|—m
Equivalently,

max |[D,Q(2)| > n<a|80_1>maX|P(z) + n(

2l=1 1+sg Jzl=1
Using (3.16) in (3.18), we get

max ([al |D1/zP(2)]) = n (W) max|P(z)| +n (11_:_|§;|> ‘1;1‘11:%|P(z)|

|z|= L+s0 ) lz=1

Setting 8 = 1/@ so that || < sg, we obtain

5018 RSN
max DsP(2)] > n (72 maxd )|+ o (E50) i o).

This proves Theorem 1.6. |
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