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ORDER THREE
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Abstract: We obtain in this paper the solutions of the difference equations

xn+1 =
axnxn−2

xn−1(−b+ cxnxn−2)
, n = 0, 1, ...,

where a, b, c are positive real numbers and the initial conditions are arbitrary positive real
numbers.
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1. Introduction

In this paper we obtain the solutions of the following recursive sequences

xn+1 =
axnxn−2

xn−1(−b+ cxnxn−2)
, n = 0, 1, ..., (1)

where a, b, c are positive real numbers and the initial conditions are arbitrary
positive real numbers.

Recently there has been a great interest in studying the qualitative proper-
ties of rational difference equations. For the systematical studies of rational and
nonrational difference equations, see [1–40] and references therein.

The study of rational difference equations of order greater than one is quite
challenging and rewarding because some prototypes for the development of the
basic theory of the global behavior of nonlinear difference equations of order greater
than one come from the results for rational difference equations. However, there
have not been any effective general methods to deal with the global behavior
of rational difference equations of order greater than one so far. Therefore, the
study of rational difference equations of order greater than one is worth further
consideration.
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Aloqeili [4] has obtained the solutions of the difference equation

xn+1 =
xn−1

a− xnxn−1
.

Cinar [5]-[7] investigated the solutions of the following difference equations

xn+1 =
xn−1

1 + axnxn−1
, xn+1 =

xn−1

−1 + axnxn−1
, xn+1 =

axn−1

1 + bxnxn−1
.

Elabbasy et al. [8]-[9] investigated the global stability, periodicity character and
gave the solution of special case of the following recursive sequences

xn+1 = axn −
bxn

cxn − dxn−1
, xn+1 =

dxn−lxn−k

cxn−s − b
+ a.

Ibrahim [26] get the solutions of the rational difference equation

xn+1 =
xnxn−2

xn−1(a+ bxnxn−2)
.

Karatas et al. [27] get the form of the solution of the difference equation

xn+1 =
xn−5

1 + xn−2xn−5
.

Simsek et al. [32] obtained the solution of the difference equation

xn+1 =
xn−3

1 + xn−1
.

Here, we recall some notations and results which will be useful in our investigation.
Let I be some interval of real numbers and let

f : Ik+1 → I,

be a continuously differentiable function. Then for every set of initial conditions
x−k, x−k+1, ..., x0 ∈ I, the difference equation

xn+1 = f(xn, xn−1, ..., xn−k), n = 0, 1, ..., (2)

has a unique solution {xn}∞n=−k [29].

Definition 1 (equilibrium point). A point x ∈ I is called an equilibrium point
of Eq.(2) if

x = f(x, x, ..., x).

That is, xn = x for n > 0, is a solution of Eq.(2), or equivalently, x is the fixed
point of the map

x→ f(x, x, ..., x).



Solution of a rational recursive sequences of order three 9

Definition 2 (stability).

(i) The equilibrium point x of Eq.(2) is locally stable if for every ϵ > 0, there
exists δ > 0 such that for all x−k, x−k+1, ..., x−1, x0 ∈ I with

|x−k − x|+ |x−k+1 − x|+ ...+ |x0 − x| < δ,

we have
|xn − x| < ϵ for all n > −k.

(ii) The equilibrium point x of Eq.(2) is locally asymptotically stable if x is
locally stable solution of Eq.(2) and there exists γ > 0, such that for all
x−k, x−k+1, ..., x−1, x0 ∈ I with

|x−k − x|+ |x−k+1 − x|+ ...+ |x0 − x| < γ,

we have
lim

n→∞
xn = x.

(iii) The equilibrium point x of Eq.(2) is global attractor if for all
x−k, x−k+1, ..., x−1, x0 ∈ I, we have

lim
n→∞

xn = x.

(iv) The equilibrium point x of Eq.(2) is globally asymptotically stable if x is
locally stable, and x is also a global attractor of Eq.(2).

(v) The equilibrium point x of Eq.(2) is unstable if x is not locally stable.

The linearized equation of Eq.(2) about the equilibrium x is the linear difference
equation

yn+1 =
k∑

i=0

∂f(x, x, ..., x)

∂xn−i
yn−i.

Theorem A ([29]). Assume that pi ∈ R, i = 1, 2, ..., k and k ∈ {0, 1, 2, ...}. Then

k∑
i=1

|pi| < 1,

is a sufficient condition for the asymptotic stability of the difference equation

xn+k + p1xn+k−1 + ...+ pkxn = 0, n = 0, 1, ...

Definition 3 (periodicity). A sequence {xn}∞n=−k is said to be periodic with
period p if xn+p = xn for all n > −k.
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2. Local stability of the equilibrium points

Here we study the local stability character of the solutions of Eq.(1).
The equilibrium points of Eq.(1) are given by the relation

x =
ax2

x(−b+ cx2)
,

then Eq.(1) has a positive equilibrium point

x =

√
a+ b

c
.

Let f : (0,∞)3 −→ (0,∞) be a function defined by

f(u, v, w) =
auw

v(−b+ cuw)
.

Thus

∂f(u, v, w)

∂u
=

−abw
v(−b+ cuw)2

,
∂f(u, v, w)

∂v
=

−auw
v2(−b+ cuw)

,

∂f(u, v, w)

∂w
=

−abu
v(−b+ cuw)2

.

Then

∂f(x, x, x)

∂u
= − b

a
,

∂f(x, x, x)

∂v
= −1, ∂f(x, x, x)

∂w
=
−b
a
.

The linearized equation of Eq.(1) about x is

yn+1 +
b

a
yn + yn−1 +

b

a
yn−2 = 0. (3)

Theorem 1. The equilibrium point x of Eq.(1) is not locally stable.

Proof. If the equilibrium point x stable, then it follows by Theorem A that, Eq.(3)
is asymptotically stable if ∣∣∣∣ ba

∣∣∣∣+ 1 +

∣∣∣∣ ba
∣∣∣∣ < 1,

which is contradiction. The proof is complete. �

Numerical examples

For confirming the results of this section, we consider numerical examples which
represent different types of solutions to Eq.(1).
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Example 1. Consider a = 8, b = 6, c = 9, x−2 = 2, x−1 = 6, x0 = 11. See Fig. 1.
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Figure 1: Plot of xn+1 = (xnxn−2)/(axn−1(−b+ cxnxn−2))

Example 2. See Fig. 2, since a = 14, b = 11, c = 2, x−2 = 5, x−1 = 13, x0 = 7.
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Figure 2: Plot of xn+1 = (xnxn−2)/(axn−1(−b+ cxnxn−2))
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3. Solution of the difference equation xn+1 =
xnxn−2

xn−1(−1+xnxn−2)

In this section we give a specific form of the solutions of the difference equation

xn+1 =
xnxn−2

xn−1(−1 + xnxn−2)
, n = 0, 1, ..., (4)

where the initial conditions are arbitrary nonzero positive real numbers and
x−2x0 ̸= 1.

Theorem 2. Every solution {xn}∞n=−2 of Eq.(4) is periodic with period 4; more
precisely for n = 0, 1, ...

x4n−2 = r, x4n−1 = k, x4n = h, x4n+1 =
hr

k(−1 + hr)
,

where x−2 = r, x−1 = k, x0 = h.

Proof. For n = 0 the result holds. Now suppose that n > 0 and that our assump-
tion holds for n− 1. That is;

x4n−6 = r, x4n−5 = k, x4n−4 = h, x4n−3 =
hr

k(−1 + hr)
.

Now, it follows from Eq.(4) that

x4n−2 =
x4n−3x4n−5

x4n−4(−1 + x4n−3x4n−5)
=

hrk

k(−1 + hr)h

(
−1 + hrk

k(−1 + hr)

)
=

r

(1− hr + hr)
= r,

x4n−1 =
x4n−2x4n−4

x4n−3(−1 + x4n−2x4n−4)
=

rh(
hr

k(−1 + hr)

)
(−1 + hr)

= k,

x4n =
x4n−1x4n−3

x4n−2(−1 + x4n−1x4n−3)
=

k

(
hr

k(−1 + hr)

)
r

(
−1 + khr

k(−1 + hr)

) (−1 + hr)

(−1 + hr)

=
h

1− hr + hr
= h,

x4n+1 =
x4nx4n−2

x4n−1(−1 + x4nx4n−2)
=

hr

k(−1 + hr)
.

Thus, the proof is complete. �
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Numerical examples

For confirming the results of this section, we consider numerical examples which
represent different types of solutions to Eq.(4).

Example 3. Consider x−2 = 7, x−1 = 5, x0 = 9. See Fig. 3.
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Figure 3: Plot of xn+1 = (xnxn−2)/(xn−1(−1 + xnxn−2))

Example 4. See Fig. 4, since x−2 = −3, x−1 = 8, x0 = 7.
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Figure 4: Plot of xn+1 = (xnxn−2)/(xn−1(−1 + xnxn−2))
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4. Solution of the difference equation xn+1 =
xnxn−2

xn−1(−1−xnxn−2)

In this section we obtain the form of the solutions of the difference equation

xn+1 =
xnxn−2

xn−1(−1− xnxn−2)
, n = 0, 1, ..., (5)

where the initial conditions are arbitrary nonzero positive real numbers and
x−2x0 ̸= −1.

Theorem 3. Let {xn}∞n=−2 be a solution of Eq.(5). Then Eq.(5) has a periodic
solutions with period four and for n = 0, 1, ...

x4n−2 = r, x4n−1 = k, x4n = h, x4n+1 =
hr

k(−1− hr)
,

where x−2 = r, x−1 = k, x0 = h.

Proof. As the proof of Theorem 2 and will be omitted. �

Numerical examples

Example 5. Consider x−2 = 11, x−1 = −6, x0 = −9. See Fig. 5.
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Figure 5: Plot of xn+1 = (xnxn−2)/(xn−1(−1− xnxn−2))
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Example 6. See Fig. 6, since x−2 = 4, x−1 = 2, x0 = 7.
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Figure 6: Plot of xn+1 = (xnxn−2)/(xn−1(−1− xnxn−2))
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