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Let f(X) be a cubic polynomial defining a simplest cubic field in
the sense of Shanks. We study integral points on elliptic curves
of the form Y2 = f(X). We compute the complete list of integral
points on these curves for the values of the parameter below
1000. We prove that this list is exhaustive by using the methods
of Tzanakis and de Weger, together with bounds on linear forms
in elliptic logarithms due to S. David. Finally, we analyze this
list and we prove in the general case the phenomena that we
have observed. In particular, we find all integral points on the
curve when the rank is equal to 1.

INTRODUCTION

Let m be a positive integer such that
A:=m>+3m+9

is squarefree. Denote by K,, the cubic field defined
by the polynomial

f(X)=X?+mX? - (m+3)X +1,

which is irreducible over Q. The field K,, is said to
be a simplest cubic field [Shanks 1974].

These fields have often been studied because their
regulator is explicit and as small as possible, hence
their class number is particularly large.

In this work, we are interested in elliptic curves
defined by equation

E,:Y’=X>4+mX?— (m+3)X +1 (0-1)

where m is an integer defining a simplest cubic field.
We first want to find all the integral points on these
curves for m below 1000. We then conjecture what
should be true in general and finally we prove these
conjectures. The main results are about the point
[0, 1]: we prove that it is a generator of the Mordell-
WEeil group and we find all its integral multiples.
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1. ELLIPTIC CURVES DEFINED BY SIMPLEST CUBIC
FIELDS

The discriminant of the curve E,, defined by (0-1)
is 16A? (recall that A = m?+3m+9 is assumed
squarefree). If m is even, the conductor is 16A?; if
m =1 (mod 4), the conductor is 8A?; and if m =3
(mod 4), it is 4A?. Since the discriminant is always
positive, the curve E(R) has two connected compo-
nents. Denote by E°(R) the connected component
of the identity and by E,,(R) (as in “egg”) the com-
pact part of E(R).

We first state a theorem of L. Washington.

Let Cl be the ideal class group of the simplest
cubic field K,,, and set

Cl,={zeCl:2?=1}

. The 2-rank rky(Cly) will denote its dimension as a
Z /27Z-vector space. Note that since K,, is a cyclic
cubic field, rky(Cly) is even. Finally, let I, de-
note the 2-torsion of the Tate—Shafarevitch group of

En(Q).

Theorem 1.1 [Washington 1987]. The rank rk E,,(Q)
is at most 1 + rky Cly. In fact, there is an exact
sequence

1— E(Q)/2E,,(Q) — Cl, — I, — 1.

From this theorem, Washington deduces the follow-
ing corollary.

Corollary 1.2. Let m be a positive integer such that
m? + 3m + 9 is squarefree, then the rank of the
elliptic curve E,, is odd, assuming that the Tate—
Shafarevitch group is finite.

Theorem 1.1 tells us that the search for such curves
having large rank is equivalent to the search for sim-
plest cubic fields whose class group has a large 2-
rank. Several people have tried to find quadratic
fields with large 3-rank which is the corresponding
problem in degree 2. Moreover, since the class num-
ber of K,, is expected to be large, if 111, is small with
respect to Cl,y, we can thus also expect the rank of
E,, to be large.

Proposition 1.3. If m is a positive integer such that
m?+3m+9 is squarefree, the group E,,(Q) is tor-
sionfree.

Proof. Easy, using the well-known fact that E,,(Q)or
can be embedded in E,,(F,) when p is a prime of
good reduction. O

We now give a method using elliptic logarithms for
searching for integral points on elliptic curves. This
method was suggested by Lang [1978, Chapter VI,
§8] and Zagier [1987] and was simultaneous devel-
oped by several researchers [Stroeker and Tzanakis
1994; Gebel et al. 1994; Smart 1994]. The algorithm
requires the knowledge of a basis of the Mordell-
Weil group, as calculated for example by mwrank
[Cremona 1998], and of an explicit lower bound for
linear forms in elliptic logarithms, as given in [David
1995]. For a general point of view and more details,
see [Smart 1998|.

2. LINEAR FORMS IN ELLIPTIC LOGARITHMS

Let E be an elliptic curve given by its Weierstrass
equation

Y2 +a1XY+a3Y = X3 +a2X2 +a4X +a6

with a; € Z. This curve is isomorphic over Q to
curve of the form

Y2 = 4X3 — ggX — gs.

Let A be the lattice associated to E. We call w;
and w, the periods of this lattice and g the associ-
ated Weierstrass function. Note that we can always
choose w; € R and Im(w; /wy) > 0.

We have the map ¢ from C/A to E defined by
®(z) = 0 if z € A and ¢(z) = P = (2(z2),y(2))
otherwise, with

1

z(2) = p(z) — ﬁb% y(2) = 5(@’(2) — az — ag).

Let 9 be the inverse function of ¢. It is given (mod-
ulo A) by

I+b2/12 dt
0 VAL — gat — g3

This function is called the elliptic logarithm because
it satisfies

V(P + Q) =¢(P)+4(Q)
for all P,Q € E(Q).

damental region

(mod A)

Henceforth, we take the fun-

{aw; +bwy:a,beR, 0<a<1,0<b< 1}



Duquesne: Integral Points on Elliptic Curves Defined by Simplest Cubic Fields 93

To compute this function, we use the link between
elliptic integrals and the AGM [Cohen 1993].

We now define the canonical height in order to fix
notations.

If P=(z,y) € E(Q) and z = p/q with (p,q) = 1,
we define

h(P) = h(z(P)) = log max{|p], [q|}.
This height can be modified to obtain the canonical
height
7 _ 17 -N N
h(P) = 3 13%4 h(2% P).
It is possible to bound the difference between these
heights:

Lemma 2.1 [Silverman 1990]. There exist constants
e; and ey such that

—e; < h(P) — 1h(P) < e,.

2
In our case, we can choose
log(m?+3m+9)
4

We now give a simplified version of S. David’s result
[1995] which allows us to give lower bounds for linear
forms in elliptic logarithms.

Let E be an elliptic curve given by the equation

Y2:4X3—92X—g3

logm

ey = 1.57 + ifm>9.

with invariant j and periods w; and w, such that
w; € R and Im(w; /wy) > 0. Let Py,..., P, denote
n points on F. We define the height

hE = max(l, h2(17 92, 93)3 h(]))a

of the elliptic curve, where h, denotes the absolute
logarithmic height on ]P’(Z@; the constant

j— 37r .
jwi|* Im(w; /w)’
the modified height
hm(Pi) = max{2h(P,), he, di [ (P)[*};
and constants dy = max{ehg, h,,(P1),...,hn(Pn)},

P {Lm(f’)}
P i< |V (P S

dy

and

d, = 2.10%+7" (2)2”
e

x (n+1)" 10 (log dy) 7" T [ hun (P).

i=1

Theorem 2.2 [David 1995]. Let L(z) = >, z;0(F;)
with x € Z", and set A = max|z;|. If L(x) # 0 and
A > exp(d,), then

tog [L(z)] >
—d,(log A + log ds)(loglog A + hg + logds)™ .

3. COMPUTATION OF INTEGRAL POINTS

Let E be an elliptic curve associated to a simplest
cubic field. We assume that we have computed a ba-
sis Py, P,, ..., P, for the Mordell-Weil group. Since
the sum of two points in E°(R) is still in E°(R),
the sum of two points in E,,(R) is in E°(R) and
[0,1] € E,y(R), we shall assume that P; and only
P, belongs to E,,(R).

Let P be an integral point. Since E(Q) is tor-
sionfree, we have P = p; P, + --- + p, P, for some
p; € Z. It is easy to compute integral points in
E,,(Q). Hence we now assume that the point P
belongs to E°(R). Set

Q1 = 2P, € E°(R),
q1 € Z such that p; = 2¢; +r, for r=0or 1,
Qi=PF
q; = p; for i # 1,
Qnt1 = P,
so that

P — qul + tee +QnQn +TQn+1-

The points P, Q,, ..., Q, being in E°(R), their sum
also belongs to E°(R), hence r = 0.

Now set H = max |¢;|. Our purpose is to find an
upper bound for H. We first need to link H with
the z-coordinate of P.

Proposition 3.1. If P = (z,y) is an integral point,

1
— < et
|z|

where ¢, = expe, (see Lemma 2.1) and cy is the
smallest eigenvalue of the requlator matriz

[M(Qi + Q) — h(Q) — h(@Q)]1<ij<n-

We now need to link the z-coordinate of P with its
elliptic logarithm. As we have seen before, the curve
FE is isomorphic to a curve of the form

V2 =4X°— g, X — gy = g(X).

)
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Let 71, 72, 73 denote the roots of g(X). Set ¢, =
2 max |7y

Proposition 3.2. If P=(z,y)€ E°(R) and |x+by/12|>
c4, then

with ¢5 = 8 + |w?]/12.

Using the elliptic logarithm property and since 7 @Q;
lies in E°(R) for all ¢, we have

Y(P) — 1p(Q1) — -+ — @uP(Qn) = muy

with |m| < nH + 1. We have w; = ¢(00), hence
a(Q1) + -+ + ¢.¥(Q,) + mw, is a linear form in
elliptic logarithms. David’s result allows us to ob-
tain a lower bound for ¢(P). Comparing this bound
with the upper bound obtained by Propositions 3.1
and 3.2, we deduce a very large upper bound H, for
H. We now seek to reduce this bound. For this,
we consider the following problem: suppose we are
given n real numbers «aq,...,qa,, two positive real
constants cg and c¢; and a linear form

L(z) = 2": Ty
i=1

where the z; are integers bounded by nHy + 1.
We would like to deduce from the inequality

|L(z)| < c(;e_”H2

a bound for H. In other words, we would like to
show that the linear form cannot become too small
if its coeflicients are bounded.

This problem was studied by Baker and Daven-
port [1969] in the case n = 2. There exist several
ways to generalize their method. We give here the
one most used in recent years.

The basic idea (due to de Weger) is to approx-
imate the linear form by an approximation lattice
and to find a reduced basis for this lattice. The first
vector of this new basis gives an approximation to
the smallest vector in the lattice. So it tells us when
the linear form is small.

Consider the lattice A generated by the columns
of the matrix

1 0
A= . h . 0 € Mo.n(Z).
|Cay] -+ |Capueyi]| |Cay

We choose the constant C' approximately equal to
(nHy)™. Thus the determinant of A will be of the
order of (nHy)" and we hope that the first basis
element in an LLL-reduced lattice will be of order
nH,.

Proposition 3.3. Let B = (by,...,b,) be a reduced ba-
sis for the lattice, B* the associated Gram-Schmidt
basis, cs = min{|[b]| : 1 < i < n}, S =31 X?

and T = 130 X Ifcg > T°4+ S and z =
oy, ... xn) #0 then

H </ (log(Ces) — log (/@=S — 1)) ex.

Remark. If the bound for H exists, it is of the form
O(vIog Hy). If the method fails (i.e., if the condi-
tion on cg is not satisfied), we increase the constant
C and repeat the algorithm.

Hence, this method allows us to reduce the bound
to O(v/Iog Hy). The new bound is generally small
enough to enumerate all the possibilities for integral
points. However, if this bound seems to large, we
repeat the algorithm.

4. TABLES OF RESULTS

Tables 1-3 show results obtained by this method.
For all m < 1000 such that m® 4+ 3m + 9 is square-
free, we found the rank rk E,,(Q). Where possible,
the basis of the Mordell-Weil group was computed
using mwrank [Cremona 1998]. In some cases, dis-
tinguished in the tables by an underlined value of
the parameter m, mwrank cannot conclude about the
rank; we then computed the rank using the Birch
and Swinnerton-Dyer conjecture.

The tables are separated by rank. Tables 2 and 3
list the z-coordinate of each integral point in Eo(R).
Examination shows that there are always integral
points in Ey(R) with a positive z-coordinate when
m is odd and never when m is even.

When the rank is 1, the point [0, 1] seems to be
a basis for the Mordell-Weil group and there does
not exist any integral point other than [0, 1] and its
double when m is odd. So Table 1 gives only the list
of the values of the parameter m when the rank is 1.
More generally, [0, 1] seems to be always a generator.
(This last remark is valid only if the parameter m
defines a simplest cubic field, as we have assumed;
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000+124781013 141619202228 3132343537 3840434647 49 505253 56 58 61 62 6568 70 73 74 76 77 79 80 82 86 88 89 91 92 94 97 98
1004+46 7910 12 15 16 19 21 22 24 25 28 31 34 40 45 48 55 58 60 61 64 67 70 72 73 75 78 82 84 85 90 93 96 97 99
20040235689 1112141517 21 24 26 32 33 38 39 41 44 45 47 51 53 54 56 57 59 60 62 65 66 68 72 78 80 81 84 89 90 93 95 96 98
300+1241013 1416 17 19 20 22 23 25 26 28 31 32 34 37 38 40 43 44 46 49 52 53 55 61 62 64 67 68 70 73 76 79 80 82 83 85 86 88 92 94
400+1 39101213 15 16 18 21 22 24 25 27 30 31 36 37 43 45 48 49 51 52 54 55 60 63 64 66 67 69 76 78 81 84 85 87 88 90 93 96 97
500+2 5689 14 18 20 21 24 26 27 29 30 36 39 41 47 50 51 53 54 56 60 62 63 66 68 69 72 74 81 86 87 89 90 92 95 96 98 99

600+ 14581013 14 20 22 23 28 31 32 34 35 38 40 43 46 47 50 52 56 58 59 61 62 64 65 67 70 73 74 76 77 79 80 82 85 86 88 89 92 94 95 97
7004+ 0367 1315 18 21 25 28 30 31 33 34 36 39 43 46 48 49 51 52 54 55 57 60 61 63 64 66 67 69 70 72 75 78 79 81 82 85 87 88 90 94 97 99
800+2511121417 18 20 21 23 26 27 29 32 33 36 41 42 47 50 51 53 54 57 59 60 62 63 65 66 68 69 71 72 77 81 83 84 86 89 90 92 93 95 96 98
900+125 78101316 17 19 20 22 25 29 31 32 35 37 40 44 46 47 49 50 52 53 55 62 64 65 67 68 71 73 74 76 79 80 86 88 94 97 98
1000

TABLE 1. Values of m < 1000 such that K, is a simplest cubic field and for which the rank of E,,(Q) equals 1,
as computed by mwrank [Cremona 1998], or, in the underlined cases, by the use of the Birch—-Swinnerton-Dyer
conjecture. Each row represents a range 100k < m < 100(k+1). In all these cases the point [0, 1] is a generator,

so the integral points are given by Theorem 5.8.

it is false for m = 5, for instance.)

The remainder of this paper is devoted to proving
these and other general results for the curves E,,
defined by simplest cubic fields. In particular, we
prove that [0, 1] is always a generator (Theorem 5.7
below) and that there are no other integral points on
E,, that are positive multiples of [0,1], apart from
210, 1] when m is odd (Theorem 5.8).

5. GENERAL RESULTS ABOUT INTEGRAL POINTS ON
THE ELLIPTIC CURVES y? = x* + mx? — (m+3)x + 1

Several papers have considered the problem of solv-
ing parametrized Diophantine equations. In partic-
ular for Thue equations see [Pethé 1991; Niklasch
and Smart 1998].
interesting results on parametrized elliptic curves.
All the curves in our family have the integral point
[0, 1] however, and this is essential in the following.
Hence it should be possible to extend our method to
other parametrized curves having a fixed nontorsion
point.

In this paper, we obtain some

5A. Arithmetic Study of Integral Points

First we show that when the parameter m is even
there is no integral point in the non-compact part
of the curve E,,.

Lemma 5.1. If m is even and if [z,y] is an integral
point, then x =0 (mod 8).

Proof. Set m = 2k, so that we have y? = z3 + 2kx? —
(2k +3)x + 1. Then, if z is even then y? is odd. The
only odd square modulo 8 is 1, so (2k + 3)z = 0
(mod 8). Since 2k + 3 is invertible modulo 8, we ob-
tain x = 0 (mod 8). If x is odd, a similar argument
leads to a contradiction. O

Lemma 5.2. If m is odd and [z, y| is an integral point,
then 4 does not divide |z — 1.

Proof. Similar to the previous proof. O

Theorem 5.3. Let x be an integer. Set a = x> —x and
b= x3— 3z + 1. There exists m such that am + b
18 a square if and only if every odd prime dividing
|z — 1| is congruent to 1 modulo 4 and if in addition
4 does not divide |x — 1|.

Proof. Note that b is coprime to x and to x — 1,
hence to a. Thus, there exists m such that am +b is
a square if and only if b is a square modulo a; that
is, if and only if for all prime divisor p of a, b is a
square modulo p*»(®) (where as usual v,(a) denotes
the p-adic valuation of the nonzero integer a).

Using Hensel’s lemma, if p # 2, we know that b is
a square modulo p" for every integer n if and only
if b is a square modulo p.

143 —144, —124, —105, —81, —64, —33, —28, —4, —1, 0, 2, 6, 30, 90, 114, 182, 290, 846, 854, 4182, 5186, 17342, 414290
347 —345, —202, —225, —84, —64, —12, —4, 0, 6, 26, 98, 1190, 5070, 14930, 30278

419 —420, —280, —225, —196, —64, —33, —1, 0, 2, 6, 14, 366, 482, 594, 44102

439 —408, —276, —105, —9, 0, 42, 54, 222, 270, 966, 30090, 48402

473 —456, —364, —240, —60, —16, —4, 0, 27, 51, 107, 899, 2315, 56171

611 —612, —537, —324, —289, —280, —184, —9, —1, 0, 2, 74, 266, 546, 686, 1650, 8502, 93638, 1313274

TABLE 2. Parameter m and z-coordinate of integral points when the rank is 5, as determined by mwrank.
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11 —12, -9, —4, —1,0, 2,6, 26,30, | 308 0 649 0, 105627
38, 3170, 7502 311 —312, —169, —144, —1, 0, 2, 266, | 653 —28, 0, 106931
17 —12, —4, 0, 3, 35, 83 366, 24338 655 —12, 0, 107586
23 —24, —16, -9, —1,0, 2, 14,42, 146 | 329 0, 35, 627, 27227 668 —264, 0
25 _123 0: 37 517 171 341 _28a 07 lla 29243 671 —364, 0, 1470, 112898
26 —24, 16, 0 350 —24,0 683 —684, —361, —324, —1, 0, 2, 614,
29 —28, —4, 0, 11, 227 358 0 762, 116966
44 —40, —16, 0 359 0, 114, 32402 698 —184, 0
55 —12, 0, 6, 126, 786 365 —112, 0, 3, 33491 701 —220, 0, 3, 123203
59 —60, —36, —25, —1, 0, 2, 42, 86, 371 —24, 0, 14, 34598 704 —688, —64, 0
902 377 —12, 0, 35, 35723 709 0, 151, 126027
64 —24,0 389 —376, —16, 0, 27, 38027 710 0
67 —57, —9, 0, 6, 1158 391 —84, 0, 34146, 38418 712 —24,0
71 —52, —4, 0, 14, 1298 395 —60, 0, 1890, 39206 719 —633, —9, 0, 74, 129602
83 —84, —49, —36, —1, 0, 2, 62, 114, | 400 —192, 0 722 —304, 0
1766 406 —168, 0 724 —288, 0
85 —24, 0, 3, 1851 407 —385, —25, 0, 18, 41618 737 —72,0, 11, 136163
95 -84, —4, 0, 30, 2306 428 —24,0 745 —264, 0, 3, 139131
101 —40, 0, 3, 2603 434 0 758 —240, 0
113 —84, —4, 0, 35, 3251 440 —40,0 773 —348, 0, 149771
118 —96, 0 442 0 784 0
127 —60, 0, 186, 4098 457 —240, 0, 52443 791 0, 156818
130 —72,0 458 —40, 0 793 —156, 0, 3771, 157611
133 —24, 0, 4491 461 —12, 0, 35, 53363 796 —336, 0
136 0 470 0 800 0, —112,0
137 —40, 0, 3, 4763 472 0 803 —744, —16, 0, 54, 161606
142 72,0 475 —57, 0, 56646 806 —480, 0
146 —40, 0 479 —480, —256, —225, —1, 0, 2, 422, | 808 0
149 —136, —16, 0, 11, 5627 546, 57602 809 —628, —4, 0, 219, 164027
151 0, 66, 5778 491 —465, —25, 0, 18, 60518 815 —145, 0, 6, 166466
157 —84, —60, —12, 0, 3, 6243 494 —456, —16, 0 824 0
163 —156, —36, 0, 6726 499 0, 30, 62502 830 184, 40, 0
166 —24, 0 500 0 835 —792, 0, 174726
169 —168, —144, 0, 7227 503 —33, 0, 14, 63506 839 —840, —441, —400, 0, —1, 2, 762,
176 —88, 0 511 0, 102, 65538 926, 176402
179 —180, —100, —81, —1, 0, 2, 146, 512 0 845 —72,0, 11, 178931
222, 8102 517 —12, 0, 67083 848 —280, 0
181 —96, 0, 8283 523 —108, 0, 68646 856 —24, 0
187 —177, -9, 0, 18, 8838 532 —504, 0 875 —52, 0, 18, 10626, 191846
191 —28, 0, 6, 9218 533 —444, —4, 0, 147, 71291 878 —168, 0
194 0 535 0, 66, 71826 880 —240, 0
218 —88,0 538 0 899 0, 202502
220 0 542 —280, 0 904 0
223 —33, 0, 6, 12546 545 —40, 0, 74531 914 —376, 0
227 —172, —4, 0, 66, 12998 548 0 928 0
229 0, 75, 13227 557 0, 555, 77843 934 0
230 0 559 —33, 0, 78402 938 0
236 0 571 —564, —36, 0, 81798 941 —732, —4, 0, 219, 221843
242 —64, 0 575 —444, —4, 0, 158, 82946 943 —660, —129, —24, 0, 42, 222786
248 —88,0 578 0 956 0
263 —264, —144, —121, —1, 0, 2, 222, | 583 —105, 0, 6, 85266 958 —264, 0
314, 17426 584 0 959 —73, 0, 14, 230402
274 0 616 —504, 0 961 —12, 0, 75, 291, 231363
275 —12, 0, 26, 3770, 12630, 19046 617 —220, —52, 0, 3, 11, 95483 970 —792, 0
277 —84, 0, 3, 19323 619 —96, 0, 6, 96102 977 0, 203, 10131, 239123
283 0, 174, 20166 625 0, 97971 982 —840, 0
287 —129, 0, 20738 626 —616, 0 983 —33, 0, 242066
292 —240, 0 637 —24, 0, 101763 989 —168, 0, 245027
305 —112, 0, 3, 23411 641 —532, —4, 0, 147, 103043 991 —156, 0, 6, 246018
307 —57, 0, 6, 23718 644 —304, 0 995 —52, 0, 18, 248006

TABLE 3. Parameter m and z-coordinate of integral points when the rank is 3 (as determined by mwrank or, for
underlined values of m, using the Birch-Swinnerton-Dyer conjecture.)
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Thus, let p be an odd prime divisor of a. Then
either p divides z, so

0)-()-

so b is a square modulo p; or p divides = — 1, hence

()= (20m) ()

It follows that b is a square if and only if p = 1
(mod 4).

Assume now that a is even, so that bis odd. Then,
when a = 2 (mod 4), b is always a square modulo 2.
When a =4 (mod 8), we have z2 — z = 0 (mod 4)
so either x is even, hence b = 1 (mod 4), so b is a
square modulo 4. Or z is odd, hence z = 3 (mod 4),
so #2 — x = 2 (mod 4) which is a contradiction.
When a = 0 (mod 8), b is odd and it is trivial to
prove by induction that for all n, b is a square mod-
ulo 2" if and only if b = 1 (mod 8). Thus, when
z =0 (mod 4) then b =1 (mod 8), so b is a square
modulo 2". The case z =1 (mod 4) is not possible
by hypothesis. Finally, if z = 2 or 3 (mod 4), then
a=2z*—x =2 (mod 4), which is a contradiction. [J

Corollary 5.4. Let P = [z,y] be an integral point
on the curve E,,. Then, if x > 1 we have x = 2
(mod 4) or z = 3 (mod 8), while if z < 1 we have
z=0 (mod 4) orz =7 (mod 8).

Proof. Assume first that > 1. If [z, y] is an integral
point, z* + mz? — (m + 3)z + 1 is a square. Theo-
rem 5.3 implies that every odd prime dividing x — 1
is congruent to 1 modulo 4. If z is even, we deduce
that  — 1 is congruent to 1 modulo 4. If z is odd,
we know that 4 does not divide |z —1| by Lemma 5.2
and so

r—1=2 H p=2 (mod 8).
plz—1
PF#2

The proof is similar when z < 1. O

Corollary 5.5. If m is even, there is no integral point
on E° (Q) (i.e., with a positive x-coordinate).

Proof. The point [1,y] is never on the curve. If x > 1,
there is a contradiction between the previous corol-
lary and Lemma 5.1. O

These corollaries can be summarized as follows:

Proposition 5.6. There exists m (not necessary defin-
ing a simplest cubic field) such that the point [z, y]
is on E,,(Z) if and only if the following conditions
are satisfied:

1. y = +1 (mod ¢"**)) for every odd prime q divid-
mng T;

2. y = +v/~1 (mod p*®)) for every odd prime p
dividing r—1;

3. y s odd;

4. ifx <1 and x =0 (mod 8), then

y =41 (mod 2v2®1),

This proposition allows us to do a “faster” system-
atic search for integral points. Before proving the
announced results, we look for some parametrized
solutions of equation (0-1).

5B. Parametrized Solutions of y* = x> + mx?> — (m+3)x + 1

In this section, we consider the equation (0-1) as an
affine surface in R®. We set = u+1. Since (0,1, m)
is always on the surface, we can set y—1 = (t—1)z.
Thanks to the linearity in m of the equation, we
obtain a rational parametrization of our surface:

r=u+1,

y=tu+t—u, )
t°+1
m=t>—2t—u—1+ + .
U
In order to find parametrized integral solutions of

our equation, we set

241
k:+,

u

and we denote by P(k) the parametrized solution
thus obtained. For example:

T =1t +2,
Pl)={ y=—t>—2t—t* -1,
m=2t—1

The solution obtained is the point 2[0, 1] when m is
odd. This remark has already been made.

The equations for P(—1) give an integral point
when m = 2t2+2t 1. In this case the points
Py = [-1,2t+1], P, = [0,1] and P, = [2, 2t+1]
are independent on E,,(Q(t)) (this can be shown
using the Néron—Tate height pairing [Shioda 1990]).
Moreover 2P,, Py+ P, Py— P, P,+P,, P,+ P, and
P, — P, are integral points. Note that this last one
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is the point given by P(—1). So finally in this case,
we obtain at least 9 integral points on the curve E,,.
The numerical data suggest this phenomenon.

Similar considerations with k& = —5 give (after
replacing ¢ by —gt+2) an integral point for m =
5t> — 3t + 3 and we find on this curve 3 independent
integral points.

We can hope to find some m such that E,, has
high rank if m satisfy both of the two previous equa-
tions, in other words if

m = 2t] +2t; — 1 = 5t3 — 3ty + 3.

Set Ty = 2t; +1 and T = 10t, — 3, we have to solve
T? —10T2 = —81 with the conditions T} odd, T, =
—3 (mod 10), T} and T not multiples of 3. An easy
argument in the field Q(1/10) shows that the general
solution is

T, + T1V10 = (—1)*7(3 4+ v10)**1(11 +2/10).

with k € Z. If Kk = 0, we obtain m = 11 which is the
smallest value of m for rank 3. If kK = —1, we obtain
m = 143 which is the smallest value for rank 5. If
k = 1, we obtain m = 14963 and E,, is of rank at
least 7 (the points [0,1], [-1,173], [2,173], [—4, 547],
[—11884,659563] are given by our parametrization
and the additional generators

[—64,7873]  and [90, 10981]

are found by a systematic search. All these points
are independent). Note that this is not the smallest
rank 7 curve in our family, since E,, is of rank 7 also
for m = 12563, which may well be the smallest m.

We now prove results concerning the point [0, 1].
For this purpose, we must find approximations for
the height of a point on E,,. For this, we need in
particular to know the asymptotic behavior of the
periods associated to the curve F,, in terms of the
parameter m.

5C. Approximating the periods w; and w,

The curve E,, defined by (0-1) is isomorphic to the
curve

with

f@)=2"-(Gm’+m+3)z+ Zm*+im” +m+1.

Let e; < ey < e3 be the real roots of f (the dis-
criminant is always positive). The periods w; and

wy are given by
/82 dx /53 dx
W, = and wy = — .
e1 f(z) e f(z)

A straightforward study of the function f gives the
inequalities:

2 2 2 1
St e < - ifm>2,
3 m 3 m
m < m n 1
T <e L=
3773 " "m’
m m 1
—+tl<es< ~+1+—.
3 3 m
We start with an approximation for w, given by
es d
ws :i/ i € iR.
e2 \/(33—61)(95—62)(63—56)

If x € [eg, €3], then m+1+1/m <z —e <m+2+
3/m, so

1 1 1
< <
Vm+2+3/m” Vr—e T /m+1+1/m

and

I Wo I
—F— S Y
vm+2+3/m 1t vVm+1+1/m

with

I:/: \/(a:—edj(eg—x) :/llx/fli—ﬁzﬂ

Finally, we have

s Wo s
———< <
vVm+2+4+3/m 1t vVm+1+1/m

So wy ~ im/y/m and wy/i > 3.13/4/m if m > 500.
We now consider the case of w;.
We split the integral into two parts: w; = wi +w;,

with
_ O dx B ¢ dx
"“‘/el @ ”1_/0 @)

For w;, the roots e; and ez are far from the end-
points of the domain of integration. We thus have,
for x € [e;,0]:

m/3<e—z<m+1+3/m,
m/3+1<e;—x<m+2+3/m.
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So
> 1 /0 dz
YT /m+143/m)(m+2+3/m) Je, VE—er
e 1 O dx
LTV m3 D) S, Va—e
w; > 2\/_—61
YT /m+1+3/m)(m+2+3/m)’
Wy 2\/_—61
LT VmB)m3+1)
_ 2¢/2m/3+1+1/m
= mrli3/m)(mi2+3/m)
< 24/2m/3+1+2/m
CT VB mB+T)

We deduce the inequalities wy < 4.9/y/m and w; >
1.63/y/m if m > 500.

Now consider the case of w;. Here only e, is suf-
ficiently far from the domain of integration. For
z € [0, ey,

2m 3
?+1+—<1’*€1<m+1+—
S0
I I
— <wi<
Vm+143/m V2m/3+1+1/m
with
Ny S 18
0 \/(33—62)(113—63) \/_ Ve
and
4m/3 < \/a+\/a< 4(m/3+1+1/m)
1+1/m =~ \ea—e& ~  1-1jm
We can thus write
1 4m
wi > lo ,
PTmr1+3/m o 3(1+1/m)
+ o 1 o 4(m+3—|—3/m)’
T V2m/3+1+1/m 3(1—-1/m)
ot > 3(1+1/m) logm ’
Vm+1+3/m  /m—+1+3/m
| 4
g ————
wt < 3(1—-1/m) 10g(m+3+3/m)‘
V2m/3+1+1/m  /2m/3+1+1/m

Finally, we have, for m > 500,

0.28 09910gm L _ 526 12310gm
<w; < ,
1.91 09910gm 5.26 123logm

Vi m =Vm T Jm

Remark. In fact we can easily prove that

logm +4log 2+ o(1)
wp =
1 \/m ’

but we do not need this.

5D. Approximating the Canonical Height

First, we find an upper bound for the canonical
height of an integral point P on F,,. By Lemma 2.1,
h(P) -

Th(P) < 1.57+ 1log(m*+3m~+9) + logm.

Since P is integral, h(P) = logmax{1,|zp|}. So

h(P) < 2logm + Llogmax{1, |zp[} if m > 500.

(5-1)
To find a lower bound for the canonical height of a
rational point on E, we write it as the sum of local
contributions.

Let P = [a/d? B/d®] € E,(Q) with (a,d) =
(8,d) = 1. We first compute the non-Archimedean
contribution. We use the algorithm described in [Sil-
verman 1988; Cohen 1993, Section 7.5.2]. We have
B = a®+md?a® — (m+3)d*a+1. So 3 = a+1
(mod 2) and d cannot be even. A similar argument
shows that d is not a multiple of 3. Set

e A =m?>+3m+09;

o A =30+2md*a— (m+3)d* (the numerator of
3a?/d* + 2ma/d* — (m+3));

e B =203 (the numerator of 2(3/d?);

o C =3a*+4ma’d® —(6m+18)a?d* +12ad® — Ad®
(the numerator of 3a*/d®+4ma®/d® — (6m+18) x
a?/d*+12a/d* — A); and

e D =gcd(A4, B).

We prove that the only prime giving any local con-
tribution is 2. Let p be an odd prime dividing D.
Because

4A% = (9a+3d°m)B* + 4Ad* (o —d*a+d*),

p? divides 4Ad*(a?—d?*a+d*). On the other hand
p does not divide d (because p divides §) and A
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is squarefree, so p divides (a?—d*a+d*). Next, be-
cause

B? = 4(a+d*(m+1))(a*—d*a+d*) — 4d* (3a+d*m),

p divides 3o+ d?m. Moreover the resultant of A
and B is d'?A?, so p divides A and hence p divides
(3a+d*m—3d*A). Because

27B* = 4(3a+d*m—3d*A) (3a+d*m)+4d° (2m+3) A,

p? divides d®(2m+3)A, so p divides 2m+3. And
since 4A = (2m+3)? + 27, we conclude that p = 3;
but then 3 divides m and A is not squarefree. We
have thus proved 2 is the only prime dividing D.

We now compute the local contribution C, =
at [ = 2. We have v3(B) = 1 and C = —(2m+2)
(mod 8), so we obtain:

e If m is even, Cy = logd.
e If m =1 (mod 4), C; =logd — {log2.
o If m =3 (mod 4), C; =logd — log 2.
In all cases, Cy > logd — ;log 2.
We consider now the Archimedean contribution
C4 of the point P. Denote by z the elliptic log-

arithm of P. Set A\ = 27/w;, t = ARez, ¢ =
exp (2imwy /wy) and

0 => sin((2n+1)t)(—1)"g" T2,
n=0
Then the Archimedean contribution is
Coo = 55 log [16A%/q| — 3 1og |6)]
g ((a/d2)3 —{—m(a/dz); — (m+3)a/d* + 1) ‘
The discriminant 16A? of the curve is greater than
16m*. On the other hand,

= 1
9l < n(n+1)/2 < )
01<> g S

n=0

To find a lower bound for C,,, we need an upper
bound for ¢q. Using approximations to the periods,
we deduce

. W —-3.13 27w 9.47
2ir— < < -
w; — 5.26+1.23logm logm
if m > 500, so
q< exp(— 9.47 ) <1_ 4.86
logm logm

if m > 500.

We are now able to minimize each part of C, for
m > 500:

5 log |16A%| > Llog m + Llog 2,
9.47 9.47
logm — 32logm’

35 log [1/q| > 35 logexp

logm
£ 74.86
> 1log 4.86 — 1loglog m.

1
—1log|d] > —ilogl—_q > —1lo

As for —1log A = £ log(w;/2m), it is greater than or
equal to
1.91+0.991og m

D

—2log(2m) + £ log

1
> Llog N tlog(2m) + £ log(1.91+0.99log )
) ) X 1.91

> —qslogm — glog(2m) + glog (0.99 + m)

+ tloglog m,
Moreover
log 2 8 log 4.86 > 0,952,
8 log(27) 4

Finally, we obtain the following lower bound for

+ jlog(8/d)
+ £log (0.99 + 1.91/log m) — tloglog m + 0.252.

Adding the non-Archimedean contribution, we ob-
tain

T | 3
32logm + 5 log(B/d")

+ £10g (0.99 4 1.91/log )
— tloglogm+log d — tlog 2+ 0.252.

h(P) > {logm+

Hence, we obtain a lower bound for A(P):

Y | d
32logm + ilog(8d)
+£log (0.99 +1.91/log m) — tloglogm+0.02.  (5-2)

h(P) > Llogm+

5E. About the Special Point [0, 1]

Theorem 5.7. The point [0, 1] is always a generator.
Proof. If m < 500, we have computed the Mordell-
Weil group and all the integral points (see Tables

on pages 95 and 96) and the assertion of the the-
orem is satisfied. If m > 500, we use the above
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approximations. Let P be a point (with positive y-
coordinate) on E such that [0,1] = nP. Since the
sum of two points in Ey(Q) is still in Ey(Q), P be-
longs to E,,(Q). We assume first that P is integral
and not equal to [0,1]. The y-coordinate of such a
point is greater than v/2m+ 3, so by (5-2)

h(P) > +logm+ 1log v2m + £log 0.99 — tlog log m
) 1£0.02,
h(P) > Zlogm— tloglogm+0.1,

h(P) > tlogm.

On the other hand, A([0,1]) < 2 logm by (5-1), so

Moreover 2P € Ey(Q) and hence P cannot exist.
We now assume that P = [a/d?, 3/d?] is not inte-

gral. We have seen that d is odd and not a multiple
of 3, so Bd > 5. We have by (5-2)

h(P) > Elogm + £1og 0.99 — tloglog m + +log 5,
h(P) > Llogm.

As in the previous case, we obtain
2 32

The points 2P and 4P are in Fy(Q). By an explicit
computation, it is easy to show that d* divides the
denominator of the z-coordinate of 3P. Hence [0, 1]
is a generator. Il

Theorem 5.8. The only integral points on E,, which
are positive multiples of the point [0,1] are:

o [0,1] if m is even.

e [0,1] and 2]0,1] if m is odd.

Proof. If m < 500, the assertion of the theorem is
satisfied (see Section 4). If m > 500 we use the pre-
vious approximations. We first prove three lemmas.
We only consider positive multiples.

Lemma 5.9. The odd multiples of the point [0,1] are
never integral, except of course for [0,1] itself.

Proof. Let P = (2n+1)[0,1] be an integral point.
Since [0,1] € E ;,(Q), P € E,;,(Q). We then have
|zp| < m+1 and, by (5-1) and (5-2),

h(P) < Zlogm+ Llog(m+1),

h(P) < £1logm,
h([0,1]) > Llogm + Ltlog (0.99 + 1.91/log m)
047 |
— —=logl .02
) 32logm sloglogm +0.02,

h([0,1]) > Slogm.
Remark. h(]0,1]) is experimentally equal to
Hlogm +Cy+0(1),
where C5 is as above with d = 1. This should not
be difficult to prove.
Finally, if m > 500, we have
(2n+1)* < 45.
To complete the proof, we have to look at the points
3[0,1] and 5[0, 1]. We have
8m? + 40m? + 120m + 152
m* + 4m3 + 22m? + 36m + 81’

|z(3]0,1])| < 1 when m > 8, so 3[0, 1] is not integral.
The same reasoning with m > 29 implies that 50, 1]
is not integral. O

z(3[0,1]) =

Lemma 5.10. The point 4[0, 1] is never integral.

Proof. We have the following expression for (410, 1]):

m84+8m”+60m5+280m° +1158m? +3320m>+7868m>+11368m+12033
(4m3+420m2+4-60m+76)2

If m is even, the numerator is odd whereas the de-
nominator is even, so that 4[0, 1] is not integral in
this case.

If m=1 (mod 4), we set m = 4k + 1 and replace
in z(4[0,1]); the same reasoning then implies that
4[0,1] is not integral.

If m = 3 (mod 4), we set m = 4k + 3, expand,
and eliminate common factors of 2, writing

p(k)

q(k)*

Then p(k) and ¢(k) are coprime for all values of k;
in fact, we have u(k)p(k)+v(k)q(k) = 1 with u(k) =
16k%+8k —16 and v(k) = —128k7 — 640kS — 1408%° —
1584k* — 648k® + 596k* + 908k + 401. It follows that
4[0,1] is never integral as claimed. O

z(4[0,1]) =
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Lemma5.11. P ¢ E(Z) = 2P ¢ E(Z).
Proof. Let P = [a/d?, b/d?], with (a,d) = (b,d) = 1.

Using the duplication formula we obtain

a* —2(m+3)a*d* — 8ad® + (m*+2m+9)d®
4b2d? '

Since a and d are coprime, d? divides the denomi-

nator of xyp. O

Top =

Remark. In general if P is not integral them [m]P
is not integral for any integer m. This follows from
standard facts about the p-adic filtration of an el-
liptic curve over Q, [Husemoller 1987].

We now complete the proof of the theorem. We have

2
v(20,1) = (TF2) +,

so the point 2[0, 1] is integral if and only if m is odd.

Let P = 2Pm|0,1] with m odd and p > 0. If
m = 1, then either p = 0 (and P = [0,1] is inte-
gral), or p = 1 (and P = 2[0,1] is integral if and
only if m is odd), or p > 2 and then P is not inte-
gral by Lemmas 5.10 and 5.11. If m > 1, m|0,1] is
not integral by Lemma 5.9, so P is not integral by
Lemma 5.11. g

Corollary 5.12. When the rank is 1, these theorems
give us all integral points on the curve.
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