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Abstract

We exploit a connection between distances in the infinite percolation cluster, when
the parameter is close to one, and the discrete-time TASEP on Z. This shows that
when the parameter goes to one, large balls in the cluster are asymptotically shaped
near the axes like arcs of parabola.
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1 Introduction

Our main issue in this paper is to describe the shape of large balls in the infinite two-
dimensional percolation cluster, when the percolation parameter is close to one. This
problem is closely related to first-passage percolation, a model introduced in the 60’s by
Hammersley and Welsh [7] in which one estimates the minimal distanceD(0, x) between
the origin 0 and a given point x of Z2, when edges have i.i.d. positive finite lengths.
Distances in the cluster correspond in this framework to the extreme case where edges
have lengths 1 with probability p ∈ (0, 1) and infinite length with probability 1 − p. We
refer to [3] for a recent survey on first passage percolation and shape theorems.

In first passage percolation, Kingman’s subadditive ergodic theorem is the crucial
tool to study the asymptotics of distances between distant points. Garet and Marchand
([5], Th.3.2) adapted this argument to the case where edges may have infinite length.
They proved the existence, for all z in R2, of a constant µ(z) such that, if we denote
by [nz] one of the closest lattice points to nz, on the event1 {0↔∞} and along the
subsequence {0↔ [nz]} , we have a.s.

lim
n→∞
0↔[nz]

D(0, [nz])

n
= µ(z). (1.1)
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The shape of large balls in highly supercritical percolation

Very little is known about µ, except when z belongs to the oriented percolation cone.
This cone is defined as the set of points z such that there exists with probability 1 an
infinite open path in the direction of z taking only east/north edges. For all z in this
cone, µ(z) is obviously equal to |z|1. Marchand [11] showed that µ differs from |.|1
outside this cone and previously Durrett [4] had shown that this cone is delimited near
the x-axis by a line y = tpx where tp = 1− p+ o(1− p). Hence, we are interested in this
paper in the remaining region |y| ≤ (1− p)x.

Theorem 1.1. For all 0 ≤ λ ≤ 1, on the event {0↔∞}, almost surely,

µp(λ) := lim
n→∞

0↔[n(1,λ(1−p))]

D (0, [n(1, λ(1− p))])
n

= 1 + (1− p)1 + λ2

2
+O

(
(1− p)2

)
,

where the O
(
(1− p)2

)
term is uniform in λ.

Let us also note that we actually obtain for all p the following non-asymptotic lower
bound for µp, which is sharp when p goes to one. It is a consequence of Corollary 2.6 in
Section 2.

Theorem 1.2. For all p > 1/2 and 0 ≤ λ ≤ 1,

µp(λ) ≥ 2−
√

1− (1− p)(1 + λ2) + λ2(1− p)2.

Outside the cone, the exact limiting shape of large balls remains unknown. Very
recently, Auffinger and Damron [1] showed that the corresponding limiting shape in
first passage percolation is differentiable at the edge of the cone, thereby excluding the
possibility of a polygon. It is believed that the limiting shape is strictly convex near
axes, our result roughly says that, when p is close to one, the four corners of L1 balls
are replaced by curves looking like arcs of parabola, as in the (schematic) figure below.

y =
(1− p)x

The general strategy of the proof is based on a connection introduced in [2] between
the discrete-time totally asymmetric simple exclusion process (TASEP) and distances
on the percolation cluster. The TASEP is used by physicists as a simple model for
nonequilibrium phenomena, it is known to be connected to a large class of combinatorial
models : the corner-growth model, last passage percolation, random matrices (see [10]
for a survey). It seems that this connection with distances in the infinite percolation
cluster appeared for the first time in [2].
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The shape of large balls in highly supercritical percolation

The exact correspondence with TASEP holds with a simplified model of percolation,
which is described in Section 2. The lower bound for µp follows easily. For the upper
bound, we first need a careful analysis of geodesics in the simplified model in order to
show that they can be modified into an open path in the percolation cluster.

A novelty of the present paper is that we connect the limiting shape of large balls
in percolation to the parabolic limiting shape of out-of-equilibrium TASEP on Z. This
strategy differs notably from that of [2] where we worked in a large box around the x-
axis, and thus percolation was in correspondence with the stationary TASEP on a finite
interval. This restricted the analysis to points whose height was sublinear in n and
therefore gave results only for λ = 0. This correspondence with TASEP is now more
transparent and it allows us to use more efficiently some known results on TASEP.

As already mentioned, we introduce in the proof a simplified model, called Cross
Model in the sequel. A nice feature of this model is that we are able to give an explicit
description of geodesics in terms of the motion of particles in the TASEP (see Lemma
4.1 below). Note also that, since fluctuations of TASEP are known to be of order n1/3

([9], Theorem 1.2), fluctuations of distances in the Cross Model are of the same order,
as believed for first passage percolation on Z2.

2 The connection with TASEP

2.1 Percolation in the Cross Model

As a first step, we study a two-dimensional random graph in which distances to the
origin behave much like distances in the infinite percolation cluster and are strongly
connected to the TASEP.

Here is the context we will deal with in the whole section. Let Z× be the graph on
the vertices of Z2, with three kinds of edges:

• Vertical edges {(i, j)→ (i, j + 1), i ∈ Z, j ∈ Z};
• Horizontal edges {(i, j)→ (i+ 1, j), i ∈ Z, j ∈ Z};
• Diagonal edges {(i, j)→ (i+ 1, j + 1) and (i, j)→ (i+ 1, j − 1)}.

We assign length 1 to each vertical and horizontal edge, and length 2 to each diagonal
edge. We now set ε = 1− p > 0 and call Cross Model the percolation on Z× defined by:

(i) Diagonal and vertical edges are all open,

(ii) Each horizontal edge is open (resp. closed) independently with probability 1 − ε
(resp. ε).

Remark 2.1. Let us first motivate this simplified model.

1. In classical percolation on Z2 with ε close to zero, a very large proportion (greater
than 1− 6ε2) of unit squares of Z2 have at most one closed edge. In such squares,
the addition of two diagonal edges of length 2 does not change the time needed to
cross the square from one corner to the other.

2. The opening of vertical edges should not be significant at first order since, as we
will see later, a typical geodesic between 0 and (n, nλε) in Z× takes less than 2nε

vertical edges, a proportion ε only of them being closed in the original model of
percolation.

For (i, j) ∈ Z2, letD×(i, j) be the distance between (0, 0) and (i, j) in the Cross Model
(see an example in Fig. 1). Since vertical and diagonal edges are open, every point in
Z× is connected in the Cross Model to 0, hence D×(i, j) is finite for every (i, j). Let us
write down some obvious consequences of the construction: for i ≥ 0,
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The shape of large balls in highly supercritical percolation

• All the geodesics joining 0 to (i, j) only make N,NE,E,SE,S steps.

• Along each vertical edge |D×(i, j)−D×(i, j + 1)| = 1.

• Along each open horizontal edge, D×(i+ 1, j) = D×(i, j) + 1.

• Along each closed horizontal edge, D×(i+ 1, j) = D×(i, j) + 1 or +3.

• Along each diagonal edge, D×(i+ 1, j ± 1) = D×(i, j) + 0 or +2.

We also set D×i for the (infinite) i-th column of distances {D×(i, j), j ∈ Z}. Note that
obviously D×0 = (. . . , 2, 1, 0, 1, 2, . . . ). The aim of the present section is to identify the
law of the Markov chain

(
D×i
)
i≥0
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Figure 1: A configuration of percolation in Z× with the associated distances D×0 , . . .D
×
7 ,

together with particles. Note the importance of diagonal edges: D×(2, 1) = 3 thanks to
the diagonal edge (1, 0)→ (2, 1).

To do so, we introduce a particle system closely related to the process (D×i )i≥0. Let

us consider the state space {•, ◦}Z (identified to {1, 0}Z), and denote its elements in the
form

(. . . , y−2, y−1, y0, y1, y2, . . . ).

Let (Yi)i≥0 be the process with values in {•, ◦}Z defined as follows :

∀j ∈ Z, Y ji =

{
• = 1 if D×(i, j) = D×(i, j − 1)− 1.

◦ = 0 if D×(i, j) = D×(i, j − 1) + 1.

Let say that the site j is occupied by a particle at time i if Y ji = • and empty otherwise.
We think about a particle at site j at time i as being actually located on the edge between
(i, j − 1) and (i, j) as drawn on our pictures.

The main observation is that if we see time going from left to right, then the dis-
placement of particles follows a discrete-time TASEP on Z, that we define now:

Definition 2.2. The discrete-time Totally Asymmetric Simple Exclusion Process (TASEP)
on Z with parameter α is the Markov chain with state space {•, ◦}Z with initial condition
y0 defined by

· · · = y−3
0 = y−2

0 = y−1
0 = y0

0 = •, ◦ = y1
0 = y2

0 = y3
0 = . . .
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The shape of large balls in highly supercritical percolation

and whose evolution is as follows: at time t + 1, for each j, a particle at position j (if
any) moves one step forward if the site j + 1 is empty at time t, with probability α and
independently from the other particles.

α α

Proposition 2.3. The process (Yi)i≥0 has the law of TASEP on Z with parameter ε.

Proposition 3 in [2] states the same result in the framework of a finite interval of
Z, and the proof is identical. Let us say however some words about it. The main point
is that modifications in the particle configuration might only occur when a site (i, j) at
some distance ` lies between two sites of the line {i} × Z which are at a distance `+ 1.
In this case there is, at time i, a particle below j and no particle above j. The particle
below j moves one step forward if and only if the horizontal edge (i, j) → (i + 1, j) is
closed (which occurs with probability ε).

Let Jn,j be the current of the TASEP at time n in j, that is the number of particles
which have passed through position j before time n:

Jn,j := card
{
` > j, y`n = •

}
.

Lemma 2.4. For each n, j ≥ 0,

D×(n, j) = n+ j + 2Jn,j ,

where Jn,j is the current of the TASEP with parameter ε.

Proof. Let us first prove this assertion for j = 0. As already noticed, distances along
each horizontal edge (i, 0)→ (i+ 1, 0) differ by 1 or 3. This implies that

D×(n, 0) = n+ 2 card
{

0 ≤ i ≤ n− 1 | D×(i+ 1, 0) = D×(i, 0) + 3
}
.

But D×(i+1, 0) = D×(i, 0)+3 occurs only in the case ` + 3

` + 1

?

?

`

` + 1

` + 2

` + 2

, i.e. when a particle

jumps across the x-axis. Then D×(n, 0)
law
= n+ 2Jn,0.

To prove the Lemma for any j ≥ 0, we have to compute D×(n, j)−D×(n, 0). But by
construction of the particles

D×(n, j)−D×(n, 0) = j − 2 card {particles between 0 and j at time n} ,

and this finishes the proof.

2.2 Asymptotics in the Cross Model

Proposition 2.5. For any x > 0 and −xε ≤ y ≤ xε, we have almost surely and in L1

JbNxc,bNyc

N

N→∞→ j(x, y) := 1
2 (x− y)− 1

2

√
(1− ε)(x2 − y2/ε).

Note that if on the contrary y > xε, it is clear that JbNxc,bNyc/N → 0, because the
right-most particle in the TASEP is at time N at position Nε+ o(N).
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The shape of large balls in highly supercritical percolation

Proof of Proposition 2.5. With extra work this can be seen as a consequence of the work
by Jockusch, Propp and Shor on the discrete-time TASEP ([8], Theorem 2). Here we
deduce it from the results by Johansson [9] on last passage percolation (LPP) with ge-
ometric passage times with parameter ε (we refer to [12] for the connection between
discrete-time TASEP and last passage percolation).

For the reader’s convenience, we detail the computations. To define the model of
LPP with geometric weights, let (gi,j)i,j≥1 be i.i.d. geometric variables with parameter
ε. For a point (i, j) in the quadrant {i, j ≥ 1}, we write G?(x, y) for the last passage time
at (x, y), i.e.

G?(x, y) := max
γ:(1,1)→(x,y)

∑
(i,j)∈γ

gi,j

where the max is taken over the
(
x+y−2
x−1

)
paths with North/East steps going from (1, 1)

to (x, y). Johansson ([9], Theorem 1.1, see also [12], Theorem 2.2) has shown that for
all a, b > 0

G?(bNac, bNbc)
N

→ Ψ(a, b) :=
a+ b+ 2

√
(1− ε)ab

ε
,

where the convergence holds a.s. and in L1 (note that the p in Johansson’s article,
corresponds to ε = 1−p with our notations). Thanks to a plain correspondence between
TASEP and LPP (see [12] Proposition 1.2) there is coupling between LPP and discrete-
time TASEP with parameter ε such that for any integers A ≥ B ≥ 1

JG?(A,B),A−B = B. (2.1)

For a ≥ b > 0, let us write

JbNΨ(a,b)c,bN(a−b)c

N
=
JG?(bNac,bNbc),bN(a−b)c

N
+

(
JbNΨ(a,b)c,bN(a−b)c

N
− JG?(bNac,bNbc),bN(a−b)c

N

)
.

Using (2.1), the first term in the right-hand side goes to b. The second term goes to zero
almost surely since for any n, n′, j we have |Jn,j − Jn′,j | ≤ |n− n′|.

We are looking for a = a(x, y) and b = b(x, y) such that Ψ(a, b) = x and a− b = y. This
is possible if y ≤ xε and in this case we obtain

JbNxc,bNyc

N

N→∞→ b(x, y) = 1
2 (x− y)− 1

2

√
(1− ε)(x2 − y2/ε).

Taking x = 1, y = ελ in the Proposition, we obtain with Lemma 2.4 the following
asymptotics for the distances in the Cross Model. Note that from now on, we skip the
integer parts [.] in order to lighten notations.

Corollary 2.6. In the Cross Model, for any 0 < ε, λ ≤ 1,

D×(n, nελ)

n

n→∞→ f(λ, ε) := 2−
√

1− ε(1 + λ2) + λ2ε2 = 1 +
ε

2
(1 + λ2) +O(ε2),

where the convergence is almost sure and in L1.

3 The lower bound

With the asymptotics found in the Cross Model, we are now able to obtain the lower
bound for the distances in standard percolation in Z2. Adding diagonal edges to Z2
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decreases distances, so by an obvious coupling between percolation in Z2 and in the
Cross Model we have

D(0, (n, nελ))

n
≥ D×(n, nελ)

n
.

Letting n go to infinity, we get

lim inf
n→∞

D(0, (n, nελ))

n
≥ f(λ, ε) = 1 +

ε

2
(1 + λ2) +O(ε2).

This result holds almost surely so in particular on the event {0↔∞}.

4 The upper bound

The proof of the upper bound is more delicate. We first present a canonical con-
struction of a geodesic in the Cross Model, and then show how to modify it to obtain an
almost optimal path between 0 and (n, nελ) in the original model.

4.1 The construction of a canonical geodesic

Starting from the end E := (n, nελ), we construct backwards a geodesic π×, in the
Cross Model, joining 0 to E. An important feature of this construction is that it only
depends on the trajectory of the particles.

The reader is invited to follow the construction on the following example (here E =

(7, 1) and π× is drawn in red, (σ1, σ2, . . . ) stands for the sequence of particles ranked
according to their height):

0

1

1

2

3

2

3

1

2

2

3

4

3

4

4

3

3

4

5

4

5

5

6

6

5

6

5

6

8

7

7

8

7

8

7

9

8

8

9

8

9

10

10

11

9

10

11

10

11

11

12

10

11

12

11

12

σ1

σ2

σ3

σ3

σ2

σ1

σ4

E

The path starts (backwards) from E by taking some vertical edges in the following way:

• if there is no particle on the vertical edge just below E (as in the example), we go
down until finding the first vertex that is just below an empty edge and just above
an edge with a particle (in the example, until being at (7,−1) just above particle
σ3);

• if, on the contrary, there is a particle on the edge just below E, we go up until
finding the first vertex that is below an empty edge and above an edge with a
particle.

We now proceed from right to left by taking n horizontal or diagonal edges going to
zero, so that each site of the path is just below an empty edge and just above a particle.
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The shape of large balls in highly supercritical percolation

Let us write it more formally. After the first vertical edges, we are at a site with a
certain particle σp just below; let us denote by (i, j) this site, and ` its distance to the
origin.

Then, three cases may occur:

Case A.

Particle σp had jumped at time i− 1. Then the path follows
the diagonal edge (i, j) → (i − 1, j − 1). Note that there
is still an empty edge just above, if not σp would not have
moved.

σp

`

`− 2

?

?

?

Case B.
Particle σp−1 was just above σp at time i − 1. Then neces-
sarily it moved (since edge (i, j)→ (i, j + 1) is now empty).
The path follows the diagonal edge (i, j)→ (i− 1, j + 1). σp

`

`− 2

?

?

Case C.
At time i−1, there is no particle above σp. This implies that
(i, j)→ (i− 1, j) is open (if not, σp would have moved). The
path follows this edge, and doing so it stays just above σp. σp

``− 1

?

?

Let us record two features of this path π×:

• it takes only E, NE, SE edges until reaching {x = n} (it takes exactly n such steps),
and then possibly taking some additional vertical edges in the form (n, j)→ (n, j±
1) to reach E;

• it takes a diagonal edge (i− 1, j)→ (i, j± 1) only if the horizontal edge (i− 1, j)→
(i, j) is closed.

Lemma 4.1. The path π× is a geodesic between 0 and (n, nελ) for the Cross Model.
Moreover, π× depends only on the trajectories of particles.

Proof. The second assertion is clear by construction. Besides, the path always goes
through vertices which are just above a particle and below an empty edge. Thus, when
the first coordinate is zero, it is necessarily at the origin, since this is the only site on
the first column which satisfies this property.

Writing

π× = (x0 = 0, x1, . . . , xL = E) ,

we have to prove that for each i the length of the edge (xi−1, xi) is equal to D×(xi) −
D×(xi−1).

• By construction, if we had to take at the first stage r vertical edges, these edges
would lead to a site which is at distance D×(n, nελ)− r from the origin.

• When the path takes an horizontal edge (xi−1, xi) (case C above), this edge is open
and then D×(xi) = D×(xi−1) + 1.

• The case of a diagonal edge (xi−1, xi) remains (cases A,B above). We treat case
A. Set ` = D×(xi). Since there is a particle on the edge (xi, xi − (0, 1)), then
D×(xi − (0, 1)) = `+ 1. Since σp has jumped then D×(xi−1) = `+ 1− 3.
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4.2 How to bypass bad edges

The aim of this section is to construct from the path π× obtained by Lemma 4.1 an
open path of Z2 which is barely longer than π×.

Recall that π× can take either horizontal, vertical or diagonal edges. Since we want
to construct an open path on Z2, we need to replace its diagonal edges and its final
closed vertical edges by detours of open edges.

We begin by doing a transformation which enables us to replace the diagonal edges
of π× without changing the length of the path. If π× takes a diagonal edge (i, j) →
(i+ 1, j ± 1) then we replace this edge by the path (i, j)→ (i, j ± 1)→ (i+ 1, j ± 1) :

π× π

We denote the new path by π. We denote by K the set of edges which are either a
vertical edge of π× or an edge that appears in π but not in π×. Notice that π×, π and K
depends only on the TASEP. The new path is a path on Z2 and it just remains to bypass
its closed edges. We call those closed edges the bad edges of π and denote the set of
all bad edges by B. By construction, B is a subset of K. We shall also write K = |K| and
B = |B|.

Lemma 4.2. For ε small enough, for all n large enough, we have E(K) ≤ 2nε.

Proof. The sum of the number of diagonal edges in π× and of the number of final vertical
edges, by definition of the Cross Model, is equal to D×(n, nελ)−n. Corollary 2.6 implies
that E ((D×(n, nελ)− n)/n) converges to a limit which is strictly less than ε for small
enough ε. The lemma follows from the fact that K is at most 2(D×(n, nελ)− n).

Consider the dual graph (Z2)? of Z2 and associate to each edge e ∈ Z2 the unique
edge e? of the dual which crosses e. We say that e? is open (resp. closed) if e is open
(resp. closed). For each (closed) bad edge e, consider the set C?(e) defined by

C?(e) = {closed edges of (Z2)? connected to e? by a path of closed edges}.

Define its boundary

∆C?(e) = {open edges of (Z2)? which share at least one vertex with an edge of C?(e)}.

What happens around a bad
edge e:

C?(e) ∆C(e)

π×

e
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We denote by ∆C(e) the set of (open) edges associated to ∆C?(e) in the initial graph,
and set

∆C(π) =
⋃
e∈B

∆C(e).

The following topological proposition will be crucial to build from π× a short open
path in the percolation cluster.

Proposition 4.3. On the event {0 ↔ (n, nλε) ↔ ∞} there exists an open path in Z2

from 0 to (n, nλε) which only uses edges of π or of ∆C(π).

Proof. The proof is purely topological and is postponed to Appendix.

In view of this proposition, it remains to bound the cardinality of ∆C(π) to get an
upper bound of the length of the geodesic between 0 and (n, nλε). Let us describe the
probability distribution of the set of open edges conditional on the position of particles.
An edge will be called unbiased if, conditional on the position of the particles which are
inherited from the Cross Model, it is open with probability 1− ε independently from all
the states of the other edges. An edge which is not unbiased is called biased.

In the analysis of the state of an edge, four cases may arise.

Case 1. Vertical edges are all unbiased by definition of the Cross Model.

Case 2. The two configurations of particles leading to an unbiased horizontal edge are the
following:

?

or

??

?

unbiased unbiased

? ?

Indeed, the state of the horizontal edge has no influence on the motion of particles.

Case 3. The following configuration leads to a closed edge: closed

Case 4. The following configuration leads to an open edge: open

Denote by T the σ-field generated by the particles (T stands for TASEP). Thus,
conditional on T , some edges are open, some edges are closed and the other edges are
unbiased. Now we use the previous facts to prove the following two lemmas:

Lemma 4.4. The edges of K are unbiased.

Proof. Vertical edges of K are unbiased. This is Case 1 above. Let us now consider an
horizontal edge of K associated with a rising diagonal edge of π×. By construction of
π× this corresponds to the following situation:

EJP 19 (2014), paper 26.
Page 10/14

ejp.ejpecp.org

http://dx.doi.org/10.1214/EJP.v19-3062
http://ejp.ejpecp.org/


The shape of large balls in highly supercritical percolation

closed

unbiased

π×

?

This is the second situation in Case 2 in the discussion just above. The case of an
horizontal edge of K associated with a downward diagonal of π× corresponds to the
first situation in Case 2:

π×
closed

unbiased

As a consequence of Lemma 4.4, conditional on T , the number B of bad edges is a
binomial random variable with parameters (K, ε). Using Lemma 4.2 we thus get that,
for small enough ε and for large enough n, E(B) ≤ E(K)ε ≤ 2nε2. The third item of the
following lemma will enable us to bound the size of the detour associated with each bad
edge e ∈ B. Items 1 and 2 are intermediate steps in the proof of Item 3.

We say that e? in (Z2)? is unbiased if its dual edge e is.

Lemma 4.5. 1. If an edge e? is biased, its six neighbouring edges are unbiased.

2. If an animal A of (Z2)? ( i.e. a connected subset of edges in (Z2)?) contains an
edge of K, then it contains at least max(1, |A|/7) unbiased edges.

3. If e belongs to K, then

E
(
|C?(e)|1{e∈B}

∣∣∣T ) ≤ Cε
for small enough ε where C is an absolute constant.

Proof. Item 1. Take a biased edge e?. It corresponds either to Case 3 above or to Case
4. As the proofs are identical, let us consider Case 3. It corresponds to the following
situation, where we draw in red the dual edges of the six neighbouring edges of e?:

closed

.

Four of them are vertical and thus unbiased. The horizontal edge above corresponds to
the second situation of Case 2, whereas the horizontal edge below corresponds to the
first situation of Case 2.

Item 2. Let A be an animal of (Z2)? and assume that A contains an edge of K. As all
edges of K are unbiased by Lemma 4.4, the required lower bound is straightforward if
the cardinality of A is 1. Let us assume that the cardinality of A is at least 2. By Item
1, we can then construct a mapping which associates to a biased edge of A one of its
unbiased neighbours in A. At most 6 biased edges are mapped to the same unbiased
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edge (this is not optimal, one could replace 6 by 2). Thus, A contains at least |A|/7
unbiased edges.

Item 3. Let us condition on T and let e ∈ K.

E
(
|C?(e)|1{e∈B}

∣∣∣T ) =
∑
k≥1

P
(
|C?(e)|1{e∈B} ≥ k

∣∣∣T ) .
On the latter event there is an animal of size k containing e? and whose all edges are
closed. There are less than 15k animals of cardinality k containing the edge e? (this can
be proven for instance by adapting slightly the arguments of (4.24) p.81 in [6]). Using
Item 2 we get:

E
(
|C?(e)|1{e∈B}

∣∣∣T ) ≤∑
k≥1

15kεmax(1,k/7) ≤ Cε

for an absolute constant C and for small enough ε.

We are now in position to conclude the proof of Theorem 1.1 by giving an upper
bound for D(0, (n, nλε)).

Proof of Theorem 1.1. Since an edge in C?(e) is connected to less than 6 open edges,

|∆C?(e)| ≤ 6|C?(e)|.

Therefore,

|∆C(π)| ≤
∑
e∈B
|∆C(e)| =

∑
e∈B
|∆C?(e)| ≤ 6

∑
e∈B
|C?(e)|.

Using Lemma 4.5 and Lemma 4.2 we thus get, for small enough ε and large enough n,

E (|∆C(π)|) ≤ 6E

(∑
e∈K

E
(
|C?(e)|1{e∈B}

∣∣∣T )) ≤ 6CεE(K) ≤ 12Cnε2. (4.1)

Set En = {0↔ (n, nλε)↔∞}. We deduce from Proposition 4.3 that on the event En,

D(0, (n, nλε)) ≤ |π|+ |∆C(π)| = D×(n, nλε) + |∆C(π)|.

This yields, for all A > 0,

P(D(0, (n, nλε)) ≥ nf(λ, ε) +Anε2, En)

≤ P(D×(n, nλε) ≥ nf(λ, ε) +Anε2/2) + P(|∆C(π)| ≥ Anε2/2)

≤ P(D×(n, nλε) ≥ nf(λ, ε) +Anε2/2) +
E(|∆C(π)|)
Anε2/2

.

From Corollary 2.6 and (4.1) we get, for small enough ε,

lim sup
n→∞

P(D(0, (n, nλε)) ≥ nf(λ, ε) +Anε2, En) ≤ 24C/A.

Note that for ε small enough, P(En) ≥ P(0 ↔ ∞)2 ≥ 1/2. Since we know that
D(0, (n, nλε))/n converges almost surely to the constant µ1−ε(λ), we get, for A > 48C,

µ1−ε(λ) ≤ f(λ, ε) +Aε2.
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Appendix: Proof of Proposition 4.3

Proof. Let e1 be an edge in B. We denote by (∆C(e1))∞ the set of edges e of ∆C(e1) for
which there exists a path in Z2 (which may take open or closed edges) such that

• the edge e is the first edge of the path,

• the path does not cross C?(e1),

• the path goes to infinity.

In other words, (∆C(e1))∞ is composed of the edges of ∆C(e1) that are not in the interior
of C?(e1).

C?(e1)

π

α

β β ′∆C(e1)

(∆C(e1))∞ e1

A first observation is that the set (∆C(e1))∞ is connected. Take it for granted for a
while and let us prove that there exists a path from 0 to (n, nλε) which only uses edges
of π \ {e1} or edges of (∆C(e1))∞. Let (α, β) be the first edge of π crossing C?(e1). One
can check that α is necessarily the extremity of an edge of (∆C(e1))∞. Following the
path π backwards from (n, nλε), we define similarly another site β′ ∈ (∆C(e1))∞. The
origin 0 is connected to α by π, α is connected to β′ by (∆C(e1))∞, and β′ is connected
to (n, nλε) by π. We proceed recursively for the next edges of B.

It remains to prove that (∆C(e1))∞ is connected. Let Σ(C?(e1)) ⊂ Z2 be the cir-
cuit2 surrounding C?(e1) as constructed in Proposition 11.2 of [6] . By construction,
Σ(C?(e1)) ⊂ (∆C(e1))∞. Assume that (∆C(e1))∞ is not connected and let H be a con-
nected component which does not contain Σ(C?(e1)). The set H being a connected com-
ponent of (∆C(e1))∞, an edge in ∆H can not be in ∆C(e1). This implies in particular
that either

(i) Σ(H) ⊂ C?(e1)

(ii) Σ(H) and C?(e1) have no site in common.

The first possibility contradicts the connection of H with infinity, whereas the second
one contradicts the connectivity of C?(e1).

Acknowledgments. A.-L. B. and N. E. thank ANR Grant Mememo 2 2010 BLAN 0125,
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2Σ(C?(e1)) is the unique circuit containing C?(e1) in its interior and with the property that every edge of
Σ(C?(e1)) crosses an edge of ∆C(e1)).
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