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We describe a computer-based database of polarized K3 sur-
faces and explain the meaning of the information it contains. In
a precise sense, the database includes all K3 surfaces.

1. INTRODUCTION

Many authors have compiled lists of K3 surfaces embed-
ded in weighted projective space (wps). The first of these
lists contains the “famous 95” weighted hypersurfaces of
Reid [Reid 80, Theorem 4.5] and others. Next there are
84 families of K3 surfaces in codimension 2 computed by
Iano-Fletcher [Iano-Fletcher 00, Section 13.8], followed
by 70 families in codimension 3 and 142 families in codi-
mension 4, both computed by Altınok [Altınok 98]. Such
lists could be continued indefinitely in increasing codi-
mension, since there are countably many deformation
families of polarized K3 surfaces, although the construc-
tion of explicit equations becomes difficult.

We extend the classification of polarized K3 surfaces
to give a list that contains the numerical data of all po-
larized K3 surfaces in the precise sense of Theorem 2.7
below. Although the list of families of polarized K3 sur-
faces is infinite, the numerical data we work with behave
in a regular way after the first 15,000 or so families are
obtained, and so a finite list can summarize the whole
classification.

Even so, it is far too large to be reproduced in the way
that the existing lists have been. In fact, both the analy-
sis used to create the list and methods of interrogating it
are handled by a computer. The resulting list of 24,099
numerical K3 candidates (see Definition 2.5) is known as
the K3 database. It was created using the computer al-
gebra system Magma [Cannon 05, Bosma et al. 97], and
it is accessible in three ways: one can run Magma itself,
connect to the Web interface at [Brown et al. 04] (which
runs Magma in the background), or install an SQL-style
database [Brown and Kerber 05] prepared from the on-
line version. These are discussed in Section 4. Although
computer access is the only serious way to address such a
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database, K3 surfaces in low codimension are also avail-
able at [Brown et al. 04] including a new list of 163 K3
surfaces in codimension 5.

The main results of this paper explain the meaning of
the K3 database. We make this explicit in Meanings 2.6,
2.8, 2.9, 3.6. Theorem 2.7 explains the sense in which it
is comprehensive and the way in which we regard the K3
database as an upper bound for the numerical data of
polarized K3 surfaces. An immediate corollary is a sharp
lower bound on the degree of polarized K3 surfaces; see
Section 4 for Magma code that performs this calculation.

Computation 1.1. If X,A is a polarized K3 surface, then
the degree A2 of X is at least 1/330. In more detail, both
the degree A2 and the Picard number ρX ≤ 20 of X are
bounded below according to the genus g = h0(X,A)− 1
as follows:

g −1 0 1 ≥ 2

lower bound for A2 1/330 1/42 1/2 2g − 2

lower bound for ρX 10 6 2 1

We clear up two points of confusion at once. First,
there is no claim that every numerical candidate in the
K3 database comes from a polarized K3 surface. Indeed,
in Theorem 2.11 we show that one particular candidate
does not arise as a K3 surface, at least not in an easy way.
Second, while each candidate in the database is given a
plausible description as a K3 surface embedded in wps,
there is no claim that this description can be realized,
even when there is a K3 surface whose invariants match
those of the candidate.

More positively, there are various ways in which a can-
didate in the database may be justified. One is to write
down equations for a K3 surface in wps and confirm its
properties. This is done for all candidates in codimen-
sions 1, 2, and 3 in [Iano-Fletcher 00] and [Altınok 98].
Another is by unprojection, which is discussed in Section
3; this is a “bottom-up” approach, constructing compli-
cated surfaces from easy ones. The reason for discussing
it here is not to propose to carry out the unprojection
calculations but to explain the descriptions of candidates
in the database.

For the rest of this introduction, we explain the pur-
pose of this classification and relate it to others in the
literature.

There are many reasons for assembling reasonably
large databases of varieties rather than restricting atten-
tion to those instances of classification that result in short
lists. Belcastro [Belcastro 02], for instance, uses the fa-
mous 95 as a testing ground for K3 mirror symmetry.

Johnson and Kollár [Johnson and Kollár 01] construct
and use lists of weighted hypersurfaces to find varieties
admitting a Kähler–Einstein metric. Corti, Pukhlikov,
and Reid [Corti et al. 00] use the famous 95 as the start-
ing point for a systematic and explicit study of birational
rigidity and the Sarkisov program for Fano 3-folds. In
some of these cases, one could regard lists of varieties
as being merely a convenient source of many examples,
rather than an essential ingredient. But already Belcas-
tro is hampered by restricting to hypersurfaces, since,
not surprisingly, in seeking mirror pairs she finds hyper-
surfaces whose partner, if it exists, is not another hyper-
surface in wps.

The main reason for extending the lists as we do is as
part of the classification of Fano 3-folds. We explain this
briefly; see [Altınok et al. 02] for much greater detail. A
3-fold X is a Fano 3-fold if it has at worst Q-factorial
terminal singularities and −KX is ample. It is common
to insist that moreover, Pic(X) = Z and that −KX be
a generator. By [Kawamata 92], there are only finitely
many deformation families of Fano 3-folds. If the linear
system | − KX | contains an irreducible surface S with
only Du Val singularities, then S is a K3 surface and
it is polarized by the trace of −KX . Such a surface S
is called a K3 elephant for X, and the vast majority of
known Fano 3-folds have a K3 elephant.

The main point of [Altınok et al. 02] is to attempt the
converse operation: given a polarized K3 surface S,A,
construct a Fano 3-fold X having S as its K3 elephant.
This can be regarded as a deformation–extension prob-
lem, in which one must include a new variable in the
equations of S while maintaining the irreducibility (at
the very least) of the locus they define. From this point
of view, the K3 database contains a coarse classification
of Fano-with-elephant 3-folds as a finite sublist (although
exactly which sublist is the interesting point).

There are many other lists of varieties we could men-
tion. Following classifications by Miranda and Pers-
son [Miranda and Persson 89] and others, Shimada and
Zhang [Shimada and Zhang 01, Shimada 00] classify
K3 surfaces that arise as elliptic fibrations. Kreuzer
and Skarke [Kreuzer and Skarke 98] classify K3 sur-
faces that arise as toric hypersurfaces, and in higher di-
mension, they classify Calabi–Yau 3-fold toric hypersur-
faces [Kreuzer and Skarke 00]. Their famous Calabi–Yau
database contains nearly 500 million families of Calabi–
Yau 3-folds; it is not known whether there are infinitely
many families. Buckley and Szendrői [Buckley and
Szendrői 05, Buckley 03] construct Calabi–Yau 3-folds by
methods similar to those we use here, although their in-
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terest is not in constructing lists of varieties but rather in
finding examples not already in the vast Kreuzer–Skarke
list. More recently, Caravantes [Caravantes 05] computed
examples of Fano 3-folds that are quotients of other Fano
3-folds—so-called Fano–Enriques 3-folds—in codimen-
sion at most 3, and Kasprzyk [Kasprzyk 06, Kasprzyk
05] computes the classifications of toric Fano 3-folds un-
der various hypotheses.

2. FAMILIES OF K3 SURFACES

The methods used here follow Altınok’s approach using
Hilbert series, as explained in [Altınok et al. 02].

2.1 Polarized K3 surfaces

A polarized K3 surface is a pairX,A, whereX is a surface
having only Du Val singularities, trivial canonical divisor
KX = 0, and irregularity q = 0, while A is an ample di-
visor on X. Recall that a Du Val singularity (or Kleinian
or ADE singularity) is the germ at the origin of C2/G,
where G ⊂ SL(2,C) is a finite group; equivalent condi-
tions, see [Durfee 79] or [Reid 80], include being defined
by an equation from the list of ADE normal forms, or im-
posing no conditions on adjunction so that the canonical
class pulls back to a minimal resolution. Throughout this
paper, the term “K3 surface” refers to such a pair X,A.

2.1.1 Graded Ring of a K3 Surface. A polarized K3
surface has a graded ring R(X,A) = ⊕n≥0H

0(X,nA),
and the Hilbert series PX(t) of X,A is defined to be the
Hilbert series of this graded ring:

PX(t) =
∑

t≥0

h0(X,nA)tn.

Since A is ample, R(X,A) is a finitely generated k-
algebra and the Proj correspondence embeds X in wps:

X = ProjR(X,A) ⊂ PN for some PN = P(a0, . . . , aN ),

where we suppose that R(X,A) is minimally generated
as a k-algebra by homogeneous elements x0, . . . , xN ∈
R(X,A) with deg xi = ai. A minimal free resolution
of R(X,A) as a k[PN ]-module then exhibits a preferred
rational form of the formal power series PX(t):

PX(t) =
HX(t)∏
(1− tai)

, (2–1)

where HX(t) is a polynomial, the Hilbert numerator of
X,A, and the denominator product is taken over the
weights a0, . . . , aN of the wps PN . The codimension of
X,A is defined to be the codimension of X in this em-
bedding. The genus of X,A is h0(X,A)− 1, which is an
integer greater than or equal to −1.

2.1.2 Riemann–Roch and Baskets of Singularities.
Altınok’s Riemann–Roch formula, Theorem 2.1 below,
computes the Hilbert series of a K3 surface X,A. It
involves the notion of a basket of quotient singularities,
which is explained below, to compute the effect of the
singularities of X,A on h0(X,nA).

Theorem 2.1. (Altınok.) [Altınok 98, Theorem 4.6],
[Altınok 03, 3.2] Let X,A be a polarized K3 surface. Then

PX(t) =
1 + t

1− t +
t(1 + t)
(1− t)3

A2

2

−
∑

B

1
(1− tr)

r−1∑

i=1

bi(r − bi)ti
2r

, (2–2)

where

A2 = 2g − 2 +
∑

B

b(r − b)
r

. (2–3)

In these formulas, B is a collection of cyclic quotient sin-
gularities 1

r (a,−a) at which the polarizing divisor A re-
stricts to the eigensheaf La of the quotient. The notation
x denotes the minimal nonnegative residue of x modulo
r, and b = b satisfies ab = 1.

The collection B of cyclic quotient singularities is
called the basket of singularities of X,A. It computes
the contribution of the actual singularities of X,A to
Riemann–Roch. In general the singularities of X may
differ from B. This phenomenon has been well known
since [Reid 80] and [Reid 87], although here we need to
know how baskets arise.

If p ∈ X is a Du Val singularity, then it is also polar-
ized by A. This global polarizing divisor restricts to some
element of the local class group of p ∈ X. Taking a small
analytic neighborhood p ∈ U ⊂ X, there is a deformation
of U,A|U such that the general fiber Ut, At has only cyclic
quotient singularities, and at each such q ∈ Ut the divisor
At restricts to a generator of the local class group. Thus
q ∈ Ut is of type 1

r (a,−a) for coprime 0 < a < r. Let Bp

be the collection of these polarized cyclic quotient singu-
larities. This collection Bp is uniquely determined by the
polarized singularity p ∈ X. Finally, B is the collection
of all Bp as p runs through the Du Val singularities of X.
The following result is implicit in [Reid 87, (9.4)] .

Lemma 2.2. In the notation above, let Γp be the dual
graph of the resolution of p ∈ X, and Γq1 , . . . ,Γqk

those
of the basket Bp. Then the disjoint union ∪Γqi

embeds as
a subgraph of Γp in such a way that no two components
Γqi

and Γqj
for i �= j are joined by an edge of Γp.
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Proof: By [Reid 87, (9.4) and (4.10)] (suitably reordered),
the only polarized Du Val singularities that lead to a
nonempty basket are as follows:

p ∈ X basket
Ank−1 k ×An−1

D2k+1 A3 + (k − 1)×A1

Dk+2 2×A1

E6 2×A2

D2k k ×A1

E7 3×A1

(2–4)

In each case, the dual graphs of the basket can be ar-
ranged as a disconnected subgraph of Γp as claimed.

It would be convenient to know that X deforms to a
K3 surface with singularities equal to the basket, but we
do not know that or need it.

Proposition 2.3. If B is a basket for a K3 surface of genus
g, then

∑

B
(r − 1) ≤ 19 and 2g − 2 +

∑

B

b(r − b)
r

> 0.

Furthermore, if the singularities of B lie on a surface Y ,
then the minimal resolution of these singularities must
not contain 17 disjoint −2-curves, and all coefficients of
the power series P (t) computed by formula (2–2) are non-
negative.

Proof: If the singularities of X are equal to those of the
basket (as polarized singularities), then all the claims are
standard: the first comes from the bound on the Picard
rank of the resolution; the second is A2 > 0; the third
is a standard consequence of the Torelli theorem. Even
if the singularities of X are not those of B, the second
inequality holds automatically, since the basket computes
A2 exactly.

In general, Lemma 2.2 shows that the number of ex-
ceptional curves in a resolution of X is at least that in
the resolution of its basket, and moreover, if one can find
k disjoint −2-curves in the resolution of the basket, then
the same is true for the resolution of singularities of X
itself.

Computation 2.4. Let Bg be the set of baskets that
appear in Riemann–Roch for a K3 surface with genus
g ≥ −1. Then Bg is finite and of size as given in the
following table:

g −1 0 1 ≥ 2
#Bg 4281 6479 6627 6628

Moreover, Bg = B2 whenever g ≥ 3.

When g ≤ 2, this is the result of a simple computer
enumeration of all possible baskets of singularities of type
1
r (a,−a) for coprime 0 < a < r satisfying the four con-
ditions of Proposition 2.3. The fact that Bg = B2 when
g ≥ 3 is immediate from the form of the degree condition
A2 > 0. The “missing” basket in genus 1 is the empty
one: there is no nonsingular K3 surface with g = 1.

2.2 The Meaning of the K3 Database

The K3 database is intended to represent all possible
K3 surfaces X,A. Here we say in what sense every K3
surface appears in the database, and conversely, we begin
to see to what extent items in the database come from
K3 surfaces.

Definition 2.5. A numerical K3 candidate is a pair (g,B),
where g ≥ −1 is an integer and B is a basket from the
set Bg constructed in Computation 2.4.

A numerical K3 candidate contains exactly the data
needed to compute a Hilbert series using the formula of
Theorem 2.1.

Meaning 2.6. The K3 database is a finite set DK3 whose
elements are numerical K3 candidates. It includes the
candidates (g,B) for −1 ≤ g ≤ 2 and all B ∈ Bg.

For each candidate ξ = (g,B), we define formally a
degree, denoted by A2

ξ , and a Hilbert series, denoted by
Pξ(t), by the formulas (2–3) and (2–2) respectively.

Theorem 2.7. (Completeness of the K3 database.) Let
X,A be a polarized K3 surface of genus g. Then X,A is
represented in the K3 database DK3 as follows:

• If g ≤ 2, then there is a numerical K3 candidate
ξ = (g,B) ∈ DK3 with

A2 = A2
ξ and PX(t) = Pξ(t).

• If g ≥ 3, then there is a numerical K3 candidate
ξ = (2,B) ∈ DK3 with

A2 = A2
ξ + 2(g − 2)

and

PX(t) = Pξ(t) +
t(1 + t)
(1− t)3 (g − 2).
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Proof: If g ≤ 2, then this follows immediately from The-
orem 2.1 and Proposition 2.3. When g ≥ 3, it holds
because B2 = Bg from Computation 2.4 implies that the
formulas (2–3) and (2–2) differ from the g = 2 case only
by the 2g term in A2.

2.2.1 Weights and Codimension. The K3 database
includes extra information about each entry: each ξ ∈
DK3 has a sequence of weights (a0, . . . , aN ) associated
with it with positive integers ai. The hope is that a K3
surface X,A exists with numerical data ξ and embedded
by (all multiples of) A in PN (a0, . . . , aN ).

The naive method to generate such weights generalizes
the first examples such as those in [Altınok et al. 02,
Section 1]; variations of it are described in [Iano-Fletcher
00, Section 18]. If Pξ(t) = 1+p1t+p2t

2+· · · is the Hilbert
series of some ring R, then R must have p1 generators in
degree 1. We compute (1 − t)p1Pξ = 1 + p′kt

k + · · · ,
where p′k is the first nontrivial coefficient. If p′k > 0, then
R must also have p′k generators in degree k; in that case
we compute (1− t)p1(1− tk)p′

kPξ and continue. If p′k < 0,
then R must have at least |p′k| relations in degree k; in
that case we stop the calculation and let the weights of
ξ be the collection of weights of all generators deduced
so far.

Thus, just as in Section 2.1, the weights determine
a preferred rational expression for the corresponding
Hilbert series. Its numerator is again called the Hilbert
numerator and is denoted by Hξ(t) in this context. (In
principle, it is possible that the calculation breaks down
too soon and Hξ is not a polynomial, but in practice this
does not happen.) In this way, the weights of ξ deter-
mine a prediction of a K3 surface X ⊂ PN (a0, . . . , aN )
that realizes ξ. With this in mind, the codimension of ξ
is defined to be N − 2.

Meaning 2.8. The K3 database DK3 comprises all pairs
(g,B) with g ≤ 2 and B ∈ Bg together with those pairs
with 3 ≤ g ≤ 9 having codimension at most 7. For each
genus g, the pairs (g,B) are listed in increasing order of
Hilbert series.

The order on Hilbert series is of course the natural lex-
icographic order. The weights, and hence the codimen-
sion, are those computed in Section 3 using more system-
atic methods than the naive one above. The number of
numerical K3 candidates per genus and codimension is
listed in Table 1.

2.2.2 Degenerations of Graded Rings. Of course, the
Hilbert series of a graded ring does not determine that

ring. Whichever method is used to compute the weights,
they are not expected to match every K3 surface X,A
with given Hilbert series.

Meaning 2.9. If X,A is a K3 surface with genus less than
or equal to 2, then the Hilbert series PX,A(t) of X will
be that of some ξ ∈ DK3. However, the weights assigned
to the candidate ξ will not necessarily be those of a set
of generators of the graded ring R(X,A).

Consider the well-known example of a general com-
plete intersection of equations of degrees 2 and 4,

Y2,4 ⊂ P4(1, 1, 1, 1, 2),

where the weight-2 variable does not appear in the
degree-2 equation. This K3 surface has the same Hilbert
series as the quartic surface in P3. The corresponding
ξ ∈ DK3 (which is listed even though g = 3) is assigned
weights (1, 1, 1, 1), the weights of a typical example in P3,
rather than the weights of P4 above.

In [Brown 06], a computer search with Magma found
other degenerations of K3 surfaces in codimensions 1 and
2. We reproduce some results of that search in Table 2
as an illustration, but see [Brown 06] for more and for
the combination of degeneration and unprojection calcu-
lations behind them.

2.3 Elliptic Fibrations and Shimada’s Classification

By Theorem 2.7, the K3 database contains all K3 surfaces
(at least those of genus less than or equal to 2). From now
on, we consider the converse: which candidates in the
database actually arise as K3 surfaces. We understand
two different positive answers.

Definition 2.10. Let ξ ∈ DK3 be a numerical K3 candi-
date from the K3 database and (a0, . . . , aN ) its weights.
We say that

(a) ξ represents a K3 Hilbert series if there is a polarized
K3 surface X,A with PX(t) = Pξ(t).

(b) ξ represents a K3 surface if there is a polarized K3
surface X,A with PX(t) = Pξ(t) whose graded ring
R(X,A) has a generating set x0, . . . , xN ∈ R(X,A)
that are homogeneous of degrees deg xi = ai.

We consider the stronger statement (b) in Section 3
below. The natural approach to (a) is to apply the Torelli
theorem for K3 surfaces; we do not do that here, although
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−1 0 1 2 3 4 5 6 7 8 9 total
1 54 32 6 2 1 0 0 0 0 0 0 95
2 45 29 6 2 1 1 0 0 0 0 0 84
3 26 29 8 3 2 1 1 0 0 0 0 70
4 60 54 15 6 3 2 1 1 0 0 0 142
5 58 63 21 8 6 3 2 1 1 0 0 163
6 80 98 35 15 8 6 3 2 1 1 0 249
7 81 116 49 21 15 8 6 3 2 1 1 303
8 128 182 79 35
9 107 208 109 49
10 192 312 171 79
11 167 369 236 109
12 238 497 353 171
13 245 603 488 236
14 346 759 720 353
15 316 728 982 488
16 402 744 1419 720
17 337 581 1930 982
18 350 457 0 1419
19 266 267 0 1930
20 258 171 0 0
21 161 85 0 0
22 139 55 0 0
23 93 24 0 0
24 57 13 0 0
25 35 3 0 0
26 22 0 0 0
27 12 0 0 0
28 5 0 0 0
29 1 0 0 0

total 4281 6479 6627 6628

TABLE 1. Number of ξ ∈ DK3 by codimension (down) and genus (across).

general member � degeneration

X4 ⊂ P(1, 1, 1, 1) � Y2,4 ⊂ P(1, 1, 1, 1, 2)

X6 ⊂ P(1, 1, 2, 2) � Y3,6 ⊂ P(1, 1, 2, 2, 3)

X8 ⊂ P(1, 2, 2, 3) � Y4,8 ⊂ P(1, 2, 2, 3, 4)

X10 ⊂ P(1, 2, 3, 4) � Y5,10 ⊂ P(1, 2, 3, 4, 5)

X12 ⊂ P(1, 2, 4, 5) � Y6,12 ⊂ P(1, 2, 4, 5, 6)

X12 ⊂ P(2, 3, 3, 4) � Y6,12 ⊂ P(2, 3, 3, 4, 6)

X14 ⊂ P(2, 3, 4, 5) � Y7,14 ⊂ P(2, 3, 4, 5, 7)

X18 ⊂ P(3, 4, 5, 6) � Y9,18 ⊂ P(3, 4, 5, 6, 9)

X6 ⊂ P(1, 1, 1, 3) � Y2,6 ⊂ P(1, 1, 1, 2, 3)

X12 ⊂ P(1, 2, 3, 6) � Y4,12 ⊂ P(1, 2, 3, 4, 6)

X18 ⊂ P(1, 3, 5, 9) � Y6,18 ⊂ P(1, 3, 5, 6, 9)

X18 ⊂ P(2, 3, 4, 9) � Y6,18 ⊂ P(2, 3, 4, 6, 9)

X24 ⊂ P(3, 4, 5, 12) � Y8,24 ⊂ P(3, 4, 5, 8, 12)

X30 ⊂ P(4, 5, 6, 15) � Y10,30 ⊂ P(4, 5, 6, 10, 15)

TABLE 2. Some codimension 2 degenerations among the famous 95.

it is a straightforward computer calculation to confirm
that all candidates in codimension up to 6 do at least
represent a K3 Hilbert series. Instead, we compare our
database with a classification of elliptic K3 surfaces due
to Shimada [Shimada 00].

An elliptic K3 surface is a fibration f : Y → P1, where
Y is a nonsingular K3 surface and the general fiber is
a curve of genus 1. (We do not assume that f has a
section.) Shimada [Shimada 00] classifies the collections
of singular fibers that do appear on elliptic K3 surfaces
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into 3937 different collections (many of which can appear
in fibrations having different numbers of sections).

2.3.1 A Nonexistence Result. There are candidates
that cannot easily represent a K3 Hilbert series. A po-
larization A is said to be simple if it intersects the excep-
tional locus of each singularity transversely at a single
point. The candidate in the theorem below is number 76
(of genus 0) in DK3.

Theorem 2.11. Let ξ = (g,B) ∈ DK3 be the candidate
with g = 0 and B = { 1

2 (1, 1), 2 × 1
10 (1, 9)}. Then there

does not exist a polarized K3 surface X,A with PX(t) =
Pξ(t) for which the polarization is simple.

Proof: Suppose X,A is a polarized K3 surface with
PX(t) = Pξ(t). We have H0(X,A) = 1 since g = 0,
so we may regard A ⊂ X as an effective divisor with
A2 = −2. Let ϕ : Y → X be the minimal resolution of
singularities; Y is a nonsingular K3 surface. We estimate
the rank of the Picard group Pic(Y ).

In the group Pic(Y ), the exceptional curves of ϕ are
independent of one another and of the components of
A. The exceptional curves will generate a subgroup of
rank 19 if the singularities of X are exactly those of the
basket. The list of possible degenerations of a basket in
display (2–4) shows that that if the singularities of X are
not those of the basket, then the exceptional curves will
generate a subgroup of rank at least 20. Since the Pi-
card rank of a K3 surface is at most 20, we conclude that
the singularities of X are those of its basket and that
A is an irreducible rational curve. Otherwise, its com-
ponents would also contribute independently to a rank
exceeding 20.

So, since the polarization is simple, the configuration
of 20 nonsingular rational curves, each with self intersec-
tion −2, pictured in Figure 1, lies on Y . The divisor

2B + 4A+ 3C1 + 2C2 + C3 + 3D1 + 2D2 +D3

is an elliptic fiber Ẽ7 on Y . This fiber generates an ellip-
tic fibration on Y with at least two sections (being the
two exceptional curves C4, D4 adjacent to the Ẽ7 config-
uration). The remaining exceptional curves must be con-
tained in other elliptic fibers. Thus the only possibilities
for the singular fibers of this fibration are Ẽ7 + Ã5 + Ã5,
Ẽ7 + Ã5 + Ã5 + Ã1, and Ẽ7 + Ã11. Such combinations of
elliptic fibers do occur according to Shimada’s classifica-
tion [Shimada 00], but they occur only with no sections
at all or with exactly one section. So Y cannot exist as
a K3 surface, and so neither does X.
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FIGURE 1. A configuration of curves on Y .

2.3.2 Realizing a Hilbert Series. In a closely related
example, let f : Y → P1 be the elliptic K3 surface num-
ber 3305 in Shimada’s classification. It has two singular
fibers, of types Ẽ7 and Ã11 respectively, and was one of
the cases considered in the proof of Theorem 2.11. Fur-
thermore, the Mordell–Weil group of f contains exactly
one element that is the unique section of f . Therefore,
the K3 surface Y contains the configuration of −2-curves
pictured in Figure 2.

We define a Q-divisor B on Y supported on this con-
figuration of curves:

B =
1
16

(E1 + 2E2 + · · ·+ 15E15) + E16

+
1
4
(3E17 + 2E18 + E19) +

1
2
E20.

It is easy to check that B is Q-ample (modulo some −2-
curves in its support on which it is trivial) and that some
multiple of B gives a morphism ϕ of Y to some projective

�
��

�
��...

E0 E1

E9

E10

E11

E12

E13

E14

E15

E16

E17

E18

E19

E20

FIGURE 2. Shimada’s elliptic fibration number 3305. Sec-
tion of the fibration is E12. Fiber Ã11 is E0 +E1 + · · ·+E11.
Fiber Ẽ7 is (E13 +E19)+2(E14 +E18 +E20)+3(E15 +E17)+
4E16.
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space that is birational to its image and contracts all of
the curves Ei of the configuration except E0 and E16.
Let X = ϕ(Y ) and define A to be the (integral) divisor
ϕ∗(B) on X. Again, it is easy to check that A2 = 3/16
and that the basket B and genus g of X,A are

B =
{

1
2
(1, 1),

1
4
(1, 3),

1
16

(1, 15)
}

and g = 0. (2–5)

Indeed, DK3 contains such a numerical K3 candidate
ξ = (g,B). In the K3 database it is number 35 (of genus
0), where it is described provocatively as

X ⊂ P12(1, 4, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16).

We conclude that ξ represents a K3 Hilbert series. But
bear in mind what we are not claiming: while this de-
scription is meaningful, one cannot conclude that there
really is a quasismooth K3 surface in this wps that real-
izes ξ.

3. NUMERICAL UNPROJECTION AND WEIGHTS

Theorem 2.11 shows that there are candidates in the
database that might not even represent a K3 Hilbert se-
ries, let alone a K3 surface. Even so, here we attempt
to compute plausible weights for every ξ ∈ DK3 as a first
step toward the stronger statement (b).

The results of Reid, Iano-Fletcher [Iano-Fletcher 00],
and Altınok [Altınok 98] imply that every ξ ∈ DK3 with
codimension at most 3 represents a K3 surface. Altınok
also uses unprojection methods to show that the majority
of ξ with codimension 4 represent a K3 surface, which
Frantzen [Frantzen 04] extends to confirm the same for
some in codimension 5. We use unprojection methods
to make predictions of weights in higher codimension—in
the precise sense of Computation 3.5 below—although we
cannot carry out the calculations to confirm that every
ξ ∈ DK3 represents a K3 surface.

3.1 Type I and Type IIn unprojections

3.1.1 Kustin–Miller Unprojections. Type-I unprojec-
tion, also known as Kustin–Miller unprojection, is a gen-
eral operation that constructs bigger Gorenstein rings
from smaller ones. We use it to mean the map X ��� Y
in the following theorem.

Theorem 3.1. (Papadakis–Reid.) [Papadakis and Reid
04] Let X,A be a polarized K3 surface and X ⊂
P(a0, . . . , aN ) its embedding by A. Suppose that X con-
tains the coordinate line C = P(ai, aj) and that X is
quasismooth along C in this embedding. Then

(a) There is a K3 surface Y ⊂ P(a0, . . . , aN , ai + aj)
containing the coordinate point PN+1 = (0, . . . , 0, 1).

(b) The Gorenstein projection of Y from PN+1 is a bi-
rational map Y ��� X with exceptional sets C ⊂ X

and PN+1 ∈ Y . The birational inverse X → Y is the
contraction of the −2-curve C ⊂ X.

(c) If ai+aj +ak > a� for every k, � ∈ {0, . . . , N}\{i, j},
then the unprojection equations of Y embedded in
P(a0, . . . , aN , ai + aj) have no linear terms.

(d) Y is polarized by B = A + 1
ai+aj

C, and its Hilbert
series is

PY,B(t) = PX,A(t) +
tai+aj

(1− tai+aj )(1− tai)(1− taj )
.

In particular, the genus of Y,B equals the genus of
X,A.

(e) Let BY be the basket of Y and BX that of X. Then

BX ∪
{

1
ai + aj

(ai, aj)
}

= BY ∪
{

1
ai

(aj ,−aj),
1
aj

(ai,−ai),
}
,

where any singularity type 1
r (a,−a) of index r = 1

can be omitted.

The proof of most of this theorem is given (or implicit)
across a number of sources including [Papadakis and Reid
04, Altınok 98, Altınok et al. 02, Frantzen 04], so we
sketch a proof here for convenience using only the main
theorem of [Papadakis and Reid 04].

Proof: The setup C ⊂ X is of a Type-I unprojection:
the ideals of X ⊂ PN and C ⊂ PN are Gorenstein. It
follows by [Papadakis and Reid 04, Theorem 1] that there
is a rational form s ∈ C(X) on the affine cone X of X,
unique up to scalar multiple and of weight ai + aj , that
has a simple pole along C. The extension of algebras
R(X,A) ⊂ R(X,A)[s] inside C(X) defines a birational
map of varieties X ��� Y contracting exactly C. Since
X is quasismooth, this map is a morphism, and so it is
the contraction of a −2-curve on X, and X is a partial
resolution of Y . In particular, the resulting Y is again a
K3 surface.

If x0, . . . , xN are given generators of R(X,A) of de-
grees deg xi = ai, we extend this list by xN+1 = s to
give an embedding of Y as in (a). Eliminating s from
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the coordinate ring of Y in this embedding recovers X,
which is (b).

According to the recipe of [Papadakis and Reid 04,
Theorem 1], the unprojection equations are of the form

xN+1xk = gk for k �= i, j and some gk ∈ R(X,A).

These equations have degree ai + aj + ak for k in the set
{0, . . . , N}\{i, j}. The condition given in (c) is that this
degree is higher than that of any of the variables, and so
these variables cannot appear linearly.

The divisor of s on X contains C with coefficient −1
and is linearly equivalent to (ai +aj)A. So expressed as a
divisor onX before contracting C, the hyperplane section
of Y is B as stated in (d). The formula computes the
number of monomials added to R(X,A) in each degree
by the inclusion of s. It counts multiples of s by the
variables xi, xj and by s itself. All other monomials sxk

can be eliminated by the unprojection equations.
Finally, (e) follows from the formula in (d) together

with Theorem 2.1. Alternatively, one sees from the
unprojection equations that PN+1 ∈ Y is of type

1
ai+aj

(ai, aj), which forces the quotient singularities of
X along C to be the stated pair.

In principle, this theorem provides an inductive frame-
work for generating K3 surfaces in high codimension to
realize items in DK3. Indeed, this is how Altınok [Altınok
98] and Frantzen [Frantzen 04] construct K3 surfaces
in codimensions 4 and 5. However, verifying that such
X ⊃ C exist and are quasismooth seems difficult in gen-
eral. Instead, we use the theorem to generate plausible
weights for any ξ ∈ DK3 as follows.

Definition 3.2. For η = (g,B) ∈ DK3 and p = 1
r (a,−a) ∈

B, the numerical projection of p in η is ξ = (g,B′), where

B′ ∪
{

1
r
(a,−a)

}
= B ∪

{
1
a
(r,−r), 1

r − a (r,−r)
}
,

and we omit any singularity of type 1
s (c,−c) of index

s = 1.

Algorithm 3.3. (Type-I forcing.) For fixed genus −1 ≤
g ≤ 2, let DK3(g) be the subset of DK3 of numerical
K3 candidates with genus g ordered in increasing Hilbert
series order.

For η = (g,B) ∈ DK3(g) do

(1) If Pη is that of a known K3 surface of codimension
less than or equal to 2, then assign it these known
weights; continue with the next η.

(2) For each p = 1
r (a,−a) ∈ B:

(a) Compute the numerical projection ξ of p in η.

(b) If (g, ξ) ∈ DK3(g) and the pair a, r − a occurs
among the weights W of ξ, then let the weights
of ξ be W ∪ {r}; continue with the next η.

(3) Apply the naive algorithm of Section 2.2 to generate
weights for η; continue with the next η.

In (1), we take the 95+84 K3 surfaces in codimension
at most 2 as known. Of course, in (2)(b) the pair (g, ξ)
will be in DK3 if and only if A2

ξ > 0, and furthermore, the
weights of ξ will be known inductively because ξ appears
in DK3(g) ahead of η by the Hilbert series order together
with Theorem 3.1(d).

Part (3) of the algorithm is not very satisfactory. One
can improve on the naive algorithm by adding other
weights to realize the basket better, for instance. But
we don’t discuss that here, since in practice, the unpro-
jection step (2) is enough once higher unprojections are
included.

3.1.2 Higher Unprojections. Type-I unprojections
are only one kind of unprojection calculation associated
with Gorenstein rings. At the time of writing, it is the
only one for which the theory is complete, although Pa-
padakis [Papadakis 06] has recently proved some results
for Type II. However, it is still possible to calculate with
other kinds. Experience from examples suggests the fol-
lowing numerical characterization of another type of un-
projection.

Definition 3.4. Suppose ξ ∈ DK3 is a numerical projec-
tion of η, that is, ξ and η are related as in Definition 3.2.
Let Wξ be the weights of ξ and let n be a positive integer.
Then the projection is a numerical Type-IIn projection if
(r − a) ∈Wξ and n+ 1 is the smallest positive integer k
for which ka ∈Wξ \ {r− a} (or the analogous statement
with a and r − a switching roles).

In this situation and notation, we define the expected
weights of η to be

Wη = Wξ ∪ {r, r + a, r + 2a, . . . , r + na}.

The idea is that the new weight r corresponds to an
unprojection variable s as for Type I, but that additional
variables are needed to make the unprojection projec-
tively normal.
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For example, projecting from

1
2
(1, 1) ∈ Y ⊂ P5(1, 2, 2, 3, 5, 7)

is a numerical Type-II1 projection with image

P1 ⊂ X15 ⊂ P3(1, 2, 5, 7).

A single variable of weight 2 has been eliminated, and
with it the variable of weight 3 that polarized the singu-
larity is also eliminated. One could eliminate the weight-
3 variable alone to see the nonnormal unprojection. See
Section 4 for this projection in the database.

We can force Type-II unprojections just as for Type
I in Algorithm 3.3. In constructing DK3, exactly this
is done using Types II1 and II2 once the possibility of
a Type-I unprojection has been exhausted. Once con-
structed, the whole K3 database is subjected to the fol-
lowing consistency check.

Computation 3.5. (Numerical Type-I and -II Consis-
tency.) The weights of numerical K3 candidates in DK3

are consistent with all projections of numerical Type I
and Type IIn for any n > 0 from any candidate of codi-
mension 3 or more.

The proof is a computer calculation: For each ξ ∈ DK3

that does not correspond to a known K3 surface in codi-
mension 1 or 2, the weights of ξ are computed according
to every projection of numerical Types I and II, and the
results are required to be the same. Candidates in codi-
mension 1 or 2 are ignored, since they are already known
to be correct (and projection can be more complicated in
such small graded rings).

This computation is important. Together with the few
hundred initial cases, it is the main supporting evidence
that the families described by the database do represent
K3 surfaces in the sense of Definition 2.10(b).

Meaning 3.6. The weights associated with numerical K3
candidates in DK3 are consistent with the existence of
Type-I and -II unprojections between K3 surfaces realiz-
ing them.

One could use the same unprojection calculus to pre-
dict weights for any (g,B) with g ≥ 3 that is not listed in
DK3. The results would be the same as those for (2,B),
but with the inclusion of the weight 1 an additional g−2
times. Such continuation of DK3 would be visible in Ta-
ble 1 as the g = 2 column copied in each column to the
right, but in higher codimension at each higher genus

(with the two candidates in minimal codimension put in
codimensions g− 1 and g− 2, as at the head of the g = 3
column).

3.2 K3 Surfaces Admitting No Gorenstein Projection

Since the existence of projections is the basis for the com-
putation of higher-codimension weights in DK3, the fol-
lowing result limiting those numerical K3 candidates hav-
ing no projections, or only projections not of numerical
Type I or II, is important.

Computation 3.7. Let ξ = (g,B) ∈ DK3 be a numerical
K3 candidate.

If g ≤ 2 and ξ does not have any numerical projection
to another polarized K3 surface, then ξ is one of the
following:

g ξ
−1 codim ξ ≤ 4 and ξ is one of 36 cases of Table 3

0 codim ξ = 1 and ξ is one of 6 cases of Table 4
1 numerical data of X12 ⊂ P(1, 1, 4, 6)
2 numerical data of X6 ⊂ P(1, 1, 1, 3)

If ξ has at least one numerical projection but does not
have a numerical projection of Type I or II, then g = −1
and ξ is of the form

X ⊂ P7+3k(24+k, 34+2k) for k = 0, . . . , 6

(where 2n indicates n occurrences of weight 2) with B =
{(10 + k) × 1

2 (1, 1)} and A2 = (k + 2)/2, or ξ is one of
the following three cases:

X ⊂P8(8, 8, 9, 10, 11, 12, 13, 14, 15),

A2 =
1
2

+
3
4

+
3 · 5
8

+
8
9

=
1
72

;

X ⊂P7(7, 7, 8, 9, 10, 11, 12, 13),

A2 =
2 · 5
7

+
3 · 4
7

+
7
8

=
1
56

;

X ⊂P5(4, 5, 5, 6, 7, 8),

A2 =
1
2

+
3
4

+ 2× 4
5

+
2 · 3
5

=
1
20

;

where 1
r (a,−a) ∈ B is represented by its contribution

b(r − b)/r to A2 in (2–3).

The first half of this computation already appeared in
[Brown 03]. The second half can be computed from the
K3 database using code similar to that of section 4.

4. USING THE K3 DATABASE

There are three ways to access the K3 database. The
main one is to use Magma, as described below. Sec-
ond, the website [Brown et al. 04] has a bureaucratic
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K3 surface ρX Basket B Degree A2

X50 ⊂ P(7, 8, 10, 25) 19 1
2

+ 2·3
5

+ 2·5
7

+ 7
8

1/280

X36 ⊂ P(7, 8, 9, 12) 19 2
3

+ 3
4

+ 3·4
7

+ 7
8

1/168

X40 ⊂ P(5, 7, 8, 20) 18 3
4

+ 2 × 2·3
5

+ 6
7

1/140

X66 ⊂ P(5, 6, 22, 33) 18 1
2

+ 2
3

+ 2·3
5

+ 2·9
11

1/330

X38 ⊂ P(5, 6, 8, 19) 18 1
2

+ 4
5

+ 5
6

+ 3·5
8

1/120

X27 ⊂ P(5, 6, 7, 9) 18 2
3

+ 4
5

+ 5
6

+ 3·4
7

1/70

X34 ⊂ P(4, 6, 7, 17) 17 2 × 1
2

+ 3
4

+ 5
6

+ 3·4
7

1/84

X54 ⊂ P(4, 5, 18, 27) 17 1
2

+ 3
4

+ 2·3
5

+ 2·7
9

1/180

X32 ⊂ P(4, 5, 7, 16) 17 2 × 3
4

+ 4
5

+ 3·4
7

1/70

X30 ⊂ P(4, 5, 6, 15) 16 2 × 1
2

+ 2
3

+ 3
4

+ 2 × 4
5

1/60

X24 ⊂ P(3, 6, 7, 8) 16 1
2

+ 4 × 2
3

+ 6
7

1/42

X48 ⊂ P(3, 5, 16, 24) 16 2 × 2
3

+ 4
5

+ 3·5
8

1/120

X21 ⊂ P(3, 5, 6, 7) 16 3 × 2
3

+ 2·3
5

23 + 5
6

1/30

X42 ⊂ P(3, 4, 14, 21) 15 1
2

+ 2 × 2
3

+ 3
4

+ 2·5
7

1/84

X24 ⊂ P(3, 4, 5, 12) 15 2 × 2
3

+ 2 × 3
4

+ 2·3
5

1/30

X18 ⊂ P(3, 4, 5, 6) 15 1
2

+ 3 × 2
3

+ 3
4

+ 4
5

1/20

X15 ⊂ P(3, 3, 4, 5) 14 5 × 2
3

+ 3
4

1/12

X30 ⊂ P(2, 6, 7, 15) 14 5 × 1
2

+ 2
3

+ 6
7

1/42

X42 ⊂ P(2, 5, 14, 21) 14 3 × 1
2

+ 4
5

+ 3·4
7

1/70

X26 ⊂ P(2, 5, 6, 13) 14 4 × 1
2

+ 2·3
5

+ 5
6

1/30

X22 ⊂ P(2, 4, 5, 11) 13 5 × 1
2

+ 3
4

+ 4
5

1/20

X30 ⊂ P(2, 3, 10, 15) 12 3 × 1
2

+ 2 × 2
3

+ 2·3
5

1/30

X18 ⊂ P(2, 3, 4, 9) 12 4 × 1
2

+ 2 × 2
3

+ 3
4

1/12

X12 ⊂ P(2, 3, 3, 4) 12 3 × 1
2

+ 4 × 2
3

1/6

X14 ⊂ P(2, 2, 3, 7) 10 7 × 1
2

+ 2
3

1/6

X24,30 ⊂ P(8, 9, 10, 12, 15) 19 1
2

+ 2
3

+ 3
4

+ 2·3
5

+ 8
9

1/180

X18,30 ⊂ P(6, 8, 9, 10, 15) 18 2 × 1
2

+ 2 × 2
3

+ 4
5

+ 7
8

1/120

X16,18 ⊂ P(4, 6, 7, 8, 9) 17 2 × 1
2

+ 2
3

+ 2 × 3
4

+ 6
7

1/42

X14,16 ⊂ P(4, 5, 6, 7, 8) 17 1
2

+ 2 × 3
4

+ 2·3
5

+ 5
6

1/30

X12,14 ⊂ P(4, 4, 5, 6, 7) 16 2 × 1
2

+ 3 × 3
4

+ 4
5

1/20

X10,12 ⊂ P(3, 4, 4, 5, 6) 15 1
2

+ 2 × 2
3

+ 3 × 3
4

1/12

X6,6 ⊂ P(2, 2, 2, 3, 3) 10 9 × 1
2

1/2

X16,...,20 ⊂ P(5, 6, 7, 8, 9, 10) 18 1
2

+ 2
3

+ 4
5

+ 2·3
5

+ 6
7

1/42

X14,...,18 ⊂ P(5, 5, 6, 7, 8, 9) 18 4
5

+ 2 × 2·3
5

+ 5
6

1/30

X ⊂ P(6, 6, 7, 8, 9, 10, 11) 18 2 × 1
2

+ 2 × 2
3

+ 5
6

+ 6
7

1/42

X ⊂ P(5, 6, 6, 7, 8, 9, 10) 18 1
2

+ 2
3

+ 2·3
5

+ 2 × 5
6

1/30

TABLE 3. K3 surfaces with g = −1 having no Gorenstein projection.

K3 surface ρX Basket B Degree A2

X42 ⊂ P(1, 6, 14, 21) 10 1
2

+ 2
3

+ 6
7

1/42

X36 ⊂ P(1, 5, 12, 18) 10 2·3
5

+ 5
6

1/30

X30 ⊂ P(1, 4, 10, 15) 9 1
2

+ 3
4

+ 4
5

1/20

X24 ⊂ P(1, 3, 8, 12) 8 2 × 2
3

+ 3
4

1/12

X18 ⊂ P(1, 2, 6, 9) 6 3 × 1
2

+ 2
3

1/6

X10 ⊂ P(1, 2, 2, 5) 6 5 × 1
2

1/2

TABLE 4. K3 surfaces with g = 0 having no Gorenstein projection.

front end to Magma with a form to fill in that can be
submitted to the K3 database. And third, there is an
SQL-style version of the database posted on the website
[Brown et al. 04] that can be downloaded and installed
under an SQL server. Of course, this is static and
does not include some data that is computed live by
Magma.

4.1 The K3 Database in MAGMA

The computer algebra system Magma [Cannon 05,
Bosma et al. 97] (version 2.11 or higher) contains a
database of 24,099 representative K3 surfaces. We give
an example of a continuous session using this database.
Having already started Magma (typically by typing
magma at a command line), we name the K3 database D.
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> D := K3Database();
> D;
The database of K3 surfaces

Now we pick out a surfaceX with given weights. It can
be analyzed using various function calls like Degree(X).
But simply printing it on screen presents all of its useful
data.

> X := K3Surface(D,[1,2,2,3,5,7]);
> Degree(X);
5/7
> X;
K3 surface no.797, genus 0, in codimension 3 with data

Weights: [ 1, 2, 2, 3, 5, 7 ]
Basket: 2 x 1/2(1,1), 1/7(2,5)
Degree: 5/7 Singular rank: 8
Numerator: -t^20 + ... + t^11 - t^9 - t^8 - t^7 - t^6 + 1
Projection to codim 2 K3 no.796 -- type I from 1/7(2,5)
Projection to codim 1 K3 no.251 -- type II_1 from 1/2(1,1)
Unproj’n from codim 4 K3 no.798 -- type I from 1/9(2,7)
Unproj’n from codim 4 K3 no.816 -- type I from 1/3(1,2)
Unproj’n from codim 5 K3 no.1642 -- type II_1 from 1/2(1,1)

In this case, reading the numerator suggests that there
are four equations of weights 6, 7, 8, 9 respectively. In
fact, it is known that Gorenstein rings in codimension
3 have an odd number of relations, so one guesses that
there are five equations, the missing one being in degree
10, masked in the numerator by some syzygy also of de-
gree 10. This now works, and one can write X as the five
maximal Pfaffians of a skew 5× 5 matrix; compare with
[Altınok et al. 02, Example 3.7] .

The weights of X can be deduced using a Type-I un-
projection. Indeed, we see that the g = 0 surface number
796 has the right numerical properties to be a Type-I pro-
jection from the 1

7 (2, 5) point of X.

> K3Surface(D,0,796);
K3 surface no.796, genus 0, in codimension 2 with data

Weights: [ 1, 2, 2, 3, 5 ]
Basket: 3 x 1/2(1,1), 1/5(2,3)
Degree: 7/10 Singular rank: 7
Numerator: t^13 - t^7 - t^6 + 1
[ ... 2 projections and 3 unprojections including ... ]

Unproj’n from codim 3 K3 no.797 -- type I from 1/7(2,5)

Indeed, this can be realized, and the unprojection can
be calculated; compare again [Altınok et al. 02, Example
3.7].

The surface X has a second projection. By Compu-
tation 3.5, the weights of X can be calculated using this
projection instead and should give the same result. In-
deed, looking at the image of the numerical projection,
we see that its weights differ only by the missing pair 2, 3,
which is also the prediction using the numerical Type-II1
projection of Definition 3.4.

> K3Surface(D,0,251);
K3 surface no.251, genus 0, in codimension 1 with data

Weights: [ 1, 2, 5, 7 ]
Basket: 1/2(1,1), 1/7(2,5)

Degree: 3/14 Singular rank: 7
Numerator: -t^15 + 1
[ ... 1 projection and 3 unprojections including ... ]

Unproj’n from codim 3 K3 no.797 -- type II_1 from 1/2(1,1)

One can make more serious searches, testing predi-
cates on each surface in the database. For example, we
make a sequence containing those codimension-5 surfaces
with no unprojections; there is only one of them.

> K3s := [ X : X in D | Codimension(X) eq 5 and
#Unprojections(X) eq 0 ];

> #K3s;
1
> Y := K3s[1];
> Weights(Y);
[ 7, 7, 8, 9, 10, 11, 12, 13 ]
> Basket(Y);
1/7(2,5), 1/7(3,4), 1/8(1,7)

Or we can confirm the lower bound in Computation
1.1: X66 ⊂ P(5, 6, 22, 33) has degree 1/330.

> [ Weights(X) : X in D | Degree(X) le 1/330 ];
[ [ 5, 6, 22, 33 ] ]

To give a typical calculation, we write a function to list
all projections of the K3 surface number 35 constructed
in Section 2.3.

> function projections(X,D)
> P := {X};
> todo := {X};
> repeat
> todo := &join[ { K3Surface(D,Genus(X),P[1])
> : P in Projections(Y) } : Y in todo ];
> P join:= todo;
> until #todo eq 0;
> return P;
> end function;

We apply this function to X and look at the codimen-
sions of its projections.

> X := K3Surface(D,0,35);
> {* Codimension(Y): Y in projections(X,D) *};
{* 1^^6, 2^^2, 3^^2, 4^^2, 5^^2, 6^^2, 7^^2, 8^^2, 9, 10 *}

In other words, we have the following computation.

Computation 4.1. Let ξ = (g,B) ∈ DK3 be the numerical
K3 candidate of display (2–5) in Section 2.3. The set of
projections of ξ consists of 22 candidates in DK3 whose
weights are spread across codimensions 1 to 10 as follows:

codim 1 2 3 4 5 6 7 8 9 10
number 6 2 2 2 2 2 2 2 1 1

.

Since ξ represents a K3 Hilbert series, so does each of
these 22 candidates.
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