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Central limit theorem for eigenvectors
of heavy tailed matrices

Florent Benaych-Georges∗ Alice Guionnet†

Abstract

We consider the eigenvectors of symmetric matrices with independent heavy tailed
entries, such as matrices with entries in the domain of attraction of α-stable laws,
or adjacency matrices of Erdös-Rényi graphs. We denote by U = [uij ] the eigenvec-
tors matrix (corresponding to increasing eigenvalues) and prove that the bivariate
process

Bn
s,t :=

1√
n

∑
1≤i≤ns
1≤j≤nt

(|uij |2 −
1

n
) (0 ≤ s, t ≤ 1),

converges in law to a non trivial Gaussian process. An interesting part of this result
is the 1√

n
rescaling, proving that from this point of view, the eigenvectors matrix

U behaves more like a permutation matrix (as it was proved in [17] that for U a
permutation matrix, 1√

n
is the right scaling) than like a Haar-distributed orthogonal

or unitary matrix (as it was proved in [18, 5] that for U such a matrix, the right scaling
is 1).
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1 Introduction

During the last decade, many breakthroughs were achieved in the study of random
matrices belonging to the GUE universality-class, that is Hermitian matrices with in-
dependent and equidistributed entries (modulo the symmetry constraint) with enough
finite moments. The first key result about such matrices is due to Wigner [39] in the
fifties who showed that the macroscopic behavior of their eigenvalues is universal and
asymptotically described by the semi-circle distribution. However, it took a long time to
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CLT for eigenvectors of heavy tailed matrices

get more precise information on the local behavior of the eigenvalues, and for instance
about the asymptotic distribution of their spacings. Even though local results were con-
jectured, for instance by Dyson and Mehta [30], it is only in the nineties that rigorous
results were derived, such as the convergence of the joint probability distribution of
eigenvalues in an interval of size of order N−1 or the fluctuations of the largest eigen-
values, see [37]. Yet these results were restricted to Gaussian ensembles for which the
joint law of the eigenvalues is known. Recently, these results were shown to be univer-
sal, that is to hold also for matrices with independent non Gaussian entries, provided
they have enough finite moments [20, 23, 25, 26, 35]. Such a simple question as the
convergence of the law of a single spacing was open, even in the GUE case, until re-
cently when it was solved by Tao [36]. Once considering non Gaussian matrices, it is
natural to wonder about the behavior of the eigenvectors and whether they are delo-
calized (that is go to zero in L∞ norm) as for GUE matrices. This was indeed shown by
Erdös, Schlein and Yau [21].

Despite the numerous breakthroughs concerning random matrices belonging to the
GUE universality-class, not much is yet known about other matrices. A famous example
of such a matrix is given by the adjacency matrix of an Erdös-Rényi graph. Its entries
are independent (modulo the symmetry hypothesis) and equal to one with probability
p = p(N), zero otherwise. If pN goes to infinity fast enough, the matrix belongs to the
GUE universality class [19]. However if pN converges to a finite non zero constant,
the matrix behaves quite differently, more like a “heavy tailed random matrix”, i.e. a
matrix filled with independent entries which have no finite second moment. Also in
this case, it is known that, once properly normalized, the empirical measure of the
eigenvalues converges weakly but the limit differs from the semi-circle distribution [38,
7, 6, 9, 15, 10]. Moreover, the fluctuations of the empirical measure could be studied
[10, 31, 27, 28]. It turns out that it fluctuates much more than in the case of matrices
from the GUE universality-class, as fluctuations are square root of the dimension bigger.
However, there is no result about the local fluctuations of the eigenvalues except in the
case of matrices with entries in the domain of attraction of an α-stable law in which
case it was shown [2, 34] that the largest eigenvalues are much bigger than the others,
converge to a Poisson distribution and have localized eigenvectors. About localization
and delocalization of the eigenvectors, some models are conjectured [16, 33] to exhibit
a phase transition; eigenvalues in a compact would have more delocalized eigenvectors
than outside this compact. Unfortunately, very little could be proved so far in this
direction. Only the case where the entries are α-stable random variables could be
tackled [15]; it was shown that for α > 1 the eigenvectors are delocalized whereas for
α < 1 and large eigenvalues, a weak form of localization holds.

In this article, we study another type of properties of the eigenvectors of a random
matrix. Namely we consider the bivariate process

Gns,t :=
∑

1≤i≤ns
1≤j≤nt

(|uij |2 −
1

n
) (0 ≤ s ≤ 1, 0 ≤ t ≤ 1) ,

where U = [uij ] is an orthogonal matrix whose columns are the eigenvectors of an
Hermitian random matrix A = [ak`]. In the case where A is a GUE matrix [18], and
then a more general matrix in the GUE universality-class [8], it was shown that this
process converges in law towards a bivariate Brownian bridge (see also the closely
related issues considered in [4]). Here, we investigate the same process in the case
where A is a heavy tailed random matrix and show that it fluctuates much more, namely
it is 1√

n
Gn which converges in law. The limit is a Gaussian process whose covariance
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depends on the model through the function

Φ(λ) = lim
n→∞

nE[e−iλak` − 1] .

Of course if one considers heavy tailed variables in the domain of attraction of the
same α-stable law, and they suitably renormalize them, the function Φ and therefore
the covariance will be the same. However, the covariance may vary when Φ does and
it is not trivial in the sense that it does not vanish uniformly if Φ is not linear (a case
which corresponds to light tails). In the related setting when the uij ’s are the entries
of a uniformly distributed random permutation, i.e. of a somehow sparse matrix, the
process 1√

n
Gn also converges in law, towards the bivariate Brownian bridge [17].

More precisely, we consider a real symmetric random n× n matrix A that can be ei-
ther a Wigner matrix with exploding moments (which includes the adjacency matrix for
Erdös-Rényi graphs) or a matrix with i.i.d. entries in the domain of attraction of a stable
law (or more generally a matrix satisfying the hypotheses detailed in Hypothesis 2.1).
We then introduce an orthogonal matrix U = [uij ] whose columns are the eigenvectors
of A so that we have A = U diag(λ1, . . . , λn)U∗. We then define the bivariate processes

Bns,t :=
1√
n

∑
1≤i≤ns
1≤j≤nt

(|uij |2 −
1

n
) (0 ≤ s ≤ 1, 0 ≤ t ≤ 1)

and

Cns,λ :=
1√
n

∑
1≤i≤ns

1≤j≤n ;λj≤λ

(|uij |2 −
1

n
) (0 ≤ s ≤ 1, λ ∈ R)

and prove, in Theorem 2.5, that both of these processes (with a little technical restric-
tion on the domain of B) converge in law to (non trivial) Gaussian processes linked by
the relation

Bs,FµΦ
(λ) = Cs,λ,

where FµΦ
(λ) = µΦ((−∞, λ]) denotes the cumulative distribution function of the limit

spectral law µΦ of A, i.e.

FµΦ
(λ) = lim

n→∞
Fn(λ), with Fn(λ) :=

1

n
|{i ; λi ≤ λ}|. (1.1)

The idea of the proof is the following one. We first notice that for any s ∈ [0, 1], the
function λ 7→ Cns,λ is the cumulative distribution function of the random signed measure
νs,n on R defined by

νs,n :=
1√
n

∑
1≤i≤ns

n∑
j=1

(
|uij |2 −

1

n

)
δλj (1.2)

(i.e. that for any λ ∈ R, Cns,λ = νs,n((−∞, λ])). Then, we introduce the Cauchy trans-

form Xn(s, z) :=

∫
λ∈R

dνs,n(λ)

z − λ
of νs,n and prove (Proposition 2.9) that the process

(Xn(s, z))s,z converges in law to a limit Gaussian process (Hs,z). This convergence
is proved thanks to the classical CLT for martingales (Theorem 6.4 of the Appendix) to-
gether with the Schur complement formula and fixed points characterizations like the
ones of the papers [7, 6, 10]. Then to deduce the convergence in law of the process
(Cns,λ)s,λ, we use the idea that the cumulative distribution function of a signed measure
is entirely determined by its Cauchy transform. In fact, as the measures νs,n of (1.2)
are random, things are slightly more complicated, and we need to prove a tightness
lemma for the process (Cns,λ)s,λ (specifically Lemma 6.1 of the Appendix, first applied to
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the process (Bns,t) and then transferred to (Cns,λ) by Formula (1.3) below). This lemma
reduces the problem to the proof of the unicity of the possible limits for (Cns,λ). Then,
we use the formula ∫

λ∈R

Cns,λ
(z − λ)2

dλ = −Xn(s, z)

and Lemma 6.2 of the appendix to be able to claim that (Cns,λ)s,λ has a unique limit
point. The result proved for (Cns,λ) can then be transferred to (Bns,t) thanks to Formula
(1.3) below, where Fn(λ), defined at (1.1) above, converges to the deterministic limit
FµΦ(λ):

Cns,λ = Bns,Fn(λ). (1.3)

Remark 1.1. The objects introduced in the previous paragraph for the sketch of the
proof enlighten the reason of the presence of the factor 1√

n
in the definitions of the

processes Bns,t and Cns,t (recall that this factor does not appear in the corresponding
formulas when Wigner instead of heavy-tailed matrices are concerned). Let µn denote
the empirical spectral law of A and let, for i = 1, . . . , n, µn,ei denote the empirical
spectral law of A according to the ith vector ei for the canonical basis: that is, for any
test function f ,∫

f(x)dµn(x) =
1

n
Tr(f(A)) ;

∫
f(x)dµn,ei(x) =

n∑
j=1

|ui,j |2f(λj) = (f(A))ii.

(1.4)
Then

Cns,λ =
1√
n

ns∑
i=1

(µn,ei − µn)((−∞, λ]),

so that Cns,λ is the centered version of a sum of random variables µn,ei((−∞, λ]) (1 ≤ i ≤
ns). It has been proved in [14] that in the Lévy case, the random probability measures
µn,ei converge to i.i.d. copies of a nontrivial limiting random probability measure (the
spectral measure at the root of a suitable random weighted tree). This contrasts with
case of Wigner matrices, where concentration implies that the limiting measure of µn,ei
is deterministic, and give a heuristic explanation, in the Lévy case, of why one has to
renormalize by

√
n in Cns,λ. Note however that this explanation is not enough to prove

that the variance of Cns,λ does not explode nor vanish because Cns,λ is a sum of a large
number of µn,ei((−∞, λ])’s, that are correlated at finite n (for example because the
process vanishes on the boundary).

Organization of the paper. The main results are stated in Section 2. In Section 3,
we give a proof of Theorem 2.5, based on Proposition 2.9, which is proved in Section
4. Proposition 2.7 is proved in Section 5. At last, some technical results are proved or
recalled in the Appendix.
Notations. For u, v depending implicitly on n, we write u � v when u/v −→ 0 as
n→∞. For x a random variable, Var(x) denotes the variance of x, i.e. E[|x|2]− |Ex|2.
Power functions are defined on C\R− via the standard determination of the argument
on this set taking values in (−π, π). The set C+ (resp. C−) denotes the open upper
(resp. lower) half plane and for any z ∈ C, sgnz := sign(=z). At last, bor any variable x,
∂x denotes ∂

∂x .

2 Main results

Although technical, the model introduced in Hypothesis 2.1 below has the advantage
to be general enough to contain several models of interest.
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Hypothesis 2.1. Let, for each n ≥ 1, An = [aij ] be an n × n real symmetric random
matrix whose sub-diagonal entries are some i.i.d. copies of a random variable a (de-
pending implicitly on n) such that:
• The random variable a can be decomposed into a = b+ c such that as n→∞,

P(c 6= 0)� n−1 (2.1)

Var(b)� n−1/2 (2.2)

Moreover, if the bi’s are independent copies of b,

lim
K〉∞

lim
n〉∞

P

(
n∑
i=1

(bi − E(bi))
2 ≥ K

)
= 0 . (2.3)

• For any ε > 0 independent of n, the random variable a can be decomposed into
a = bε + cε such that

lim sup
n→∞

nP(cε 6= 0) ≤ ε (2.4)

for all k ≥ 1, nE[(bε − E bε)2k] has a finite limit Cε,k as n→∞.
• For φn the function defined on the closure C− of C− := {λ ∈ C ; =λ < 0} by

φn(λ) := E
[

exp(−iλa2)
]
, (2.5)

we have the convergence, uniform on compact subsets of C−,

n(φn(λ)− 1) −→ Φ(λ), (2.6)

for a certain function Φ defined on C−.
• The function Φ of (2.6) admits the decomposition

Φ(z) =

∫ ∞
0

g(y)ei
y
z dy (2.7)

where g(y) is a function such that for some constants K, γ > −1, κ ≥ 0, we have

|g(y)| ≤ K1y≤1y
γ +K1y≥1y

κ, ∀y > 0. (2.8)

• The function Φ of (2.6) also either has the form

Φ(x) = −σ(ix)α/2 (2.9)

or admits the (other) decomposition, for x, y non zero:

Φ(x+ y) =

∫∫
(R+)2

ei
v
x+i v

′
y dτ(v, v′) +

∫
R+

ei
v
x dµ(v) +

∫
R+

ei
v′
y dµ(v′) (2.10)

for some complex measures τ, µ on respectively (R+)2 and R+ such that for all b > 0,∫
e−bvd|µ|(v) is finite and for some constants K > 0, −1 < γ ≤ 0 and κ ≥ 0, and

d|τ |(v, v′)
dvdv′

≤ K
(
vγ1v∈]0,1] + vκ1v∈]1,∞[

)(
v′
γ
1v′∈]0,1] + v′

κ
1v′∈]1,∞[

)
. (2.11)

Remark 2.2. When Φ satisfies (2.9) (e.g. for Lévy matrices), (2.10) holds as well.
Indeed, for all x, y ∈ C+ (with a constant Cα that can change at every line),

Φ(x−1 + y−1) = Cα(
1

x
+

1

y
)α/2 = Cα

1

xα/2
1

yα/2
(x+ y)α/2 (2.12)

= Cα

∫ ∞
0

dw

∫ ∞
0

dw′
∫ ∞

0

dvwα/2−1w′
α/2−1

v−α/2−1eiwx+iw′y(eiv(x+y) − 1)
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(where we used the formula zα/2 = Cα

∫ +∞

t=0

eitz − 1

tα/2+1
dt for any z ∈ C+ and α ∈ (0, 2),

which can be proved with the residues formula) so that (2.10) holds with µ = 0 and
τ(v, v′) with density with respect to Lebesgue measure given by

Cα

∫ +∞

0

u−α/2−1{(v − u)α/2−1(v′ − u)α/2−1
10≤u≤v∧v′ − vα/2−1v′

α/2−1}du.(2.13)

Unfortunately, τ does not satisfy (2.11) as its density blows up at v = v′: we shall treat
both case separately.

Examples of random matrices satisfying Hypothesis 2.1 are defined as follows.

Definition 2.3 (Models of symmetric heavy tailed matrices). Let A = (ai,j)i,j=1,...,n be
a random symmetric matrix with i.i.d. sub-diagonal entries.

1. We say that A is a Lévy matrix of parameter α in ]0, 2[ when A = X/an where
the entries xij of X have absolute values in the domain of attraction of α-stable
distribution, more precisely

P (|xij | ≥ u) =
L(u)

uα
(2.14)

with a slowly varying function L, and

an = inf{u : P (|xij | ≥ u) ≤ 1

n
}

(an = L̃(n)n1/α, with L̃(·) a slowly varying function1).

2. We say that A is a Wigner matrix with exploding moments with parameter
(Ck)k≥1 whenever the entries of A are centered, and for any k ≥ 1

nE
[
(aij)

2k
]
−→
n→∞

Ck > 0. (2.15)

We assume that there exists a unique measure m on R+ such that for all k ≥ 0,

Ck+1 =

∫
xkdm(x). (2.16)

The following proposition has been proved at Lemmas 1.3, 1.8 and 1.11 of [10].

Proposition 2.4. Both Lévy matrices and Wigner matrices with exploding moments
satisfy Hypothesis 2.1:
• For Lévy matrices, the function Φ of (2.6) is given by formula

Φ(λ) = −σ(iλ)α/2 (2.17)

for some constant σ > 0, the function g of (2.7) is g(y) = Cαy
α
2−1, with Cα = −σiα/2.

• For Wigner matrices with exploding moments, the function Φ of (2.6) is given by

Φ(λ) =

∫
e−iλx − 1

x︸ ︷︷ ︸
:=−iλ for x = 0

dm(x), (2.18)

1A function L̃ is said to be slowly varying L̃ if for any fixed λ > 0, L̃(λx)/L̃(x) −→ 1 as x→∞.
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for m the measure of (2.16), the function g of (2.7) is

g(y) = −
∫
R+

J1(2
√
xy)

√
xy︸ ︷︷ ︸

:=1 for xy=0

dm(x), (2.19)

for J1 the Bessel function of the first kind defined by J1(s) =
s

2

∑
k≥0

(−s2/4)k

k!(k + 1)!
, and the

measures τ and µ of (2.10) are absolutely continuous with densities

dτ(v, v′)

dvdv′
:=

∫
J1(2
√
vx)J1(2

√
v′x)√

vv′
dm(x) and

dµ(v)

dv
:= −

∫
J1(2
√
vx)√
v

dm(x).

(2.20)

One can easily see that our results also apply to complex Hermitian matrices: in this
case, one only needs to require Hypothesis 2.1 to be satisfied by the absolute value of
non diagonal entries and to have a11 going to zero as N →∞.

A Lévy matrix whose entries are truncated in an appropriate way is a Wigner matrix
with exploding moments [7, 29, 38]. The recentered version2 of the adjacency matrix
of an Erdös-Rényi graph, i.e. of a matrix A such that

Aij = 1 with probability p/n and 0 with probability 1− p/n, (2.21)

is also an exploding moments Wigner matrix, with Φ(λ) = p(e−iλ− 1) (the measure m is
pδ1). In this case the fluctuations were already studied in [31].

It has been proved in [10] (see also [38, 31]) that under Hypothesis 2.1, the empirical
spectral law

µn :=
1

n

n∑
j=1

δλj (2.22)

converges weakly in probability to a deterministic probability measure µΦ that depends
only on Φ, i.e. that for any continuous bounded function f : R→ C, we have the almost
sure convergence

1

n
Tr f(A) =

1

n

n∑
j=1

f(λj) −→
n→∞

∫
f(x)dµΦ(x). (2.23)

We introduce FµΦ
(λ) := µΦ((−∞, λ]), cumulative distribution function of µΦ, and define

the set EΦ ⊂ [0, 1] by
EΦ := {0} ∪ FµΦ

(R) ∪ {1}. (2.24)

In the case of Lévy matrices, it has been proved in [6, Theorem 1.3] that µΦ has no
atoms (because it is absolutely continuous), so that EΦ = [0, 1].

We introduce the eigenvalues λ1 ≤ · · · ≤ λn of A and an orthogonal matrix U = [uij ]

such that A = U diag(λ1, . . . , λn)U∗. We assume U defined in such a way that the rows
of the matrix [|uij |] are exchangeable (this is possible3 because A is invariant, in law, by
conjugation by any permutation matrix). Then define the bivariate processes

Bns,t :=
1√
n

∑
1≤i≤ns
1≤j≤nt

(|uij |2 −
1

n
) (0 ≤ s ≤ 1, 0 ≤ t ≤ 1)

2The recentering has in fact asymptotically no effect on the spectral measure A as it is a rank one pertur-
bation.

3Such a matrix U can be defined, for example, by choosing some orthogonal bases of all eigenspaces of A
with uniform distributions, independently with each other and independently of A (given its eigenspaces of
course).
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and

Cns,λ :=
1√
n

∑
1≤i≤ns

1≤j≤n ;λj≤λ

(|uij |2 −
1

n
) (0 ≤ s ≤ 1, λ ∈ R).

The following theorem is the main result of this article. We endow D([0, 1]2) and
D([0, 1]×R) with the Skorokhod topology andD([0, 1]×EΦ) with the topology induced by
the Skorokhod topology onD([0, 1]2) by the projection map fromD([0, 1]2) ontoD([0, 1]×
EΦ) (see Section 4.1 of [8] for the corresponding definitions).

Theorem 2.5. As n→∞, the joint distribution of the processes

(Bns,t)(s,t)∈[0,1]×EΦ
and (Cns,λ)(s,λ)∈[0,1]×R

converges weakly to the joint distribution of some centered Gaussian processes

(Bs,t)(s,t)∈[0,1]×EΦ
and (Cs,λ)(s,λ)∈[0,1]×R

vanishing on the boundaries of their domains and satisfying the relation

Bs,FµΦ
(λ) = Cs,λ (2.25)

for all s ∈ [0, 1], λ ∈ R. Moreover, the process (Bs,t)(s,t)∈[0,1]×EΦ
is continuous.

Remark 2.6. Note that the limit of Bns,t is only given here when t ∈ EΦ, i.e. when t is
not in the “holes" of FµΦ(R). But as these holes result from the existence of some atoms
in the limit spectral distribution of A, the variations of Bns,t when t varies in one of these
holes may especially depend on the way we choose the columns of A for eigenvalues
with multiplicity larger than one. By the results of [18], in the case where the atoms of
µΦ result in atoms (with asymptotically same weight) of µn, the choice we made here
should lead to a limit process (Bs,t)(s,t)∈[0,1]2 which would interpolate (Bs,t)(s,t)∈[0,1]×EΦ

with some Brownian bridges in these “holes", namely for when t ∈ [0, 1]\EΦ.

The following proposition insures that the
1√
n

scaling in the definitions of Bns,t and

Cns,λ is the right one.

Proposition 2.7. If the function Φ(z) of (2.6) is not linear in z, then for any fixed
s ∈ (0, 1), the covariance of the process (Bs,t)t∈EΦ

(hence also that of (Cs,λ)λ∈R) is not
identically null.

Remark 2.8. One could wonder if the covariance might vanish uniformly on some
compact in the t variable, hence giving some support to the belief that the eigenvectors
could behave more alike the eigenvectors of GUE for “small” eigenvalues (in the latter
case the covariance should vanish). Unfortunately, it does not seem that the covariance
should be so closely related with the localization/delocalization properties of the eigen-
vectors (see Remark 1.1 instead). Indeed, let us consider Lévy matrices with α ∈ (1, 2).
Their eigenvectors are delocalized [15], so that one could expect the covariance of the
process (Bs,t)t∈EΦ to vanish. This is in contradiction with the fact that such matrices
enter our model, hence have eigenvectors satisfying Theorem 2.5 and Proposition 2.7.

To prove Theorem 2.5, a key step will be to prove the following proposition, which
also allows to make the variance of the limiting processes in Theorem 2.5 more explicit.

Let us define, for z ∈ C\R and s ∈ [0, 1],

Xn(s, z) :=
1√
n

(
Tr(Ps

1

z −A
)− sn Tr

1

z −A

)
, (2.26)
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where Ps denotes the diagonal matrix with diagonal entries 1i≤ns (1 ≤ i ≤ n) and

sn :=
1

n
TrPs =

bnsc
n

. (2.27)

Proposition 2.9. The distribution of the random process

(Xn(s, z))s∈[0,1],z∈C\R

converges weakly in the sense of finite marginals towards the distribution of a centered
Gaussian process

(Hs,z)s∈[0,1],z∈C\R (2.28)

with a covariance given by (4.23).

As it will appear from the proofs that the process (Cs,λ) of Theorem 2.5 and the
process (Hs,z) from the previous proposition are linked by the formula∫

λ∈R

Cs,λ
(z − λ)2

dλ = −Hs,z (s ∈ [0, 1], z ∈ C\R), (2.29)

the covariance of Cs,λ (hence of Bs,t by (2.25)) can be deduced from that of the process
Hs,z as follows (the proof of this proposition is a direct application of (2.29) and of
Formula (6.6) of the Appendix).

Proposition 2.10. For any s, s′ ∈ [0, 1] and any λ, λ′ ∈ R which are not atoms of µΦ, we
have

E[Cs,λCs′,λ′ ] =
1

π2
lim
η↓0

∫ λ

−∞

∫ λ′

−∞
E[= (Hs,E+iη)= (Hs′,E′+iη)]dEdE′ . (2.30)

When λ or λ′ is an atom of µΦ, the covariance can be obtained using (2.30) and the right
continuity of Cs,λ in λ.

3 Proof of Theorem 2.5

We introduce the cumulative distribution function

Fn(λ) :=
1

n
|{j ; λj ≤ λ}| (3.1)

of the empirical spectral law µn defined at (2.22). We shall use the following formula
several times: for all s ∈ [0, 1] and λ ∈ R,

Cns,λ = Bns,Fn(λ). (3.2)

We know, by Lemma 6.1 of the appendix, that the sequence (distribution(Bn))n≥1 is
tight and has all its accumulation points supported by the set of continuous functions on
[0, 1]2. As Fn converges to FµΦ in the Skorokhod topology, it follows that the sequences

B̃n := (Bns,t)(s,t)∈[0,1]×EΦ
and (Cns,λ = Bns,Fn(λ))(s,λ)∈[0,1]×R

are tight in their respective spaces. To prove the theorem, it suffices to prove that the
sequence (distribution(B̃n, Cn))n≥1 has only one accumulation point (which is Gaussian
centered, vanishing on the boundaries, supported by continuous functions as far as the
first component is concerned and satisfying (2.25)). So let

((B̃s,t)(s,t)∈[0,1]×EΦ
, (Cs,λ)(s,λ)∈[0,1]×R)
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be a pair of random processes having for distribution such an accumulation point. By
(3.2), we have

B̃s,FµΦ
(λ) = Cs,λ

for all s ∈ [0, 1], λ ∈ R. Hence it suffices to prove that the distribution of C is totally
prescribed and Gaussian centered.

First, let us note that one can suppose that along the corresponding subsequence,
the distribution of ((Bns,t)(s,t)∈[0,1]2 , (C

n
s,λ)(s,λ)∈[0,1]×R) converges weakly to the distribu-

tion of a pair (B,C) of processes such that B is continuous and vanishing on the bound-
ary of [0, 1]2. The difference with what was supposed above is that now, t varies in [0, 1]

and not only in EΦ. Again, by (3.2), we have

Bs,FµΦ
(λ) = Cs,λ (3.3)

for all s ∈ [0, 1], λ ∈ R. Hence the process C is continuous in s and continuous in λ

at any λ which is not an atom of the (non random) probability measure µΦ. Hence it
follows from Lemma 6.2 of the appendix that it suffices to prove that the distribution of
the process (

X(s, z) :=

∫
λ∈R

Cs,λ
(z − λ)2

dλ

)
s∈[0,1],z∈C\R

is totally prescribed (and Gaussian centered). This distribution is the limit distribution,
along our subsequence, of the process(∫

λ∈R

Cns,λ
(z − λ)2

dλ

)
s∈[0,1],z∈C\R

. (3.4)

But by Lemma 3.1 below, the process of (3.4) is simply (the opposite of) the process
(Xn(s, z))s,z, defined above at (2.26). As Proposition 2.9 states that (regardless of the
subsequence considered) the distribution of the process (Xn(s, z))s,z converges weakly
to a Gaussian centered limit, this concludes the proof of Theorem 2.5.

Lemma 3.1. For any s ∈ [0, 1] and any z ∈ C\R, we have∫
λ∈R

Cns,λ
(z − λ)2

dλ = −Xn(s, z). (3.5)

Proof. Let us introduce, for s ∈ [0, 1], the random signed measure νs,n on R defined by

νs,n :=
1√
n

∑
1≤i≤ns

n∑
j=1

(
|uij |2 −

1

n

)
δλj .

Then for any λ ∈ R, Cns,λ = νs,n((−∞, λ]). Moreover, by Fubini’s theorem, we know that
for any finite signed measure m on R,∫

λ∈R

m((−∞, λ])

(z − λ)2
dλ = −

∫
λ∈R

dm(λ)

z − λ
. (3.6)

Hence ∫
λ∈R

Cns,λ
(z − λ)2

dλ = −
∫
λ∈R

dνs,n(λ)

z − λ
.
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On the other hand, we have

Xn(s, z) =
1√
n

 ∑
1≤i≤ns

(
1

z −A

)
ii

− 1

n

∑
1≤i≤ns

n∑
j=1

1

z − λj


=

1√
n

 ∑
1≤i≤ns

n∑
j=1

|uij |2
1

z − λj
− 1

n

∑
1≤i≤ns

n∑
j=1

1

z − λj


=

1√
n

∑
1≤i≤ns

n∑
j=1

(
|uij |2 −

1

n

)
1

z − λj

=

∫
λ∈R

dνs,n(λ)

z − λ
.

This concludes the proof.

4 Proof of Proposition 2.9

To prove Proposition 2.9, one needs to prove that the distribution of any linear com-
bination of the Xn(s, z)’s (s ∈ [0, 1], z ∈ R) converges weakly. For s = 0 or 1, νs,n is
null, as Xn(s, z), hence we can focus on s ∈ (0, 1). Any such linear combination can be
written

Mn :=

p∑
i=1

αiX
n(si, zi),

for some αi’s in C, some si’s in [0, 1] and some complex non real numbers zi.
We want to prove that Mn converges in law to a certain complex centered Gaussian

variable. We are going to use the CLT for martingale differences stated at Theorem 6.4
of the appendix. Indeed, for F n

k the σ-algebra generated by the first k × k upper-left
corner of the symmetric matrix A, the sequence (Mn

k := E[Mn|F n
k ])k=0,...,n is a centered

martingale (to see that it is centered, just use the fact that as A is invariant, in law, by
conjugation by any permutation matrix, for all z, the expectation of ( 1

z−A )jj does not
depend on j).

Then, denoting E[ · |F n
k ] by Ek, and defining

Yk := (Ek −Ek−1)(Mn)

(which depends implicitely on n), we need to prove that for any ε > 0,

Ln(ε) :=

n∑
k=1

E(|Yk|21|Yk|≥ε) −→n→∞ 0, (4.1)

and that the sequences

n∑
k=1

Ek−1(|Yk|2) and
n∑
k=1

Ek−1(Y 2
k )

converge in probability towards some deterministic limits. As Xn(s, z) = Xn(s, z), it is
in fact enough to fix s, s′ ∈ (0, 1) and z, z′ ∈ C\R and to prove that for

Yk := (Ek −Ek−1)(Xn(s, z)) and Y ′k := (Ek −Ek−1)(Xn(s′, z′)), (4.2)

we have (4.1) for any ε > 0 and that

n∑
k=1

Ek−1(YkY
′
k)
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converges in probability towards a deterministic constant. We introduce the notation

G :=
1

z −A
and G′ :=

1

z′ −A
.

Recall that Ps denotes the diagonal matrix with diagonal entries 1i≤ns (1 ≤ i ≤ n).
Let A(k) be the symmetric matrix with size n − 1 obtained by removing the k-th row
and the k-th column of A. The matrix P

(k)
s is defined in the same way out of Ps.

Set G(k) := 1
z−A(k) . Note that EkG(k) = Ek−1G

(k), so that Yk, which is equal to
1√
n

(Ek −Ek−1) (Tr(PsG)− sn TrG), can be rewritten

Yk =
1√
n

(Ek −Ek−1)
(

(Tr(PsG)− Tr(P (k)
s G(k)))− sn(TrG− TrG(k))

)
Then, (4.1) is obvious by Formula (6.8) of the appendix (indeed, Ln(ε) is null for n

large enough). Let us now apply Formula (6.7) of the appendix. We get

Yk =
1√
n

(Ek −Ek−1)

(
1k≤ns − sn + a∗kG

(k)(P
(k)
s − sn)G(k)ak

z − akk − a∗kG
(k)ak

)
. (4.3)

Following step by step Paragraph 3.2 of [10], one can neglect the non diagonal terms

in the expansions of the quadratic forms in (4.3), i.e. replace Yk by
1√
n

(Ek −Ek−1) (fk),

with

fk := fk(z, s) =
1k≤ns − sn +

∑
j ak(j)2{G(k)(P

(k)
s − sn)G(k)}jj

z −
∑
j ak(j)2G

(k)
jj

. (4.4)

In other words,

n∑
k=1

Ek−1(YkY
′
k) =

1

n

n∑
k=1

Ek−1 [(Ek −Ek−1) (fk) (Ek −Ek−1) (f ′k)] + o(1), (4.5)

where f ′k is defined as fk in (4.4), replacing the function s by s′ and z by z′.
Let us denote by Eak the expectation with respect to the randomness of the k-th

column of A (i.e. the conditional expectation with respect to the σ-algebra generated
by the aij ’s such that k /∈ {i, j}). Note that Ek−1 = Eak ◦Ek = Ek ◦Eak , hence

Ek−1 [(Ek −Ek−1) (fk) (Ek −Ek−1) (f ′k)] = Ek[Eak(fk×f ′′k )]−Ek Eak fk×Ek Eak f
′
k, (4.6)

where f ′′k is defined as f ′k replacing the matrix A by the matrix

A′ = [a′ij ]1≤i,j≤N (4.7)

defined by the the fact that the a′ij ’s such that i > k or j > k are i.i.d. copies of a11

(modulo the fact that A′ is symmetric), independent of A and for all other pairs (i, j),
a′ij = aij .

For each s ∈ (0, 1) let us define C2
s to be the set of pairs (z, z̃) of complex numbers

such that

(=z > 0 and − =z
1− s

< =z̃ < =z
s

) or (=z < 0 and
=z
s
< =z̃ < − =z

1− s
).

Note that C2
s is the set of pairs (z, z̃) of complex numbers such that =z 6= 0 and both

=(z + (1− s)z̃) and =(z − sz̃) have the same sign as =z. At last, in the next lemma,

∂z̃ =
∂

∂z̃

is not to be taken for the usual notation ∂z̄.
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Lemma 4.1. For any fixed z ∈ C\R and any fixed s ∈ (0, 1), as n, k −→∞ in such a way
that k/n −→ u ∈ [0, 1], we have the convergence in probability

lim
N〉∞

Eak [fk(z, s)] = Lu(z, s) := −
∫ +∞

0

1

t
∂z̃,z̃=0e

i sgnz t(z+z̃(1u≤s−s))eρz,z̃,s(t)dt,

where for s ∈ (0, 1) fixed, (z, z̃, t) 7−→ ρz,z̃,s(t) is the unique function defined on C2
s ×R+,

analytic in its two first variables and continuous in its third one, taking values into
{z ∈ C ; <z ≤ 0}, solution of

ρz,z̃,s(t) = t

∫ ∞
0

g(ty)(seiy sgnz z̃ + (1− s))eiy sgnz(z−sz̃)eρz,z̃,s(y)dy

where g is the function introduced at (2.7).

Proof. We use the fact that for z ∈ C\R,

1

z
= −i sgnz ×

∫ +∞

0

esgnz itzdt, (4.8)

where sgnz has been defined above by sgnz = sgn(=z). Hence by (4.4),

fk = −i sgnz

∫ +∞

0

{1k≤ns−sn+
∑
j

(G(k)(P (k)
s −sn)G(k))jjak(j)2}ei sgnz t(z−

∑
j(G

(k))jjak(j)2)dt.

Let us define G(k)(·, ·) on C2
sn by

G(k)(z, z̃) :=
1

z + z̃(P
(k)
s − sn)−A(k)

(4.9)

(note that G(k)(·, ·) is well defined by the remark following the definition of C2
s). Then

for any fixed z ∈ C\R,

Gk(z)(P (k)
s − sn)Gk(z) = −∂z̃,z̃=0G

(k)(z, z̃).

Hence

{1k≤ns − sn +
∑
j

(G(k)(P (k)
s − sn)G(k))jjak(j)2}ei sgnz t(z−

∑
j(G

(k))jjak(j)2)

=
1

it sgnz
∂z̃,z̃=0e

i sgnz t{z+z̃(1k≤ns−sn)−
∑
j(G

(k)(z,z̃)jjak(j)2}

and

fk = −
∫ +∞

0

1

t
∂z̃,z̃=0e

i sgnz t{z+z̃(1k≤ns−sn)−
∑
j G

(k)(z,z̃)jjak(j)2}dt. (4.10)

Let us now compute Eak(fk). One can permute Eak and
∫ +∞

0
because z ∈ C\R is fixed

and for each j, −G(k)(z, z̃)jj has imaginary part with the same sign as z for z̃ small

enough. Hence for φn defined as in (2.5) by φn(λ) = E e−iλa
2
11 , we have

Eak(fk) = −
∫ +∞

0

1

t
∂z̃,z̃=0e

i sgnz t(z+z̃(1k≤ns−sn)
∏
j

φn(sgnz tG
(k)(z, z̃)jj)dt

Now, by (2.6), we have the uniform convergence on compact sets n(φn − 1) −→ Φ as
n → ∞. As <(i sgnz z) < 0, the integrals are well dominated at infinity. Moreover, the
integral ∫ +∞

0

1

t
∂z̃,z̃=0e

i sgnz t(z+z̃(1k≤ns−sn))e
1
n

∑
j Φ(sgnz tG

(k)(z,z̃)jj)dt
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is well converging at the origin as the derivative in z̃ is of order t. Indeed, G(k)(z, z̃)jj
takes its values in C− and is uniformly bounded, and Φ is analytic on C−. By Lemma
6.3, it follows that

Eak(fk) = −
∫ +∞

0

1

t
∂z̃,z̃=0e

i sgnz t(z+z̃(1k≤ns−sn))e
1
n

∑
j Φ(sgnz tG

(k)(z,z̃)jj)dt+ o(1) .

We therefore basically need to compute the asymptotics of

ρnz,z̃,s(t) :=
1

n

∑
j

Φ(sgnz tG
(k)(z, z̃)jj).

Note that by definition of Φ, for any λ ∈ C−, <Φ(λ) ≤ 0. Thus ρnz,z̃,s(t) is analytic
in z ∈ C\R, and uniformly bounded on compact subsets of C\R and takes values in
{z ∈ C ; <z ≤ 0}. By Montel’s theorem, all limit points of this function for uniform
convergence on compact subsets will satisfy the same property. Now, notice by Schur
complement formula and the removal of the non diagonal terms (Lemma 7.7 of [10]
again), that for n� 1,

G(k)(z, z̃)jj =
1

z + z̃(1k≤ns − sn)−
∑
` a

2
j`G

(k,j)(z, z̃)``
+ o(1) (4.11)

where G(k,j) is the resolvent where two rows and columns have been suppressed. We
can now proceed to write that by invariance of the law of A by conjugation by permuta-
tion matrices, for all j,

E[Φ(sgnz tG
(k)(z, z̃)jj)] =


E[Φ(sgnz tG

(k)(z, z̃)11)] if j ≤ ns,

E[Φ(sgnz tG
(k)(z, z̃)nn)] if j > ns,

so that by concentration arguments, see [10, Appendix], ρnz,z̃,s(t) self-averages and for
n� 1, with very large probability,

ρnz,z̃,s(t) = E[
1

n

∑
j

Φ(sgnz tG
(k)(z, z̃)jj)] + o(1)

= snE[Φ(sgnz tG
(k)(z, z̃)11)] + (1− sn)E[Φ(sgnz tG

(k)(z, z̃)nn)] + o(1).

On the other side, using (4.11), the function g introduced in the hypothesis at (2.7) and
a change of variable y → y/t, we have (using Lemma 6.3 twice)

E[Φ(sgnz tG
(k)(z, z̃)11)] = t

∫ ∞
0

g(ty)eiy sgnz(z+z̃(1−sn))
∏
j

φn(y sgnz G
(k,1)(z, z̃)jj)dy

= t

∫ ∞
0

g(ty) exp(iy sgnz(z + z̃(1− sn)))eρ
n
z,z̃,s(y)dy

+o(1) (4.12)

E[Φ(sgnz tG
(k)(z, z̃)nn)] = t

∫ ∞
0

g(ty)eiy sgnz(z−snz̃)
∏
j

φn(sgnz yG
(k,1)(z, z̃)jj)dy

= t

∫ ∞
0

g(ty) exp(iy sgnz(z − snz̃))eρ
n
z,z̃,s(y)dy + o(1) (4.13)

so that we deduce that the limit points ρz,z̃,s(t) of ρnz,z̃,s(t) satisfy

ρz,z̃,s(t) = t

∫ ∞
0

g(ty)(seiy sgnz z̃ + (1− s))eiy sgnz(z−sz̃)eρz,z̃,s(y)dy.
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Let us now prove that for each fixed s ∈ (0, 1), there exists a unique function satis-
fying this equation and the conditions stated in the lemma. So let us suppose that we
have two solutions ρz,z̃,s(t) and ρ̃z,z̃,s(t) with non positive real parts. Then

∆z,z̃(t) := ρz,z̃,s(t)− ρ̃z,z̃,s(t)

satisfies

∆z,z̃(t) = t

∫ ∞
0

g(ty)(seiy sgnz z̃ + (1− s))eiy sgnz(z−sz̃)(eρz,z̃,s(y) − eρ̃z,z̃,s(y))dy.

Let δ(z, z̃) := min{sgnz =(z + (1− s)z̃), sgnz =(z − sz̃)} > 0. We have

|(seiy sgnz z̃ + (1− s))eiy sgnz(z−sz̃)| ≤ e−δ(z,z̃)y,

hence

|∆z,z̃(t)| ≤ t

∫ ∞
0

|g(ty)|e−δ(z,z̃)y|∆z,z̃(y)|dy

Thus by the hypothesis made on g at (2.8),

|∆z,z̃(t)| ≤ Ktγ+1

∫ ∞
0

yγe−δ(z,z̃)y|∆z,z̃(y)|dy︸ ︷︷ ︸
:=I1(z,z̃)

+Ktκ+1

∫ ∞
0

yκe−δ(z,z̃)y|∆z,z̃(y)|dy︸ ︷︷ ︸
:=I2(z,z̃)

It follows that the numbers I1(z, z̃) and I2(z, z̃) defined above satisfy

I1(z, z̃) ≤ K

(
I1(z, z̃)

∫ ∞
0

y2γ+1e−δ(z,z̃)ydy + I2(z, z̃)

∫ ∞
0

yγ+κ+1e−δ(z,z̃)ydy

)
,

I2(z, z̃) ≤ K

(
I1(z, z̃)

∫ ∞
0

yγ+κ+1e−δ(z,z̃)ydy + I2(z, z̃)

∫ ∞
0

y2κ+1e−δ(z,z̃)ydy

)
.

For δ(z, z̃) large enough, the integrals above are all strictly less that 1
4K , so I1(z, z̃) =

I2(z, z̃) = 0. It follows that for =z large enough and =z̃ small enough, both solutions
coincide. By analytic continuation, unicity follows.

Getting back to (4.5) and (4.6), we shall now, as in [10], analyze

Lnk (s, z; s′, z′) := Eak(fk × f ′′k ). (4.14)

Let us first define the measure

τ̃ := τ + δ0 ⊗ µ+ µ⊗ δ0 (4.15)

on (R+)2 for τ and µ the measures introduced at (2.10) or at Remark 2.2. We always
have, for x, y ∈ C+,

Φ(x−1 + y−1) =

∫∫
(R+)2

ei(xv+yv′)dτ̃(v, v′) (4.16)

Lemma 4.2. Let us fix s1, s2 ∈ (0, 1). As k, n −→ ∞ in such a way that k/n tends to
u ∈ [0, 1], the quantity Lnk (s1, z; s2, z

′) defined at (4.14) converges in probability to the
deterministic limit

Lu(s1, z; s2, z
′) :=∫∫

R2
+

∂z̃,z̃=0∂z̃′,z̃′=0e
i sgnz t(z+z̃(1u≤s1−s1))+i sgnz′ t

′(z′+z̃′(1u≤s2−s2))+ρu(s1,t,z,z̃;s2,t
′,z′,z̃′) dtdt′

tt′
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where the function

(t, z, z̃, t′, z′, z̃′) ∈ R+ × C2
s1 ×R+ × C2

s2 7−→ ρu(s1, t, z, z̃; s2, t
′, z′, z̃′)

is characterized as follows :

ρu(s1, t, z, z̃; s2, t
′, z′, z̃′) = ρu(s2, t

′, z′, z̃′; s1, t, z, z̃) (4.17)

and if, for example, s1 ≤ s2, then for γ1 = s1, γ2 = s2 − s1, γ3 = 1 − s2 and τ̃ =

τ + δ0 ⊗ µ+ µ⊗ δ0,

ρu(s1, t1, z1, z̃1; s2, t2, z2, z̃2) = u

3∑
β=1

γβ

∫∫
R2

+

e
∑
r=1,2 sgnzr

ivr
tr
{zr+z̃r(1β≤r−sr)} ×

eρu(s1,
v1
t1
,z1,z̃;s2,

v2
t2
,z2,z̃2)dτ̃(v, v′) +∑

r=1,2

tr

∫ ∞
0

g(try){(sr − u)+eiy sgnzr z̃r + 1−max(sr, u)}

eiy sgnzr (zr−sr z̃r)eρzr,z̃r,sr (y)dy

(the characterization of ρu(s1, t, z, z̃; s2, t
′, z′, z̃′) when s2 ≤ s1 can be deduced from the

previous equation and (4.17)).

Proof. Of course, Lnk (s1, z; s2, z
′) = Lnk (s2, z

′; s1, z). Let us suppose for example that
s1 ≤ s2. We use the definition of G(k)(z, z̃) given at (4.9) for s replaced by s1 and define
in the same way, for (z′, z̃) ∈ C2

s2,n ,

G′
(k)

(z′, z̃) :=
1

z′ + z̃(P
(k)
s2 − s2,n)−A′(k)

with si,n := bnsic
n (i = 1, 2).

First, recall the following formula for fk established at Equation (4.10):

fk = −
∫ +∞

0

1

t
∂z̃,z̃=0e

i sgnz t{z+z̃(1k≤ns−sn)−
∑
j 6=k G

(k)(z,z̃)jjak(j)2}dt.

In the same way, we find

f ′′k = −
∫ +∞

0

1

t′
∂z̃,z̃=0e

i sgnz′ t
′{z′+z̃(1k≤ns′−s

′
n)−

∑
j 6=k G

′(k)(z′,z̃)jja
′
k(j)2}dt.

As the ak(j) and the a′k(j) are identical when j ≤ k and independent when j > k, we
have

Lnk (s1, z1; s2, z2) =

∫∫
R2

+

∂z̃1,z̃1=0∂z̃2,z̃2=0e
i sgnz1 t1{z1+z̃1(1k≤ns1−s1,n)}+i sgnz2 t2{z2+z̃2(1k≤ns2−s2,n)} ×∏

j≤k

φn(sgnz1 t1G
(k)(z1, z̃1)jj + sgnz2 t2G

′(k)
(z2, z̃2)jj)×

∏
j>k

φn(sgnz1 t1G
(k)(z1, z̃1)jj)φn(sgnz2 t2G

′(k)
(z2, z̃2)jj)

dt1dt2
t1t2

Then using the usual off-diagonal terms removal and Lemma 6.3, we get

Lnk (s1, z1; s2, z2) =

∫∫
R2

+

∂z̃1,z̃1=0∂z̃2,z̃2=0e
∑
r=1,2 i sgnzr tr{zr+z̃r(1k≤nsr−sr,n)} ×

exp(ρnk (s1, t1, z1, z̃1; s2, t2, z2, z̃2))
dt1dt2
t1t2

+ o(1)
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with

ρnk (s1, t1, z1, z̃1; s2, t2, z2, z̃2) :=
1

n

∑
j≤k

Φ(sgnz1 t1G
(k)(z1, z̃1)jj + sgnz2 t2G

′(k)
(z2, z̃2)jj)

+
1

n

∑
j>k

{Φ(sgnz1 t1G
(k)(z1, z̃1)jj) + Φ(sgnz2 t2G

′(k)
(z2, z̃2)jj)}

By the Schur formula, (4.16) and the off-diagonal terms removal, we have

Φ(sgnz1 t1G
(k)(z1, z̃1)jj + sgnz2 t2G

′(k)
(z2, z̃2)jj) = (4.18)

∫∫
R2

+

esgnz
iv1
t1
{z1+z̃1(1j≤ns1−s1)−

∑
`/∈{k,j} a

2
j`G

(k,j)(z1,z̃1)``}

×esgnz2
iv2
t2
{z2+z̃2(1j≤ns2−s2)−

∑
`/∈{k,j}(a

′
j`)

2G′(k,j)(z2,z̃2)``}dτ̃(v1, v2) + o(1).

By (4.18) and using the concentration around the expectation, we get, for j < k,

Φ(sgnz1 t1G
(k)(z1, z̃1)jj + sgnz2 t2G

′(k)
(z2, z̃2)jj) = o(1) + (4.19)∫∫

R2
+

esgnz1
iv1
t1
{z1+z̃1(1j≤ns1−s1)}+sgnz2

iv2
t2
{z2+z̃2(1j≤ns2−s2)}eρ

n
k (s1,

v1
t1
,z1,z̃;s2,

v2
t2
,z2,z̃2)dτ̃(v, v′).

Now, using the proof of Lemma 4.1 (especially (4.12) and (4.13)) and the fact that
k/n −→ u, we get

1

n

∑
j>k

Φ(sgnz1 t1G
(k)(z1, z̃1)jj) = o(1) + (s1 − u)+E(Φ(sgnz1 t1G

(k)(z1, z̃1)11) +

(1−max(s1, u))E(Φ(sgnz1 t1G
(k)(z1, z̃1)nn)

= o(1) + t1

∫ ∞
0

g(t1y){(s1 − u)+eiy sgnz1 z̃1 + 1−max(s1, u)}

eiy sgnz1 (z1−s1z̃1)eρz1,z̃1,s1 (y)dy (4.20)

In the same way,

1

n

∑
j>k

Φ(sgnz2 t2G
(k)(z2, z̃2)jj) = o(1) + t2

∫ ∞
0

g(t2y){(s2 − u)+eiy sgnz2 z̃2 + 1−max(s2, u)}

eiy sgnz2 (z2−s2z̃2)eρz2,z̃2,s2 (y)dy

Summing up, we get that any limit point ρu(s1, t1, z1, z̃1; s2, t2, z2, z̃2) of

ρnk (s1, t1, z1, z̃1; s2, t2, z2, z̃2)

satisfies

ρu(s1, t1, z1, z̃1; s2, t2, z2, z̃2) = u

3∑
β=1

γβ

∫∫
R2

+

e
∑
r=1,2 sgnzr

ivr
tr
{zr+z̃r(1β≤r−sr)} ×

eρu(s1,
v1
t1
,z1,z̃;s2,

v2
t2
,z2,z̃2)dτ̃(v, v′) +∑

r=1,2

tr

∫ ∞
0

g(try){(sr − u)+eiy sgnzr z̃r + 1−max(sr, u)}

eiy sgnzr (zr−sr z̃r)eρzr,z̃r,sr (y)dy
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The proof of the fact that under analyticity hypotheses, the limit points are uniquely
prescribed by the above equations goes along the same lines as the proofs in Section
5.2 of [10], sketched as follows. First, we have to consider separately the case where Φ

satisfies (2.9) and the case where Φ satisfies (2.10). In the case where Φ satisfies (2.9),
the proof is very similar to the proof of the corresponding case in Section 5.2 of [10]
and to the detailed proof of the uniqueness for Lemma 4.1 of the present paper, using
(2.11) instead of (2.8). The case where Φ satisfies (2.10) is a little more delicate. As in
Lemma 5.1 of [10], one first needs to notice that considered as functions of t, t′, t′′, the
limit points satisfy an Hölder bound, using essentially the facts that for any 2κ ∈ (0, α/2)

lim sup
n≥1

E
[( n∑

i=1

|a1i|2
)2κ]

<∞ , (4.21)

and that for any β ∈ (α/1, 1], there exists a constant c = c(α, β) such that for any x, y in
C−,

|xα2 − y α2 | ≤ c|x− y|β (|x| ∧ |y|)
α
2−β . (4.22)

Then one has to interpret the equation satisfied by the limit points as a fixed point
equation for a strictly contracting function in a space of Hölder functions: the key
argument, to prove that the function is contracting, is to use the estimates given in
Lemma 5.7 of [15].

This concludes the proof of Proposition 2.9 and it follows from this that the covari-
ance of the process Hs,z is given by

C(s, z; s′, z′) := E[Hs,zHs′,z′ ] =

∫ 1

0

du(Lu(s, z; s′, z′)− Lu(z, s)Lu(z′, s′)) (4.23)

with the functions L defined in Lemmas 4.1 and 4.2.

5 Proof of Proposition 2.7

Let us now prove that the limit covariance of (Cs,λ) is not identically zero (hence this
is also the case for (Bs,t) by (2.25)). Using Lemma 6.1 and (3.2), one easily sees that
(Cns,λ) is uniformly bounded in L4. It follows that

Var(Cs,λ) = E[(Cs,λ)2] = lim
n→∞

E[(Cns,λ)2]. (5.1)

Thus we shall prove that the limit of E[(Cns,λ)2] is not identically zero.
Preliminary computation: For x1, . . . , xn ∈ C such that x1 + · · · + xn = 0, for any

0 ≤ ` ≤ n, we have ∑̀
i=1

xi =

n∑
i=1

αixi for αi :=

{
1− `

n if i ≤ `,
− `
n if i > `,

(5.2)

and that α1 + · · · + αn = 0. Note also that for (X1, . . . , Xn) an exchangeable random
vector and α1, . . . , αn ∈ C such that α1 + · · ·+ αn = 0, we have

E
∑
i,i′

αiαi′XiXi′ =
∑
i

α2
i E[X1(X1 −X2)]. (5.3)

It follows from (5.2) and (5.3) that if the coordinates of an exchangeable random vector
(X1, . . . , Xn) sum up to zero, then for any 0 ≤ ` ≤ n,

E
∑

1≤i≤`
1≤i′≤`

XiXi′ = n

(
`

n
− `2

n2

)
E[X1(X1 −X2)]. (5.4)
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Let us now fix s ∈ (0, 1) and λ ∈ R and apply our preliminary computation (5.4) with
Xi =

∑
j ;λj≤λ(|uij |2 − n−1) and ` = bnsc. For sn := bnsc/n, we get

Var(Cns,λ) = E[(Cns,λ)2] =
(
sn − s2

n

)
E[X1(X1 −X2)] (5.5)

Note also that as each |uij |2 has expectation n−1,

E[X1(X1 −X2)] = E[
∑

j ;λj≤λ
j′ ;λj′≤λ

|u1j |2|u1j′ |2 − |u1j |2|u2j′ |2]

Moreover, by exchangeability of the rows of U (which is true even conditionally to the
λj ’s) and the fact that its columns have norm one, for any j, j′,

n(n− 1)E[1λj ,λj′≤λ|u1j |2|u2j′ |2] + nE[1λj ,λj′≤λ|u1j |2|u1j′ |2] = 1,

so that

E[X1(X1 −X2)] = O

(
1

n

)
+

(
1− 1

n

)
E[

∑
j,j′ ;λj ,λj′≤λ

(|u1j |2|u1j′ |2 − n−2)].

By (5.5), we deduce that

E[(Cns,λ)2] = O

(
1

n

)
+

(
1− 1

n

)(
sn − s2

n

)
E[

∑
j,j′ ;λj ,λj′≤λ

(|u1j |2|u1j′ |2 − n−2)],

so that

E[(Cns,λ)2] = O

(
1

n

)
+
(
sn − s2

n

)
E[

( ∑
j ;λj≤λ

(|u1j |2 − n−1)

)2

] (5.6)

Moreover, for µn, µn,e1
the random probability measures introduced in (1.4), we have∑

j ;λj≤λ

(|u1j |2 − n−1) = (µn,e1 − µn)((−∞, λ])

Hence by (5.6),

E[(Cns,λ)2] = O

(
1

n

)
+
(
sn − s2

n

)
E[{(µn,e1

− µn)((−∞, λ])}2]. (5.7)

Let us now suppose that for a certain s ∈ (0, 1), we have Var(Cs,λ) = 0 for all λ ∈ R.
To conclude the proof, we shall now exhibit a contradiction. By (5.1) and (5.7), we
know that for all λ, E[{(µn,e1 − µn)((−∞, λ])}2] −→ 0 as n → ∞, hence E[|(µn,e1 −
µn)((−∞, λ])|] −→ 0. As µn,e1 , µn are probability measures, for any λ ∈ R,

|(µn,e1 − µn)((−∞, λ])| ≤ 2.

Thus for any z ∈ C\R, by dominated convergence, as n→∞,∫
λ∈R

E[|(µn,e1
− µn)((−∞, λ])|]
|z − λ|2

dλ −→ 0.

We deduce the convergence in probability∫
λ∈R

(µn,e1
− µn)((−∞, λ])

(z − λ)2
dλ −→ 0.
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But by (3.6), for any z ∈ C\R, with the notation G(z) := (z −A)−1,∫
λ∈R

(µn,e1
− µn)((−∞, λ])

(z − λ)2
dλ = −

∫
λ∈R

d(µn,e1
− µn)(λ)

z − λ

=
1

n
TrG(z)−G(z)11.

We deduce the convergence in probability, for any fixed z ∈ C+,

1

n
Tr(G(z))−G(z)11 −→ 0. (5.8)

By (2.23), we deduce that G(z)11 converges in probability to the Stieltjes transform
GµΦ

(z) of the limit empirical spectral law µΦ of A. By the Schur complement for-
mula (see [1, Lem. 2.4.6]) and the asymptotic vanishing of non diagonal terms in the
quadratic form (Lemma 7.7 of [10]), we deduce the convergence in probability

z −
n∑
j=2

|a1j |2G(1)(z)jj −→ 1/GµΦ
(z), (5.9)

whereA(1) is the matrix obtained after having removed the first row and the first column
to A and G(1)(z) := (z −A(1))−1.

It follows that the (implicitly depending on n) random variableX =
∑n
j=2 |a1j |2G(1)(z)jj

converges in probability to a deterministic limit as n → ∞. Let us show that this is not
possible if Φ is not linear.

Let EG denote the integration with respect to the randomness of the first row of A.
The random variable X takes values in C−. For any t ≥ 0, by Lemma 6.3, we have

E[e−itX ] =

n∏
j=2

φn(tG(1)(z)jj) = (1 + o(1)) exp{ 1

n− 1

n∑
j=2

Φ(tG(1)(z)jj)} (5.10)

By Equation (20) of [10], we know that

1

n− 1

n∑
j=2

Φ(tG(1)(z)jj) −→ ρz(t), (5.11)

where ρz is a continuous function on R+ satisfying (by Theorem 1.9 of [10]):

ρz(λ) = λ

∫ +∞

0

g(λy)eiyz+ρz(y)dy. (5.12)

By (5.10) and (5.11), as n→∞,

E[e−itX ] −→ eρz(t).

but we already saw that X converges in probability to a constant, hence there is cz ∈ C
such that for all t, ρz(t) = czt. From (5.12) and (2.7), we deduce that for all λ ≥ 0,

czλ = λ

∫ +∞

0

g(λy)eiyz+czydy =

∫ +∞

0

g(t)ei
z−icz
λ tdt = Φ(

λ

z − icz
).

As we supposed that Φ is not linear, by analytic continuation, this is a contradiction.
Note that the fact that E[(Cns,λ)2] does not go to zero could also be deduced from

[14] in the Lévy case according to (5.7).
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6 Appendix

6.1 A tightness lemma for bivariate processes

Let us endow the space D([0, 1]2) with the Skorokhod topology (see [8] for the defi-
nitions).

Let M = [mij ]1≤i,j≤n be a random bistochastic matrix depending implicitly on n. We
define the random process of D([0, 1]2)

Sn(s, t) :=
1√
n

∑
1≤i≤ns
1≤j≤nt

(
mij −

1

n

)
.

Lemma 6.1. Let us suppose that M is, in law, invariant under left multiplication by
any permutation matrix. Then the process Sn is C-tight in D([0, 1]2), i.e. the sequence
(distribution(Sn))n≥1 is tight and has all its accumulation points supported by the set of
continuous functions on [0, 1]2. Moreover, the process Sn is uniformly bounded in L4.

Proof. Let us prove that for all 0 ≤ s < s′ ≤ 1, 0 ≤ t < t′ ≤ 1,

E[(∆s,s′,t,t′S
n)4] ≤ 7

n
+ 6(s′ − s)2(t′ − t)2(1− (s′ − s))2, (6.1)

where ∆s,s′,t,t′S
n denotes the increment of Sn on [s, s′]× [t, t′], i.e.

∆s,s′,t,t′S
n :=

1√
n

∑
ns<i≤ns′
nt≤j≤nt′

(mij −
1

n
). (6.2)

As Sn vanishes on the boundary on [0, 1]2, according to [11, Th. 3], (6.1) will imply the
lemma.

To prove (6.1), we fix 0 ≤ s < s′ ≤ 1, 0 ≤ t < t′ ≤ 1. Let us now introduce some
notation (where the dependence on n will by dropped for readability). We define the
sets

I := {i ∈ {1, . . . , n} ; ns < i ≤ ns′} and J := {j ∈ {1, . . . , n} ; nt < j ≤ nt′},

the numbers (αi)1≤i≤n defined by

αi :=


− 1√

n
|I|
n if i /∈ I

1√
n

(
1− |I|n

)
if i ∈ I

and the exchangeable random vector (implicitly depending on n) (X1, . . . , Xn) defined
by

Xi =
∑
j∈J

mij .

Note that

∆s,s′,t,t′S
n =

1√
n

((∑
i∈I

Xi

)
− |I||J |

n

)

and that as columns of M sum up to one, |J | =
∑
j∈J

n∑
i=1

mij =

n∑
i=1

Xi, hence

∆s,s′,t,t′S
n =

1√
n

(∑
i∈I

Xi −
|I|
n

n∑
i=1

Xi

)
=

n∑
i=1

αiXi.
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Thus by exchangeability of the Xi’s, we have

E[(∆s,s′,t,t′S
n)4] = E(X4

1 ) sum4(α) + 4E(X3
1X2) sum3,1(α) + 3E(X2

1X
2
2 ) sum2,2(α)

+6E(X2
1X2X3) sum2,1,1(α) + E(X1X2X3X4) sum1,1,1,1(α),

with

sum4(α) :=

n∑
i=1

α4
i , sum3,1(α) :=

∑
i 6=j

α3
iαj , sum2,2(α) :=

∑
i 6=j

α2
iα

2
j ,

sum2,1,1(α) :=
∑
i,j,k

pairwise 6=

α2
iαjαk, sum1,1,1,1(α) :=

∑
i,j,k,`

pairwise 6=

αiαjαkα`.

As the αi’s sum up to zero, we have

sum3,1(α) =
∑
i

(α3
i

∑
j 6=i

αj) = − sum4(α),

sum2,1,1(α) =
∑
i

(α2
i

∑
j 6=i

(αj
∑

k/∈{i,j}

αk) =
∑
i

(α2
i

∑
j 6=i

(αj(−αi − αj))

= − sum3,1(α)− sum2,2(α) = sum4(α)− sum2,2(α)

sum1,1,1,1(α) = −3 sum2,1,1(α) = 3 sum2,2(α)− 3 sum4(α)

Thus

E[(∆s,s′,t,t′S
n)4] = sum4(α)(E(X4

1 )− 4E(X3
1X2) + 6E(X2

1X2X3)− 3E(X1X2X3X4))

+ sum2,2(α)(3E(X2
1X

2
2 )− 6E(X2

1X2X3) + 3E(X1X2X3X4)),

Now, as for all i, |αi| ≤ 1√
n

, we have sum4(α) ≤ 1
n , and as for all i, 0 ≤ Xi ≤ 1 (because

the rows of s sum up to one), we have

E[(∆s,s′,t,t′S
n)4] ≤ 7

n
+ 3 sum2,2(α)(E(X2

1X
2
2 ) + E(X1X2X3X4)).

To conclude the proof of (6.1), we shall prove that

sum2,2(α) ≤ (s′ − s)2 (6.3)

and
E(X2

1X
2
2 ) + E(X1X2X3X4) ≤ 2(t′ − t)2. (6.4)

Let us first check (6.3). We have

sum2,2(α) ≤ (
∑
i

α2
i )

2 =

{
(n− |I|) |I|

2

n3
+ |I| 1

n
(1− |I|/n)2

}2

=

{
|I|
n

(1− |I|
n

)

}2

,

which gives (6.3). Let us now check (6.4). As 0 ≤ Xi ≤ 1, it suffices to prove that

E(X1X2) ≤ (t′ − t)2. (6.5)

We have
E(X1X2) =

∑
j,j′∈J

E(m1jm2j′),

so it suffices to prove that uniformly on j, j′ ∈ {1, . . . , n}, E(m1jm2j′) ≤
1

n(n− 1)
. We get

this as follows: using the exchangeability of the rows of M and the fact that its rows
sum up to one, we have, for any j, j′ ∈ {1, . . . , n},

1 = E((
∑
i

mij)(
∑
i′

mi′j′)) = n(n− 1)E(m1jm2j′) + nE(m1jm1j′).

This concludes the proof.
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6.2 Injectivity of the Cauchy transform for certain classes of functions

Lemma 6.2. Let f be a real valued bounded càdlàg function on R vanishing at infinity
with at most countably many discontinuity points. Then f is entirely determined by the
function

Kf (z) :=

∫
f(λ)

(z − λ)2
dλ (z ∈ C\R).

More precisely, for any λ ∈ R, we have

f(λ) = lim
λ̃↓λ

f is cont. at λ̃

lim
η↓0

1

π

∫ λ̃

−∞
=Kf (E + iη)dE. (6.6)

Proof. Let us introduce the Cauchy transform of f , defined, on C\R, by Hf (z) :=∫
f(λ)

z − λ
dλ. It is well known that at any λ̃ where f is continuous, we have

f(λ̃) = lim
η↓0
− 1

π
=Hf (λ̃+ iη).

Then, the result follows because for all λ̃ ∈ R, η > 0,

−Hf (λ̃+ iη) =

∫ λ̃

−∞
Kf (E + iη)dE.

6.3 A lemma about large products and the exponential function

The following lemma helps controlling the error terms in the proof of Proposition
2.9 (in these cases, M always has order one).

Lemma 6.3. Let ui, i = 1, . . . , n, be some complex numbers and set

P :=

n∏
i=1

(1 +
ui
n

) S :=
1

n

n∑
i=1

ui.

There is a universal constant R > 0 such that for M := maxi |ui|,

M

n
≤ R =⇒ |P − eS | ≤ M2

n
e|S|+

M2

n .

Proof. Let L(z) be defined on B(0, 1) by log(1 + z) = z + z2L(z) and R > 0 be such that
on B(0, R), |L(z)| ≤ 1. If M

n ≤ R, we have

P =
∏
i

exp

{
ui
n

+
u2
i

n2
L(
ui
n

)

}
= eS exp

{∑
i

u2
i

n2
L(
ui
n

)

}
,

which allows to conclude easily, as for any z, |ez − 1| ≤ |z|e|z|.

6.4 CLT for martingales

Let (Fk)k≥0 be a filtration such that F0 = {∅,Ω} and let (Mk)k≥0 be a square-
integrable complex-valued martingale starting at zero with respect to this filtration.
For k ≥ 1, we define the random variables

Yk := Mk −Mk−1 vk := E[|Yk|2 | Fk−1] τk := E[Y 2
k | Fk−1]
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and we also define

v :=
∑
k≥1

vk τ :=
∑
k≥1

τk L(ε) :=
∑
k≥1

E[|Yk|21|Yk|≥ε].

Let now everything depend on a parameter n, so that Fk = F n
k ,Mk = Mn

k , Yk =

Y nk , v = vn, τ = τn, L(ε) = Ln(ε), . . .

Then we have the following theorem. It is proved in the real case at [12, Th. 35.12].
The complex case can be deduced noticing that for z ∈ C, <(z)2,=(z)2 and <(z)=(z) are
linear combinations of z2, z2, |z|2.

Theorem 6.4. Suppose that for some constants v ≥ 0, τ ∈ C, we have the convergence
in probability

vn −→
n→∞

v τn −→
n→∞

τ

and that for each ε > 0,
Ln(ε) −→

n→∞
0.

Then we have the convergence in distribution

Mn
n −→
n→∞

Z,

where Z is a centered complex Gaussian variable such that E(|Z|2) = v and E(Z2) = τ .

6.5 Some linear algebra lemmas

Let ‖ · ‖∞ denote the operator norm of matrices associated with the canonical Her-
mitian norm.

Lemma 6.5. Let A = [aij ] be an n × n Hermitian matrix, z ∈ C\R, G := (z − A)−1,
P be a diagonal matrix. For 1 ≤ k ≤ n we denote by A(k), P (k) be the matrices with
size n − 1 obtained by removing the k-th row and the k-th column of A and P and set
G(k) := (z −A(k))−1. Then

Tr(PG)− Tr(P (k)G(k)) =
Pkk + a∗kG

(k)P (k)G(k)ak
z − akk − a∗kG

(k)ak
, (6.7)

with ak the k-th column of A where the diagonal entry has been removed. Moreover,

|Tr(PG)− Tr(P (k)G(k))| ≤ 5‖P‖∞
|=z|

. (6.8)

Proof. • Let us first prove (6.7). By linearity, one can suppose that P has only one
nonzero diagonal entry, say the ith one, equal to one. Using the well known formula

((z −A)−1)ii − 1i6=k((z −A(k))−1)ii =
GkiGik
Gkk

,

we have

Tr(PG)− Tr(P (k)G(k)) = ((z −A)−1)ii − 1i6=k((z −A(k))−1)ii

=
GkiGik
Gkk

=
((z −A)−1P (z −A)−1)kk

((z −A)−1)kk

=
∂t|t=0

((z −A− tP )−1)kk

((z −A)−1)kk
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Let log denote the determination of the log on C\R− vanishing at one. Then

Tr(PG)− Tr(P (k)G(k)) = ∂t|t=0
log{((z −A− tP )−1)kk}

= ∂t|t=0
log

1

z − akk − t1k=i − a∗k(z −X(k) − tP (k))−1ak

= −∂t|t=0
log(z − akk − t1k=i − a∗k(z −X(k) − tP (k))−1ak)

=
−∂t|t=0

(z − akk − t1k=i − a∗k(z −X(k) − tP (k))−1ak)

(z − akk − t1k=i − a∗k(z −X(k) − tP (k))−1ak)|t=0

=
Pkk + a∗kG

(k)PG(k)ak
z − akk − a∗kG

(k)ak

• Let us now prove (6.8) (the proof does not use (6.7)). One can suppose that k = 1.
Let us introduce

Ã :=


a11 0 · · · 0

0
... A(1)

0


and define G̃ and G̃(1) as G and G(1) with Ã instead of A. We have

|Tr(PG)−Tr(P (1)G(1))| ≤ |Tr(P (G−G̃))|+|Tr(PG̃)−Tr(P (1)G̃(1))|+|Tr(P (1)(G(1)−G̃(1)))|.

Let us treat the terms of the RHT separately.
The third term is null because Ã(1) = A(1). We have

|Tr(P (G− G̃))| ≤ ‖P (G− G̃)‖∞ rank(G− G̃)

which is ≤ 4‖P‖∞
|=z| by the resolvant formula. At last, as P is diagonal and the matrix z−Ã

can be inverted by blocs, we have

|Tr(PG̃)− Tr(P (1)G̃(1))| = |P11G̃11| ≤
‖P‖∞
|=z|

.
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