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Abstract

The Adaptive Metropolis (AM) algorithm is based on the symmetric random-walk Metropolis
algorithm. The proposal distribution has the following time-dependent covariance matrix at step
n+ 1

Sn = Cov(X1, . . . , Xn) + εI ,

that is, the sample covariance matrix of the history of the chain plus a (small) constant ε > 0
multiple of the identity matrix I . The lower bound on the eigenvalues of Sn induced by the factor
εI is theoretically convenient, but practically cumbersome, as a good value for the parameter
ε may not always be easy to choose. This article considers variants of the AM algorithm that
do not explicitly bound the eigenvalues of Sn away from zero. The behaviour of Sn is studied
in detail, indicating that the eigenvalues of Sn do not tend to collapse to zero in general. In
dimension one, it is shown that Sn is bounded away from zero if the logarithmic target density
is uniformly continuous. For a modification of the AM algorithm including an additional fixed
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component in the proposal distribution, the eigenvalues of Sn are shown to stay away from zero
with a practically non-restrictive condition. This result implies a strong law of large numbers for
super-exponentially decaying target distributions with regular contours.
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1 Introduction

Adaptive Markov chain Monte Carlo (MCMC) methods have attracted increasing interest in
the last few years, after the original work of Haario, Saksman, and Tamminen Haario et al.
(2001) and the subsequent advances in the field Andrieu and Moulines (2006); Andrieu and Robert
(2001); Atchadé and Rosenthal (2005); Roberts and Rosenthal (2007); see also the recent review
Andrieu and Thoms (2008). Several adaptive MCMC algorithms have been proposed up to date, but
the seminal Adaptive Metropolis (AM) algorithm Haario et al. (2001) is still one of the most applied
methods, perhaps due to its simplicity and generality.

The AM algorithm is a symmetric random-walk Metropolis algorithm, with an adaptive proposal
distribution. The algorithm starts1 at some point X1 ≡ x1 ∈ R

d with an initial positive definite
covariance matrix S1 ≡ s1 ∈ Rd×d and follows the recursion

(S1) Let Yn+1 = Xn+ θS1/2
n Wn+1, where Wn+1 is an independent standard Gaussian random vector

and θ > 0 is a constant.

(S2) Accept Yn+1 with probability min
�

1, π(Yn+1)

π(Xn)

	

and let Xn+1 = Yn+1; otherwise reject Yn+1 and
let Xn+1 = Xn.

(S3) Set Sn+1 = Γ(X1, . . . , Xn+1).

In the original work Haario et al. (2001) the covariance parameter is computed by

Γ(X1, . . . , Xn+1) =
1

n

n+1
∑

k=1

(Xk − X n+1)(Xk − X n+1)
T + εI , (1)

where X n := n−1
∑n

k=1 Xk stands for the mean. That is, Sn+1 is a covariance estimate of the
history of the ‘Metropolis chain’ X1, . . . , Xn+1 plus a small ε > 0 multiple of the identity matrix
I ∈ R

d×d . The authors prove a strong law of large numbers (SLLN) for the algorithm, that is,
n−1

∑n

k=1 f (Xk)→
∫

Rd f (x)π(x)dx almost surely as n→∞ for any bounded functional f when the
target distribution π is bounded and compactly supported. Recently, SLLN was shown to hold also
for π with unbounded support, having super-exponentially decaying tails with regular contours and
f growing at most exponentially in the tails Saksman and Vihola (2010).

This article considers the original AM algorithm (S1)–(S3), without the lower bound induced by
the factor εI . The proposal covariance function Γ, defined precisely in Section 2, is a consistent
covariance estimator first proposed in Andrieu and Robert (2001). A special case of this estimator
behaves asymptotically like the sample covariance in (1). Previous results indicate that if this algo-
rithm is modified by truncating the eigenvalues of Sn within explicit lower and upper bounds, the
algorithm can be verified in a fairly general setting Atchadé and Fort (2010); Roberts and Rosenthal
(2007). It is also possible to determine an increasing sequence of truncation sets for Sn, and mod-
ify the algorithm to include a re-projection scheme in order to verify the validity of the algorithm
Andrieu and Moulines (2006).

While technically convenient, such pre-defined bounds on the adapted covariance matrix Sn can be
inconvenient in practice. Ill-defined values can affect the efficiency of the adaptive scheme dramat-
ically, rendering the algorithm useless in the worst case. In particular, if the factor ε > 0 in the AM

1 The initial ‘burn-in’ phase included in the original algorithm is not considered here.
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algorithm is selected too large, the smallest eigenvalue of the true covariance matrix of π may be
well smaller than ε > 0, and the chain Xn is likely to mix poorly. Even though the re-projection
scheme of Andrieu and Moulines (2006) avoids such behaviour by increasing truncation sets, which
eventually contain the desirable values of the adaptation parameter, the practical efficiency of the
algorithm is still strongly affected by the choice of these sets Andrieu and Thoms (2008).

Without a lower bound on the eigenvalues of Sn (or a re-projection scheme), there is a potential
danger of the covariance parameter Sn collapsing to singularity. In such a case, the increments
Xn−Xn−1 would be smaller and smaller, and the Xn chain could eventually get ‘stuck’. The empirical
evidence suggests that this does not tend to happen in practice. The present results validate the
empirical findings by excluding such a behaviour in different settings.

After defining precisely the algorithms in Section 2, the above mentioned unconstrained AM algo-
rithm is analysed in Section 3. First, the AM algorithm run on an improper uniform target π≡ c > 0
is studied. In such a case, the asymptotic expected growth rate of Sn is characterised quite precisely,
being e2θ

p
n for the original AM algorithm Haario et al. (2001). The behaviour of the AM algorithm

in the uniform target setting is believed to be similar as in a situation where Sn is small and the
target π is smooth whence locally constant. The results support the strategy of choosing a ‘small’
initial covariance s1 in practice, and letting the adaptation take care of expanding it to the proper
size.

In Section 3, it is also shown that in a one-dimensional setting and with a uniformly continuous
logπ, the variance parameter Sn is bounded away from zero. This fact is shown to imply, with the
results in Saksman and Vihola (2010), a SLLN in the particular case of a Laplace target distribution.
While this result has little practical value in its own right, it is the first case where the unconstrained
AM algorithm is shown to preserve the correct ergodic properties. It shows that the algorithm
possesses self-stabilising properties and further strengthens the belief that the algorithm would be
stable and ergodic under a more general setting.

Section 4 considers a slightly different variant of the AM algorithm, due to Roberts and Rosenthal
Roberts and Rosenthal (2009), replacing (S1) with

(S1’) With probability β , let Yn+1 = Xn + Vn+1 where Vn+1 is an independent sample of qfix; other-
wise, let Yn+1 = Xn+ θS1/2

n Wn+1 as in (S1).

While omitting the parameter ε > 0, the proposal strategy (S1’) includes two additional parameters:
the mixing probability β ∈ (0,1) and the fixed symmetric proposal distribution qfix. It has the
advantage that the ‘worst case scenario’ having ill-defined qfix only ‘wastes’ the fixed proportion β of
samples, while Sn can take any positive definite value on adaptation. This approach is analysed also
in the recent preprint Bai et al. (2008), relying on a technical assumption that ultimately implies
that Xn is bounded in probability. In particular, the authors show that if qfix is a uniform density on
a ball having a large enough radius, then the algorithm is ergodic. Section 4 uses a perhaps more
transparent argument to show that the proposal strategy (S1’) with a mild additional condition
implies a sequence Sn with eigenvalues bounded away from zero. This fact implies a SLLN using the
technique of Saksman and Vihola (2010), as shown in the end of Section 4.
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2 The general algorithm

Let us define a Markov chain (Xn, Mn,Sn)n≥1 evolving in space R
d ×R

d ×C d with the state space
R

d and C d ⊂ R
d×d standing for the positive definite matrices. The chain starts at an initial position

X1 ≡ x1 ∈ Rd , with an initial mean2 M1 ≡ m1 ∈ Rd and an initial covariance matrix S1 ≡ s1 ∈ C d .
For n≥ 1, the chain is defined through the recursion

Xn+1 ∼ PqSn
(Xn, · ) (2)

Mn+1 := (1−ηn+1)Mn+ηn+1Xn+1 (3)

Sn+1 := (1−ηn+1)Sn+ηn+1(Xn+1−Mn)(Xn+1−Mn)
T . (4)

Denoting the natural filtration of the chain as Fn := σ(Xk, Mk,Sk : 1 ≤ k ≤ n), the notation in (2)
reads that P

�

Xn+1 ∈ A
�

� Fn

�

= PqSn
(Xn,A) for any measurable A ⊂ R

d . The Metropolis transition
kernel Pq is defined for any symmetric probability density q(x , y) = q(x − y) through

Pq(x ,A) := 1A(x)

�

1−
∫

min

�

1,
π(y)

π(x)

�

q(y − x)dy

�

+

∫

A

min

�

1,
π(y)

π(x)

�

q(y − x)dy

where 1A stands for the characteristic function of the set A. The proposal densities {qs}s∈C d are
defined as a mixture

qs(z) := (1− β)q̃s(z) + βqfix(z) (5)

where the mixing constant β ∈ [0,1) determines the portion how often a fixed proposal density
qfix is used instead of the adaptive proposal q̃s(z) := det(θ s)−1/2q̃(θ−1/2s−1/2z) with q̃ being a
‘template’ probability density. Finally, the adaptation weights (ηn)n≥2 ⊂ (0,1) appearing in (3) and
(4) is assumed to decay to zero.

One can verify that for β = 0 this setting corresponds to the algorithm (S1)–(S3) of Section 1 with
Wn+1 having distribution q̃, and for β ∈ (0,1), (S1’) applies instead of (S1). Notice also that the
original AM algorithm essentially fits this setting, with ηn := n−1, β := 0 and if q̃s is defined slightly
differently, being a Gaussian density with mean zero and covariance s + εI . Moreover, if one sets
β = 1, the above setting reduces to a non-adaptive symmetric random walk Metropolis algorithm
with the increment proposal distribution qfix.

3 The unconstrained AM algorithm

3.1 Overview of the results

This section deals with the unconstrained AM algorithm, that is, the algorithm described in Section 2
with the mixing constant β = 0 in (5). Sections 3.2 and 3.3 consider the case of an improper uniform
target distribution π≡ c for some constant c > 0. This implies that (almost) every proposed sample
is accepted and the recursion (2) reduces to

Xn+1 = Xn+ θS1/2
n Wn+1 (6)

2A customary choice is to set m1 = x1.

49



10
0

10
2

10
4

10
6

−10

−5

0

5

E
�

S
n

�

n

Figure 1: An example of the exact development of E
�

Sn

�

, when s1 = 1 and θ = 0.01. The sequence
(E
�

Sn

�

)n≥1 decreases until n is over 27,000 and exceeds the initial value only with n over 750,000.

where (Wn)n≥2 are independent realisations of the distribution q̃.

Throughout this subsection, let us assume that the template proposal distribution q̃ is spherically
symmetric and the weight sequence is defined as ηn := cn−γ for some constants c ∈ (0,1] and
γ ∈ (1/2,1]. The first result characterises the expected behaviour of Sn when (Xn)n≥2 follows (6).

Theorem 1. Suppose (Xn)n≥2 follows the ‘adaptive random walk’ recursion (6), with EWnW T
n = I .

Then, for all λ > 1 there is n0 ≥ m such that for all n≥ n0 and k ≥ 1, the following bounds hold

1

λ





θ

n+k
∑

j=n+1

p

η j





 ≤ log

�

E
�

Sn+k

�

E
�

Sn

�

�

≤ λ





θ

n+k
∑

j=n+1

p

η j





 .

Proof. Theorem 1 is a special case of Theorem 12 in Section 3.2.

Remark 2. Theorem 1 implies that with the choice ηn := cn−γ for some c ∈ (0,1) and γ ∈ (1/2,1],
the expectation grows with the speed

E
�

Sn

�

≃ exp

 

θ
p

c

1− γ
2

n1− γ
2

!

.

Remark 3. In the original setting (Haario et al. 2001) the weights are defined as ηn := n−1 and
Theorem 1 implies that the asymptotic growth rate of E[Sn] is e2θ

p
n when (Xn)n≥2 follows (6).

Suppose the value of Sn is very small compared to the scale of a smooth target distribution π. Then,
it is expected that most of the proposal are accepted, Xn behaves almost as (6), and Sn is expected
to grow approximately at the rate e2θ

p
n until it reaches the correct magnitude. On the other hand,

simple deterministic bound implies that Sn can decay slowly, only with the polynomial speed n−1.
Therefore, it may be safer to choose the initial s1 small.

Remark 4. The selection of the scaling parameter θ > 0 in the AM algorithm does not seem to affect
the expected asymptotic behaviour Sn dramatically. However, the choice 0< θ ≪ 1 can result in an
significant initial ‘dip’ of the adapted covariance values, as exemplified in Figure 1. Therefore, the
values θ ≪ 1 are to be used with care. In this case, the significance of a successful burn-in is also
emphasised.
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It may seem that Theorem 1 would automatically also ensure that Sn →∞ also path-wise. This is
not, however, the case. For example, consider the probability space [0,1] with the Borel σ-algebra
and the Lebesgue measure. Then (Mn,Fn)n≥1 defined as Mn := 22n1[0,2−n) and Fn := σ(Xk : 1 ≤
k ≤ n) is, in fact, a submartingale. Moreover, EMn = 2n→∞, but Mn→ 0 almost surely.

The AM process, however, does produce an unbounded sequence Sn.

Theorem 5. Assume that (Xn)n≥2 follows the ‘adaptive random walk’ recursion (6). Then, for any unit

vector u ∈ Rd , the process uT Snu→∞ almost surely.

Proof. Theorem 5 is a special case of Theorem 18 in Section 3.3.

In a one-dimensional setting, and when logπ is uniformly continuous, the AM process can be ap-
proximated with the ‘adaptive random walk’ above, whenever Sn is small enough. This yields

Theorem 6. Assume d = 1 and logπ is uniformly continuous. Then, there is a constant b > 0 such

that lim infn→∞ Sn ≥ b.

Proof. Theorem 6 is a special case of Theorem 18 in Section 3.4.

Finally, having Theorem 6, it is possible to establish

Theorem 7. Assume q̃ is Gaussian, the one-dimensional target distribution is standard Laplace π(x) :=
1
2
e−|x | and the functional f : R → R satisfies supx e−γ|x || f (x)| < ∞ for some γ ∈ (0,1/2). Then,

n−1
∑n

k=1 f (Xk)→
∫

f (x)π(x)dx almost surely as n→∞.

Proof. Theorem 7 is a special case of Theorem 21 in Section 3.4.

Remark 8. In the case ηn := n−1, Theorem 7 implies that the parameters Mn and Sn of the adap-
tive chain converge to 0 and 2, that is, the true mean and variance of the target distribution π,
respectively.

Remark 9. Theorem 6 (and Theorem 7) could probably be extended to cover also targets π with
compact supports. Such an extension would, however, require specific handling of the boundary
effects, which can lead to technicalities.

3.2 Uniform target: expected growth rate

Define the following matrix quantities

an := E

�

(Xn−Mn−1)(Xn−Mn−1)
T
�

(7)

bn := E
�

Sn

�

(8)

for n≥ 1, with the convention that a1 ≡ 0 ∈ Rd×d . One may write using (3) and (6)

Xn+1−Mn = Xn−Mn+ θS1/2
n Wn+1 = (1−ηn)(Xn−Mn−1) + θS1/2

n Wn+1.

If EWnW T
n = I , one may easily compute

E
�

(Xn+1−Mn)(Xn+1−Mn)
T
�

=
�

1−ηn

�2
E

�

(Xn−Mn−1)(Xn−Mn−1)
T
�

+ θ2
E
�

Sn

�
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since Wn+1 is independent of Fn and zero-mean due to the symmetry of q̃. The values of (an)n≥2

and (bn)n≥2 are therefore determined by the joint recursion

an+1 = (1−ηn)
2an+ θ

2 bn (9)

bn+1 = (1−ηn+1)bn+ηn+1an+1. (10)

Observe that for any constant unit vector u ∈ Rd , the recursions (9) and (10) hold also for

a
(u)

n+1 := E

�

uT (Xn+1−Mn)(Xn+1−Mn)
T u
�

b
(u)

n+1 := E

�

uT Sn+1u
�

.

The rest of this section therefore dedicates to the analysis if the one-dimensional recursions (9) and
(10), that is, an, bn ∈ R+ for all n≥ 1. The first result shows that the tail of (bn)n≥1 is increasing.

Lemma 10. Let n0 ≥ 1 and suppose an0
≥ 0, bn0

> 0 and for n≥ n0 the sequences an and bn follow the

recursions (9) and (10), respectively. Then, there is a m0 ≥ n0 such that (bn)n≥m0
is strictly increasing.

Proof. If θ ≥ 1, we may estimate an+1 ≥ (1− ηn)
2an + bn implying bn+1 ≥ bn + ηn+1(1− ηn)

2an

for all n ≥ n0. Since bn > 0 by construction, and therefore also an+1 ≥ θ2 bn > 0, we have that
bn+1 > bn for all n≥ n0+ 1.

Suppose then θ < 1. Solving an+1 from (10) yields

an+1 = η
−1
n+1

�

bn+1− bn

�

+ bn

Substituting this into (9), we obtain for n≥ n0+ 1

η−1
n+1

�

bn+1− bn

�

+ bn = (1−ηn)
2
�

η−1
n

�

bn− bn−1
�

+ bn−1

�

+ θ2 bn

After some algebraic manipulation, this is equivalent to

bn+1− bn =
ηn+1

ηn

(1−ηn)
3(bn− bn−1) +ηn+1

�

(1−ηn)
2− 1+ θ2

�

bn. (11)

Now, since ηn→ 0, we have that (1−ηn)
2− 1+ θ2 > 0 whenever n is greater than some n1. So, if

we have for some n′ > n1 that bn′ − bn′−1 ≥ 0, the sequence (bn)n≥n′ is strictly increasing after n′.

Suppose conversely that bn+1 − bn < 0 for all n ≥ n1. From (10), bn+1 − bn = ηn+1(an+1 − bn)

and hence bn > an+1 for n ≥ n1. Consequently, from (9), an+1 > (1− ηn)
2an + θ

2an+1, which is
equivalent to

an+1 >
(1−ηn)

2

1− θ2 an.

Since ηn→ 0, there is a µ > 1 and n2 such that an+1 ≥ µan for all n≥ n2. That is, (an)n≥n2
grows at

least geometrically, implying that after some time an+1 > bn, which is a contradiction. To conclude,
there is an m0 ≥ n0 such that (bn)n≥m0

is strictly increasing.

Lemma 10 shows that the expectation E

�

uT Snu
�

is ultimately bounded from below, assuming only
that ηn → 0. By additional assumptions on the sequence ηn, the growth rate can be characterised
in terms of the adaptation weight sequence.
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Assumption 11. Suppose (ηn)n≥1 ⊂ (0,1) and there is m′ ≥ 2 such that

(i) (ηn)n≥m′ is decreasing with ηn→ 0,

(ii) (η−1/2
n+1 −η−1/2

n )n≥m′ is decreasing and

(iii)
∑∞

n=2ηn =∞.

The canonical example of a sequence satisfying Assumption 11 is the one assumed in Section 3.1,
ηn := cn−γ for c ∈ (0,1) and γ ∈ (1/2,1].

Theorem 12. Suppose am ≥ 0 and bm > 0 for some m ≥ 1, and for n > m the an and bn are given

recursively by (9) and (10), respectively. Suppose also that the sequence (ηn)n≥2 satisfies Assumption

11 with some m′ ≥ m. Then, for all λ > 1 there is m2 ≥ m′ such that for all n ≥ m2 and k ≥ 1, the

following bounds hold

1

λ





θ

n+k
∑

j=n+1

p

η j





 ≤ log

�

bn+k

bn

�

≤ λ





θ

n+k
∑

j=n+1

p

η j





 .

Proof. Let m0 be the index from Lemma 10 after which the sequence bn is increasing. Let m1 >

max{m0, m′} and define the sequence (zn)n≥m1−1 by setting zm1−1 = bm1−1 and zm1
= bm1

, and for
n≥ m1 through the recursion

zn+1 = zn+
ηn+1

ηn

(1−ηn)
3(zn− zn−1) +ηn+1θ̃

2zn (12)

where θ̃ > 0 is a constant. Consider such a sequence (zn)n≥m1−1 and define another sequence
(gn)n≥m1+1 through

gn+1 := η−1/2
n+1

zn+1− zn

zn

= η
−1/2
n+1

�

ηn+1

ηn

(1−ηn)
3 zn− zn−1

zn−1

zn−1

zn

+ηn+1θ̃
2
�

= η
1/2
n+1

 

(1−ηn)
3

ηn

gn

gn+η
−1/2
n

+ θ̃2

!

.

Lemma 33 in Appendix A shows that gn→ θ̃ .

Let us consider next two sequences (z(1)n )n≥m1−1 and (z(2)n )n≥m1−1 defined as (zn)n≥m1−1 above but

using two different values θ̃ (1) and θ̃ (2), respectively. It is clear from (11) that for the choice
θ̃ (1) := θ one has bn ≤ z(1)n for all n ≥ m1 − 1. Moreover, since bm1+1/bm1

≤ z
(1)
m1+1/z

(1)
m1

, it holds by
induction that

bn+1

bn

≤ 1+
ηn+1

ηn

(1−ηn)
3
�

1−
bn−1

bn

�

+ηn+1θ̃
2

≤ 1+
ηn+1

ηn

(1−ηn)
3

 

1−
z
(1)
n−1

z
(1)
n

!

+ηn+1θ̃
2 =

z
(1)
n+1

z
(1)
n

also for all n ≥ m1 + 1. By a similar argument one shows that if θ̃ (2) := [(1− ηm1
)2 − 1+ θ2]1/2

then bn ≥ z(2)n and bn+1/bn ≥ z
(2)
n+1/z

(2)
n for all n≥ m1− 1.
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Let λ′ > 1. Since g(1)n → θ̃ (1) and g(2)n → θ̃ (2) there is a m2 ≥ m1 such that the following bounds
apply

1+
θ̃ (2)

λ′
p
ηn ≤

z(2)n

z
(2)
n−1

and
z(1)n

z
(1)
n−1

≤ 1+λ′θ̃ (1)
p
ηn

for all n≥ m2. Consequently, for all n≥ m2, we have that

log

�

bn+k

bn

�

≤ log





z
(1)
n+k

z
(1)
n



 ≤
n+k
∑

j=n+1

log
�

1+λ′θ̃ (1)
p

η j

�

≤ λ′θ
n+k
∑

j=n+1

p
ηn.

Similarly, by the mean value theorem

log

�

bn+k

bn

�

≥
n+k
∑

j=n+1

log

�

1+
θ̃ (2)

λ′
p

η j

�

≥
θ̃ (2)

λ′(1+λ′−1θ̃ (2)
p
ηn)

n+k
∑

j=n+1

p

η j

since ηn is decreasing. By letting the constant m1 above be sufficiently large, the difference |θ̃ (2)−θ |
can be made arbitrarily small, and by increasing m2, the constant λ′ > 1 can be chosen arbitrarily
close to one.

3.3 Uniform target: path-wise behaviour

Section 3.2 characterised the behaviour of the sequence E
�

Sn

�

when the chain (Xn)n≥2 follows the
‘adaptive random walk’ recursion (6). In this section, we shall verify that almost every sample path
(Sn)n≥1 of the same process are increasing.

Let us start by expressing the process Sn in terms of an auxiliary process (Zn)n≥1.

Lemma 13. Let u ∈ Rd be a unit vector and suppose the process (Xn, Mn,Sn)n≥1 is defined through (3),

(4) and (6), where (Wn)n≥1 are i.i.d. following a spherically symmetric, non-degenerate distribution.

Define the scalar process (Zn)n≥2 through

Zn+1 := uT
Xn+1−Mn

‖S1/2
n u‖

(13)

where ‖x‖ :=
p

x T x stands for the Euclidean norm.

Then, the process (Zn,Sn)n≥2 follows

uT Sn+1u = [1+ηn+1(Z
2
n+1− 1)]uT Snu (14)

Zn+1 = θW̃n+1+ UnZn (15)

where (W̃n)n≥2 are non-degenerate i.i.d. random variables and Un := (1−ηn)
�

1+ηn(Z
2
n − 1)

�−1/2
.

The proof of Lemma 13 is given in Appendix B.

It is immediate from (14) that only values |Zn| < 1 can decrease uT Snu. On the other hand, if both
ηn and ηnZ2

n are small, then the variable Un is clearly close to unity. This suggests a nearly random
walk behaviour of Zn. Let us consider an auxiliary result quantifying the behaviour of this random
walk.
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Lemma 14. Let n0 ≥ 2, suppose Z̃n0−1 is Fn0−1-measurable random variable and suppose (W̃n)n≥n0

are respectively (Fn)n≥n0
-measurable and non-degenerate i.i.d. random variables. Define for Z̃n for

n≥ 2 through

Z̃n+1 = Z̃n+ θW̃n+1.

Then, for any N ,δ1,δ2 > 0, there is a k0 ≥ 1 such that

P







1

k

k
∑

j=1

1{|Z̃n+ j |≤N} ≥ δ1

�

�

�

�

�

�

Fn





 ≤ δ2

a.s. for all n≥ 1 and k ≥ k0.

Proof. From the Kolmogorov-Rogozin inequality, Theorem 36 in Appendix C,

P(Z̃n+ j − Z̃n ∈ [x , x + 2N] | Fn)≤ c1 j−1/2

for any x ∈ R, where the constant c1 > 0 depends on N , θ and on the distribution of Wj . In
particular, since Z̃n+ j − Z̃n is independent of Z̃n, one may set x = −Zn − N above, and thus

P

�

|Z̃n+ j | ≤ N
�

� Fn

�

≤ c1 j−1/2. The estimate

E







1

k

k
∑

j=1

1{|Z̃n+ j |≤N}

�

�

�

�

�

�

Fn





≤
c1

k

k
∑

j=1

j−1/2 ≤ c2k−1/2

implies P
�

k−1
∑k

j=11{|Z̃n+ j |≤N} ≥ δ1

�

�Fn

�

≤ δ−1
1 c2k−1/2, concluding the proof.

The technical estimate in the next Lemma 16 makes use of the above mentioned random walk
approximation and guarantees ultimately a positive ‘drift’ for the eigenvalues of Sn. The result
requires that the adaptation sequence (ηn)n≥2 is ‘smooth’ in the sense that the quotients converge
to one.

Assumption 15. The adaptation weight sequence (ηn)n≥2 ⊂ (0,1) satisfies

lim
n→∞

ηn+1

ηn

= 1.

Lemma 16. Let n0 ≥ 2, suppose Zn0−1 is Fn0−1-measurable, and assume (Zn)n≥n0
follows (15) with

non-degenerate i.i.d. variables (W̃n)n≥n0
measurable with respect to (Fn)n≥n0

, respectively, and the

adaptation weights (ηn)n≥n0
satisfy Assumption 15. Then, for any C ≥ 1 and ε > 0, there are indices

k ≥ 1 and n1 ≥ n0 such that P
�

Ln,k

�

� Fn

�

≤ ε a.s. for all n≥ n1, where

Ln,k :=







k
∑

j=1

log
h

1+ηn+ j

�

Z2
n+ j − 1

�i

< kCηn







.
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Proof. Fix a γ ∈ (0,2/3). Define the sets An: j := ∩ j

i=n+1{Z2
i ≤ η

−γ
i
} and A′i := {Z2

i > η
−γ
i
}. Write the

conditional expectation in parts as follows,

P

�

Ln,k

�

� Fn

�

= P

�

Ln,k,An:n+k

�

� Fn

�

+P

�

Ln,k,A′n
�

� Fn

�

+

n+k
∑

i=n+1

P

�

Ln,k,An:i−1,A′i
�

� Fn

�

.
(16)

Let ω ∈ A′i for any n< i ≤ n+ k and compute

log
�

1+ηi(Z
2
i − 1)

�

≥ log
�

1+ηi(η
−γ
i
− 1)

�

≥ log
�

1+ 2ηikC
�

≥
2ηikC

1+ 2ηikC
≥ kCηn

whenever n≥ n0 is sufficiently large, since ηn→ 0, and by Assumption 15. That is, if n is sufficiently
large, all but the first term in the right hand side of (16) are a.s. zero. It remains to show the
inequality for the first.

Suppose now that Z2
n ≤ η

−γ
n . One may estimate

Un = (1−ηn)
1/2

�

1−
ηnZ2

n

1−ηn+ηnZ2
n

�1/2

≥ (1−ηn)
1/2

 

1−
η

1−γ
n

1−ηn

!1/2

≥ (1−η1−γ
n )1/2

 

1− 2η1−γ
n

1−ηn

!1/2

≥ 1− c1η
1−γ
n

where c1 := 2 supn≥n0
(1−ηn)

−1/2 <∞. Observe also that Un ≤ 1.

Let k0 ≥ 1 be from Lemma 14 applied with N =
p

8C + 1+1, δ1 = 1/8 and δ2 = ε, and fix k ≥ k0+1.
Let n ≥ n0 and define an auxiliary process (Z̃ (n)

j
) j≥n0−1 as Z̃

(n)

j
≡ Z j for n0 − 1 ≤ j ≤ n+ 1, and for

j > n+ 1 through

Z̃
(n)

j
= Zn+1+ θ

j
∑

i=n+2

W̃i .

For any n+ 2≤ j ≤ n+ k and ω ∈ An: j , the difference of Z̃
(n)

j
and Z j can be bounded by

|Z̃ (n)
j+1− Z j+1| ≤ |Z j ||1− U j|+ |Z̃ (n)j

− Z j | ≤ c1η
1− 3

2
γ

j
+ |Z̃ (n)

j
− Z j | ≤ · · ·

≤ c1

j
∑

i=n+1

η
1− 3

2
γ

i
≤ c1η

1− 3
2
γ

n

j
∑

i=n+1

�

ηi

ηn

�1− 3
2
γ

≤ c2( j − n)η
1− 3

2
γ

n

by Assumption 15. Therefore, for sufficiently large n ≥ n0, the inequality |Z̃ (n)
j
− Z j | ≤ 1 holds for

all n≤ j ≤ n+ k and ω ∈ An:n+k. Now, if ω ∈ An:n+k, the following bound holds

log
h

1+η j(Z
2
j − 1)

i

≥ log
�

1+η j(min{N , |Z j |}2− 1)
�

≥ 1{|Z̃ (n)
j
|>N} log

�

1+η j((N − 1)2− 1)
�

+ 1{|Z̃ (n)
j
|≤N} log

�

1−η j

�

≥ 1{|Z̃ (n)
j
|>N}(1− β j)η j8C − 1{|Z̃ (n)

j
|≤N}(1+ β j)η j
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by the mean value theorem, where the constant β j = β j(C ,η j) ∈ (0,1) can be selected arbitrarily
small whenever j is sufficiently large. Using this estimate, one can write for ω ∈ An:n+k

k
∑

j=1

log
h

1+ηn+ j

�

Z2
n+ j − 1

�i

≥ (1− βn)
∑

j∈I+
n+1:k

ηn+ j8C − (1+ βn)

k
∑

j=1

ηn+ j

where I+
n+1:k

:= { j ∈ [1, k] : Z̃
(n)

n+ j
> N}. Define the sets

Bn,k :=







1

k− 1

k−1
∑

j=1

1{|Z̃n+ j+1|≤N} ≤ δ1







.

Within Bn,k, it clearly holds that #I+
n+1:k ≥ k − 1− (k − 1)δ1 = 7(k − 1)/8. Thereby, for all ω ∈

Bn,k ∩ An:n+k

k
∑

j=1

log
h

1+ηn+ j

�

Z2
n+ j − 1

�i

≥ ηnk

�

(1− βn)
7

2

�

inf
1≤ j≤k

ηn+ j

ηn

�

C − (1+ βn)

�

sup
1≤ j≤k

ηn+ j

ηn

��

≥ kCηn

for sufficiently large n≥ 1, as then the constant βn can be chosen small enough, and by Assumption
15. In other words, if n≥ 1 is sufficiently large, then Bn,k ∩An:n+k ∩ Ln,k = ;. Now, Lemma 14 yields

P

�

Ln,k,An:n+k

�

� Fn

�

= P

�

Ln,k,An:n+k, Bn,k

�

� Fn

�

+P

�

Ln,k,An:n+k, B∁
n,k

�

� Fn

�

≤ P
�

B∁
n,k | Fn

�

≤ ε.

Using the estimate of Lemma 16, it is relatively easy to show that uT Snu tends to infinity, if the
adaptation weights satisfy an additional assumption.

Assumption 17. The adaptation weight sequence (ηn)n≥2 ⊂ (0,1) is in ℓ2 but not in ℓ1, that is,

∞
∑

n=2

ηn =∞ and
∞
∑

n=2

η2
n <∞.

Theorem 18. Assume that (Xn)n≥2 follows the ‘adaptive random walk’ recursion (6) and the adap-

tation weights (ηn)n≥2 satisfy Assumptions 15 and 17. Then, for any unit vector u ∈ R
d , the process

uT Snu→∞ almost surely.

Proof. The proof is based on the estimate of Lemma 16 applied with a similar martingale argument
as in Vihola (2009).

Let k ≥ 2 be from Lemma 16 applied with C = 4 and ε = 1/2. Denote ℓi := ki + 1 for i ≥ 0 and,
inspired by (14), define the random variables (Ti)i≥1 by

Ti :=min

¨

kMηℓi−1
,

ℓi
∑

j=ℓi−1+1

log
h

1+η j

�

Z2
j − 1

�i

«
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with the convention that η0 = 1. Form a martingale (Yi,Gi)i≥1 with Y1 ≡ 0 and having differences
dYi := Ti −E

�

Ti

�

� Gi−1

�

and where G1 ≡ {;,Ω} and Gi :=Fℓi for i ≥ 1. By Assumption 17,

∞
∑

i=2

E

�

dY 2
i

�

≤ c

∞
∑

i=1

η2
ℓi
<∞

with a constant c = c(k, C)> 0, so Yi is a L2-martingale and converges a.s. to a finite limit M∞ (e.g.
Hall and Heyde 1980, Theorem 2.15).

By Lemma 16, the conditional expectation satisfies

E

�

Ti+1

�

� Gi

�

≥ kCηℓi (1− ε) +
ℓi+1
∑

j=ℓi+1

log(1−η j)ε≥ kηℓi

when i is large enough, and where the second inequality is due to Assumption 15. This implies,
with Assumption 17, that

∑

i E

�

Ti

�

� Gi−1

�

=∞ a.s., and since Yi converges a.s. to a finite limit, it
holds that

∑

i Ti =∞ a.s.

By (14), one may estimate for any n= ℓm with m≥ 1 that

log(uT Snu)≥ log(uT S1u) +

m
∑

i=1

Ti →∞

as m→∞. Simple deterministic estimates conclude the proof for the intermediate values of n.

3.4 Stability with one-dimensional uniformly continuous log-density

In this section, the above analysis of the ‘adaptive random walk’ is extended to imply that
lim infn→∞ Sn > 0 for the one-dimensional AM algorithm, assuming logπ uniformly continuous.
The result follows similarly as in Theorem 18, by coupling the AM process with the ‘adaptive ran-
dom walk’ whenever Sn is small enough to ensure that the acceptance probability is sufficiently close
to one.

Theorem 19. Assume d = 1 and logπ is uniformly continuous, and that the adaptation weights

(ηn)n≥2 satisfy Assumptions 15 and 17. Then, there is a constant b > 0 such that lim infn→∞ Sn ≥ b.

Proof. Fix a δ ∈ (0,1). Due to the uniform continuity of logπ, there is a δ̃ > 0 such that

logπ(y)− logπ(x)≥
1

2
log

�

1−
δ

2

�

for all |x − y | ≤ δ̃1. Choose M̃ > 0 sufficiently large so that
∫

{|z|≤M̃} q̃(z)dz ≥
p

1−δ/2. Denote by

Qq(x ,A) :=

∫

A

q(y − x)dy
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the random walk transition kernel with increment distribution q, and observe that the ‘adaptive
random walk’ recursion (6) can be written as “Xn+1 ∼Qq̃Sn

(Xn, · ).” For any x ∈ Rd and measurable

A⊂ R
d

|Qq̃s
(x ,A)− Pq̃s

(x ,A)| ≤ 2

�

1−
∫

min

�

1,
π(y)

π(x)

�

q̃s(y − x)dy

�

≤ 2



1−
∫

{|z|≤M̃}
min

�

1,
π(x +

p
θ sz)

π(x)

�

q̃(z)dz



 .

Now, |Qq̃s
(x ,A)− Pq̃s

(x ,A)| ≤ δ whenever
p
θ sz ≤ δ̃1 for all |z| ≤ M̃ . In other words, there exists a

µ= µ(δ)> 0 such that whenever s < µ, the total variation norm ‖Qq̃s
(x , ·)− Pq̃s

(x , ·)‖ ≤ δ.

Next we shall consider a ‘adaptive random walk’ process to be coupled with (Xn, Mn,Sn)n≥1. Let

n, k ≥ 1 and define the random variables (X̃ (n)
j

, M̃
(n)

j
, S̃(n)

j
) j∈[n,n+k] by setting (X̃ (n)n , M̃ (n)n , S̃(n)n ) ≡

(Xn, Mn,Sn) and

X̃
(n)

j+1 ∼ Qq̃
S̃
(n)
j

(X̃
(n)

j
, · ),

M̃
(n)

j+1 := (1−η j+1)M̃
(n)

j
+η j+1X̃

(n)

j+1 and

S̃
(n)

j+1 := (1−η j+1)S̃
(n)

j
+η j+1(X̃

(n)

j+1− M̃
(n)

j
)2

for j + 1 ∈ [n + 1, n + k]. The variable X̃
(n)

n+1 can be selected so that P(X̃
(n)

n+1 = Xn+1 | Fn) =

1−‖Pq̃Sn
(Xn, · )−Qq̃

S̃
(n)
n

(X̃ (n)n , · )‖; see Theorem 37 in Appendix D. Consequently, P(X̃ (n)n+1 6= Xn+1, Sn <

µ | Fn)≤ δ. By the same argument, X̃
(n)

n+2 can be chosen so that

P
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n+2 6= Xn+2, X̃
(n)

n+1 = Xn+1, Sn+1 < µ
�

� σ(Fn+1, X̃
(n)

n+1)
�

≤ δ

since if X̃
(n)

n+1 = Xn+1, then also S̃
(n)

n+1 = Sn+1. This implies

P
�

{X̃ (n)n+2 6= Xn+2} ∪ {X̃ (n)n+1 6= Xn+1} ∩ Bn:n+2

�

�Fn

�

≤ 2δ

where Bn: j := ∩ j−1
i=n
{Si < µ} for j > n. The same argument can be repeated to construct

(X̃
(n)

j
) j∈[n,n+k] so that

P

�

Dn:n+k

�

� Fn

�

≥ 1− kδ (17)

where Dn:n+k :=
⋂n+k

j=n {X̃
(n)

j
= X j} ∪ B∁

n:n+k
.

Apply Lemma 16 with C = 18 and ε= 1/6 to obtain k ≥ 1, and fix δ = ε/k. Denote ℓi := ik+ 1 for
any i ≥ 0, and define the random variables (Ti)i≥1 by

Ti := 1{Sℓi−1
<µ/2}min

¨

kMηℓi−1
,

ℓi
∑

j=ℓi−1+1

log
h

1+η j

�

Z2
j − 1

�i

«

(18)

where Z j are defined as (13).
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Define also T̃i similarly as Ti , but having Z̃
(ℓi−1)

j
with j ∈ [ℓi−1+1,ℓi] in the right hand side of (18),

defined as Z̃
(ℓi−1)

ℓi−1
≡ Zℓi−1

and by

Z̃
(ℓi−1)

j
:=
�

X̃
(ℓi−1)

j
− M̃

(ℓi−1)

j−1

�

.

q

S̃
(ℓi−1)

j−1 .

for j ∈ [ℓi−1 + 1,ℓi]. Notice that Ti coincides with T̃i in Bℓi−1:ℓi ∩ Dℓi−1:ℓi . Observe also that X̃
(ℓi−1)

j

follows the ‘adaptive random walk’ equation (6) for j ∈ [ℓi−1+1,ℓi], and hence Z̃
(ℓi−1)

j
follows (15).

Consequently, denoting Gi := Fℓi , Lemma 16 guarantees that

P

�

Lℓi−1,k

�

�

� Gi

�

≤ ε (19)

where Lℓi−1,k := {T̃i < kMηℓi−1
}.

Let us show next that whenever Sℓi−1
is small, the variable Ti is expected to have a positive value

proportional to the adaptation weight,

E

�

Ti

�

� Gi−1

�

1{Sℓi−1
<µ/2} ≥ kηℓi−1

1{Sℓi−1
<µ/2} (20)

almost surely for any sufficiently large i ≥ 1. Write first

E

�

Ti

�

� Gi−1

�
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<µ/2} = E

�

(1
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≥ E
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µ

2
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ª

+ 1Bℓi−1:ℓi
ξi

�

�

�

�

Gi−1

�

1{Sℓi−1
<µ/2}

where the lower bound ξi of Ti is given as

ξi :=
ℓi
∑

j=ℓi−1+1

log(1−η j).

By Assumption 15, ξi ≥ −2kηℓi−1
≥ −µ/4 for any sufficiently large i. Therefore, whenever

P

�

B∁
ℓi−1:ℓi

�

�

� Gi−1

�

≥ ε= 3/C , it holds that

E

�

Ti

�

� Gi−1
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1{Sℓi−1
<µ/2} ≥ kηℓi−1

1{Sℓi−1
<µ/2}

for any sufficiently large i. On the other hand, if P
�

B∁
ℓi−1:ℓi

�

�

� Gi−1
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≤ ε, then by defining

Ei := B∁
ℓi−1:ℓi
∪ D∁

ℓi−1:ℓi
∪ Lℓi−1,k

one has by (17) and (19) that P(Ei)≤ 3ε, and consequently

E
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Ti
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1Ei
T̃i
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.
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This establishes (20).

Define the stopping times τ1 ≡ 1 and for n≥ 2 through τn := inf{i > τn−1 : Sℓi−1
≥ µ/2, Sℓi < µ/2}

with the convention that inf; = ∞. That is, τi record the times when Sℓi enters (0,µ/2]. Using
τi, define the latest such time up to n by σn := sup{τi : i ≥ 1, τi ≤ n}. As in Theorem 18,
define the almost surely converging martingale (Yi,Gi)i≥1 with Y1 ≡ 0 and having the differences
dYi := (Ti −E

�

Ti

�

� Gi−1

�

) for i ≥ 2.

It is sufficient to show that lim infi→∞ Sℓi ≥ b := µ/4 > 0 almost surely. If there is a finite i0 ≥ 1
such that Sℓi ≥ µ/2 for all i ≥ i0, the claim is trivial. Let us consider for the rest of the proof the case
that {Sℓi < µ/2} happens for infinitely many indices i ≥ 1.

For any m≥ 2 such that Sℓm < µ/2, one can write

log Sℓm ≥ log Sℓσm
+

m
∑

i=σm+1

Ti

≥ log Sℓσm
+ (Ym− Yσm

) +

m
∑

i=σm+1

kηℓi−1

(21)

since then Sℓi < µ/2 for all i ∈ [σm, m− 1] and hence also E

�

Ti

�

� Gi−1

�

≥ kηℓi−1
.

Suppose for a moment that there is a positive probability that Sℓm stays within (0,µ/2) indefinitely,
starting from some index m1 ≥ 1. Then, there is an infinite τi and consequently σm ≤ σ <∞ for
all m ≥ 1. But as Ym converges, |Ym − Yσm

| is a.s. finite, and since
∑

mηℓm =∞ by Assumptions 15
and 17, the inequality (21) implies that Sℓm ≥ µ/2 for sufficiently large m, which is a contradiction.
That is, the stopping times τi for all i ≥ 1 must be a.s. finite, whenever Sℓm < µ/2 for infinitely
many indices m≥ 1.

For the rest of the proof, suppose Sℓm < µ/2 for infinitely many indices m ≥ 1. Observe that since
Ym → Y∞, there exists an a.s. finite index m2 so that Ym − Y∞ ≥ −1/2 log 2 for all m ≥ m2. As
ηn→ 0 and σm→∞, there is an a.s. finite m3 such that ξσm−1

≥ −1/2 log 2 for all m ≥ m3. For all
m≥max{m2, m3} and whenever Sℓm < µ/2, it thereby holds that

log Sℓm ≥ log Sℓσm
− (Ym− Yσm

)≥ log Sℓσm−1
+ ξσm

−
1

2
log 2

≥ log
µ

2
− log 2= log b.

The case Sℓm ≥ µ/2 trivially satisfies the above estimate, concluding the proof.

As a consequence of Theorem 19, one can establish a strong law of large numbers for the uncon-
strained AM algorithm running with a Laplace target distribution. Essentially, the only ingredient
that needs to be checked is that the simultaneous geometric ergodicity condition holds. This is
verified in the next lemma, whose proof is given in Appendix E.

Lemma 20. Suppose that the template proposal distribution q̃ is everywhere positive and non-

increasing away from the origin: q̃(z) ≥ q̃(w) for all |z| ≤ |w|. Suppose also that π(x) :=
1

2b
exp
�

− |x−m|
b

�

with a mean m ∈ R and a scale b > 0. Then, for all L > 0, there are positive
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constants M , b such that the following drift and minorisation condition are satisfied for all s ≥ L and

measurable A⊂ R

PsV (x)≤ λsV (x) + b1C(x), ∀x ∈ R (22)

Ps(x ,A)≥ δsν(A), ∀x ∈ C (23)

where V : R→ [1,∞) is defined as V (x) := (supz π(z))
1/2π−1/2(x), the set C := [m−M , m+M], the

probability measure µ is concentrated on C and PsV (x) :=
∫

V (y)Ps(x , dy). Moreover, λs,δs ∈ (0,1)
satisfy for all s ≥ L

max{(1−λs)
−1,δ−1

s } ≤ csγ (24)

for some constants c,γ > 0 that may depend on L.

Theorem 21. Assume the adaptation weights (ηn)n≥2 satisfy Assumptions 15 and 17, and the template

proposal density q̃ and the target distribution π satisfy the assumptions in Lemma 20. If the functional

f satisfies supx∈Rπ
−γ(x)| f (x)| <∞ for some γ ∈ (0,1/2). Then, n−1

∑n

k=1 f (Xk)→
∫

f (x)π(x)dx

almost surely as n→∞.

Proof. The conditions of 19 are clearly satisfied implying that for any ε > 0 there is a κ = κ(ε) > 0
such that the event

Bκ :=
§

inf
n

Sn ≥ κ
ª

has a probability P(Bκ)≥ 1− ε.
The inequalities (22) and (23) of Lemma 20 with the bound (24) imply, using (Saksman and Vihola
2010, Proposition 7 and Lemma 12), that for any β > 0 there is a constant A= A(κ,ε,β) <∞ such
that P(Bκ ∩ {max{|Sn|, |Mn|}> Anβ})≤ ε. Let us define the sequence of truncation sets

Kn := {(m, s) ∈ R×R+ : λmin(s)≥ κ, max{|s|, |m|} ≤ Anβ}

for n ≥ 1. Construct an auxiliary truncated process (X̃n, M̃n, S̃n)n≥1, starting from (X̃1, M̃1, S̃1) ≡
(X1, M1,S1) and for n≥ 2 through

X̃n+1 ∼ Pq̃S̃n
(X̃n, ·)

(M̃n+1, S̃n+1) = σn+1

h

(M̃n, S̃n), ηn+1
�

X̃n+1− M̃n, (X̃n+1− M̃n)
2− S̃n

�

i

where the truncation function σn+1 : (Kn)× (R×R)→ Kn is defined as

σn+1(z, z′) =

(

z + z′, if z + z′ ∈ Kn

z, otherwise.

Observe that this constrained process coincides with the AM process with probability P
�

∀n ≥
1 : (X̃n, M̃n, S̃n) = (Xn, Mn,Sn)

�

≥ 1 − 2ε. Moreover, (Saksman and Vihola 2010, Theorem
2) implies that a strong law of large numbers holds for the truncated process (X̃n)n≥1, since
supx | f (x)|V−α(x) <∞ for some α ∈ (0,1− β), by selecting β > 0 above sufficiently small. Since
ε > 0 was arbitrary, the strong law of large numbers holds for (Xn)n≥1.
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4 AM with a fixed proposal component

This section deals with the modification due to Roberts and Rosenthal Roberts and Rosenthal
(2009), including a fixed component in the proposal distribution. In terms of Section 2, the mixing
parameter in (5) satisfies 0< β < 1. Theorem 24 shows that the fixed proposal component guaran-
tees, with a verifiable non-restrictive Assumption 22, that the eigenvalues of the adapted covariance
parameter Sn are bounded away from zero. As in Section 3.4, this result implies an ergodicity result,
Theorem 29.

Let us start by formulating the key assumption that, intuitively speaking, assures that the adaptive
chain (Xn)n≥1 will have ‘uniform mobility’ regardless of the adaptation parameter s ∈ C d .

Assumption 22. There exist a compactly supported probability measure ν that is absolutely contin-
uous with respect to the Lebesgue measure, constants δ > 0 and c <∞ and a measurable mapping
ξ : Rd ×C d → R

d such that for all x ∈ Rd and s ∈ C d ,

‖ξ(x , s)− x‖ ≤ c and Pqs
(x ,A)≥ δν

�

A− ξ(x , s)
�

for all measurable sets A ⊂ R
d , where A− y := {x − y : x ∈ A} is the translation of the set A by

y ∈ Rd .

Remark 23. In the case of the AM algorithm with a fixed proposal component, one is primarily
interested in the case where ξ(x , s) = ξ(x) and for all x ∈ Rd

βqfix(x − y)min

�

1,
π(y)

π(x)

�

≥ δν
�

y − ξ(x)
�

for all y ∈ Rd , where ν is a uniform density on some ball. Then, since Pqs
= (1− β)Pq̃s

+ βPqfix
,

Pqs
(x ,A)≥ βPqfix

(x ,A)≥ δ
∫

A

ν(y − ξ)dy

and Assumption 22 is fulfilled by the measure ν(A) :=
∫

A
ν(y)dy .

Having Assumption 22, the lower bound on the eigenvalues of Sn can be obtained relatively easily,
by a martingale argument similar to the one used in Section 3 and in Vihola (2009).

Theorem 24. Let (Xn, Mn,Sn)n≥1 be an AM process as defined in Section 2 satisfying Assumption 22.

Moreover, suppose that the adaptation weights (ηn)n≥2 satisfy Assumptions 15 and 17. Then,

lim inf
n→∞

inf
w∈S d

wT Snw > 0

where S d stands for the unit sphere.

Proof. Let us first introduce independent binary auxiliary variables (Zn)n≥2 with Z1 ≡ 0, and through

P

�

Zn+1 = 1
�

� Xn, Mn,Sn, Zn

�

= δ

P

�

Zn+1 = 0
�

� Xn, Mn,Sn, Zn

�

= (1− δ).
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Using this auxiliary variable, we can assume Xn to follow3

Xn+1 = Zn+1(Un+1+Ξn) + (1− Zn+1)Rn+1

where Un+1 ∼ ν(·) is independent of Fn and Zn+1, the random variable Ξn := ξ(Xn,Sn) is Fn-
measurable, and Rn+1 is distributed according to the ‘residual’ transition kernel P̌Sn

(Xn,A) := (1−
δ)−1[PqSn

(Xn,A)−δν(A−Ξn)], valid by Assumption 22.

Define S (w,γ) := {v ∈ S d : ‖w − v‖ ≤ γ}, the segment of the unit sphere centred at w ∈ S d and
having the radius γ > 0. Fix a unit vector w ∈ S d and define the following random variables

Γ
(γ)
n+2 := inf

v∈S (w,γ)

�

|vT (Xn+1−Mn)|2+ |vT (Xn+2−Mn+1)|2
�

for all n ≥ 1. Denote Gn+1 := Xn+1 − Mn and En+1 := Ξn+1 − Xn+1, and observe that whenever
Zn+2 = 1, it holds that

Xn+2−Mn+1 = Un+2+ Xn+1−Mn+1+ En+1

= Un+2+ (1−ηn+1)Gn+1+ En+1

and we may write

Zn+2Γ
(γ)
n+2 = Zn+2 inf

v∈S (w,γ)

�

|vT Gn+1|2+ |vT (Un+2+λn+1Gn+1+ En+1)|2
�

where λn := 1− ηn ∈ (0,1) for all n ≥ 2. Consequently, we may apply Lemma 25 below to find
constants γ,µ > 0 such that

P

�

Zn+2Γ
(γ)
n+2 ≥ µ

�

�

� Fn

�

≥
δ

2
. (25)

Hereafter, assume γ > 0 is fixed such that (25) holds, and denote Γn+2 := Γ(γ)n+2 and S (w) :=
S (w,γ).

Consider the random variables

Dn+2 := inf
v∈S (w)

�

ηn+1|vT (Xn+1−Mn)|2+ηn+2|vT (Xn+2−Mn+1)|2
�

≥min{ηn+1,ηn+2}Γn+2 ≥ η∗ηn+1Γn+2 (26)

where η∗ := infk≥2ηk+1/ηk > 0 by Assumption 15. Define the indices ℓn := 2n−1 for n≥ 1 and let

Tn := η∗min{µ, ZℓnΓℓn}

for all n ≥ 2. Define the σ-algebras Gn := Fℓn for n ≥ 1 and observe that E

�

Tn+1

�

� Gn

�

≥
η∗µδ/2 by (25). Construct a martingale starting from Y1 ≡ 0 and having the differences dYn+1 :=
ηℓn+1(Tn+1 −E

�

Tn+1

�

� Gn

�

). The martingale Yn converges to an a.s. finite limit Y∞ as in Theorem
18.

Define also η∗ := supk≥2ηk+1/ηk <∞ and κ := infk≥2 1−ηk > 0, and let

b :=
κη∗µδ

8η∗
> 0.

3by possibly augmenting the probability space; see (Athreya and Ney 1978; Nummelin 1978).
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Denote S(w)n
:= infv∈S (w) vT Snv and define the stopping times τ1 ≡ 1 and for k ≥ 2 through

τk := inf{n> τk−1 : S
(w)

ℓn
≤ b, S

(w)

ℓn−1
> b}

with the convention inf;=∞. That is, τk record the times when S
(w)

ℓn
enters (0, b]. Using τk, define

the latest such time up to n by σn := sup{τk : k ≥ 1, τk ≤ n}.
Observe that for any n≥ 2 such that S

(w)

ℓn
≤ b, one may write

S
(w)

ℓn
= S

(w)

ℓσn

+

n−1
∑

k=σn

�

Dℓk+2−ηℓk+1S
(w)

ℓk
−ηℓk+2S

(w)

ℓk+1

�

≥ S
(w)

ℓσn

+

n−1
∑

k=σn

�

ηℓk+1Tk+1−ηℓk+1 b−ηℓk+2κ
−1 b
�

≥ S
(w)

ℓσn

+

n−1
∑

k=σn

ηℓk+1

�

Tk+1−
η∗µδ

4

�

by (26) and since for all k ∈ [σn, n− 1] one may estimate S
(w)

ℓk+1 ≤ (1−ηℓk+1)
−1S

(w)

ℓk+1
≤ κ−1 b.

That is, for any n≥ 2 such that S
(w)

ℓn
≤ b

S
(w)

ℓn
≥ S

(w)

ℓσn

+ (Yn− Yσn
) +

n−1
∑

k=σn

ηℓk+1

�

E

�

Tk+1

�

� Gk

�

−
η∗δµ

4

�

≥ S
(w)

ℓσn

+ (Yn− Yσn
) +
η∗δµ

4

n−1
∑

k=σn

ηℓk+1.

As in the proof of Theorem 19, this is sufficient to find a ǫ > 0 such that

lim inf
n→∞

S(w)n ≥ ǫ.

Finally, take a finite number of unit vectors w1, . . . , wN ∈ S d such that the corresponding segments
S (w1), . . . ,S (wN ) cover S d . Then,

lim inf
n→∞

inf
v∈S d

vT Snv = lim inf
n→∞

min
�

S(w1)
n , . . . ,S(wN )

n

	

≥ ǫ.

Lemma 25. Suppose Fn ⊂ Fn+1 are σ-algebras, and Gn+1 and En+1 are Fn+1-measurable random

variables, satisfying ‖En+1‖ ≤ M for some constant M < ∞. Moreover, Un+2 is a random variable

independent of Fn+1, having a distribution ν fulfilling the conditions in Assumption 22.

Let S d := {u ∈ Rd : ‖u‖= 1} stand for the unit sphere and denote by S (w,γ) := {v ∈ S d : ‖w− v‖ ≤
γ} the segment of the unit sphere centred at w ∈ S d and having the radius γ > 0. There exist constants

γ,µ > 0 such that

P

�

inf
v∈S (w,γ)

�

|vT Gn+1|2+ |vT (Un+2+λGn+1+ En+1)|2
�

> µ

�

�

�

�

Fn

�

≥
1

2
.

for any w ∈ S d and any constant λ ∈ (0,1), almost surely.
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Proof. Since ν is absolutely continuous with respect to the Lebesgue measure, one can show that
there exist values b,γ > 0 such that

inf
w∈S d

inf
e∈B(0,M)

ν

�

�

u ∈ Rd : inf
v∈S (w,γ)

|vT (u+ e)|> b
	

�

≥
1

2
(27)

where B(0, M) := {y ∈ R
d : ‖y‖ ≤ M} denotes a centred ball of radius M . Hereafter, fix γ, b > 0

such that (27) holds and let a := b/2.

Fix a unit vector w ∈ S d and consider the set

A :=

�

inf
v∈S (w,γ)

�

|vT Gn+1|2+ |vT (Un+2+λGn+1+ En+1)|2
�

≤ a2
�

⊂
¨

inf
v∈S (w,γ) : |vT Gn+1|≤a

|vT (Un+2+λGn+1+ En+1)| ≤ a

«

⊂
¨

inf
v∈S (w,γ) : |vT Gn+1|≤a

|vT (Un+2+ En+1)| −λ|vT Gn+1| ≤ a

«

⊂
�

inf
v∈S (w,γ)

|vT (Un+2+ En+1)| ≤ 2a

�

.

Since Un+2 is independent of Fn+1, and since En+1 is Fn+1-measurable, one may estimate

P

�

A∁

�

�

� Fn

�

≥ E



 inf
e∈B(0,M)

P

�

inf
v∈S (w,γ)

|vT (Un+2+ e)|> 2a

�

�

�

�

Fn+1

�

�

�

�

�

�

Fn





= inf
e∈B(0,M)

ν

�

�

u ∈ Rd : inf
v∈S (w,γ)

|vT (u+ e)|> b
	

�

≥
1

2

by (27), almost surely, concluding the proof by µ := a2.

Corollary 26. Assume π is bounded, stays bounded away from zero on compact sets, is differentiable

on the tails, and has regular contours, that is,

lim inf
‖x‖→∞

x

‖x‖ ·
∇π(x)
‖∇π(x)‖ < 0. (28)

Let (Xn, Mn,Sn)n≥1 be an AM process as defined in Section 2 using a mixture proposal (5) with a mixing

weight satisfying β ∈ (0,1) and the density qfix is bounded away from zero in some neighbourhood of

the origin. Moreover, suppose that the adaptation weights (ηn)n≥2 satisfy Assumptions 15 and 17.

Then,

lim inf
n→∞

inf
w∈S d

wT Snw > 0.

Proof. In light of Theorem 24, it is sufficient to check Assumption 22, or in fact the conditions in
Remark 23. Let L > 0 be sufficiently large so that inf‖x‖≥L

x

‖x‖ ·
∇π(x)
‖∇π(x)‖ < 0. Jarner and Hansen

(Jarner and Hansen 2000, proof of Theorem 4.3) show that there is an ε′ > 0 and K > 0 such that
the cone

E(x) :=

¨

x − au : 0< a < K , u ∈ S d ,









u−
x

‖x‖









≤ ε′
«
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is contained in the set A(x) := {y ∈ Rd : π(y)≥ π(x)}, for all ‖x‖ ≥ L.

Let r ′ > 0 be sufficiently small to ensure that inf‖z‖≤r ′ qfix(z) ≥ δ′ > 0. There is a r = r(ε′, K) ∈
(0, r ′/2) and measurable ξ : Rd → R

d such that ‖ξ(x) − x‖ ≤ r ′/2 and the ball B(x , r) := {y :
‖y − ξ(x)‖ ≤ r} is contained in the cone E(x). Define ν(x) := c−1

r 1B(0,r)(x) where cr := |B(0, r)|
is the Lebesgue measure of B(0, r), and let ξ(x) := x for the remaining ‖x‖ < L. Now, we have for
‖x‖ ≥ L that

βqfix(x − y)min

�

1,
π(y)

π(x)

�

≥ βδ′crν(y − ξ).

Since π is bounded and bounded away from zero on compact sets, the ratio π(y)/π(x) ≥ δ′′ > 0
for all x , y ∈ B(0, L + r ′) with ‖x − y‖ ≤ r ′. Therefore, for all ‖x‖< L, it holds that

βqfix(x − y)min

�

1,
π(y)

π(x)

�

≥ βδ′δ′′crν(y − x).

Remark 27. The conditions of Corollary 26 are fulfilled by many practical densities π (see
Jarner and Hansen (2000) for examples), and are fairly easy to verify in practice. Assumption 22
holds, however, more generally, excluding only densities with unbounded density or having irregular
contours.

Remark 28. It is not necessary for Theorem 24 and Corollary 26 to hold that the adaptive proposal
densities {q̃s}s∈C d have the specific form discussed in Section 2. The results require only that a
suitable fixed proposal component is used so that Assumption 22 holds. In Theorem 29 below,
however, the structure of {q̃s}s∈C d is required.

Let us record the following ergodicity result, which is a counterpart to (Saksman and Vihola 2010,
Theorem 10) formulating a a strong law of large numbers for the original algorithm (S1)–(S3) with
the covariance parameter (1).

Theorem 29. Suppose the target density π is continuous and differentiable, stays bounded away from

zero on compact sets and has super-exponentially decaying tails with regular contours,

lim sup
‖x‖→∞

x

‖x‖ρ · ∇ logπ(x) =−∞ and lim sup
‖x‖→∞

x

‖x‖ ·
∇π(x)
‖∇π(x)‖ < 0,

respectively, for some ρ > 1.

Let (Xn, Mn,Sn)n≥1 be an AM process as defined in Section 2 using a mixture proposal qs(z) = (1−
β)q̃s(z) + βqfix(z) where q̃s stands for a zero-mean Gaussian density with covariance s, the mixing

weight satisfies β ∈ (0,1) and the density qfix is bounded away from zero in some neighbourhood of the

origin. Moreover, suppose that the adaptation weights (ηn)n≥2 satisfy Assumption 17.

Then, for any function f : Rd → R with supx∈Rd πγ(x)| f (x)|<∞ for some γ ∈ (0,1/2),

1

n

n
∑

k=1

f (Xk)
n→∞−−−→

∫

Rd

f (x)π(x)dx

almost surely.
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Proof. The conditions of Corollary 26 are satisfied, implying that for any ε > 0 there is a κ= κ(ε)>
0 such that P

�

infnλmin(Sn) ≥ κ
�

≥ 1− ε where λmin(s) denotes the smallest eigenvalue of s. By
(Saksman and Vihola 2010, Proposition 15), there is a compact set Cκ ⊂ R

d , a probability measure
νκ on Cκ, and bκ <∞ such that for all s ∈ C d with λmin(s)≥ κ, it holds that

Pq̃s
V (x)≤ λsV (x) + b1Cκ

(x), ∀x ∈ Rd (29)

Pq̃s
(x ,A)≥ δsν(A) ∀x ∈ Cκ (30)

where V (x) := (supx π(x))
1/2π−1/2(x)≥ 1 and the constants λs,δs ∈ (0,1) satisfy the bound

(1−λs)
−1 ∨δ−1

s ≤ c1 det(s)1/2 (31)

for some constant c1 ≥ 1. Likewise, there is a compact D f ⊂ R
d , a probability measure µ f on D f ,

and constants b f <∞ and λ f ,δ f ∈ (0,1), so that (29) and (30) hold with Pf (Jarner and Hansen
2000, Theorem 4.3). Put together, (29) and (30) hold for Pqs

for all s ∈ C d with λmin(s) ≥ κ,
perhaps with different constants, but satisfying a bound (31), with another c2 ≥ c1.

The rest of the proof follows as in Theorem 21 by construction of an auxiliary process (X̃n, M̃n, S̃n)n≥1

truncated so that for given ǫ > 0, κ ≤ λmin(S̃n) ≤ anǫ and |M̃n| ≤ anǫ and where the constant
a = a(ǫ,κ) is chosen so that the truncated process coincides with the original AM process with
probability ≥ 1−2ε. Theorem 2 of Saksman and Vihola (2010) ensures that the strong law of large
numbers holds for the constrained process, and letting ε→ 0 implies the claim.

Remark 30. In the case ηn := n−1, Theorem 29 implies that with probability one, Mn → mπ :=
∫

xπ(x)dx and Sn→ sπ :=
∫

x x Tπ(x)dx−mπmT
π, the true mean and covariance of π, respectively.

Remark 31. Theorem 29 holds also when using multivariate Student distributions {q̃s}s∈C d , as
(Vihola 2009, Proposition 26 and Lemma 28) extend the result in Saksman and Vihola (2010) to
cover this case.
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(a) (ηn+1/ηn)n≥m′ is increasing with ηn+1/ηn→ 1 and

(b) η
−1/2
n+1 −η−1/2

n → 0.

Proof. Define an := η−1/2
n for all n ≥ m′. By Assumption 11 (i) (an)n≥m′ is increasing and by

Assumption 11 (ii), (∆an)n≥m′+1 is decreasing, where ∆an := an− an−1. One can write

an

an+1
=

1

1+ ∆an+1

an

≥
1

1+ ∆an

an−1

=
an−1

an

implying that (ηn+1/ηn)n≥m′ is increasing. Denote c = limn→∞ηn+1/ηn ≤ 1. It holds that ηm′+k ≤
cηm′+k−1 ≤ · · · ≤ ckηm′ . If c < 1, then

∑

nηn <∞ contradicting Assumption 11 (iii), so c must be
one, establishing (a).

From (a), one obtains
η
−1/2
n+1 −η−1/2

n

η
−1/2
n

=

�

ηn

ηn+1

�1/2

− 1→ 0

implying (b).

Lemma 33. Suppose m1 ≥ 1, gm1
≥ 0, the sequence (ηn)n≥m1

satisfies Assumption 11 and θ̃ > 0 is a

constant. The sequence (gn)n>m1
defined through

gn+1 := η1/2
n+1

 

(1−ηn)
3

ηn

gn

gn+η
−1/2
n

+ θ̃2

!

satisfies limn→∞ gn = θ̃ .

Proof. Define the functions fn : R+→ R+ for n≥ m1+ 1 by

fn+1(x) := η1/2
n+1

 

(1−ηn)
3

ηn

x

x +η
−1/2
n

+ θ̃2

!

.

The functions fn are contractions on [0,∞) with contraction coefficient qn := (1−ηn)
3 since for all

x , y ≥ 0

�

� fn+1(x)− fn+1(y)
�

�= η
1/2
n+1

(1−ηn)
3

ηn

�

�

�

�

�

x

x +η
−1/2
n

−
y

y +η
−1/2
n

�

�

�

�

�

=

�

ηn+1

ηn

�1/2 (1−ηn)
3

ηn

�

�

�

�

�

x − y

(x +η
−1/2
n )(y +η

−1/2
n )

�

�

�

�

�

≤
�

ηn+1

ηn

�1/2

(1−ηn)
3
�

�x − y
�

�≤ qn+1

�

�x − y
�

�

where the second inequality holds since ηn+1 ≤ ηn.

The fixed point of fn+1 can be written as

x∗n+1 :=
1

2

�

−ξn+1+
Æ

ξ2
n+1+µn+1

�
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where

ξn+1 := η−1/2
n −η1/2

n+1η
−1
n (1−ηn)

3−η1/2
n+1θ̃

2

µn+1 := 4η−1/2
n η

1/2
n+1θ̃

2.

Lemma 32 (a) implies µn+1→ 4θ̃2. Moreover,

ξn+1 = η
−1/2
n −η1/2

n+1η
−1
n +η

1/2
n+1(3− 3ηn+η

2
n− θ̃

2)

=

�

ηn+1

ηn

�1/2�

η
−1/2
n+1 −η

−1/2
n

�

+η
1/2
n+1(3− 3ηn+η

2
n− θ̃

2).

Therefore, by Assumption 11 (i) and Lemma 32, ξn+1→ 0 and consequently the fixed points satisfy
x∗n→ θ̃ .

Consider next the consecutive differences of the fixed points. Using the mean value theorem and
the triangle inequality, write

2
�

�x∗n+1− x∗n
�

�≤
�

�ξn+1− ξn

�

�+
1

2
p
τn

�

�ξ2
n+1− ξ

2
n+µn+1−µn

�

�

≤
�

�ξn+1− ξn

�

�+
τ′np
τn

�

�ξn+1− ξn

�

�+
1

2
p
τn

�

�µn+1−µn

�

�

≤ c1

�

�ξn+1− ξn

�

�+ c1

�

�µn+1−µn

�

�

where the value of τn is between ξ2
n+1 + µn+1 and ξ2

n + µn converging to 4θ̃2 > 0, the value of τ′n
is between |ξn+1| and |ξn| converging to zero, and c1 > 0 is a constant.

The differences of the latter terms satisfy for all m≥ m′

m
∑

n=m′

�

�µn+1−µn

�

�= 4θ̃2
m
∑

n=m′

�
�

ηn+1

ηn

�1/2

−
�

ηn

ηn−1

�1/2
�

≤ 4θ̃2

�

1−
�

ηm′

ηm′−1

�1/2
�

≤ 4θ̃2.

by Assumption 11 (ii) and Lemma 32 (a). For the first term, let us estimate

�

�ξn+1− ξn

�

�≤

�

�

�

�

�

�

ηn+1

ηn

�1/2�

η
−1/2
n+1 −η

−1/2
n

�

−
�

ηn

ηn−1

�1/2�

η−1/2
n −η−1/2

n−1

�

�

�

�

�

�

+
�

�3− θ̃2
�

�

�

�

�η1/2
n −η

1/2
n+1

�

�

�+

�

�

�η
1/2
n+1(3ηn−η2

n)−η
1/2
n (3ηn−1−η2

n−1)

�

�

� .

Assumption 11 (i) implies that η1/2
n − η

1/2
n+1 ≥ 0 for n ≥ m′ and hence

∑m

n=m′

�

�

�η1/2
n −η

1/2
n+1

�

�

� ≤ η1/2
m′

for any m≥ m′. Since the function (x , y) 7→ x(3y− y2) is Lipschitz on [0,1]2, there is a constant c2

independent of n such that
�

�η
1/2
n+1(3ηn−η2

n)−η1/2
n (3ηn−1−η2

n−1)
�

�≤ c2
�

|η1/2
n+1−η1/2

n |+ |ηn−ηn−1|
�

,
and a similar argument shows that

m
∑

n=m′

�

�

�η
1/2
n+1(3ηn−η2

n)−η
1/2
n (3ηn−1−η2

n−1)

�

�

�≤ c3 <∞.
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One can also estimate
�

�

�

�

�

�

ηn+1

ηn

�1/2�

η
−1/2
n+1 −η

−1/2
n

�

−
�

ηn

ηn−1

�1/2�

η−1/2
n −η−1/2

n−1

�

�

�

�

�

�

≤ c4

�

�

�

�

�

�

ηn+1

ηn

�1/2

−
�

ηn

ηn−1

�1/2
�

�

�

�

�

+ c4

�

�

�

�

η
−1/2
n+1 −η

−1/2
n

�

−
�

η−1/2
n −η−1/2

n−1

�
�

�

�

yielding by Assumption 11 (ii) and Lemma 32 that
∑m

n=m′ |ξn+1 − ξn| ≤ c5 for all m ≥ m′, with a
constant c5 <∞. Combining the above estimates, the fixed point differences satisfy

m
∑

n=m′
|x∗n+1− x∗n|<∞.

Fix a δ > 0 and let nδ > m1 be sufficiently large so that
∑∞

k=nδ+1 |x∗n+1− x∗n| ≤ δ implying also that

|x∗n− θ̃ | ≤ δ for all n≥ nδ. Then, for n≥ nδ one may write
�

�gn− θ̃
�

�≤
�

�gn− x∗n
�

�+
�

�x∗n− θ̃
�

�≤
�

� fn(gn−1)− fn(x
∗
n)
�

�+δ

≤ qn

�

�gn−1− x∗n
�

�+ δ ≤ qn

�

�gn−1− x∗n−1

�

�+
�

�x∗n−1− x∗n
�

�+δ

≤ qnqn−1

�

�gn−2− x∗n−2

�

�+
�

�x∗n−2− x∗n−1

�

�+
�

�x∗n−1− x∗n
�

�+δ

≤ · · · ≤







n
∏

k=nδ+1

qk







�

�

�gnδ
− x∗nδ

�

�

�+ 2δ.

Since log
∏n

k=nδ+1 qk = 3
∑n

k=nδ+1 log(1− ηk−1) ≤ −3
∑n−1

k=nδ
ηk → −∞ as n→ ∞ by Assumption

11 (iii), it holds that (
∏n

k=nδ+1 qk)|gnδ
− x∗nδ | → 0. That is, |gn − θ̃ | ≤ 3δ for any sufficiently large

n, and since δ > 0 was arbitrary, gn→ θ̃ .

B Lemmas for Section 3.3

Proof of Lemma 13. Equation (14) follows directly by writing

uT Sn+1u= (1−ηn+1)u
T Snu+ηn+1uT (Xn+1−Mn)(Xn+1−Mn)

T u

= [1+ηn+1(Z
2
n+1− 1)]uT Snu.

For n≥ 2, write using the above equation

Zn+1 = θuT
S1/2

n Wn+1

‖S1/2
n u‖

+ (1−ηn)u
T

Xn−Mn−1

‖S1/2
n u‖

= θ
uT S1/2

n

‖S1/2
n u‖

Wn+1+ (1−ηn)

�

uT Sn−1u

uT Snu

�1/2

Zn

= θW̃n+1+ (1−ηn)

�

1

1+ηn(Z
2
n − 1)

�1/2

Zn

where (W̃n+1 := ‖S1/2
n u‖−1uT S1/2

n Wn+1 are non-degenerate i.i.d. random variables by Lemma 34
below. This establishes (15).
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Lemma 34. Assume u ∈ R
d is a non-zero vector, (Wn)n≥1 are independent random variables fol-

lowing a common spherically symmetric non-degenerate distribution in R
d . Assume also that Sn

are symmetric and positive definite random matrices taking values in R
d×d measurable with respect

Fn := σ(W1, . . . ,Wn). Then the random variables (W̃n)n≥2 defined through

W̃n+1 :=
uT S1/2

n

‖S1/2
n u‖

Wn+1

are i.i.d. non-degenerate real-valued random variables.

Proof. Choose a measurable A⊂ R, denote Tn := ‖S1/2
n u‖−1S1/2

n u and define An := {x ∈ Rd : T T
n x ∈

A}. Let Rn be a rotation matrix such that RT
n Tn = e1 := (1,0, . . . , 0) ∈ Rd . Since Wn+1 is independent

of Fn, we have

P(W̃n+1 ∈ A | Fn) = P(Wn+1 ∈ An | Fn) = P(RnWn+1 ∈ An | Fn)

= P(eT
1 Wn+1 ∈ A | Fn) = P(eT

1 W1 ∈ A)

by the rotational invariance of the distribution of (Wn)n≥1. Since the common distribution of
(Wn)n≥1 is non-degenerate, so is the distribution of eT

1 W1.

Remark 35. Notice particularly that if (Wn)n≥2 in Lemma 34 are standard Gaussian vectors in R
d

then (W̃n)n≥2 are standard Gaussian random variables.

C The Kolmogorov-Rogozin inequality

Define the concentration function Q(X ;λ) of a random variable X by

Q(X ;λ) := sup
x∈R

P(X ∈ [x , x +λ])

for all λ ≥ 0.

Theorem 36. Let X1, X2, . . . be mutually independent random variables. There is a universal constant

c > 0 such that

Q

 

n
∑

k=1

Xk; L

!

≤
cL

λ

 

n
∑

k=1

�

1−Q(Xk;λ)
�

!−1/2

for all L ≥ λ > 0.

Proof. Rogozin’s original work Rogozin (1961) uses combinatorial results, and Esseen’s alternative
proof Esseen (1966) is based on characteristic functions.

D A coupling construction

Theorem 37. Suppose µ and ν are probability measures and the random variable X ∼ µ. Then,

possibly by augmenting the probability space, there is another random variable Y such that Y ∼ ν and

P(X = Y ) = 1−‖µ− ν‖.
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Proof (adopted from Theorem 3 in (Roberts and Rosenthal 2004)). Define the measure ρ := µ + ν ,
and the densities g := dµ/dρ and h := dν/dρ, existing by the Radon-Nikodym theorem. Let us
introduce two auxiliary variables U and Z independent of each other and X , whose existence is
ensured by possible augmentation of the probability space. Then, Y is defined through

Y = 1{U≤r(X )}X + 1{U>r(X )}Z

where the ‘coupling probability’ r is defined as r(y) := min{1,h(y)/g(y)} whenever g(y) > 0 and
r(y) := 1 otherwise. The variable U is uniformly distributed on [0,1]. If r(y) = 1 for ρ-almost
every y , then the choice of Z is irrelevant, µ = ν , and the claim is trivial. Otherwise, the variable Z

is distributed following the ‘residual measure’ ξ given as

ξ(A) :=

∫

A
max{0,h− g}dρ

∫

max{0,h− g}dρ
.

Observe that
∫

max{0,h − g}dρ =
∫

max{0, g − h}dρ > 0 in this case, so ξ is a well defined
probability measure.

Let us check that Y ∼ ν ,

P(Y ∈ A) =

∫

A

rdµ+ ξ(A)

∫

(1− r)dµ

=

∫

A

min{g,h}dρ+ ξ(A)
∫

h<g

(g − h)dρ

=

∫

A

min{g,h}+max{0,h− g}ρ(dx) = ν(A).

Moreover, by observing that r(y) = 1 in the support of ξ, one has

P(X = Y ) =

∫

rdµ =

∫

min{g,h}dρ = 1−
∫

g<h

(h− g)dρ = 1−‖ν −µ‖

since
∫

g<h
(h− g)dρ =

∫

h<g
(g−h)dρ = sup f

�

�

�

∫

f (h− g)dρ
�

�

�= ‖µ−ν‖ where the supremum taken

over all measurable functions f taking values in [0,1].

E Proof of Lemma 20

Observe that without loss of generality it is sufficient to check the case m = 0 and b = 1, that is,
consider the standard Laplace distribution π(x) := 1

2
e−|x |.

Let x > 0 and start by writing

1−
PsV (x)

V (x)
=

∫ x

−x

a(x , y)q̃s(y − x)dy −
∫

|y|>x

b(x , y)q̃s(y − x)dy (32)
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where

a(x , y) :=



1−
È

π(x)

π(y)



 = 1− e−
x−|y |

2 and

b(x , y) :=

r

π(y)

π(x)

 

1−
r

π(y)

π(x)

!

= e−
|y |−x

2

�

1− e−
|y |−x

2

�

.

Compute then that
∫ x

0

a(x , y)q̃s(y − x)dy −
∫ 2x

x

b(x , y)q̃s(y − x)dy =

∫ x

0

�

1− e−
z

2
�2

q̃s(z)dz.

The estimates
∫ 0

−x

a(x , y)q̃s(y − x)dy ≥ q̃s(2x)

∫ x

0

a(x , y)dy = q̃s(2x)

∫ x

0

(1− e−
z

2 )dz

∫ −x

−∞
b(x , y)q̃s(y − x)dy ≤ q̃s(2x)

∫ ∞

x

b(x , y)dy = q̃s(2x)

∫ ∞

0

e−
z

2 (1− e
z

2 )dz

due to the non-increasing property of q̃s yield

∫ 0

−x

a(x , y)q̃s(y − x)dy −
∫ −x

−∞
b(x , y)q̃s(y − x)dy

≥ q̃s(2x)

�∫ x

0

(1− e−
z

2 )2dz −
∫ ∞

x

e−
z

2 dz

�

> 0

for any sufficiently large x > 0. Similarly, one obtains

1

2

∫ x

0

�

1− e−
z

2
�2

q̃s(z)dz −
∫ ∞

2x

b(x , y)qs(y − x)dy > 0

for large enough x > 0.

Summing up, letting M > 0 be sufficiently large, then for x ≥ M and s ≥ L > 0

1−
PsV (x)

V (x)
≥

1

2

∫ x

0

�

1− e−
z

2
�2

q̃s(z)dz ≥
1

2
q̃s(M)

∫ M

0

�

1− e−
z

2
�2dz

≥ c1s−1/2q̃(θ−1/2s−1/2M)≥ c2s−1/2

for some constants c1, c2 > 0. The same inequality holds also for −x ≤ −M due to symmetry. The
simple bound PsV (x) ≤ 2V (x) observed from (32) with the above estimate establishes (22). The
minorisation inequality (23) holds since for all x ∈ C one may write

Ps(x ,A)≥
∫

A∩C

max

�

1,
π(y)

π(x)

�

q̃s(y − x)dy

≥
infz∈C π(z)

supz π(z)
inf

s≥L, z,y∈C
q̃s(z− y)

∫

A∩C

dy ≥ c3s−1/2ν(A).

where ν(A) := |A∩ C |/|C | with | · | denoting the Lebesgue measure.

75


